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Abstract— This paper presents a novel approach to the
design of globally asymptotically stable (GAS) position filters
for Autonomous Underwater Vehicles (AUVs) based directly
on the nonlinear sensor readings of an Ultra-short Baseline
(USBL) and a Doppler Velocity Log (DVL). Central to the
proposed solution is the derivation of a linear time-varying
(LTV) system that fully captures the dynamics of the nonlinear
system, allowing for the use of powerful linear system analysis
and filtering design tools that yield GAS filter error dynamics.
Simulation results reveal that the proposed filter is able to
achieve the same level of performance of more traditional
solutions, such as the Extended Kalman Filter (EKF), while
providing, at the same time, GAS guarantees, which are absent
for the EKF.

I. INTRODUCTION

The design and implementation of navigation systems
stands out as one of the most critical steps towards the
successful operation of autonomous vehicles. The quality of
the overall estimates of the navigation system dramatically
influences the capability of the vehicles to perform precision-
demanding tasks, see [1] and [2] for interesting and detailed
surveys on underwater vehicle navigation and its relevance.
This paper presents a novel approach to the design of
globally asymptotically stable (GAS) position filters directly
based on the nonlinear sensor readings.

Consider an underwater vehicle equipped with an Ultra-
Short Baseline (USBL) underwater positioning device, a triad
of orthogonally mounted rate gyros, and a Doppler Velocity
Log (DVL), that moves in the presence of unknown ocean
currents in a scenario that has a fixed transponder, as depicted
in Fig. 1. The USBL is composed of a small calibrated array
of acoustic receivers, and measures the distance between the
transponder and the receivers installed on-board. Given the
proximity of the sensors in the receiving array, hence the
name Ultra-Short Baseline (USBL), the USBL is capable of
measuring more accurately the Range-Difference-of-Arrival
(RDOA) of the acoustic waves at the receivers compared
to the actual distances between the transponder and all the
receivers. The DVL measures the velocity of the vehicle
with respect to the fluid, and the rate gyros measure the
angular velocities of the vehicle. Due to noisy measurements,
unknown ocean currents, and the nonlinear nature of the
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Fig. 1. Mission scenario

range measurements, a filtering solution is required in order
to correctly estimate the position of the transponder in the
vehicle coordinate frame and the inertial velocity of the
vehicle. Recent advances in the area of underwater navigation
based on merging the information from acoustic arrays and
other inertial sensors like DVLs, can be found in [3], [4], [5]
and references therein.

Traditional solutions resort either to the well known
Extended Kalman Filter (EKF)[6], Particle Filters (PF)[3],
which lack global asymptotic stability properties, or to
filtering solutions that use a precomputed position fix from
the USBL device using the range and bearing and elevation
angles of the transponder. The computation of this position
fix often resorts to a Planar-Wave approximation of the
acoustic wave arriving at the receiving array, previously
used by the authors [6]. In that case, the error cannot
be guaranteed to converge to zero due to the planar-wave
approximation. In fact, the error converges to a neighborhood
of the origin, not arbitrarily small, that depends on the planar-
wave approximation, and that only vanishes as the distance
between the transponder and the vehicle approaches infinity.
This behavior is obviously undesirable if the vehicle is to
perform docking or other manoeuvres in the vicinity of a
transponder, for instance.

The main contribution of this paper is the design of a
globally asymptotically stable sensor-based filter to estimate
the position of the transponder in the vehicle frame and the
unknown current that biases the DVL readings. The solution
presented in the paper departs from previous approaches
as the range measurements are directly embedded in the
filter structure, thus avoiding the planar-wave approximation,
and follows related work found in [7], where single range
measurements were considered and persistent excitation con-
ditions were imposed on the vehicle motion to bear the
system observable. In this paper the framework is extended to
the case of having an array of receivers installed on-board the
vehicle, which allows for the analysis of the overall system
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without any restriction on the vehicle motion. The nonlinear
system dynamics are considered to their full extent and no
linearizations are carried out whatsoever. At the core of the
proposed filtering framework is the derivation of a linear
time-varying (LTV) system that captures the dynamics of
the nonlinear system. The LTV model is achieved through
appropriate state augmentation, which is shown to mimic
the nonlinear system, and ultimately allows for the use of
powerful linear system analysis and filtering design tools that
yield a novel estimation solution with GAS error dynamics.
Although outside the scope of this work, the addition of
an Attitude and Heading Reference System (AHRS) would
allow for the final solution to be expressed directly in inertial
coordinates.

The paper is organized as follows: Section II sets the
problem framework and definitions. The proposed filter
design and main contributions of the paper are presented
in Section III where the filter structure is brought to full
detail and an extensive observability analysis is carried
out. Simulation results and performance comparison with
traditional solutions are discussed in Section IV, and finally
Section V provides some concluding remarks.

II. PROBLEM FRAMEWORK

In order to set the design framework, let {I} denote an
inertial reference coordinate frame and {B} a coordinate
frame attached to the vehicle, usually denominated as body-
fixed coordinate frame. The position of the transponder
r(t) ∈ R3 in the vehicle coordinate frame {B} is given
by

r(t) = RT (t)(s− p(t)), (1)

where s ∈ R3 is the position of the transponder in inertial
coordinates, p(t) ∈ R3 is the position of the vehicle in
inertial coordinates, and R(t) ∈ SO(3) is the rotation matrix
from {B} to {I} . The time derivative of R(t) verifies
Ṙ(t) = R(t)S (ω(t)), where ω(t) ∈ R3 is the angular
velocity of {B} with respect to {I} expressed in body-fixed
coordinates, and S (ω(t)) is the skew-symmetric matrix that
represents the cross product such that S (ω) a = ω × a.

