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Abstract

The main objective of this paper is to present a unified dissipativity approach for stability analysis of piecewise smooth
(PWS) systems with continuous and discontinuous vector fields. The Filippov definition is considered for the solution of these
systems. Using the concept of generalized gradients for nonsmooth functions, sufficient conditions for the stability of a PWS
system are formulated based on Lyapunov theory. The importance of the proposed approach is that it does not need any
a-priori information about attractive sliding modes on switching surfaces, which is in general difficult to obtain. A section on
application of the main results to piecewise affine (PWA) systems followed by a section with extensive examples clearly show
the usefulness of the proposed unified methodology. In particular, we present an example with a stable sliding mode where
the proposed method works and previously suggested methods fail.
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1 Introduction

There have been different approaches to construct a
Lyapunov function to provide sufficient conditions for
the stability of PWS systems. Surveys of stability anal-
ysis for hybrid and switched linear systems can be found
in Decarlo et al. (2000); Liberzon (2003) and a general
framework for analyzing stability of nonlinear switched
systems using multiple Lyapunov functions can be found
in Chatterjee and Liberzon (2006). A widely used ap-
proach in the literature has been to search for quadratic
Lyapunov functions. An advantage of searching for
such quadratic functions is that sufficient conditions
for stability of a class of PWS systems called piecewise
affine (PWA) systems can be formulated as convex op-
timization problems subject to linear matrix inequality
(LMI) constraints as shown in Hassibi and Boyd (1998);
Rodrigues and Boyd (2005). Furthermore, a common
quadratic Lyapunov function has been used to analyze
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the stability of switched linear systems under arbitrary
switching in Liberzon (2003). Reference Pavlov et al.
(2005a) shows that the existence of a common quadratic
Lyapunov function for the linear parts of a PWA system
in every mode is sufficient for exponential convergence
of the system if the vector field of the PWA system is
continuous. The case of discontinuous vector fields is
studied in Pavlov et al. (2005b) and it is shown that the
existence of a common quadratic Lyapunov function for
linear parts of the system is not a sufficient condition
for convergence. Necessary and sufficient conditions for
quadratic convergence of the special case of bimodal
PWA systems are then derived.

Despite the attractive features of quadratic Lyapunov
functions, there are stable PWA systems for which a
quadratic Lyapunov function does not exist. Examples of
such systems are shown in (Johansson, 2003, p. 47). Con-
servativeness of a quadratic form has been the motiva-
tion for studying nonquadratic Lyapunov functions. One
of the first approaches in this direction was to search for
continuous piecewise quadratic (PWQ) Lyapunov func-
tions in Branicky (1998); Pettersson (1999); Johansson
(2003); Rodrigues et al. (2000). However, it is a com-
mon misunderstanding in the literature to believe that
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if there is a continuous PWQ or piecewise polynomial
(PWP) function that is positive definite and decreasing
with time along each vector field of a switched affine
system then the system is stable. A counter-example
will be provided in this paper, in section 4.3. Sum of
squares (SOS) polynomials were also proposed as can-
didate Lyapunov functions. In fact, quadratic Lyapunov
functions are a special class of SOS Lyapunov functions
as shown in Prajna et al. (2005). In addition, by using
the SOS approach, it is possible to analyze the stability
of systems with nonlinear polynomial vector fields. Sta-
bility analysis tools based on the SOS decomposition for
classes of nonlinear systems, hybrid systems, switched
systems, and time-delay systems are presented in Pa-
pachristodoulou and Prajna (2005). In the same refer-
ence it is proposed to use PWP Lyapunov functions for
hybrid systems, which is a generalization of PW(Q Lya-
punov functions. However, systems with infinitely fast
switching or sliding modes are excluded from the discus-
sion in Papachristodoulou and Prajna (2005), as well as
from the discussion in most of the available literature.

