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Abstract

The null controllable set of a system is the largest set of states that can be controlled to the origin. Control systems that
have a region of attraction equal to the null controllable set are said to be maximally controllable closed-loop systems. In the
case of open-loop unstable plants with amplitude constrained control it is well known that the null controllable set does not
cover the entire state-space. Further the combination of input constraints and unstable system dynamics results in a set of
state constraints which we call implicit constraints. It is shown that the simple inclusion of implicit constraints in a controller
formulation results in a controller that achieves maximal controllability for a class of open-loop unstable systems.
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1 Introduction

The set of all states for which an admissible control se-
quence exists to steer a current state to the origin in pos-
sibly infinite time is known as the null controllable set
of a system. Many authors have characterised null con-
trollable sets and formulated controllers which produce
closed-loop systems that are asymptotically stable over
these sets [14], [13], [7], [4], [12]. We will refer to such
closed-loop systems as maximally controllable systems.
The work of previous authors has resulted in controllers
that may be grouped into several categories. For exam-
ple, [14] and [12] propose strategies involving the addi-
tion of a non-linear anti-windup controller. While [13]
and [7] show maximal controllability via the selection of
a specific state feedback gain which produces a closed-
loop system that can arbitrarily closely approximate the
null controllable set. In [4] a nonlinear controller is for-
mulated by starting with a set of state feedback gains
which are dynamically modified as the null controllable
boundary is approached. None of these techniques re-
sult in a piecewise linear controller and some like [13]
and [7] restrict the state feedback gains to specific val-
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ues. In contrast our proposed approach describes a so-
lution that uses a piecewise linear controller structure
which under mild assumptions allows the selection of a
range of state feedback gains. The desirability of this
controller structure stems from a popular advanced op-
timisation based control strategy known as Model Pre-
dictive Control (MPC) (e.g., [2], [9]). More specifically,
the explicit solution to MPC is a piecewise linear con-
troller [6]. Hence, both the motivation for the approach
and the potential link to MPC are identified throughout
the subsequent sections. The work of Blanchini [1], and
references therein, most closely resembles the approach
in this paper. Their method produces a piecewise linear
controller that renders some initial, compact and con-
vex, subset of the region of attraction positively invari-
ant. The controller also guarantees convergence by mak-
ing this initial set λ-contractive. However, to approxi-
mate a null controllable set, the technique gives a con-
troller that only affects the unstable modes. Hence, our
proposed approach has the main advantage of allowing
a larger set of controller gains, able to affect both stable
and unstable modes, of which theirs is a special case.

The application of MPC with guaranteed stability pro-
duces a region of attraction that is a subset of the null
controllable set. In general the size of the region of at-
traction is dependent on the length of the horizon used
in the MPC formulation. Therefore, to make the region
of attraction of a system equal to the null controllable
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set may involve applying MPC over an infinite horizon.
This solution for obtaining the largest possible region of
attraction, in the presence of constraints, is intractable.
We note that for open-loop asymptotically stable sys-
tems an appropriate selection of the MPC parameters
means that the region of attraction is the entire state-
space and therefore the presented work is not relevant
to these types of systems.

In this paper we introduce the concept of implicit con-
straints. Implicit constraints result from the combina-
tion of explicit or applied constraints (such as actua-
tor saturation constraints) and system dynamics (such
as plant open-loop instabilities). Implicit constraints are
therefore a concept that is closely associated with the
null controllable set. A motivating example of a second
order unstable system reveals that a maximally control-
lable closed-loop system results from making implicit
constraints “explicit” in the MPC formulation. Further,
the resulting closed-loop system is maximally control-
lable independent of the horizon length used. We then
consider a more general class of input constrained unsta-
ble systems with any state dimension and one unstable
mode. We show that applying a control strategy which
enforces implicit constraints results in closed-loop sys-
tems with a piecewise affine controller. Under mild as-
sumptions, the properties of the controller in each con-
trol region is such that the resulting closed-loop systems
achieve a controllable set that is an arbitrarily close ap-
proximation to the null controllable set.

