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a b s t r a c t

Simultaneous external and internal stabilization in a global framework for linear time-invariant discrete-
time systems subject to actuator saturation is considered. Internal stabilization is in the sense of Lyapunov
while external stabilization is in the sense of ℓp stability with different variations, e.g. with or without
finite gain, with fixed or arbitrary initial conditions, with or without bias. Several simultaneous external
and internal stabilization problems, all in the global framework, are studied in depth. Moreover, we
present a design for appropriate adaptive low-and-high gain feedback controllers that achieve the
intended simultaneous external and internal stabilization whenever such problems are solvable.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Most nonlinear systems encountered in practice consist of
linear systems and static nonlinear elements. Physical quantities
such as speed, acceleration, pressure, flow, current, voltage,
and so on, are always limited to a finite range, and saturation
nonlinearities are therefore a ubiquitous feature of physical
systems. One class of such systems is the class of linear systems
subject to actuator saturation as depicted in Fig. 1 along with
a feedback controller, where u denotes the control input and d
is an external input or disturbance. Our interest in this paper is
on simultaneous external and internal stabilization of the type of
systems depicted in Fig. 1.

A brief survey helps to motivate our work. Early work
on internal stabilization of linear systems subject to actuator
saturation started with the seminal work of Fuller (1969) which
established that a chain of integrators with order higher than
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two cannot be globally asymptotically stabilized by any saturating
linear control law. Continuing the theme of Fuller, Sontag and
Sussmann (1990), Sussmann and Yang (1991), Yang (1993) and
Yang, Sontag, and Sussmann (1997) established that, in general,
global asymptotic stabilization of linear systems with bounded
inputs can only be achieved using nonlinear feedback laws.
Moreover, this stabilization can be achieved if and only if the
given system in the absence of saturation is stabilizable and
critically unstable (equivalently, asymptotically null controllable
with bounded control (ANCBC)). We note that critically unstable
systems are those systems that have all their open-loop poles
within the closed left half plane (continuous-time systems) or
within the closed unit disc (discrete-time systems). The works of
Sontag et al. unleashed a flurry of activity in internally stabilizing
linear systems subject to actuator saturation. Along one direction,
Teel (1992a,b) proposed certain design methodologies to design
appropriate controllers for global stabilization. Megretski (1996)
came up with a gain scheduling based nonlinear control law
utilizing Riccati equations. Along another direction, Saberi and his
students queried as towhat can be achieved by utilizing only linear
feedback control laws. In this respect, Lin and Saberi (1993a,b,
1995) proposed and emphasized a semi-global rather than global
framework for stabilization using bounded controls. All this early
work of these authors and others is surveyed in Bernstein and
Michel (1995), Saberi and Stoorvogel (1999), Tarbouriech and
Garcia (1997), Saberi, Stoorvogel, and Sannuti (2000), Hu and Lin
(2001), Kapila and Grigoriadis (2002), and the references therein.
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Fig. 1. A linear system subject to actuator saturation.

Following the early phase work outlined above, during the
last decade and a half, among others, our research team probed
intensely into a number of problems concerning the control of
linear systems subject to actuator saturation, and on linear systems
subject to input and state constraints, where the controller must
guarantee that the output which is a linear combination of inputs
and states of a linear system remains in a given set (see, e.g., Saberi,
Han, and Stoorvogel (2002) and references therein).

Once the issues related to internal stabilization were resolved,
the research was directed towards simultaneous external and
internal stabilization. Such simultaneous stabilization has also
a long history. A well-known result in linear system theory
states that asymptotically stable systems have very good external
stability properties. Thus, for linear systems the notions of internal
stability and external stability in any sense are highly coupled.
However, for general nonlinear systems and in particular for
linear systems subject to actuator saturation, these two notions
of stability are vastly different. For generic nonlinear systems this
was first looked at by Sontag, see for instance Sontag (1990).
For the class of linear systems subject to actuator saturations,
the concept of simultaneous external and internal stabilization
was first studied in Hou, Saberi, and Lin (1997), Hou, Saberi, Lin,
and Sannuti (1998) and Lin (1997), Bao, Lin, and Sontag (2000).
Subsequent to this work, there exist numerous other works on
simultaneous external and internal stabilization (see e.g. Saberi,
Hou, and Stoorvogel (2000), Chitour and Lin (2003)). The picture
that emerges from all these works is that, for the case when
external disturbance is additive to the control input, all the issues
associated with simultaneous external and internal stabilization
are more or less resolved, but only for continuous-time systems.