Although there is a vast amount of work on stability of
switched linear and PWA systems, sliding modes or in-
finitely fast switching are not usually considered in the
literature. Important exceptions are found in Branicky
(1998); Johansson (2003); Rodrigues and How (2003);
Pavlov et al. (2005b). It is proposed in Branicky (1998)
to add the sliding modes and their associated sliding dy-
namics to the modes of the system before doing the sta-
bility analysis. However, this needs a-priori information
about the sliding modes of the system, which is typi-
cally hard to get. In another approach, an extra condi-
tion is introduced in (Johansson, 2003, p.64) to extend
the analysis of PWA systems to systems with attractive
sliding modes. However, one needs to identify potential
sets in which sliding modes can occur and then the cor-
responding condition can be formed and added to the
analysis problem. This might again be hard and make
the problem complex if there is no previous information
about sliding modes. In Rodrigues and How (2003), a
synthesis method based on bilinear matrix inequalities
was proposed for state and output feedback stabilization
of PWA systems. The synthesis method includes linear
constraints on controller gains to guarantee that slid-
ing modes are not generated at the switching. Finally,
the work in Pavlov et al. (2005b) has addressed sliding
modes but has concentrated on the specific case of com-
mon quadratic Lyapunov functions for bimodal PWA
systems. A question that still remains to be answered
in the literature is when can one remove the necessity
to check the existence of unstable sliding modes or add
additional constraints for a general PWA system. This
question will be answered in this paper using a unified
dissipative approach where the supply rate is propor-
tional to the candidate Lyapunov function, the propor-
tionality constant being related to the rate of decay of
the Lyapunov function. The paper is structured as fol-
lows. We start by some mathematical preliminaries in

section 2. Then we present the main results of the paper
followed by application to PWA systems and examples.

2 Mathematical Preliminaries

This section presents the background mathematical no-
tions used in the rest of the paper.

2.1 PWS Systems

The dynamics of a PWS system can be written as
where z(t) € X C R™ is the state vector and the initial
state is ¢(0) = xo. A subset of the state space X is
partitioned into M regions, R;, i = 1,..., M, such that
M 75 _ R
Ui:1Ri =X, RiﬂRj = (Z), N

where R; denotes the closure of R;. The function f;(z) :
R; — R" is continuous and locally bounded. The Filip-
pov definition of trajectories is considered for the solu-
tion of (1) (see Filippov (1960) and Acary and Brogliato
(2008)).

Definition 1 (Filippov solution) A continuous function
x(t) is regarded to be a Filippov solution to (1) if it is a
solution of the differential inclusion

z(t) € F(x) (2)
for almost allt > 0 where

F(x) & conv{fi(z)|i € Z(x)}, I(z) = {ilz € R;},

and conv stands for the convex hull of a set. Note that if
x € Ry, then F(x) = {fi(x)}.

2.2 PWP and PWA Systems

The dynamics of a PWP system can be written in the
form (1) where f;(z) € R™ are polynomial functions of
x. Each region in the partition is described by

R; = {z|E;(z) = 0} (3)
where F;(xz) € RPi is a vector polynomial function of
x and > represents an elementwise inequality. A PWA
system is a PWP system for which f;(z) = A;z + a; and

T =A;x+a;, forzeR,; (4)

where A; € R"*™, aq;, € R" fori = 1,..., M. It is as-
sumed that a; = 0 for ¢ € Z(0). Therefore, the origin is



an equilibrium point of the system. Each region in the
partition is described by (3) with E;(z) = E;x+e; where
E; € RPi*" ¢, € RPi and > represents an elementwise
inequality. For system (4) we define

A a;
0 0

E; e;
01

P =

) [

Equation (4) can then be rewritten as
z(t) = Az(t), z(t) € Ry

where Z = [z 1]7. Each polytopic region R; can be outer
approximated by a quadratic curve

where A; € RPi+1)x®i+1) i 5 matrix with nonnegative
entries. A parametric description of the boundaries be-
tween two regions R; and R; where R; N R; # (0 can
also be obtained as (see Hassibi and Boyd (1998) and
Rodrigues and How (2003) for more details)

RiNR; C {z|x = Fyjs+ fij, s e R* 1} (5)

A particular class of interest in applications is the class
of PWA slab systems (see Rodrigues and Boyd (2005)).
For such systems, the slab regions R;, ¢« = 1,..., M
partitioning a slab subset of the state space X C R™ are
defined as

R, = {(E ‘ 0; < Crx < Ji+1},

where Cr € R™™ and o; fori = 1,..., M +1 are scalars
such that
01 <02 <...<0MmM+1

Each slab region can alternatively be described by the
following degenerate ellipsoid

Ri=Az | |[Liz + L] <1} (6)

where Ll = 2072/(0}.._1 - Ji) and lz = 7(0’1'_;,_1 +
0i)/(0it1 = 04).

2.3  Dissipativity

We now consider PWS systems with inputs and outputs
described by

z = fi(z) + gi(x)w, x € R;
_ (7)
y = h(z,w)
where z(t) € X C R™ denotes the state, w(t) € R™ is
the exogenous input and y(¢) € R™ is the output. The
functions f;(z) : R; — R", gi(x) : R; — R™ " and

h(z,w) : X x R™ — R™ are continuous and locally
bounded. Roughly speaking, a system is considered dis-
sipative if the amount of energy that the system can
provide to its environment is less than what it receives
from external sources according to the following defini-
tion (Willems and Takaba, 2007).