The remainder of the paper is divided into eight sections.
Preliminaries are covered by three sections beginning
with Section 1.1 which provides a motivating example
for the application of implicit constraints. Section 2 de-
tails the definition of the systems and their null control-
lable sets, and the statement of a control strategy which
enforces implicit constraints is presented in Section 3.
The analysis requires the definition of some constructs
found in Section 4. Section 5 describes the properties
of the various analysis regions and Section 6 combines
all of the elements to prove maximal controllability of
the closed-loop systems. Finally, an example provides a
practical illustration of the presented theory, Section 8
discusses extensions to the technique and some conclu-
sions complete the paper.

1.1 Implicit Constraints: A Motivating Example

To motivate the contents of this paper we consider an
electromagnetic ball suspension apparatus. This system
uses a current I to energise an electromagnet in order
to suspend a ferromagnetic ball of mass mb at a desired
height y = y∗. A linearised model of such a system (see
[8], Example 12.8) where the ball displacement y and the

ball velocity v are the system states is given as

[

ẏ

v̇

]

=

[

0 1

0.385 −1× 10−5

][

y

v

]

+

[

0

−0.057

]

I. (1)

If the current available to energise the electromagnet is
limited, for example I ∈ [−10, 10], we implicitly limit
the minimum height at which the ball can be suspended.
More specifically by performing a similarity transforma-
tion such that the system’s unstable state x1 is separate
(i.e., ẋ1 = a1x1 + b1I) we can determine that the input
constraints produce the limit x1 ∈ [10b1/a1,−10b1/a1].
For this example, transforming the limits on x1 back
to the original state-space results in the limits x1 =
y+0.051v ∈ [−1.5, 1.5]. This observation highlights that
external constraints in combination with the dynamics
of a system introduce what we term implicit constraints.
Figure 1 shows a portion of the state-space of the ball for
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Fig. 1. Magnetic suspension system trajectories.

the linearised model (1). The shaded area of the graph
is a portion of the null controllable set and the dashed
lines are the implicit constraints resulting from the min-
imum and maximum available current. The curves plot-
ted in Fig. 1 correspond to three state-space trajectories
resulting from different formulations of MPC applied to
an initial state [90 − 5]T . The objective is to bring the
state to zero.

Each of the three MPC formulations is implemented
with a state weighting Q = 1 × 106I, input weighting
R = 1, terminal state weighting PN being the solution to
the discrete-time algebraic Riccati equation and without
terminal state constraints. Further the MPC problem is
formulated with a discrete-time version of the system
model with a sampling period of 0.001s.

Formulating MPC with input constraints and a horizon
of length 30 produces the trajectory marked by dots. We
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see that this trajectory exits the null controllable set de-
fined by the available control authority and as such the
ball displacement diverges. Formulating MPC with in-
put constraints and a horizon of length 110 produces the
trajectory marked by squares. We see that the trajec-
tory does not exit the null controllable set and asymp-
totically converges to the origin. Comparing these two
MPC formulations highlights the fact that the length of
the horizon can be selected for any given initial state
so that an asymptotically stable trajectory is produced.
However, if the horizon is not long enough the system
behaves with a degree of “myopia” in the sense that it
can not “see” that the optimal trajectory selected will
move the state outside the controllable region. There-
fore, given the maximum available control action, it be-
comes impossible to prevent the ball from falling.

From this observation a reasonable conjecture is that if
the system were to see the boundary of the null control-
lable set as a constraint, then the system could avoid
exiting this region. This is confirmed for this example
by formulating MPC with input constraints and adding
“explicitly” the implicit constraint that describes the
boundary of the null controllable set, which results in
the trajectory shown in Fig. 1 as a solid line. The sim-
ulation clearly shows that the introduction of the im-
plicit constraint to the MPC formulation ensures that
the trajectory remains within the null controllable set.
Further, we may anticipate that stability is independent
of the selected horizon length since the solid line trajec-
tory shown in Fig. 1 is for a horizon of one 1 .