Our focus in this paper is on discrete-time linear systems
subject to actuator saturation. For continuous-time systems, a
key result is given in Saberi, Hou et al. (2000). This work,
while pointing out all the complexities involved in simultaneous
global external and global internal stabilization, resolves all such
issues and develops certain scheduled low-and-high gain design
methodologies to achieve the required simultaneous global-global
stabilization. Analogous results for discrete-time systems do not
exist so far in the literature. Discrete-time has its own peculiarities.
High-gain cannot be as freely used as in continuous-time but
also almost disturbance decoupling could always be achieved
in continuous-time case while in discrete-time case, this is not
possible in general. This paper can be thought of as a companion
paper to Saberi, Hou et al. (2000) as it resolves fully all the issues for
discrete-time systems. In particular,wedevelophere the necessary
and sufficient conditions for simultaneous global external and
global internal stabilization, and furthermore develop also the
required design methodologies to accomplish such a stabilization
whenever it is feasible.

We organize the paper as follows: In Section 2, we formulate
precisely two problems studied in this paper, namely (1) simul-
taneous global ℓp stabilization without finite gain and internal
global asymptotic stabilization (Gp/G), and (2) simultaneous global
ℓp stabilization with finite gain and internal global asymptotic
stabilization (Gp/G)fg . In Section 3, we describe controller design
methodologies, and in Section 4, we establish the solvability con-
ditions for (Gp/G) and (Gp/G)fg and construct an adaptive-low-gain
and high-gain controller that solves the two problems by using a
parametric Lyapunov equation.

2. Preliminary notations and problem formulation

In this section, after stating certain standard notations, we
recall the notions of external stability for a general discrete-
time nonlinear system. Based on these notions, we formulate the
simultaneous stabilization problems which we study in this paper.

For x ∈ Rn, ∥x∥ denotes its Euclidean norm and x′ denotes the
transpose of x. For X ∈ Rn×m, ∥X∥ denotes its induced 2-norm and
X ′ denotes the transpose of X . trace(X) denotes the trace of X . If X
is symmetric, λmin(X) and λmax(X) denote the smallest and largest
eigenvalues of X respectively. For a subsetX ⊂ Rn,Xc denotes the
complement of X. For k1, k2 ∈ Z such that k1 ≤ k2, k1, k2 denotes
the integer set {k1, k1 + 1, . . . , k2}.

A continuous function φ : [0, ∞) → [0, ∞) is said to be a class
K function if

(1) φ(0) = 0;
(2) φ is strictly increasing.

The ℓp spacewith p ∈ [1, ∞) consists of all vector-valued discrete-
time signals y from Z+

∪ {0} to Rn for which
∞
k=0

∥y(k)∥p < ∞.

For a signal y ∈ ℓp, the ℓp norm of y is defined as

∥y∥p =


∞
k=0

∥y(k)∥p

 1
p

.

The ℓ∞ space consists of all vector-valued discrete-time signals y
from Z+

∪ {0} to Rn for which

sup
k≥0

∥y(k)∥ < ∞.

For a signal y ∈ ℓ∞, the ℓ∞ norm of y is defined as

∥y∥∞ = sup
k≥0

∥y(k)∥.

The following relationship holds for all ℓp spaces: for 1 < p < q
< ∞

ℓ1 ⊂ ℓp ⊂ ℓq ⊂ ℓ∞.

Moreover, for any y ∈ ℓp with p ∈ [1, ∞), the following properties
hold:

(1) ∥y∥∞ ≤ ∥y∥p;
(2) y(k) → 0 as k → ∞.

Next we recall the definitions of external stability. Consider a
system

Σ :


x(k + 1) = f (x(k), d(k)), x(0) = x0
y(k) = g(x(k), d(k))

with x(k) ∈ Rn and d(k) ∈ Rm. The two classical ℓp stabilities are
defined as follows.

Definition 1. For any p ∈ [1, ∞], the system Σ is said to be
ℓp stable with fixed initial condition and without finite gain if for
x(0) = 0 and any d ∈ ℓp, we have y ∈ ℓp.