Definition 2 The system (7) is dissipative with supply
rate W (y,w) and storage function V' (z), if V(x) is non-

negative and if S(x,t) = V(z) — fot W (y(r), w(r))dr is
nonincreasing along the trajectories of (7), i.e, if

t; <tg = V(x(t1)) +/t : W (y(r), w(r))dr > V(x(t2))
1 (8)

The link of the stability results with dissipativity is given
in Theorem 3.

Theorem 3 For the PWS system (1), if there exists a
continuous function V(x) defined in a forward invariant
set X such that

V(z*) =0,
V(z) >0 forallx # z* in X,
t <ty = V(z(th)) 2 V(a(ta)),

then x = x* is a stable equilibrium point. Moreover if
there exists a continuous function Q(z) such that

Qz") =0,
Q(x) >0 for allx # x* in X,

and if the system (7) with h(x,w) = x is dissipative with
supply rate —Q(z) and storage function V(z), i.e,

b <ty = V(ah) > Vi) + [ Qu(r)dr

t1

then all trajectories in X asymptotically converge to x =
x* provided V' is radially unbounded, i.e,

2] = 00 = V(z) — oo (9)
PROOF. See Samadi and Rodrigues (2008).

Note that more sophisticated versions of this result exist
in the literature of nonsmooth Lyapunov functions (see
for example (Clarke et al., 1998; Ryan, 1998; Byrnes and
Martin, 1995; Teel et al., 2002)). The problem with the
monotonicity conditions in Theorem 3 is that they can
be hard to check. Therefore, the next section presents
alternative conditions.



2.4  Monotonicity of Nonsmooth Functions

Necessary and sufficient conditions for monotonicity of
nonsmooth functions are described in this subsection.

Definition 4 (Clarke et al., 1998) For a locally Lips-
chitz continuous function V : R™ — R, the generalized
gradient is defined as

OcV(z) = Nesoconv{VV (y)ly € Be(x),y ¢ N} (10)

where N is the set of measure zero where the gradient of
V' does not exist and B(x) is a ball of radius € centered
at .

Proposition 5 (Ceragioli (1999)) Let F : R™ — 28"\ ()
be continuous and let V : R™ — R be locally Lipschitz
continuous. V is nonincreasing along all solutions of

e F(x)
if and only if

Vo € R",Vf € F(z), max{p T flp € 0cV(x)} <0 (11)

Proposition 5 will be used in the next section to prove
sufficient conditions for the dissipativity of PWS sys-
tems.

3 Main Results

The importance and contribution of the main results lie
in the fact that to check the dissipativity of the system, it
suffices to verify a condition on the storage function, the
supply rate and the vector field of the subsystem in each
region separately. There is therefore no need to examine
the storage function in one region with the vector field
of another region, which would make the problem much
more complex.

3.1 PWS Systems With Discontinuous Vector Fields

Proposition 6 (Smooth storage functions) The piece-
wise smooth system (7) is dissipative with a storage func-
tion V (z) and a supply rate W (y,w) if V(x) is a nonneg-
ative C* function, W (y,w) is a continuous function and
forallx € R;,i=1,...,M and any w € R™

VV (@) T (fi(z) + gi(2)w) < W (y, w) (12)

PROOF. The inequality (12) can be rewritten as

VV(x)

T
lﬁ-(x) + gi(a)w
7W(y7 w)

1

] <0 (13)

By appending time (t) to the state vector of the system
(7), we have the following differential equation

K

The fact that V(z) is a C! function implies that

1

0:5(x,t) = conv{ l VV (x(t)) ]

—W(y(t), w(r))

T — t} (15)

where S(z,t) is given in definition 2. Let x(t) be a Fil-
ippov solution of (7). Therefore, (t) is a solution of the
following differential inclusion

[x] € Conv{ [fi(””(t)) + gi(év(t))w(T)l

t 1 T—1

(16)
Since (13) is satisfied for any x and w in the domain, it
follows from (15) that (11) is satisfied for the differen-
tial inclusion (16). Therefore by Proposition 5, S(x,t) is
nonincreasing along the trajectories of (7) in X'. There-
fore (8) is satisfied and the system (7) is dissipative with
storage function V' (z) and supply rate W (y, w).

i€Z(x), }

3.2 PWS Systems With Continuous Vector Fields

Proposition 7 (Piecewise smooth storage functions)
The piecewise smooth system (7) is dissipative with a
storage function V(x) and a supply rate W (y,w) if

e V(z) is a nonnegative continuous function where
V(z) =Vi(z),z € R;

and Vi : R; — R is a C' function,
W (y,w) is a continuous function,
the vector field of the system (7) is continuous in x,
i.e., w(t) is continuous and the following conditions
hold for anyi,j € {1,..., M} such that R; R, # 0:

{ fo =50 emnr, o

9i(x) = g;(x)

forallz € R;,i=1,...,M and any continuous func-
tion w € R™»

VVi(@)T(fi(x) + gi(x)w) < W(y,w)  (18)

PROOF. By appending time (¢) to the state vector
of the system (7), we obtain the differential equation



(14). In the following, using Proposition 5 the function
S(a,t) = Vi(z) — [o W(y,w)dr,z € R; is shown to be
non-increasing along the trajectories of (14).