The remainder of the article presents a controller which
enforces implicit constraints to show situations where
the intuition gained from this example is valid.

2 Problem Formulation

This section introduces a class of nth order input con-
strained systems with one unstable mode and input con-
straints. We will show in the following sections that,
by applying the continuous-time controller described in
Section 3 and introducing implicit constraints, the re-
sulting closed-loop system is maximally controllable.

We consider a class of open-loop unstable, linear, time
invariant, nth order systems with the following state-
space representation,

ẋ = Ax+Bu (2)

1 If a system has a null controllable set which can be eas-
ily characterised by a set of implicit constraints, it is possi-
ble that adding these implicit constraints to the controller
formulation results in a maximally controllable system. At
the very least, adding the null controllable set as an explicit
constraint cannot decrease the region of attraction.

where x is the state vector in R
n, u is the input in R

and (A,B) is controllable. We assume that the matrix
A is diagonalisable and that its eigenvalues (λ1, λ2, . . .,
λn) are real and satisfy λ1 > 0 and λi < 0 for i =
2, . . . , n. Under these assumptions, there is no loss of
generality in assuming that the block matrices in (2)
have the following form,

A =

[

au1 0

0 As

]

, B =

[

bu1

Bs

]

, (3)

where au1 = λ1 is the only unstable eigenvalue andAs =
diag(as1, as2, . . . , asq) is a diagonal matrix consisting of
q = n− 1 stable eigenvalues asi = λi+1 for i = 1, . . . , q.
Accordingly, the state is partitioned as x = [xu1 xT

s ]
T ,

xu1 ∈ R, xs ∈ R
n−1, where xu1 is the unstable state and

xs , [xs1 . . . xsq]
T is the vector of stable states.

Further we will assume that the input magnitude is con-
strained, that is u ≤ u ≤ u with u > 0, u < 0 and
without loss of generality that bu1 > 0 and 2 Bs > 0.

2.1 Null Controllable Set

For a system with a single unstable pole the bounds in
the direction of the unstable state are determined by
the values of the unstable state that can be cancelled
in finite time by the minimum and maximum available
control magnitudes. Thus, the null controllable region
for (2)–(3) denoted byRmax has the following form [13]:

Rmax =

{

x ∈ R
n : −

bu1
au1

u < xu1 < −
bu1
au1

u

}

. (4)

2.2 Null Controllable Set Approximation

Since the null controllable set is open on the unstable
state boundaries we will consider for our analysis a closed
approximation 3 to this region, as defined below.

Definition 1 (Region Rmax−ε) The regionRmax−ε is
defined as

Rmax−ε , {x ∈ R
n : xu1 ≤ xu1 ≤ xu1} , (5)

where

xu1 , −bu1u/au1 + εu1, (6)

xu1 , −bu1u/au1 − εu1, (7)

and

0 < εu1 <min {−bu1u/au1,−bu1u/au1} . (8)

2 In the remainder of the article, inequalities applied to
vectors are to be considered element wise.
3

Rmax−ε, as per Definition 1, can be made arbitrarily close
to the null controllable set through the selection of εu1.
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3 Control

This section specifies a piecewise affine control law which
incorporates the application of implicit constraints.
The selected controller is then analysed to detail its
behaviour throughout the null controllable region.

u =







u if xu1 < xu1

sat(−Kx) if xu1 ≤ xu1 ≤ xu1

u if xu1 > xu1

(9)

whereK is a state feedback gain and sat(v) = u if v < u,
v if u ≤ v ≤ u and u if v > u.