Differentiating (1) in time yields

ṙ(t) = −S (ω(t)) r(t)− v(t), (2)

where v(t) ∈ R3 is the vehicle velocity expressed in body-
fixed coordinates. The readings of the DVL are modeled by

vr(t) = v(t)−RT (t)Ivc(t), (3)

where vr(t) ∈ R3 is the velocity reading provided by the
DVL, and Ivc(t) ∈ R3 is the current velocity expressed in
inertial coordinates and considered to be constant, that is,
I v̇c(t) = 0. Using the current velocity expressed in body-
fixed coordinates vc(t) = RT (t)Ivc(t) together with (3) in
(2) yields

ṙ(t) = −S (ω(t)) r(t)− vc(t)− vr(t). (4)

The distances between the transponder and the receivers
installed on-board the vehicle (as measured by the USBL)
can be written as

ρi(t) =‖bi − r(t)‖, i = 1, . . . , nr, (5)

where bi ∈ R3 denotes the position of the receiver in {B} ,
and nr is the number of receivers on the USBL. Combining
the time-derivative of vc(t) with (4) and (5) yields the
nonlinear system

ṙ(t) = −S (ω(t)) r(t)− vc(t)− vr(t),

v̇c(t) = −S (ω(t)) vc(t),

ρi(t) = ‖bi − r(t)‖, i = 1, . . . , nr.

(6)

The problem addressed in this paper is the design of a
filter for (6) considering noisy measurements.

III. FILTER DESIGN

In this section the main results and contributions of the
paper are presented. In order to reduce the complexity of
the system dynamics a Lyapunov state transformation is
firstly introduced in Section III-A. The LTV system that
will mimic the nonlinear behavior of the original system (6)
is proposed in Section III-B, by means of an appropriate
state augmentation. The observability analysis of the LTV
system and its relation with the original nonlinear system is
conducted in Section III-C, and finally in Section III-D, the
design of a Kalman filter is proposed in a stochastic setting
for the resulting system.

A. State transformation

Consider the following state transformation[
x1(t)
x2(t)

]
:= T(t)

[
r(t)
vc(t)

]
, (7)

where T(t) := diag (R(t),R(t)) is a Lyapunov state trans-
formation which preserves all observability properties of the
original system [8].

The advantage of considering this state transformation is
that the new unforced system dynamics becomes highly sim-
plified as time-invariant, although the system output becomes
time-varying and it is still nonlinear

ẋ1(t) = −x2(t)− u(t),

ẋ2(t) = 0,

ρi(t) = ‖bi −RT (t)x1(t)‖, i = 1, . . . , nr,

(8)

where u(t) = R(t)vr(t).

B. State augmentation

In order to derive a linear system that mimics the dynam-
ics of the original nonlinear system, a state augmentation
procedure follows inherited directly from the kinematics of
the nonlinear range outputs of (8). Thus, taking the time-
derivative of ρi(t) in (8) yields

ρ̇i(t) =
1

ρi(t)

[
(bTi S (ω(t))RT (t)− uT (t))x1(t)

+bTi RT (t)x2(t)− x1
T (t)x2(t) + bTi RT (t)u(t)

]
. (9)



Identifying the nonlinear part x1
T (t)x2(t) in (9) leads

to the creation of the augmented states that will mimic
this nonlinearity: xnr+3(t) := x1

T (t)x2(t) and xnr+4(t) :=
‖x2(t)‖2, with the corresponding kinematics ẋnr+3(t) =
−uT (t)x2(t)− xnr+4 and ẋnr+4(t) = 0.

Thus a new dynamic system is created by augmenting the
original nonlinear system with the states{

x3(t) := ρ1(t), . . . . . . , xnr+2(t) := ρnr
(t),

xnr+3(t) := x1
T (t)x2(t), xnr+4(t) := ‖x2(t)‖2,

and denoting the new augmented state vector x(t) ∈ R8+nr

by

x(t) =
[
x1

T (t) x2
T (t) x3(t) . . . xnr+2(t) xnr+3(t) xnr+4(t)

]T
.

Combining the new augmented states dynamics with (8) it
is easy to verify that the augmented dynamics can be written
as

ẋ(t) = A(t)x(t) + B(t)u(t),

where

A(t) =

0 −I 0 0 0
0 0 0 0 0

(bT
1 S(ω(t))R

T (t)−uT (t))
ρ1(t)

bT
1 R

T (t)
ρ1(t)

0 − 1
ρ1(t)

0
...

...
...

...
...

(bT
nr
S(ω(t))RT (t)−uT (t))

ρnr (t)

bT
nr
RT (t)

ρnr (t)
0 − 1

ρnr (t)
0

0 −uT (t) 0 0 −1
0 0 0 0 0


(10)

and

B(t) =
[
−I3 0 R(t)b1

ρ1(t)
· · · R(t)bnr

ρnr (t)
0 0

]T
.