Let z(t) be a Filippov solution of (7). Therefore, x(t) is
a solution of the following differential inclusion

m C ome { [fi(x(t)) +gi<x<t>>w<t>]

t 1
(19)
Consider the following two cases
o If z(t) € R;, we have
VVi(x(t
0,5(x, 1) = (=() ] (20)
—W(y(t), w(t)

and

:

Since (18) is satisfied, it follows from (20) that (11) is
satisfied for the differential equation (21).
o If z(t) is on the boundary of two or more regions i.e.

fila (1)) +ii(x(t>)w(t)] (21)

VVi(x(t))

1€ZI(x)
—W(y(t), w(t))

0:5(z,t) = conv {

(22)
and it follows from (18) that for any j and k in Z(x),

V() ]T [fjm T gj(@yw
—W(y,w) 1

] <0 (23

Vi (x) r [fk(x) + gu()w
—W(y,w) 1

] <0 (24)

In addition, the continuity condition (17) implies that

V() T[fmwgk(x)w]

Wy, w) 1
Vi@ | lmz) +gj<x>w] o )
—W(y,w) 1 -

and
VWi(e) r lﬁ(w) +gj<w>w] _
7W(y,U)) 1

V() ]T lmm + gn(w)w
7W(y,U)) 1

1 <0 (26)
From (23-26), it follows that (11) is satisfied for the
differential inclusion (19).

In conclusion, by Proposition 5, S(x,t) is nonincreasing

along the trajectories of (7) in X. Therefore (8) is satis-

fied and the system (7) is dissipative with storage func-
tion V' (x) and supply rate W (y, w).

4 Application to PWA Systems

In the following, three types of candidate Lyapunov func-
tions (quadratic, piecewise quadratic and polynomial)
are used for stability analysis of PWA systems.

4.1 Quadratic Lyapunov Functions For PWA Systems

Perhaps the simplest candidate for a C' Lyapunov func-
tion is the quadratic form

V(z) =z Pz

where P = PT > 0. Proposition 8 describes sufficient
conditions for the stability of the PWA system (4) using
a quadratic Lyapunov function.

Proposition 8 If for a given decay rate o > 0, there
exists P = PT > 0 satisfying
PA; + ATP < —aP, ifa; =0 ande; #0

PA;+ ATP + ETNE; < —aP, ifa;=0ande; =0

PA; + AZTP + El-TJ_\iEi < —aP, otherwise
(27)
fori=1,..., M where

P 0n><1
O1><’n 0

A; € RPixPi gnd A; € RPiHDX®i+1) have nonnegative
entries, x = 0 is asymptotically stable for the PWA sys-
tem (4).



PROOF. Consider V(x) = 2TPz as the candidate
Lyapunov function. For this function, VV (z) = 2Pz. In
the following, the regions R; will be divided into three
groups:

(1) If a; = 0 and e; # 0, we conclude from (27) that for
all z € R"

VV(z)' Ajx = 22T PAjx = 2T (PA; + AT P)x
< —azxtPr = —aV(x)

(2) If a; = 0 and e; = 0, we have R; = {z|E;z > 0}
and for any A; € RPi*Pi with nonnegative entries
and for all z € R;, ;vTEiTAZ-EZ-x > 0. In this case,
(27) leads to the following inequality for all z € R,;.

VV(2)TAjx < —ax" Pz — 2" EF A Bz
< —azTPz = —aV(z)

(3) If a; # 0, we have R; = {z|E;z > 0}. Condition
(27) implies that for all x € R;

VV ()T (Ajz + a;) =3 (PA; + AT P)z

< —az'Pz — z'EFNEiz
< —az"Pz = —ax' Pz
=—aV(z)

In summary, forall x € R;,i=1,..., M,

VV(w)T(Aix +a;) < —aV(x)

Therefore using Proposition 6, the system (4) is dissipa-
tive with the storage function V' (z) and the supply rate
—aV (z). Invoking Theorem 3 finishes the proof.