The control law (9) implies that for xu1 ≤ xu1 ≤ xu1 the
state-space is partitioned into three control regions 4 (as
shown in Fig. 2 for the case xs ∈ R): a linear control re-
gion u ≤ −Kx ≤ u, where the linear control u = −Kx
is applied; and two input constrained regions −Kx < u
and −Kx > u, corresponding to u = u and u = u, re-
spectively. In addition for xu1 > xu1 or xu1 < xu1 the
resulting input is such that xu1 moves back toward the
boundary at the maximum rate given the available in-
put range, thus effectively imposing the “implicit con-
straint” of keeping the system inside an arbitrarily close
approximation of the controllable region.

3.1 Controller Properties

For some portions of the hyperplanes xu1 = xu1 and
xu1 = xu1 the right hand sides of the differential equa-
tions describing the closed-loop system (2)–(3), (9) are
discontinuous. For these kinds of differential equations,
existence and uniqueness of solutions on the discontinu-
ous portions may be considered using differential inclu-
sions theory as proposed by Filippov [5]. In general dis-
continuities occur on a switching surface s(x) = 0 and
existence and uniqueness of solutions on this surface in
the sense of Filippov can be guaranteed if all points x∗

in the surface satisfy the following conditions [11].

λ+(x
∗) < 0 or λ−(x

∗) > 0, (10)

where

λ+(x
∗) = lim

x→x∗

λ+(x), λ−(x
∗) = lim

x→x∗

λ−(x),

x∗ ∈ {x ∈ R
n : s(x) = 0}, (11)

and

λ+(x) =
ds

dt
=

∂s

∂x
ẋ for s(x) ∈ S+ , {x ∈ R

n : s(x) > 0} ,

λ−(x) =
ds

dt
=

∂s

∂x
ẋ for s(x) ∈ S− , {x ∈ R

n : s(x) < 0} .

4 Note that, using this approach the resulting continuous-
time closed-loop system is a piecewise affine system similar
to a one step horizon MPC formulation of the problem.

We consider the case xu1 = xu1, the switching surface
is given by s(x) = xu1 − xu1 = 0 and s(x) > 0 ⇐⇒
xu1 > xu1, s(x) < 0 ⇐⇒ xu1 < xu1. By using the
system equations (2)–(3) and the control law (9), λ+(x)
and λ−(x) become,

λ+(x) = au1xu1 + bu1u for xu1 > xu1, (12)

λ−(x) = au1xu1 + bu1 sat(−Kx) for xu1 < xu1. (13)

First we consider λ+(x
∗). From (11) and s(x) = xu1 −

xu1 we have x∗
u1 = xu1, hence, from (12), by using (7)

results in λ+(x
∗) = −εu1au1. Since au1 > 0, εu1 > 0, we

have that in S+ (that is, xu1 > xu1),

λ+(x
∗) = −εu1au1 < 0. (14)

Hence the first condition in (10) is always true, guaran-
teeing existence and uniqueness of the solution of (2)–
(3), (9) in the sense of Filippov, on the switching surface.

Let us now consider λ−(x
∗). Using (13) we then

have, that in S− (that is, xu1 < xu1), λ−(x
∗) =

au1xu1 + bu1 sat(−Kx∗). We can consider three differ-
ent cases that define portions of the switching surface
for which the trajectories on both sides present different
behaviour. These cases are:

λ−(x
∗) =







σ + bu1 sat(−Kx∗) > 0 if Ksx
∗
s < αs

σ + bu1 sat(−Kx∗) ≤ 0 if αs ≤ Ksx
∗
s < αc

−εu1au1 < 0 if Ksx
∗
s ≥ αc

,

(15)

where σ = au1xu1, K = [ku1 Ks], x
∗ = [xu1 x∗T

s ]T and
αc = u(bu1ku1 − au1)/au1 + εu1ku1, αs = u(bu1ku1 −
au1)/au1 + εu1(bu1ku1 − au1)/bu1. Conditions (14) and
(15) imply that for the portion Ksx

∗
s < αs the trajec-

tories on both sides of the switching surface xu1 = xu1,
point toward it. For the portionKsx

∗
s ≥ αs the trajecto-

ries in S+ point toward the switching surface and those
in S− away from it. In addition, for αs ≤ Ksx