(11)
The following assumption is required so that (10) and (11)

are well defined.
Assumption 1: The motion of the vehicle is such that

∃ ∀ : Rmin ≤ ρi(t) ≤ Rmax,
Rmin > 0 t ≥ t0
Rmax > 0 i = 1, . . . , nr
From a practical point of view this is not restrictive since

the vehicle and the coupled array will never be on top of a
transponder, and neither will the ranges converge to infinity.

Note that the RDOA at the receivers are considered to be
measured more accurately compared to the absolute distance
between the transponder and any given reference receiver of
the USBL. Selecting a reference sensor on the array, for
instance receiver 1 for now, all the other ranges are easily
reconstructed from the range measured at receiver 1 and the
RDOA between receiver 1 and the other receivers, that is
ρj(t) = ρ1(t)− δρ1j(t), where δρ1j(t) = ρ1(t)− ρj(t).

Taking into account that the augmented states
x3(t), . . . , xnr+2(t) that correspond to the ranges are

actually measured, it is straightforward to show from the
outputs of (6) that

ρ2i (t)− ρ2j (t) = ‖bi‖2 − ‖bj‖2 − 2(bi − bj)
TRT (t)x1(t),

which leads to

2(bi−bj)
TRT (t)x1(t)

ρi(t)+ρj(t)
+ ρi(t)− ρj(t) =

‖bi‖2−‖bj‖2
ρi(t)+ρj(t)

or, equivalently

2(bi−bj)
TRT (t)x1(t)

ρi(t)+ρj(t)
+ x2+i(t)− x2+j(t) =

‖bi‖2−‖bj‖2
ρi(t)+ρj(t)

,
(12)

where the right hand-side of (12) is measured and the left
hand-side depends on the system state.

In order to complete the augmented system dynamics,
discarding the original nonlinear outputs in (8), and con-
sidering (12), define the new augmented system outputs
y(t) ∈ Rnr+nC as

y(t) =

[
x3(t) x3(t)− x4(t) · · · x3(t)− x2+nr

(t)
]T

2(b1−b2)
TRT (t)x1(t)

ρ1(t)+ρ2(t)
+ x2+1(t)− x2+2(t)

2(b1−b3)
TRT (t)x1(t)

ρ1(t)+ρ3(t)
+ x2+1(t)− x2+3(t)

...
2(bnr−2−bnr )

TRT (t)x1(t)
ρnr−2(t)+ρnr (t)

+ x2+nr−2(t)− x2+nr (t)
2(bnr−1−bnr )

TRT (t)x1(t)
ρnr−1(t)+ρnr (t)

+ x2+nr−1(t)− x2+nr
(t)


,

where nC = Cnr
2 = nr!

2(nr−2)! = nr(nr−1)
2 is the number of

all possible 2-combinations of nr elements.
In compact form, the augmented system dynamics can be

written as {
ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),
(13)

where

C(t) =

[
0nr×3 0nr×3 C0 0nr×2

C1(t) 0nC×3 C2 0nC×2

]
,

C0 =

 1 0 ··· 0
1 −1
... 0

. . . 0
1 −1

 , C2 =


1 −1 0 0 ··· 0
1 0 −1 0 ··· 0

...
0 ··· 0 1 0 −1
0 ··· 0 0 1 −1

 ,
and

C1(t) =



2(b1−b2)
TRT (t)

ρ1(t)+ρ2(t)
2(b1−b3)

TRT (t)
ρ1(t)+ρ3(t)

...
2(bnr−2−bnr )

TRT (t)
ρnr−2(t)+ρnr (t)

2(bnr−1−bnr )
TRT (t)

ρnr−1(t)+ρnr (t)


.



C. Observability analysis

The Lyapunov state transformation and the state aug-
mentation that were carried out allowed to derive the LTV
system described in (13), which ensembles the behavior of
the original nonlinear system (6). The dynamic system (13)
can be regarded as LTV, even though the system matrix
A(t) depends explicitly on the system input and output, as
evidenced by (10). Nevertheless, this is not a problem from
the theoretical point of view since both the input and output
of the system are known continuous bounded signals. The
idea is not new either, see, e.g., [9], and it just suggests, in
this case, that the observability of (13) may be connected
with the evolution of the system input or output (or both),
which is not common and does not happen when this matrix
does not depend on the system input or output.

In order to fully understand and couple the behavior of
both systems, the observability analysis of (13) is carried out
in this section, using classical theory of linear systems. This
analysis is conducted based on the observability Gramian
associated with the pair (A(t),C(t)), which is given by [10]

W(t0, tf ) =

∫ tf

t0

ΦT (t, t0)CT (t)C(t)Φ(t, t0)dt,

where Φ(t, t0) is the state transition matrix of the LTV
system (13). Let

u[1](t, t0) =

∫ t

t0

u(σ)dσ.