Definition 2. For any p ∈ [1, ∞], the system Σ is said to be ℓp
stable with fixed initial condition and with finite gain if for x(0) = 0
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and any d ∈ ℓp, we have y ∈ ℓp and there exists a γp such that for
any d ∈ ℓp,

∥y∥p ≤ γp∥d∥p.

The infimum over all γp with this property is called the ℓp gain of
the system Σ .

As observed in Shi, Saberi, and Stoorvogel (2003), the initial
condition plays a dominant role inwhether achieving ℓp stability is
possible or not. Hence any definition of external stabilitymust take
into account the effect of initial condition. The notion of external
stability with arbitrary initial condition was introduced in Shi et al.
(2003). We recall these definitions below.

Definition 3. For any p ∈ [1, ∞], the system Σ is said to be ℓp
stable with arbitrary initial condition and without finite gain if for
any x0 ∈ Rn and any d ∈ ℓp, we have y ∈ ℓp.

Definition 4. For any p ∈ [1, ∞], the system Σ is said to be ℓp
stable with arbitrary initial condition with finite gain and with bias if
for any x0 ∈ Rn and any d ∈ ℓp, we have y ∈ ℓp and there exists a
γp and a class K function φ(·) such that for any d ∈ ℓp

∥y∥p ≤ γp∥d∥p + φ(∥x0∥).

The infimum over all γp with this property is called the ℓp gain of
the system Σ .

Nowwe are ready to formulate the control problems studied in this
paper. Consider a linear discrete-time system subject to actuator
saturation,

x(k + 1) = Ax(k) + Bσ(u(k) + d(k)), (2.1)

where state x ∈ Rn, the output y = x, control input u ∈ Rm, and
external input d ∈ Rm. Here σ(·) denotes the standard saturation
function defined as

σ(u) = [σ1(u1), . . . , σ1(um)]

where σ1(s) = sgn(s)min{|s|, ∆} for some ∆ > 0.
The simultaneous global external and internal stabilization

problems studied in this paper are formulated as follows.

Problem 1. For any p ∈ [1, ∞], the system (2.1) is said to be
simultaneously globally ℓp stabilizable with fixed initial condition
and without finite gain and globally asymptotically stabilizable via
static time invariant state feedback, which we refer to as (Gp/G),
if there exists a static state feedback controller u = f (x) such that
the following properties hold:

(1) the closed-loop system is ℓp stable with fixed initial condition
and without finite gain where the output y = x.

(2) In the absence of external input d, the equilibrium x = 0 is
globally asymptotically stable.

Problem 2. For any p ∈ [1, ∞], the system (2.1) is said to be
simultaneously globally ℓp stabilizable with fixed initial condition
with finite gain with zero bias and globally asymptotically
stabilizable via state feedback, which we refer to as (Gp/G)fg ,
if there exists a static time invariant state feedback controller
u = f (x) such that the following properties hold:

(1) the closed-loop system is finite gain ℓp stable with fixed initial
condition with finite gain and with zero bias where the output
y = x.

(2) In the absence of external input d, the equilibrium x = 0 is
globally asymptotically stable.

Note that the notion of global ℓp stability with arbitrary initial
condition embeds in it the internal stability in some sense.We also
formulate below additional external stabilization problems with
arbitrary initial conditions.
Problem 3. For any p ∈ [1, ∞], the system (2.1) is said to be
globally ℓp stabilizable with arbitrary initial condition andwithout
finite gain via static time invariant state feedback, if there exists
a static state feedback controller u = f (x) such that the closed-
loop system is ℓp stablewith arbitrary initial condition andwithout
finite gain where the output y = x.

Problem 4. For any p ∈ [1, ∞], the system (2.1) is said to be
globally ℓp stabilizable with arbitrary initial condition with finite
gain and with bias via state feedback, if there exists a static time
invariant state feedback controller u = f (x) such that the closed-
loop system is finite gain ℓp stable with arbitrary initial condition
with finite gain and with bias where the output y = x.

Since global asymptotic stabilization is required in all the
problems, it is well-known that the following assumption is
necessary.

Assumption 1. (1) The pair (A, B) is stabilizable.
(2) A has all its eigenvalues in the closed unit disc.