∗
s < αc,

the right hand side of (2)–(3), (9) is discontinuous on
the switching surface whereas for Ksx

∗
s ≥ αc it is con-

tinuous. (Note that Ksxs = αc represents the intersec-
tion between the switching surface and the hyperplane
−Kx = u where the controller saturates to u.) Hence,
for Ksx

∗
s < αs, the trajectories slide along the switch-

ing surface xu1 = xu1 with an equivalent control ueq

[3], defined as the control that maintains the condition
ṡ(x) = ẋu1 = 0, that is, ueq = au1εu1/bu1 + u.

For αs ≤ Ksx
∗
s < αc, it may be shown that the trajec-

tory defined in the sense of Filippov has only x∗ in com-
mon with the switching surface and goes from S+ to S−

through x∗ [11]. For Ksx
∗
s ≥ αc the differential equa-

tions (2)–(3), (9) have a unique solution in the standard
sense and the resulting trajectories cross the switching
surface from S+ to S−. Thus, closed-loop system trajec-
tories starting on the hyperplane xu1 = xu1 either slide
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on the hyperplane or move towards S− = {x ∈ R
n :

xu1 ≤ xu1}.

A similar set of arguments can be made for the case of
xu1 = xu1.

Note that (9) coincides with the linear controller u =
−Kx near the origin and hence asymptotic (exponen-
tial) stability is automatically ensured in a region around
the origin if A−BK is Hurwitz. The following sections
demonstrate that, under mild assumptions, (9) actually
achieves asymptotic stability with a region of attraction
equal to the null controllable region.

4 Analysis Elements

To prove stability for the systems presented, we will de-
fine a group of regions and show that these regions are
positively invariant for the closed-loop system trajecto-
ries. We will further show that the trajectories starting
in any of these regions reach a smaller region contained
in the originating region and ultimately converge to the
origin of the state-space. In this section we present the
required definitions and assumptions that provide the
construction elements for the subsequent results.

4.1 Critical Points

The closed-loop system (2)–(3), (9) is characterised by
a piecewise affine controller. Piecewise affine controllers
divide a system’s controllable region into subregions each
with a different control law. Hence, within each subre-
gion the behaviour of the system is dominated by the lo-
cation of a pseudo-equilibrium point (that is an equilib-
rium that would arise should the domain of a subregion
be extended to include the whole state space) resulting
from the application of the subregion’s control law.

For the closed-loop system (2)–(3), (9) there are three
subregions, which are governed by one linear and two sat-
urated controllers. The linear control region u ≤ −Kx ≤
u has a stable equilibrium point at the origin, and the
saturated control regions corresponding to u = u and
u = u have the pseudo-equilibrium points defined be-
low. For example the equilibrium point for u = u is on
the open boundary of the null controllable set (in the
unstable state direction) and inside the stable subspace
of the u = u controller.

Definition 2 (Pseudo-equilibrium Points) These
points are denoted by xe+ and xe− and are defined by,
Axe+ + Bu = 0 and Axe− + Bu = 0. Using (3), we
obtain,

xe+ ,

[

xe+
u1 xe+ T

s

]T

=
[

xe+
u1 xe+

s1 · · · xe+
sq

]T

(16)

xe− ,

[

xe−
u1 xe− T

s

]T

=
[

xe−
u1 xe−

s1 · · · xe−
sq

]T

(17)

where xe+
u1 = −bu1u/au1, xe−

u1 = −bu1u/au1, xe+
si =

−bsiu/asi and xe−
si = −bsiu/asi for i = 1, . . . , q. ◦

We will also require the following ε-perturbation of the
pseudo-equilibrium points (16) and (17).