Tedious, lengthy, but straightforward, computations show
that the transition matrix associated with A(t) is given by

Φ(t, t0) =

ΦAA(t, t0) 06×nr
06×2

ΦBA(t, t0) Inr
ΦBC(t, t0)

ΦCA(t, t0) 02×nr
ΦCC(t, t0)

 ,
where

ΦAA(t, t0) =

[
I −(t− t0)I
0 I

]
,

ΦBA(t, t0) =
[
ΦBA1(t, t0) ΦBA2(t, t0)

]
,

ΦBA1(t, t0) =


∫ t
t0

bT
1 S(ω(σ))R

T (σ)−uT (σ)
ρ1(σ)

dσ
...∫ t

t0

bT
nr
S(ω(σ))RT (σ)−uT (σ)

ρnr (σ)
dσ

 ,

ΦBA2(t, t0) =

∫ t
t0

bT
1 R

T (σ)
ρ1(σ)

dσ +
∫ t
t0

u[1] T (σ,t0)
ρ1(σ)

dσ

+
∫ t
t0

−(σ−t0)(bT
1 S(ω(σ))R

T (σ)−uT (σ))
ρ1(σ)

dσ
...∫ t

t0

bT
nr
RT (σ)

ρnr (σ)
dσ +

∫ t
t0

u[1] T (σ,t0)
ρnr (σ)

dσ

+
∫ t
t0

−(σ−t0)(bT
nr
S(ω(σ))RT (σ)−uT (σ))

ρnr (σ)
dσ


,

ΦBC(t, t0) =
[
ΦBC1(t, t0) ΦBC2(t, t0)

]
=

−
∫ t
t0

1
ρ1(σ)

dσ
∫ t
t0

σ−t0
ρ1(σ)

dσ
...

...
−
∫ t
t0

1
ρnr (σ)

dσ
∫ t
t0

σ−t0
ρnr (σ)

dσ

 , (14)

and ΦCA(t, t0) and ΦCC(t, t0) are omitted as they are not
required in the sequel.

Before proceeding with the observability analysis, the fol-
lowing assumption is introduced which ultimately asserts the
minimal number of receivers and configuration requirements
of the USBL array in order to render the system observable
regardless of the trajectory described of the vehicle.

Assumption 2: There are at least 4 non-coplanar receivers.
The reasoning behind the need to have at least 4 non-

coplanar receivers is that this is the minimal configuration
that guarantees the uniqueness for the transponder position
r(t).

The following theorem establishes the observability of the
LTV system (13).

Theorem 1: The linear time-varying system (13) is ob-
servable on [t0, tf ], t0 < tf .

Proof: The observability proof of the LTV system (13)
is accomplished by contradiction. Thus suppose that (13) is
not observable on I := [t0, tf ]. Then, there exists a non null
vector d ∈ R8+nr

d =
[
dT1 dT2 dT3 d4 d5

]
, (15)

with d1 ∈ R3, d2 ∈ R3, d3 ∈ Rnr , d4, d5 ∈ R, such that
dTW(t0, tf )d = 0 for all t ∈ I, or equivalently,∫ t

t0

‖C(τ)Φ(τ, t0)d‖2dτ = 0, ∀t∈I . (16)

Taking the time derivative of (16) gives

C(t)Φ(t, t0)d = 0, ∀t∈I . (17)

From (17), at t = t0 comes[
C0d3

C1(t0)d1 + C2d3

]
= 0, (18)

which immediately implies that C0d3 = 0. As C0 is not
singular allows to conclude that the only solution is the null
vector

d3 = 0. (19)

Replacing (19) in (18) yields

2
ρ1(t0)+ρ2(t0)

(b1 − b2)
T

2
ρ1(t0)+ρ3(t0)

(b1 − b3)
T

...
2

ρnr−2(t0)+ρnr (t0)
(bnr−2 − bnr

)T

2
ρnr−1(t0)+ρnr (t0)

(bnr−1 − bnr )T

R
T (t0)d1 = 0. (20)

Under Assumption 2 the only solution for (20) is

d1 = 0. (21)



From (17) comes that

C0ΦBA2(t, t0)d2 + C0ΦBC(t, t0)

[
d4
d5

]
= 0. (22)

Taking the time derivative of (22) allows to write

C0



− (t−t0)(bT
1 S(ω(t))R

T (t)−uT (t))
ρ1(t)

d2 − d4
ρ1(t)

+

bT
1 R

T (t)
ρ1(t)

d2 + u[1] T (t,t0)
ρ1(t)

d2 + (t−t0)d5
ρ1(t)

...

− (t−t0)(bT
nr
S(ω(t))RT (t)−uT (t))

ρnr (t)
d2 − d4

ρnr (t)
+

bT
nr
RT (t)

ρnr (t)
d2 + u[1] T (t,t0)

ρnr (t)
d2 + (t−t0)d5

ρnr (t)


= 0.

(23)

Evaluating (23) at t = t0 yields

C0


bT

1

ρ1(t0)
−1

ρ1(t0)

...
...

bT
nr

ρnr (t0)
−1

ρnr (t0)


[
RT (t0)d2

d4

]
= 0. (24)

Taking into account that C0 is not singular, it is easy to
verify that under Assumption 2 the only solution for (24) is

bT
1

ρ1(t0)
−1

ρ1(t0)

...
...

bT
nr

ρnr (t0)
−1

ρnr (t0)


[
RT (t0)d2

d4

]
= 0⇒

[
d2

d4

]
= 0. (25)

Now setting (19), (21), and (25) in (23) yields

C0


t−t0
ρ1(t0)

d5
...

t−t0
ρnr (t0)

d5

 = 0. (26)

Again the only possible solution for (26) is

d5 = 0.

This concludes the proof since the only solution d = 0 of
(16) contradicts the hypothesis of the existence of a non null
vector d such that (16) is true. Thus, by contradiction, the
LTV system (13) is observable.