Remark 9 In Proposition 8, the origin is not required to
be the equilibrium point of all the subsystems of the PWA
system (4). This makes Proposition 8 different from the
common Lyapunov function approach in Lin and Antsak-
lis (2005) which requires the origin to be the equilibrium
point for all vector fields of the system.

Proposition 8 provides sufficient conditions for quadratic
stability of PWA systems as a set of linear matrix in-
equalities (LMIs). LMIs can be solved efficiently using
interior point algorithms implemented in software pack-
ages such as Yalmip in Lofberg (2004) and SeDuMi in
Strum (2001).

4.2 Quadratic Lyapunov Functions For PWA Slab Sys-
tems

Proposition 10 provides sufficient conditions for the sta-
bility of system (4) with slab regions.

Proposition 10 Alltrajectories of the PWA slab system
(4) in X asymptotically converge to x = 0 if for a given
decay rate o > 0, there exist P € R™"™ and A\; € R for
i=1,..., M such that

P >0,

ATP + PA; 4+ aP <0, foricZ(0), (28)

A < 0,
AZTP + PA; + aP + )\ZL,LTLz Pa; + )\leLZT

)

(29)
fori ¢ Z(0).

PROOF. Consider the candidate Lyapunov function
V(z) = 2" Px for the PWA slab system (4) where P > 0.
One of the following situations is true:

(1) Forx € R; where i € Z(0), multiplying the inequal-
ity (28) by T and z from left and right, respec-
tively, implies

VV(z)YAjz + aV(z) <0, for z € Ry,i € Z(0)
(30)
(2) For x € R; where i ¢ Z(0), it follows from the
constraint (29) that

VV (2)T (Ajz+a;)+aV (x)+ N (|| Liz—1]]2—1) <0,
(31)

Since A; < 0, conditions (31) and (6) imply

VV (z)T (Ajz+a;)+aV (x) <0, for z € R;,i ¢ Z(0)
(32)

Now, it follows from (30), (32) and Proposition 6 that
the system (4) is dissipative with the storage function
V(z) and the supply rate —aV(x). Invoking Theorem 3
finishes the proof.

4.8  Piecewise Quadratic Lyapunov Functions For PWA
Systems

For stability analysis of PWA systems, PWQ functions
are less conservative than quadratic Lyapunov functions
as shown in Johansson (2003). However, PWA systems
with sliding modes are not usually considered. The rea-
son is that the existence of a continuous positive definite
PWQ function that decreases with time inside the re-
gions is not a sufficient condition for stability of a PWA
system. This is shown by the following counter-example.



Example 11 Consider the PWA system

Az, xg >0
T = (33)
Asx, Ty <0
where
1 -2 1 2
A = , Ag = (34)
2 =2 -2 =2

For this system, we have F, = {0 1} ,Ey = {O —1},
Consider the following PWQ Lyapunov function candi-
date

2T Pz, 29>0
Vi(z) = (35)
2T Pyx, 29 <0

The following set of constraints is a sufficient condition
for (35) to be continuous, positive definite and decreasing
with time inside the regions.

(PL—P3)11=0, PL>0, P,>0
AP + PiAy + METE, < —aP)
AT Py + PyAs + METEy < —aPs
>\1>0; )\2>0, 0:01

where (P; — Py)11 means the element in row one and
column one. One solution of the above problem is A\ =
0.5755, Ao = 0.5755 and

| 1.8073 —1.0745 P - 1.8073 1.0745
—1.0745 1.4261 1.0745 1.4261

V(zx) in (35) is a continuous PWQ positive definite func-
tion that decreases with time inside the regions of system
(33). However, system (33) is unstable. The problem here
is that a PWQ candidate Lyapunov function has been
used for a PWA system with a discontinuous vector field.
In this case, it is possible to have unstable sliding modes
at the boundaries of the regions.

Remark 12 In (Johansson, 2003, p.64), an extra con-
dition is introduced for PWA systems which have sliding
modes. However, the limitation of this method is that it
requires previous knowledge of geometrical properties of
the sliding modes. One way to solve this problem is to
use Ct PWQ Lyapunov functions, which is also proposed
in (Johansson, 2003, p. 84) but this is more conserva-
tive because there are cases for which C' Lyapunov PWQ
functions cannot be found as shown in example 18

Consider the piecewise quadratic candidate Lyapunov
function continuous at the boundaries and defined in X

by the expression
V(x) =z" Pz, forx € R;
where P; = PT € R(Dx(+1) Define

P; g

T
q; Ti

P, = , Fij= (36)

Fij fij
0 1

where P; € Rnxn’ qi € R", r; € R and Fi]‘, lij are defined
in (5). Proposition 13 describes sufficient conditions for
the stability of the PWA system (4) based on a PWQ
Lyapunov function.