Definition 3 (ε Pseudo-equilibrium Points) These
points are denoted by x and x and for a given
ε = (εu1, εs) = (εu1, εs1, . . . , εsq) > 0 they are defined
as follows:

x ,

[

xu1 xT
s

]T

=
[

xu1 xs1 · · · xsq

]T

, (18)

x ,

[

xu1 xT
s

]T

=
[

xu1 xs1 · · · xsq

]T

, (19)

where xu1 = xe−
u1 +εu1, xu1 = xe+

u1 −εu1, xsi = xe+
si −εsi

and xsi = xe−
si + εsi for i = 1, . . . , q. ◦

xu1

xs1

xu1 xu1

xs1

xs1

u = u

u = u

u = −Kx

REε

RlinEε

Fig. 2. Analysis planes and regions in R
2.

4.2 Analysis Regions

Our first analysis region is an axis-aligned polytope
that is delimited by hyperplanes passing through the ε
pseudo-equilibrium points given in Definition 3. These
hyperplanes are illustrated for the case of R2 in Fig. 2.

Definition 4 (Pseudo-equilibrium ε Region) This
region, denoted by REε, is the defined as

REε ,

{

x ∈ R
n :

xu1 ≤ xu1 ≤ xu1 and

xs ≤ xs ≤ xs

}

, (20)

where xu1, xu1, xs and xs, are as in (18) and (19). ◦

Our next analysis region represents the subset of the
REε polytope where the control is linear (−Kx).

Definition 5 (Linear Pseudo-equilibrium ε Region)
This region denoted by RlinEε, is defined as

RlinEε , {x ∈ REε : u ≤ −Kx ≤ u} , (21)
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where REε is as in Definition 4. ◦

As an illustration of (20) and (21), Fig. 2 showsRmax−ε

(cf. Definition 1) and the analysis regions for R2.

4.3 Controller Gain K and Parameter ε

To facilitate the results presented in the sequel we require
the controller gain K and parameter ε (see Definition 3)
in (9) to satisfy the following assumption.

Assumption 1 (Controller Parameters) The gain
K = [ku1 ks1 · · · ksq] in (9) is such that A − BK is
Hurwitz and the following two inequalities hold.

∑

i∈I+

ksibsi
au1
asi

u+
∑

i∈I−

ksibsi

(

au1
asi

u+ u− u

)

+

(ku1bu1 − au1)u ≥ α, (22)
∑

i∈I+

ksibsi
au1
asi

u+
∑

i∈I−

ksibsi

(

au1
asi

u+ u− u

)

+

(ku1bu1 − au1)u ≤ −α, (23)

for some α > 0, where

I+ , {i ∈ {1, 2, . . . , q} : ksi > 0}, (24)

I− , {i ∈ {1, 2, . . . , q} : ksi < 0}. (25)

In addition, let ε = (εu1, εs1, . . . , εsq) > 0 satisfy

εu1 ≤ −

q
∑

i=1

|ksi|asi
ku1au1

εsi and

q
∑

i=1

|ksi|εsi(au1 − asi) < α.

◦

This places restrictions on the admissible controller
gains 5 K and parameter ε to ensure that certain geo-
metric properties hold for region RlinEε defined in (21).

5 Properties of the Analysis Regions

In this section we show that the regions defined in Sec-
tion 4.2 are nested and that each is positively invariant
for the closed-loop system trajectories and attractive of
trajectories originating in a containing region.

Lemma 1 (Nesting of Analysis Regions) The re-
gions RlinEε, REε, Rmax−ε and Rmax are nested, i.e.,

RlinEε ⊂ REε ⊂ Rmax−ε ⊂ Rmax.

5 Selecting K to be of the form K = [ku1 0 . . . 0] results
in one possible set of gains satisfying Assumption 1 (see [10]
Remark 3.3 for the proof).

PROOF. Immediate from (4) and Definitions 5, 4, 1.2

Lemma 2 (Invariance of Analysis Regions) For
the closed-loop system (2)–(3), (9), and under Assump-
tion 1 the following statements are true.

(1) Rmax−ε defined in (5) is positively invariant.
(2) REε defined in (20) is positively invariant.
(3) RlinEε defined in (21) is positively invariant. More-

over, the origin is asymptotically stable with a re-
gion of attraction that includes RlinEε.