In fact, as will become clear in the sequel, Assumption 1 is also
sufficient to solve Problems 1–4. To see this, we first note that
under Assumption 1, the system (2.1) can be transformed into the
form,

xs(k + 1)
xu(k + 1)


=


As 0
0 Au


xs(k)
xu(k)


+


Bs
Bu


σ(u(k) + d(k))

(2.2)
where As is Schur stable, Au has all its eigenvalues on the unit
circle and (Au, Bu) is controllable. Suppose (Gp/G) and/or (Gp/G)f ·g
of the xu dynamics can be achieved by a feedback controller
u = f (xu). If Bu has full column rank, it is straightforward to show
that u = f (xu) also achieves (Gp/G) and/or (Gp/G)f ·g of the overall
system. However, it takes some effort to reach the same conclusion
in the general case. We show this in the Appendix under a generic
assumption on controller structure.

Therefore, to solve Problems 1–4 for system (2.1), it is sufficient
to solve these problems only for the unstable sub-dynamics. In the
rest of the paper, we impose the following assumption

Assumption 2. (1) The pair (A, B) is controllable.
(2) A has all its eigenvalues on the unit circle.

3. Controller design

In this section, we would like to present the controller design
methodologies which we shall employ to solve the problems
formulated in Section 2. The controller design in this paper is based
on the classical low-gain and low-and-high-gain feedback design
methodologies. The low-gain feedback can be constructed using
different approaches such as direct eigenstructure assignment
(Lin & Saberi, 1993b), H2 and H∞ algebraic Riccati equation
based methods (Lin, Stoorvogel, & Saberi, 1996; Teel, 1995), and
parametric Lyapunov equation based methods (Zhou, Duan, & Lin,
2008; Zhou, Lin, &Duan, 2009). In this paper,we choose parametric
Lyapunov equationmethod to build the low-gain feedback because
of its special properties; as will become clear later on, it greatly
simplifies the expressions for our controllers and the subsequent
analysis.

Since the low-gain feedback, as indicated by its name, does not
allow complete utilization of control capacities, the low-and-high-
gain feedback was developed to rectify this drawback and was
intended to achieve control objectives beyond stability, such as
performance enhancement, robustness and disturbances rejection.
The low-and-high gain feedback is composed of a low-gain and a
high-gain feedback. As shown in Hou et al. (1998), the solvability
of simultaneous global external and internal stabilization problem
critically relies on a proper choice of high-gain. In this section, we
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shall first recall the low-gain feedback design and propose a new
high-gain design methodology.

3.1. Low gain state feedback

In this subsection, we review the low-gain feedback design
methodology recently introduced in Zhou et al. (2008, 2009)
which is based on the solution of a parametric Lyapunov equation.
Five key properties of the parametric Lyapunov equation are
summarized in the next lemma, where the first three properties
are adopted from Zhou et al. (2009).

Lemma 1. Assume that (A, B) is controllable and A has all its
eigenvalues on the unit circle. For any ε ∈ (0, 1), the Parametric
Algebraic Riccati Equation,

(1 − ε)Pε = A′PεA − A′PεB(I + B′PεB)−1B′PεA, (3.1)

has a unique positive definite solution Pε = W−1
ε where Wε is the

solution for W of

W −
1

1 − ε
AWA′

= −BB′.

Moreover, the following properties hold:
(1) Ac(ε) = A − B(I + B′PεB)−1B′PεA is Schur stable for any ε ∈

(0, 1);
(2) dPε

dε > 0 for any ε ∈ (0, 1);
(3) limε↓0 Pε = 0.
(4) There exists an ε∗ such that for any ε ∈ (0, ε∗

],

∥P
1
2
ε AP

−
1
2

ε ∥ ≤
√
2.

(5) Let ε∗ be given by property 4. There exists aMε∗ such that ∥
Pε

ε
∥ ≤

Mε∗ for all ε ∈ (0, ε∗
].

Proof. The existence of the positive definite solution Pε = W−1
ε

and properties 1, 2 and 3 were shown in Zhou et al. (2009).
Regarding property 4, multiplying by P−1/2

ε on both sides of (3.1)
gives

V ′

ε[I − P
1
2
ε B(I + B′PεB)−1B′P

1
2
ε ]Vε = (1 − ε)I

where Vε = P1/2
ε AP−1/2

ε . Since Pε → 0 as ε → 0, there exists an ε∗

such that for any ε ∈ (0, ε∗
]

I − P
1
2
ε B(I + B′PεB)−1B′P

1
2
ε ≥

1
2
I.