Proposition 13 Let there exist matrices P; = P de-
fined in (36), Z;, Z;, \; and A; that verify the following
conditions for allt = 1,..., M and a given decay rate
a>0

e (Conditions on the vector field:

a; =0, ZIfOEﬁi
(Ai = A)Fy; =0, if Ri(\R; # 0

o Continuity of the Lyapunov function:

F(Pi = P))Fy; =0, if Ri(\R; #0 (37)

e Positive definiteness of the Lyapunov function:

q; :0, Ti :O, ’LfaZ:O (38)
P, >¢l, ifa;=0ande; #0 (39)
Zi =0 .
, ifa;=0ande; =0 (40)
Pz' — EZTZlE7 Z el
Z; =0
_ _ _ I0]| ,ia; #0 41
PZ_E?ZiEiZ€l ] f ai # (41)
00

e Monotonicity of the Lyapunov function:

ifa; =0 and e; # 0,
PA; + ATP, < —aP;  (42)

ifa; =0 and e; =0,

A; =0
(43)
PA;+ AP, + ETANE; < —aP;



ifai #07

{

where = denotes an elementwise inequality. Then all the
trajectories of (4) in X asymptotically converge tox = 0.

=1

=

0
=0 (44)
ZAZ—FAZPL—FEI AiEiS—Oé i

PROOF. Consider V(z) = zT P,z for z € R; as the
candidate Lyapunov function. It follows from (5) and
(37) that for any € R; (R, Vi(x) = Vj(x). Therefore
V(z) is continuous over X. In addition, constraint (38)
implies that V(0) = 0. The rest of the proof is divided
into three parts:

(1) Ifa; = 0 and e; # 0, we conclude from (39) that for
allz # 0in Ry, V(z) = 2Pz > €||z|* > 0, and
from (42) that for all z # 0

< —azT Pz = —aV(x)

(2) If a; = 0 and e; = 0, we have R; = {z|E;x > 0}
and for any Z; € RP#*P: and A; € RP#*P¢ with non-
negative entries and for all z € R, ;UTEiTZiEi:E >
0, zYEXA;E;x > 0. In this case, (40) yields

Vi(z) = 2T Pix > 2TE Z;E;x + €||z||> > €|z]|* > 0
for all x # 0 in R;, and (43) yields

VVi(x)TAix < —az"Px — xTEZTAiEix
< —az"Px = —aV(z)

forallz #0in R; -

(3) If a; # 0, we have R; = {z|F;Z > 0} and similarly
to the previous case, condition (41) implies that for
all z # 0 in R,

Vi(z) =2 Pz > 3TET Z, Bt + €| z))? > e]|z))? > 0

and condition (44) implies that for all x # 0 in R;

VVi(x)T(Aix +a;) < —az' Pz — ETE;IZ\ZEZ.’E
< —az' Pz = —aV(x)
In summary, for all 2 € R; and for i = 1,..., M,
Vi(z) > el

VV;(2)" (Aiz + a;) < —aVi(x)
Therefore using Proposition 7, the system (4) is dissipa-
tive with the storage function V' (z) and the supply rate
—aV(z). Invoking Theorem 3 finishes the proof.

PWQ Lyapunov functions are less conservative than
quadratic Lyapunov functions. However, it is stated
in Johansson (2003) that for the PWA system (33), it
is not possible to find a C* PWQ Lyapunov function
although the system is stable when we have

—2 -2 —2 2
4 1]’A2:[—4 1] (45)

In the next section, it is shown that a polynomial Lya-
punov function exists for this system.

A =

4.4 Polynomial Lyapunov Function for PWA Systems

In this section, it is proposed to consider a sum of squares
(SOS) polynomial as a candidate Lyapunov function.
For a tutorial about system analysis techniques based
on the SOS decomposition see Papachristodoulou and
Prajna (2005).

Definition 14 Prajna et al. (2005) A multivariate poly-
nomaal

p(z1,... zn) 2 p(o)
is SOS if there exist polynomials p1(z),. ..
that

,Pm(x) such
p(e) = Do),

SOS polynomials p(z) are globally nonnegative. Al-
though verifying nonnegativity of a polynomial is an
NP-hard problem (see Murty and Kabadi (1987)), the
SOS condition can be formulated as a convex problem
in polynomial coefficients (see Prajna et al. (2005)).
However, note that not all nonnegative polynomials are

SOS.