Although the observability of the LTV system (13) has
been established, it does not mean that the original nonlinear
system (6) is also observable, and neither means that an
observer for (13) is also an observer for (6). This however
turns out to be true, as it is shown in the next theorem.

Theorem 2: The nonlinear system (8) is observable in the
sense that, given {y(t), t ∈ [t0, tf ]} and {u(t), t ∈ [t0, tf ]},
the initial state x(t0) =

[
xT1 (t0) xT2 (t0)

]T
is uniquely

defined. Moreover, a state observer for the LTV system (13)
with globally asymptotically stable error dynamics is also
a state observer for the nonlinear system (8), with globally
asymptotically stable error dynamics.

Proof: The observability of the LTV system (13) has
already been established in Theorem 1, thus given {y(t), t ∈

[t0, tf ]} and {u(t), t ∈ [t0, tf ]}, the initial state of (13) is
uniquely defined. Let

z(t0) =
[
zT1 (t0) zT2 (t0) zT3 (t0) z4(t0) z5(t0)

]T
,

with z1(t0), z2(t0) ∈ R3, z3(t0) ∈ Rnr , and z4(t0), z5(t0) ∈
R3 be the initial state of the LTV system (13) and

x(t0) =
[
xT1 (t0) xT2 (t0)

]T
,

be the initial state of the nonlinear system (8). The evolution
of x1(t) for the nonlinear system (8) can be easily shown to
be given by

x1(t) = x1(t0)− (t− t0)x2(t0)− u[1](t, t0), (27)

which is similar to the evolution of x1(t) for the LTV system
differing only in the initial condition. Using (27), the output
of the nonlinear system (8) can be shown to satisfy

ρ2i (t) =‖x1(t0)−R(t0)bi‖2 − 2xT1 (t0)R(t)bi

+ (t− t0)2‖x2(t0)‖2 + 2xT1 (t0)R(t0))bi

− 2(t− t0)xT2 (t0)x1(t0) + 2(t− t0)xT2 (t0)R(t)bi

+ 2(t− t0)xT2 (t0)u[1](t, t0)− 2u[1] T (t, t0)x1(t0)

+ 2u[1] T (t, t0)R(t)bi + ‖u[1](t, t0)‖2, (28)

and the squared range difference between receiver i and j

ρ2i (t)− ρ2j (t) = 2(bi − bj)
T (RT (t0)x1(t0)−RT (t)x1(t))

+ |x1(t0)−R(t0)bi‖2 − ‖x1(t0)−R(t0)bj‖2. (29)

Now, multiplying the set of augmented outputs of the LTV
system (13) by the corresponding sum of pair of ranges,
and taking into account that the states x3(t), . . . , x2+nr

(t)
correspond to the actual ranges ρ1(t), . . . , ρnr

(t), gives that[
2(bi−bj)

TRT (t)x1(t)
ρi(t)+ρj(t)

+ x2+i(t)− x2+j(t)
]

(ρi(t) + ρj(t))

= 2(bi − bj)
TRT (t)x1(t) + ρ2i (t)− ρ2j (t). (30)

The squared range of the LTV system (13) in (30) can be
shown to satisfy

ρ2i (t) =z22+i(t0)− 2zT1 (t0)R(t)bi

+ (t− t0)2znr+4(t0) + 2zT1 (t0)R(t0)bi

− 2(t− t0)znr+3(t0) + 2(t− t0)zT2 (t0)R(t)bi

+ 2(t− t0)zT2 (t0)u[1](t, t0)− 2u[1] T (t, t0)z1(t0)

+ 2u[1] T (t, t0)R(t)bi + ‖u[1](t, t0)‖2, (31)

and consequently it is true, for the LTV system (13), that

ρ2i (t)− ρ2j (t) = z22+i(t0)− z22+j(t0)

− 2(bi − bj)
TRT (t)

(
z1(t0)− (t− t0)zT2 (t0)− u[1](t, t0)

)
+ 2(bi − bj)

TRT (t0)z1(t0). (32)

From the LTV system (13) transition matrix and forced
response comes

x1(t) = z1(t0)− (t− t0)z2(t0)− u[1](t, t0). (33)



Replacing (33) and (32) in (30) yields

2(bi − bj)
TRT (t)x1(t) + ρ2i (t)− ρ2j (t) =

z22+i(t0)− z22+j(t0) + 2zT1 (t0)R(t0)(bi − bj). (34)

The augmented states of the LTV system (13) x2+i(t),
i = 1, . . . , nr, are actually considered to be measured and
correspond to the range measurements. Therefore, it must be
for its initial condition

z2+i(t0) = ‖x1(t0)−R(t0)bi‖. (35)

Now taking (35) into account, and comparing the evolution
of the augmented outputs (34) for the LTV system with (29)
for the nonlinear system, it follows that

BcRT (t0) [x1(t0)− z1(t0)] = 0, (36)

where

Bc =


(b1 − b2)

T

(b1 − b3)
T

...
(bnr−2 − bnr

)T

(bnr−1 − bnr
)T

 .
Under Assumption 2 the only solution of (36) is

x1(t0) = z1(t0). (37)

Setting (35) and (37) and comparing the difference between
square of ranges for both systems yields