Hence

V ′

εVε < 2I,

or equivalently

∥Vε∥ ≤
√
2.

It remains to show property 5. Note that Wε is a rational matrix
in ε and thus Pε is a rational matrix in ε. Property 3 implies that
P = εP̄ε where P̄ε is rational in ε and satisfies ∥P̄ε∥ < Mε∗ for any
ε ∈ (0, ε∗

]. Hence, property 5 holds. This concludes the proof of
Lemma 1. �

We define the low-gain state feedback which is a family of
parameterized state feedback laws given by

uL(x) = FLx = −(I + B′PεB)−1B′PεAx, (3.2)

where Pε is the solution of (3.1). Here, as usual, ε is called the
low-gain parameter. From the properties given by Lemma 1, it
can be seen that the magnitude of the control input can be made
arbitrarily small by choosing ε sufficiently small so that the input
never saturates for any, a priori given, set of initial conditions.
3.2. Low-and-high-gain feedback

The low-and-high-gain state feedback is composed of a low-
gain state feedback and a high-gain state feedback as

uLH(x) = FLHx = FLx + FHx (3.3)

where FLx is given by (3.2). The high-gain feedback is of the form,

FHx = ρFLx

where ρ is called the high-gain parameter.
For continuous-time systems, the high gain parameter ρ can be

any positive real number. However, this is not the case for discrete-
time systems. In order to preserve local asymptotic stability,
this high gain has to be bounded at least near the origin. The
existing results in literature on the choice of high-gain parameter
for discrete-time system are really sparse. To the best of our
knowledge, the only available result is in Lin, Saberi, Stoorvogel,
and Mantri (1996, 2000) where the high-gain parameter is a
nonlinear function of x as

κ(x) = max{z ∈ [0, 1] | ∥FLx + αzKHx∥∞ ≤ ∆}

where KH = −(B′PεB)−1B′Pε(A + BFL) and α ∈ [0, 2] (assume
without loss of generality that B has full rank). This high gain
always yields a controller smaller than ∆ in magnitude, which
lacks the capability of dealing with disturbances. Furthermore,
to solve the global external and internal stabilization problem,
we need to schedule the high-gain parameter with respect
to x. However, this nonlinear high-gain parameter is also not
suitable for adaptation since it will make the analysis extremely
complicated. Instead, we need a constant high-gain parameter so
that the controller (3.3) remains linear. A suitable choice of such a
high-gain parameter satisfies

ρ ∈


0,

2
∥B′PεB∥


(3.4)

where Pε is the solution of parametric Lyapunov equation (3.1).

Lemma 2. Consider system (2.1) satisfying Assumption 2. Let Pε be
the solution of (3.1). For any a priori given compact set X, there exists
an ε∗ such that for any ε ∈ [0, ε∗

] and ρ satisfying (3.4), the origin
of the interconnection of (2.1) with the low-and-high-gain feedback

uLH = −(1 + ρ)(I + B′PεB)−1B′PεAx

is locally asymptotically stable with domain of attraction contain-
ing X.

Proof. Let c be such that

c = sup
ε∈(0,ε∗]

x∈X

x′Pεx.

where ε∗ is given by Property (4) and (5) in Lemma 1. Define
a Lyapunov function V (x) = x′Pεx and a level set V(c) =

{x | V (x) ≤ c}. We have X ⊂ V(c). From Lemma 1, there exists
an ε1 ≤ ε∗ such that for any ε ∈ (0, ε1] and x ∈ V(c),

∥(I + B′PεB)−1B′PεAx∥ ≤ ∆.

Define µ = ∥B′PεB∥. We evaluate V (k + 1) − V (k) along the
trajectories as

V (k + 1) − V (k)
= −εV (k) − σ(uLH)′σ(uLH) + [σ(uLH) − uL]

′

× (I + B′PB)[σ(uLH) − uL]

≤ −εV (k) − σ(uLH)′σ(uLH)

+ (1 + µ)[σ(uLH) − uL]
′
[σ(uLH) − uL]

= −εV (k) −
1 + µ

µ
∥uL∥

2
+ µ

σ(uLH) −
1 + µ

µ
uL

2
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where we abbreviated uLH(k) and uL(k) by uLH and uL respectively.
Since ∥uL∥ ≤ ∆ and ρ satisfies (3.4), we have

∥uL∥ ≤ ∥σ(uLH)∥ ≤


1 +

2
µ


∥uL∥.