PROOF. See [10], (1) Lemma 3.6, (2) Lemma 3.8 and
(3) Lemma 3.10.

Lemma 3 (Attractiveness of Analysis Regions)
For the closed-loop system (2)–(3), (9), the following
statements are true.

(1) All states in the region Rmax (see (4)), enter
Rmax−ε (see (5)) in finite time.

(2) All states inside Rmax−ε (see (5)) but outside REε

(see (20)) enter REε in finite time.
(3) All states insideREε (see (20)) but outside the inte-

rior ofRlinEε (see (21)) enterRlinEε in finite time.

PROOF. See [10], (1) Lemma 3.7, (2) Lemma 3.9 and
(3) Lemma 3.11.

6 Maximal Controllability

In this section we present the main result of this paper,
which shows that the controller (9) asymptotically sta-
bilises system (2)–(3), achieving a region of attraction
that is arbitrarily close to the null controllable region.

Theorem 1 (Maximal Controllability) For the
closed-loop system (2)–(3), (9) and a selection of K and
ε that satisfy Assumption 1, the origin is asymptotically
stable with a region of attraction Rmax.

PROOF. The proof of stability consists in showing that
for the closed-loop system (2)–(3), (9), the trajectories
starting inRmax,Rmax−ε andREε converge toRlinEε in
finite time. Then, inside RlinEε, the trajectories asymp-
totically converge to the origin.

First consider points in the region {x : x ∈ Rmax and x /∈
intRmax−ε}. By Lemma 3 (1), all trajectories starting
in this region reach Rmax−ε in finite time.

Next consider points in the region {x : x ∈ Rmax−ε and x /∈
intREε}. By Lemma 3 (2) all trajectories starting in
this region must reach region REε in finite time.
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Finally, consider points in the region {x : x ∈
REε and x /∈ intRlinEε}. By Lemma 3 (3) all trajecto-
ries starting in this region enter RlinEε in finite time.

By Lemma 2 (3), RlinEε is positively invariant and the
origin is asymptotically stable with a region of attraction
that includes RlinEε. Therefore, all trajectories starting
in Rmax converge asymptotically to the origin, proving
the result. 2

7 Example

To illustrate the results presented above, we apply the
controller presented in Section 3 to a system of the form
(2)–(3) with au1 = 1, As = −1 and bu1 = Bs = 1,
with input constraints −1 ≤ u ≤ 1. From (4), the null
controllable region is −1 < xu1 < 1 and by selecting
εu1 = 0.01 the implicit constraints are −0.99 ≤ xu1 ≤
0.99. The gain K in (9) is taken as K = [2.4 0.4], which
satisfies Assumption 1.

Fig. 3 represents a small subregion of the closed-loop sys-
tem’s null controllable set, whose boundaries are iden-
tified by the two dashed lines located at xu1 = −1 and
xu1 = 1. A number of initial states were selected and
their state evolution trajectories plotted. Each initial
state is depicted by a circle and its evolution trajectory
is depicted by a solid line. Further, the shaded region
in the centre of the figure represents the unsaturated or
linear control region of the closed-loop system. From the
figure we see that all selected initial states have trajecto-
ries that converge to the origin. Further, we note that a
portion of some trajectories exhibit sliding along the im-
plicit constraint boundaries, thus confirming the trajec-
tory behaviour predicted by the analysis in the previous
sections. The simulations also suggest that the closed-
loop system exhibits maximal controllability.
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15

20
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x
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1

Fig. 3. State trajectories for an array of initial states.

8 Extensions

This section briefly describes some extensions to this
maximal controllability approach and its limitations
with respect to a broader class of systems. In all cases
the presented analysis relies on the resulting null con-
trollable set of the system and whether its boundaries
are sufficiently “simple” to be easily applied as an im-
plicit constraint. For the case where the resulting sys-
tems have null controllable sets that are not sufficiently
simple the authors have developed a different technique
known as RPMPC [10].