Proposition 15 If for the PWA system (4), there exists
a polynomial V (x) satisfying the following conditions for
i=1,....M

V(z) — M(||z]|?) is SOS. (46)
—VV(2)T(Aix + a;) — Ti(2) T(Biz + ;)
—aV(x) is SOS for alli. (47)

where X : RT — Rt is a strictly increasing polynomial
function, \(0) = 0, a > 0 and T'; : R® — RPi*! js q
vector of SOS polynomials, x = 0 is asymptotically stable.
PROOF. Conditions (46) imply

V() > A([l«]?)

Note that A is radially unbounded since it is a strictly
increasing polynomial function. Therefore, V is radially
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Fig. 1. Trajectories of a stable PWA system with a sliding
mode

unbounded. Condition (47) leads to the following in-
equality

VV(2)T(Ajz +a;) < —Ti(2) Y (Eiz +e;) — aV(x) (48)

Since I'; () is a vector of SOS polynomials and E;z+e; >
0 for all z in R;, we have

Ti(z)Y (Bix +e;) >0, Vo € R; (49)
Therefore (48) and (49) imply
VV(z)T(Aiz + a;) < —aV(z) <0, Vo € Ri,x #0
Thus, using Proposition 6, the system (4) is dissipa-

tive with the storage function V' (z) and the supply rate
—aV(z). Invoking Theorem 3 finishes the proof.

Example 16 Consider the PWA system (33) where
-1 -2 -1 2

’ A2 =
2 —21 l—z —2]

01].5 = [0 1]
Solving the following LMIs based on Proposition 8

Ay =

For this system, we have F; = [

A{P + PA; + )\1E?E1 < —aP
ATP 4+ PAy + \ETEs < —aP (50)
P>0, A1 >0, A2 >0

where o = 0.1, yields

[0.6002 0
P =

, A1 = 1.1329, Ay = 1.1329.
0 0.5817

1 1 1 1 1
-0.5 0 0.5 1 1.5 2

Fig. 2. Trajectories of an unstable PWA system with a sliding
mode

Therefore © = 0 is asymptotically stable since X = R2.
It is interesting to note that this system has an attractive
sliding mode on the negative side of the x1 axis (Fig. 1).
However, no separate condition was considered to check
the existence or stability of the sliding mode.

Example 17 Consider system (33) in R? with matrices
(84). For this system, E1 and Ey are defined as in Exam-
ple 16. The LMI set (50) is infeasible in this case. In fact,
although A1 and As are Hurwitz, there exists an unstable
sliding mode and system (33) is unstable (Fig. 2).

Example 18 Consider the PWA system (33) in R? with
matrices (45). There is no quadratic or Ct PWQ Lya-
punov function for this system (Johansson, 2003, p.84).
However, by solving the following SOS program we can
find a sizth order polynomial Lyapunov function.

V(z) — 0.001]|z||* is SOS.
—VV.(A12) — T1(z)(x2) — 0.01V (x) is SOS.
—VV.(A3z) — To(z)(—x2) — 0.01V () is SOS.

where T'1(.) and T'2(.) are fourth order SOS polynomi-
als. This is a convex problem and can be solved by SOS-
TOOLS in Prajna et al. (2004) or Yalmip in Ldéfberg
(2004). Trajectories of the system (45) and contours of
the obtained SOS Lyapunov function are shown in Fig.
3. Notice that there is a stable sliding mode.

5 Conclusions

Sufficient conditions for stability of piecewise smooth
systems were formulated as convex problems. Departing
from the work in the literature, our results show that
sufficient conditions for the stability of PWA and PWP
systems can be formed without any need for a-priori
information about attractive sliding modes on switching
surfaces. Example 18 shows that the proposed method
works where previously suggested methods fail.
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Fig. 3. Trajectories of a stable PWA system (black) and
contours of the Lyapunov function (gray)

6 Acknowledgments

The authors acknowledge le Fonds Québécois de la
Recherche sur la Nature et les Technologies (FQRNT)
and the Natural Sciences and Engineering Research
Council of Canada (NSERC) for funding this research.

References

Acary, V., Brogliato, B., 2008. Numerical Methods for Non-
smooth Dynamical Systems. Vol. 35 of Lecture Notes in
Applied and Computational Mechanics. Springer.

Branicky, M. S., Apr. 1998. Multiple Lyapunov functions
and other analysis tools for switched and hybrid systems.
IEEE Transactions on Automatic Control 43, 461-474.

Byrnes, C. 1., Martin, C. F., 1995. An integral-invariance
principle for nonlinear systems. IEEE Transactions on Au-
tomatic Control 40 (6), 983-994.

Ceragioli, F. M., 1999. Discontinuous ordinary differential
equations and stabilization. Ph.D. thesis, Universita di
Firenze.