This implies thatσ(uLH) −
1 + µ

µ
uL

 ≤
1
µ

∥uL∥,

and thus,

µ

σ(uLH) −
1 + µ

µ
uL

2 −
1
µ

∥uL∥
2

≤ 0.

Combining the above, we get for any x(k) ∈ V(c),

V (k + 1) − V (k) ≤ −εV (k).

We conclude local asymptotic stability of the origin with a domain
of attraction containing X. �

Remark 1. We would like to explain the role played by the
high-gain parameter ρ in the controller design. For semi-global
asymptotic stabilization, the domain of attraction is basically
determined by the low-gain parameter ε provided that ρ lies in a
proper range.When ρ is too large, stabilization is not possible. This
is different from continuous-time systems for which the high gain
parameter ρ does not have any impact on internal stability. But
like continuous-time systems, ρ plays a dominant role in issues
other than internal stability such as external stabilization, robust
stabilization and disturbance rejection.

3.3. Scheduling of low-gain parameter

In the semi-global framework, with controller (3.2), the domain
of attraction of the closed-loop system is determined by the low-
gain parameter ε. In order to solve the global stabilization problem,
this ε canbe scheduledwith respect to the state. This has beendone
in the literature, see for instance Hou et al. (1998).

A family of scheduled low-gain feedback controllers for global
stabilization is given by

uL(x) = Fε(x)x = −(B′Pε(x)B + I)−1B′Pε(x)Ax (3.5)

where Pε(x) is the solution of (3.1) with ε replaced by ε(x). In
general, the scheduled parameter ε(x) should satisfy the following
properties:

(1) ε(x) : Rn
→ (0, ε∗

] is continuous and piecewise continuously
differentiable where ε∗ is a design parameter.

(2) There exists an open neighborhood O of the origin such that
ε(x) = 1 for all x ∈ O.

(3) For any x ∈ Rn, we have ∥Fε(x)x∥ ≤ δ.
(4) ε(x) → 0 as ∥x∥ → ∞.
(5) { x ∈ Rn

| x′Pε(x)x ≤ c } is a bounded set for all c > 0.

Because of the specific problem facing us, we use the scheduling
given in Hou et al. (1998) which not only satisfies the above
conditions but also yields an adaptive low-gain parameter with
certain properties that are fundamental to our design,

ε(x) = max

r ∈ (0, ε∗

] | (x′Prx) trace(Pr) ≤
∆2

b


(3.6)

where ε∗
∈ (0, 1) is any a priori given constant and b = 2

trace(BB′) while Pr is the unique positive definite solution of
parametric Lyapunov equation (3.1) with ε = r .
Note that the scheduled low-gain controller (3.5) with (3.6)
satisfies

∥(B′Pε(x)B + I)−1B′Pε(x)Ax∥ ≤ ∆.

To see this, observe that

∥(B′Pε(x)B + I)−1B′Pε(x)Ax∥2

≤ ∥B′Pε(x)Ax∥2

≤ ∥B′
∥
2
∥Pε(x)∥ ∥P1/2

ε(x)AP
−1/2
ε(x) ∥

2
∥P1/2

ε(x)x∥
2

≤ 2∥BB′
∥ ∥Pε(x)∥x′Pε(x)x

(where we use property 4 of Lemma 1)
≤ 2 trace(BB′) trace(Pε(x)) x′Pε(x)x

≤ ∆2.

3.4. Scheduling of high-gain parameter

As emphasized earlier, the high gain parameter plays a crucial
role in dealing with external inputs/disturbances. In order to solve
the simultaneous external and internal stabilization problems for
continuous-time systems, different methods of schedulings of
high-gain parameter have been developed in the literature Hou
et al. (1998), Lin (1997) and Saberi, Hou et al. (2000). Unfortunately,
none of themcarry over to discrete-time case because the high gain
has to be restricted near the origin. In this subsection, we introduce
a new scheduling of the high-gain parameter with which we shall
solve the (Gp/G) and (Gp/G)fg problems as formulated in Section 2.