Two possible extensions are the introduction of multi-
ple inputs and multiple unstable modes. Three distinct
types of systems result from the combination of these
two extensions and are discussed in the context of the
described maximal controllability approach.

8.1 One Unstable Mode with Multiple Inputs

Adding multiple inputs to systems with a single unstable
mode is such that the resulting null controllable set is
of the same shape as the one for a single input with the
redefinition of u and u, and the implicit constraints as

u =
[

usat
1 . . . usat

m

]

= arg min
u1,...,um∈U

−

m
∑

i=1

bui/au1ui

u =
[

usat
1 . . . usat

m

]

= arg max
u1,...,um∈U

−
m
∑

i=1

bui/au1ui

and

xu1 = −
m
∑

i=1

bui/au1u
sat
i and xu1 = −

m
∑

i=1

bui/au1u
sat
i .

Hence, under similar assumptions such systems can re-
sult in maximal controllability.

8.2 Multiple Unstable Modes and Multiple Inputs

For systems with p > 1 unstable modes and m > 1 in-
puts, the null controllable sets become more complicated
andmay be maximally controlled by the above described
technique if additional conditions are met. Applicable
systems are those where the number of inputsm ≥ p and
where each column ofBu, the input weightings of the un-
stable subsystem, contains at least one non-zero entry. If
these conditions are met, the resulting null controllable
set is an axis aligned p-orthotope, in R

p, for the unstable
states and unbounded for the stable modes. Similarly, ui

and ui, and the implicit constraints for i = 1, . . . , p are
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redefined as follows.

ui =
[

usat
i1 . . . usat

im

]

= arg min
u1,...,um∈U

−

m
∑

j=1

buij/auiuj

ui =
[

usat
i1 . . . usat

im

]

= arg max
u1,...,um∈U

−

m
∑

j=1

buij/auiuj

and

xui = −

m
∑

j=1

buij/auiu
sat
ij and xui = −

m
∑

j=1

buij/auiu
sat
ij

If these conditions are not met the resulting null con-
trollable set does not have a “simple” closed form repre-
sentation of its boundaries which means that our given
technique no longer applies.

8.3 Multiple Unstable Modes and a Single Input

For this class of systems the null controllable set does
not have a “simple” closed form description of its bound-
ary and as such does not satisfy the precondition of the
presented technique.

9 Conclusions and Discussions

In this paper we have observed that the combination of
applied constraints and system dynamics can result in
“implicit constraints”, which describe the boundaries of
the null controllable set of a system. If the characteri-
sation of the null controllable set is sufficiently simple,
these implicit constraints can be easily incorporated in
the formulation of the control problem. We have applied
this technique to a control strategy and shown that for
a non-trivial class of systems, the resulting closed-loop
system has a region of attraction equal to the null con-
trollable set.

Although the analysis presented was in terms of a
continuous-time controller, the successful application
of MPC with implicit constraints to the magnetic sus-
pension system described in Section 1.1 suggests that
similar results would apply to MPC. Thus, the pro-
posed technique may provide a very simple addition
to an MPC formulation (i.e., the addition of the im-
plicit state constraints) which would allow the system
to be stabilised, by MPC, over the entire controllable
space. By comparison stabilisation of MPC using ter-
minal set constraints makes the controllable set horizon
length dependent and therefore, due to computational
complexity, very conservative with respect to the null
controllable set of the system.

Note that our results suggest that it would suffice to
consider horizon 1 to achieve maximal controllability by

means of the introduction of implicit constraints. On
the other hand, with a horizon length of 1 and initial
states with large stable state values, the saturated con-
trol regions produce trajectories that reach the implicit
boundary and slide along the boundary. When the hori-
zon length is increased more control regions are gener-
ated hence a smaller subset of initial states will result in
the trajectories reaching the implicit boundary. As a re-
sult shorter settling times may be possible in some cases
and an overall lower control cost may result.
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