2(t− t0)(bi − bj)
TRT (t) [x2(t0)− z2(t0)] = 0. (38)

Taking the time derivative of (38) comes[
−2(t− t0)(bi − bj)

TS (ω(t))RT (t)

+2(bi − bj)
TRT (t)

]
(x2(t0)− z2(t0)) = 0. (39)

At t = t0, (39) comes as

BcRT (t0) [x2(t0)− z2(t0)] = 0. (40)

Again under Assumption 2 the only solution of (40) is

x2(t0) = z2(t0). (41)

Finally, setting (35), (37), and (41) in (31) and comparing to
(28) yields

− 2(t− t0)
(
xT2 (t0)x1(t0)− znr+3(t0)

)
+ (t− t0)2

(
‖x2(t0)‖2 − znr+4(t0)

)
= 0. (42)

As (t− t0) and (t− t0)2 are linearly independent functions,
the only solution for (42) is znr+3(t0) = xT2 (t0)x1(t0)
and znr+4(t0) = ‖x2(t0)‖2. Thus, the initial state of the
nonlinear system (8) matches the initial state of the LTV
system (13) which is uniquely defined. Therefore the non-
linear system (8) is also observable.

Note that the usual concept of observability for nonlinear
systems is not as strong as that presented in the statement
of Theorem 2, see [11]. Also, in the observer structure
that was derived, there is nothing imposing the nonlinear
algebraic relations between the original and the additional

states, allowing for the dynamics of the new system to be
considered linear time-varying. It is however trivial to show
that those relations are indeed preserved asymptotically.

Although the observability results were derived with re-
spect to the nonlinear system (8), they also apply to the
original nonlinear system (6) as they are related through a
Lyapunov transformation. Thus, the design of an observer for
the original nonlinear system follows simply by reversing the
state transformation (7), as it will be detailed in the following
section.

D. Kalman filter
The observer structure devised so far was based on a

deterministic setting providing strong constructive results,
in the sense that it was shown, in Theorem 2, that an
observer with globally asymptotically stable error dynamics
for the LTV system (13) provides globally asymptotically
stable error dynamics for the estimation of the state of the
original nonlinear system. However, in practice there exists
measurement noise and system disturbances, motivating the
derivation of a filtering solution within a stochastic setting.
Therefore, the design of a LTV Kalman Filter (even tough
other filtering solutions could be used, e.g. a H∞ filter) is
presented next. Before proceeding with the derivation of the
proposed filter, it is important to stress, however, that this
filter is not optimal, as the existence of multiplicative noise
is evident by looking into the LTV system matrices.

Nevertheless, the errors associated with the Kalman filter
estimates are GAS, as it can be shown that the system is not
only observable but also uniformly completely observable, a
sufficient condition for the stability of the LTV Kalman filter
[12]. The following assumption and lemma are introduced to
guarantee the uniform complete observability of the system.

Assumption 3: The position of the transponder in the
vehicle coordinate frame r(t), and the angular and linear
velocities, ω(t) and v(t) respectively, are bounded signals.
Moreover, the time derivatives of these signals (ṙ(t), ω̇(t),
and v̇(t) respectively), are also bounded, as well as the
derivatives of the ranges ρ̇i(t), with i = 1, . . . , nr.

Lemma 3 ([13, Lemma 1]): Let f(t) : [t0, tf ] ⊂ R→ Rn
be a continuous and two times continuously differentiable
function on I := [t0, tf ], T := tf − t0 > 0, and such
that f (t0) = 0. Further assume that maxt∈I ‖f̈(t)‖ ≤ C.
If there exists a constant α∗ > 0 and a time t∗ ∈ I such
that ‖ḟ(t∗)‖ ≥ α∗, then there exists constants β∗ > 0 and
0 < δ∗ ≤ T such that ‖f (t0 + δ∗) ‖ ≥ β∗.

From a practical point of view, Assumption 3 is not
restrictive since the systems presented herein are in fact finite
energy systems that ensemble realizable physical vehicles
and sensors. The LTV system (13) is finally shown to be
uniformly completely observable in the following theorem.

Theorem 4: The linear time-varying system (13) is uni-
formly completely observable, that is, there exists positive
constants α1, α2, δ, such that α1I � W(t, t + δ) � α2I
for all t ≥ t0. Proof: The bounds on the observability
Gramian W(t, t+ δ) can be written as

α1 ≤ dTW(t, t+ δ)d ≤ α2, (43)



for all t ≥ t0, and for all d ∈ R8+nr such that ‖d‖ = 1.
The proof follows by noticing that (43) can be written as
α1 ≤

∫ t+δ
t
‖f(τ)‖2dτ ≤ α2, where

f(τ) := C(τ)Φ(τ, t)d. (44)

The existence of the upper bound α2 is trivially checked, as
under Assumption 3 the matrices A(t) and C(t) are norm-
bounded and f(τ) is integrated over limited intervals. Let
d =

[
dT
1 dT

2 dT
3 d4 d5

]
, with d1 ∈ R3, d2 ∈ R3,

d3 ∈ Rnr , d4, d5 ∈ R. Evaluating (44) at τ = t, it
is straightforward to verify that if d3 6= 0, then ‖f(t)‖
is immediately bounded. Indeed, as ‖f(t)‖ ≥ ‖C0d3‖ =
α∗1 > 0 for all t ≥ t0, since C0 has full column rank by
construction. Suppose now that d3 = 0. Then, it can also
be seen that if d1 6= 0, it is true that ‖f(t)‖ = ‖C1(t)d1‖,
which is clearly bounded by

‖f(t)‖ ≥ σmin(D−1ρ+(t))‖2C2UrRT (t)d1‖, (45)

for all t ≥ t0, where the operator σmin(A) represents the
smallest singular value of A and

Ur :=
[
b1 · · · bnr

]T ∈ Rnr×3,

Dρ+(t) := diag




ρ1(t)+ρ2(t)
ρ1(t)+ρ3(t)

...
ρnr−2(t)+ρnr (t)

ρnr−1(t)+ρnr (t)


 ∈ Rnc×nc .