Our scheduling depends on the specific control objective. If one
is not interested in finite gain, the following scheduled high gain
suffices to solve (Gp/G) problem,

ρ0(x) =
1

∥B′Pε(x)B∥
. (3.7)

Clearly, this high gain satisfies the constraints that

ρ0(x) ≤
2

∥B′Pε(x)B∥
.

We observe that this high-gain parameter is radially unbounded.
However, if we further pursue finite gain ℓp stabilization, the
rate of growth of ρ(x) with respect to ∥x∥ as given in (3.7) is
not sufficient for us. The scheduled high-gain parameter must
rise quickly enough to overwhelm any disturbances in ℓp before
the state is steered so large that it actually prevents finite gain.
Therefore, we shall introduce a different scheduling of high-gain
parameter. In order to do so, we need the following lemma.

Lemma 3. Assume that 2p ≥ 1. For any η > 1 there exists a β > 0
such that

(u + v)p ≤ up
+ ηup

+ βvp (3.8)

for all u, v ≥ 0.

Proof. The lemma is a known result for p ≥ 1; see, for instance, Shi
et al. (2003). For p ∈ [

1
2 , 1), we have 2p ≥ 1 and then

(
√
u + v)2p ≤ (

√
u +

√
v)2p ≤ u2p

+ ηu2p
+ βv2p

wherewe use the lemmawith p replaced by 2pwhich is the known
case. �

Let ε∗ and Mε∗ be given by Lemma 1 and let P∗ be the solution of
(3.1) with ε = ε∗. The scheduled high gain parameter is given by:

ρf (x) =


ρ0(x) =

1
∥B′Pε(x)B∥

, x′Pε(x)x ≤ c

8ρ1(x)
ε(x)λminPε(x)

, otherwise
(3.9)
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with

ρ1(x) =
λmaxPε(x)

λminPε1(x)
ρ2(x) (3.10)

where

ρ2(x) =


1 p = ∞ ρpβ(ε(x))

1 −


1 −

ε1(x)
4(1+Lε1(x))

p/2 + 1


2/p

, p ∈ [1, ∞)

where ρp is a positive constant to be determined later and c , ε1(x)
and Ls are given by

c = ∆2 max{4Mε∗b, 4(1 + ∥B′P∗B∥)}, (3.11)

ε1(x) = max

r ∈ (0, ε∗

] | 2x′Prx trace(Pr) ≤
∆2

b


,

Ls =
trace(P∗)

λminPs
.

Finally, in order to define β(ε) > 1 we first define η(ε) satisfying
1 −

ε

4(1 + Lε)

p/2
≤ (1 + η(ε))


1 −

ε

2(1 + Lε)

p/2
< 1.

Next we choose β(ε) > 1 such that Lemma 3 holds for η = η(ε).
In other words, β(ε) is such that for a given p > 1/2, ε and η(ε)

(u + v)p ≤ (1 + η(ε))up
+ β(ε)vp

for all u > 0, v > 0.

4. Main results

In this section, we shall solve the simultaneous external and
internal stabilization problems as formulated in Section 2 using the
proposed low-and-high-gain controller in Section 3.We first study
the simultaneous stabilization without finite gain as formulated in
Problems 1 and 3. Then we will solve Problems 2 and 4.

The theorem given below solves the global ℓp stabilization with
arbitrary initial condition and without finite gain as formulated in
Problem 3.

Theorem 1. Consider the system (2.1) satisfying Assumption 2. For
any p ∈ [1, ∞], the ℓp stabilization with arbitrary initial conditions
and without finite gain as formulated in Problem 3 can be solved by
the adaptive-low-gain and high-gain controller,

u = −(1 + ρ0(x))(I + B′Pε(x)B)−1B′Pε(x)Ax, (4.1)

where Pε(x) is the solution of (3.1), ε(x) is determined adaptively by
the scheduling (3.6) and ρ0(x) is determined by (3.7).

Theorem 1 immediately yields the following result.

Corollary 1. Consider the system (2.1) satisfying Assumption 2. For
any p ∈ [1, ∞], the (GP/G) as formulated in Problem 1 can be solved
by the same adaptive-low-gain and high-gain controller (4.1).

Proof of Theorem 1. In this proof, we denote ε(x(k)), ρ0(x(k)),
and Pε(x(k)) by ε(k), ρ0(k), and P(k) respectively. This abbreviation
should not cause any notational confusions.