Chatterjee, D.,; Liberzon, D., 2006. Stability analysis of de-
terministic and stochastic switched systems via a compar-
ison principle and multiple Lyapunov functions. SIAM J.
Control Optim. 45, 174-206.

Clarke, F. H., Ledyaev, Y. S., Stern, R. J., Wolenski, P. R.,
1998. Nonsmooth Analysis and Control Theory.

Decarlo, R. A., Branicky, M. S., Pettersson, S., Lennartson,
B., Jul. 2000. Perspectives and results on the stability and
stabilizability of hybrid systems 88, 1069—-1082.

Filippov, A. F., 1960. Differential equations with discontin-
uous right-hand sides. Mtematischeskii 51, 199-231.

Hassibi, A., Boyd, S., Jun. 1998. Quadratic stabilization
and control of piecewise-linear systems. In: Proceedings of
the American Control Conference. Philadelphia, PA, pp.
3659-3664.

Johansson, M., 2003. Piecewise Linear Control Systems.
Springer, Berlin.

Liberzon, D., 2003. Switching in Systems and Control.
Birkhauser, Boston.

Lin, H., Antsaklis, P. J., Jun. 2005. Stability and stabiliz-
ability of switched linear systems: a short survey of recent

10

results. In: Proc. International Symposium on Intelligent
Control. Limassol, Cyprus, pp. 24-29.

Lofberg, J., 2004. YALMIP : A Toolbox for Modeling and
Optimization in MATLAB. In: Proceedings of the CACSD
Conference. Taipei, Taiwan.

URL http://control.ee.ethz.ch/~joloef/yalmip.php

Murty, K. G., Kabadi, S. N., 1987. Some NP-complete prob-
lems in quadratic and nonlinear programming. Mathemat-
ical Programming 39, 117-129.

Papachristodoulou, A., Prajna, S., Jun. 2005. A tutorial on
sum of squares techniques for systems analysis. In: Pro-
ceedings of the American Control Conference. Pasadena,
CA, pp. 2686—-2700.

Pavlov, A., Wouw, N., Nijmeijer, H., Dec. 2005a. Conver-
gent piecewise affine systems: analysis and design Part I:
continuous case. In: Proc. of the 44th IEEE Conference
on Decision and Control and the European Control Con-
ference. Seville, Spain.

Pavlov, A., Wouw, N.; Nijmeijer, H., Dec. 2005b. Conver-
gent piecewise affine systems: analysis and design Part I1:
discontinuous case. In: Proc. of the 44th IEEE Confer-
ence on Decision and Control and the European Control
Conference. Seville, Spain.

Pettersson, S., Jun. 1999. Analysis and design of hybrid sys-
tems. Ph.D. thesis, Chalmers University of Technology,
Gteborg.

Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P. A.,
2005. SOSTOOLS and Its Control Applications. Springer-
Verlag, pp. 273-292.

Prajna, S., Papachritodoulou, A., Seiler, P., Parrilo, P. A.,
2004. SOSTOOLS - Sum of Squares Optimization Tool-
box, User’s Guide.

URL http://www.cds.caltech.edu/sostools

Rodrigues, L., Boyd, S., 2005. Piecewise-affine state feed-
back for piecewise-affine slab systems using convex opti-
mization. Systems and Control Letters 54, 835-853.

Rodrigues, L., Hassibi, A., How, J. P., Jun. 2000. Output
feedback controller synthesis for piecewise-affine systems
with multiple equilibria. In: Proceedings of the American
Control Conference. Chicago, IL, pp. 1784-1789.

Rodrigues, L., How, J. P., Mar. 2003. Observer-based con-
trol of piecewise-affine systems. International Journal of
Control 76, 459-477.

Ryan, E. P., 1998. An integral invariance principle for dif-
ferential inclusions with applications in adaptive control.
SIAM J. Control Optim. 36 (3), 960-980.

Samadi, B., Rodrigues, L., 2008. Extension of local linear
controllers to global piecewise affine controllers for uncer-
tain nonlinear systems. International Journal of Systems
Science.

Strum, J. F., 2001. Using SeDuMi 1.05, a MATLAB toolbox
for optimization over symmetric cones. Tech. rep., Tilburg
University.

Teel, A., Panteley, E., Loria, A., 2002. Integral Characteri-
zations of Uniform Asymptotic and Exponential Stability
with Applications. Mathematics of Control, Signals and
Systems 15, 177-201.

Willems, J. C., Takaba, K., 2007. Dissipativity and stability
of interconnections. International Journal of Robust and
Nonlinear Control 17 (5-6), 563-586.