Under Assumption 1 it is clear that σmin(D−1ρ+(t)) ≥ 1
Rmax

for all t ≥ t0, which implies

‖f(t)‖ ≥ 1

Rmax
σmin(C2Ur)

∥∥RT (t)d1

∥∥
for all t ≥ t0. Now under Assumption 2 it follows that C2Ur

has full column rank and therefore there exists a positive
constant β∗1 such that σmin(C2Ur) = β∗1 > 0. Thus, taking
into account that

∥∥RT (t)d1

∥∥ = ‖d1‖,

‖f(t)‖ ≥ β∗1
Rmax

‖d1‖ = α∗2 > 0 (46)

for all t ≥ t0. Using the same set of assumptions and
procedures it is possible to show that the derivative of f(τ)
evaluated at τ = t is also uniformly bounded∥∥∥∥∂f(τ)

∂τ

∣∣∣∣
τ=t

∥∥∥∥ ≥ β∗2β
∗
3

Rmax

∥∥∥∥[d2

d4

]∥∥∥∥ = α∗3 > 0, (47)

for all t ≥ t0, with β∗2 and β∗3 positive constants, and when
d3 = 0, d1 = 0 and either d2 6= 0 or d4 6= 0. The upper
boundedness on the norm of the second derivative of f(τ)
becomes straightforward under Assumption 3, thus allowing
the use of Lemma 3 in (47). Thus, in this case, it can be
shown, using Lemma 3, that there exist α∗4 > 0 and δ∗1 > 0
such that ‖f(t+ δ∗1)‖ ≥ α∗4 for all t ≥ t0. Using Lemma 3
again, there exist positive constants α∗5 > 0 and δ∗ > 0 such
that

dTW(t, t+ δ∗)d ≥ α∗5, (48)

for all t ≥ t0 and when d1 = 0, d3 = 0, and d2 6= 0 or
d4 6= 0. When all the components of d are null except d5 it
follows that

f(τ) =

[
C0ΦBC2(τ, t)d5
C2ΦBC2(τ, t)d5

]
, (49)

which norm is clearly bounded by

‖f(τ)‖ ≥ σmin(C0) ‖ΦBC2(τ, t)d5‖ (50)

for all t ≥ t0. Expanding (50) and using (14) yields

‖f(τ)‖ ≥ β∗2

√√√√ nr∑
i=1

(
d5

∫ τ

t

σ − t
ρ1(σ)

dσ

)2

(51)

for all t ≥ t0. In particular at τ = t+δ∗2 , with δ∗2 > 0, comes

‖f(t+ δ∗2)‖ ≥ β∗2 |d5|

√√√√ nr∑
i=1

(∫ t+δ∗2

t

σ − t
ρi(σ)

dσ

)2

(52)

for all t ≥ t0. By the Integral Mean Value theorem there
exists c ∈]t, t+ δ∗2 [ such that∫ t+δ∗2

t

σ − t
ρ1(σ)

dσ = δ∗2
c− t
ρi(c)

. (53)

for all t ≥ t0. Now defining δ∗3 := c−t > 0, which is clearly
positive because c > t, allows to write∫ t+δ∗2

t

σ − t
ρ1(σ)

dσ =
δ∗2δ
∗
3

ρi(t+ δ∗3)
. (54)

for all t ≥ t0. Under Assumption 1 comes from (52) and
(54) that

‖f(t+ δ∗2)‖ ≥ β∗2 |d5|

√√√√ nr∑
i=1

(
δ∗2δ
∗
3

Rmax

)2

=
δ∗2δ
∗
3β
∗
2 |d5|

√
nr

Rmax
= α∗6 > 0 (55)

for all t ≥ t0. Finally, Lemma 3 is used once again to show
that there exist α > 0 and δ > 0, for all t ≥ t0 and {d ∈
R8+nr : ‖d‖ = 1}, such that dTW(t, t + δ)d ≥ α, which
means that the system is uniformly completely observable
and therefore concludes the proof.

To recover the augmented system dynamics in the orig-
inal coordinate space, the original Lyapunov state trans-
formation (7) is reverted considering the augmented state
transformation Γ(t) := Tr(t)x(t), where Tr(t) :=
diag

(
RT (t),RT (t), 1, . . . , 1

)
is a also Lyapunov state trans-

formation that preserves all observability properties of the
LTV system (13).

Including system disturbances and sensor noise yields the
final reverted augmented dynamics{

Γ̇(t) = AΓ(t)Γ(t) + BΓ(t)vr(t) + nx(t),

y(t) = CΓ(t)Γ(t) + ny(t),



where

AΓ(t) =

−S (ω(t)) −I 0 0 0
0 −S (ω(t)) 0 0 0

bT
1 S(ω(t))−vr

T (t)
ρ1(t)

bT
1

ρ1(t)
0 − 1

ρ1(t)
0

...
...

...
...

...
bT

nr
S(ω(t))−vr

T (t)

ρnr (t)

bT
nr

ρnr (t)
0 − 1

ρnr (t)
0

0 −vr
T (t) 0 0 −1

0 0 0 0 0


,

BΓ(t) =
[
−I3 0 b1

ρ1(t)
· · · bnr

ρnr (t)
0 0

]T
,

CΓ(t) =

[
0nr×3 0nr×3 C0 0nr×2

C1(t)R(t) 0nC×3 C2 0nC×2

]
,

where nx(t) and ny(t) are assumed to be uncorrelated,
zero-mean, white Gaussian noise, with E

[
nx(t)nx

T (τ)
]

=
Qx(t)δ(t− τ) and E

[
ny(t)ny

T (τ)
]

= Qy(t)δ(t− τ).

IV. SIMULATION RESULTS

The performance of the proposed filter was assessed
in simulation using a kinematic model for an underwater
vehicle. The vehicle describes a typical survey trajectory as
depicted in Figure 2.
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Fig. 2. Vehicle nominal trajectory

The USBL receiving array is composed of 4 receivers
that are installed on the vehicle with an offset of 30 cm
along the x-axis of the body-fixed coordinate frame {B}
where the DVL and the rate gyros are also installed. Thus
the positions of the receivers with respect {B} are given in
meters by b1 =

[
0.2 −0.15 0

]T
, b2 =

[
0.2 0.15 0

]T
,

b3 =
[
0.4 0 0.15

]T
, and b4 =

[
0.4 0 −0.15

]T
.

The DVL fluid-relative velocity measurements are con-
sidered to be corrupted by additive uncorrelated zero-mean
white Gaussian noise with an accuracy of 0.2% of the
nominal velocity with an additional standard deviation of
1 mm/s, which is inspired on the LinkQuest NavQuest 600
Micro DVL sensor package. The rate gyros are also inspired
on a realistic sensor package, the Silicon Sensing CRS03
triaxial rate gyro, and are thus considered to be disturbed by
additive, uncorrelated, zero-mean white Gaussian noise, with
a standard deviation of 0.05 deg/s.

The range measurements between the transponder and the
reference receiver (receiver 1) are considered to be disturbed
by additive, zero-mean white Gaussian noise, with 1 m
standard deviation whilst the RDOA between receiver 1 and
the other 3 receivers is considered to be measured with an
accuracy of 6 mm. The transponder is located in inertial
coordinates at Ipt =

[
200 0 0

]T
[m], and the unknown

underwater current velocity has an intensity of 0.2 m/s
in all three axis. The augmented states that correspond to
the ranges x3, . . . , x2+nr

are initialized with the first set
of measurements available, the filter position estimate is
initialized with an offset of 20 m from the nominal position,
and the rest of the initial estimates is set to zero.

The initial evolution of the position and current velocity
estimation error is depicted in Figure 3. The full evolution
of the augmented states error is represented in Figure 4. The
attainable performance of the filter is better illustrated in
Figure 5, where the steady-state response of the position and
current velocity estimation error is shown.
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The performance of the filter is compared with two alterna-
tive filter designs, the well-known and established Extended
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Fig. 5. LTV Kalman filter steady state response

Kalman Filter (EKF) and the Kalman filter with the Planar-
Wave approximation (KFPW). The first design linearizes the
nonlinear range and RDOA measurements about the filter
estimates in order to compute a suboptimal Kalman gain.
In the latter, the feedback is accomplished by means of a
precomputed transponder position fix from the USBL that
resorts to a planar-wave approximation, previously used by
the authors [6].

The Root-Mean-Square (RMS) of the steady-state position
error of the three filters is presented in Table I. Comparing
the steady-state response of the three filters it can be seen that
all of them attain the same performance level. The solution
presented in this work has the advantage of being GAS,
which is not guaranteed for the other designs.

TABLE I
STEADY-STATE TRANSPONDER POSITION r(t) ERROR RMS COMPARISON

Filter x [m] y [m] z [m]
LTV Kalman 0.0880 0.0837 0.1101

KFPW 0.1122 0.0847 0.1096
EKF 0.0611 0.0814 0.1128

V. CONCLUSIONS

The main contribution of the paper lies on the design of
globally asymptotically stable position filters based directly
on the nonlinear sensor readings of USBL and a DVL. At the
core of the proposed filtering solution is the derivation of a
LTV system that fully captures the dynamics of the nonlinear
system. The LTV model is achieved through appropriate state
augmentation allowing for the use of powerful linear system
analysis and filtering design tools that yield GAS filter error
dynamics.

The performance of the proposed filter was assessed in
simulation and compared against two traditional solutions,
the EKF and a Kalman filter that resorts to the planar
approximation of the acoustic wave arriving at the USBL
array. Comparison of the steady-state position error from the
three designs lead to the conclusion that all demonstrated

similar performance levels using realistic sensor noise and
disturbances. The advantage of the new filter structure is
nevertheless evident, due to its GAS properties which is not
guaranteed for either of the two traditional solutions.
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