Define v(k) = −(I + B′P(k)B)−1B′P(k)Ax(k), u(k) = v(k) +

ρ0(k)v(k) and µ(k) = ∥B′P(k)B∥. We have shown that (3.6)
implies that ∥v(k)∥∞ < ∆.

We proceed now to show global asymptotic stability. In the
absence of d, we can evaluate the increment of V (k) along the
trajectory as:

V (k + 1) − V (k)
= x(k + 1)′[P(k + 1) − P(k)]x(k + 1)

− ε(k)V (k) − ∥σ(u(k))∥2
+ [σ(u(k)) − v(k)]′

× (I + B′P(k)B)[σ(u(k)) − v(k)]
≤ x(k + 1)′[P(k + 1) − P(k)]x(k + 1)

− ε(k)V (k) − ∥σ(u(k))∥2

+ (1 + µ(k))[σ(u(k)) − v(k)]′[σ(u(k)) − v(k)]
= x(k + 1)′[P(k + 1) − P(k)]x(k + 1) − ε(k)V (k)

−
1 + µ(k)

µ(k)
∥v(k)∥2

+ µ(k)
σ(u(k)) −

1 + µ(k)
µ(k)

v(k)
2 .

As noted before, ∥v(k)∥ ≤ ∆ for all k ≥ 0, and therefore

∥v(k)∥ ≤ ∥σ(u(k))∥ ≤


1 +

1
µ(k)


∥v(k)∥.

This implies thatσ(u(k)) −
1 + µ(k)

µ(k)
v(k)

 ≤
1

µ(k)
∥v(k)∥,

and thus,

µ(k)
σ(u(k)) −

1 + µ(k)
µ(k)

v(k)
2 −

1 + µ(k)
µ(k)

∥v(k)∥2

≤ −∥v(k)∥2.

Finally, we get

V (k + 1) − V (k) ≤ −ε(k)V (k) + x(k + 1)′

× [P(k + 1) − P(k)]x(k + 1). (4.2)

Our scheduling (3.6) implies thatV (k+1)−V (k) and x(k+1)′[P(k+
1) − P(k)]x(k + 1) cannot have the same sign. To see this, assume
that V (k + 1) > V (k) and P(k + 1) > P(k). This implies that

ε(k) < ε∗.

If V (k) trace(P(k)) < ∆2

b , then (3.6) implies that ε(k) = ε∗,

which yields a contradiction. If V (k) trace(P(k)) =
∆2

b , then V (k+

1) trace(P(k+1)) > ∆2

b since by assumption V (k+1) > V (k) and
P(k + 1) > P(k). But this is impossible by our scheduling (3.6). A
similar argument can be used to establish that V (k+1)−V (k) < 0
and P(k + 1) − P(k) < 0 cannot happen simultaneously either.

Using this property, (4.2) then implies that for all x ≠ 0,

V (k + 1) − V (k) < 0.

This concludes the global asymptotic stability.
What remains is to show ℓp stability. Similar to our earlier

development, we have

V (k + 1) − V (k) ≤ −x(k + 1)′[P(k) − P(k + 1)]x(k + 1)

− ε(k)V (k) −
1

µ(k)
∥v(k)∥2

+ µ(k)
σ(u(k) + d(k)) −

1 + µ(k)
µ(k)

v(k)
2 .

Let di(k), vi(k) and ui(k) denote the ith element of d(k), v(k) and
u(k) respectively.

If |di(k)| ≤
1

µ(k) |vi(k)|, recalling that |vi(k)| ≤ ∆, we have

|vi(k)| ≤ |σ1(ui(k) + di(k))| ≤


1 +

2
µ(k)


|vi(k)|.
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Hence

µ(k)
σ1(ui(k) + di(k)) −

1 + µ(k)
µ(k)

vi(k)
2 −

1
µ(k)

|vi(k)|2 ≤ 0.

If |di(k)| ≥
1

µ(k) |vi(k)|, we have

−
1

µ(k)
|vi(k)|2 + µ(k)

σ1(ui(k) + di(k)) −
1 + µ(k)

µ(k)
vi(k)

2
≤ µ(k)[(1 + µ(k))di(k) + di(k) + (1 + µ(k))di(k)]2

+ µ(k)|di(k)|2

≤ aµ(k)|di(k)|2,

where a = (2µ∗
+ 3)2 + 1, µ∗

= ∥B′P∗B∥ and P∗ is the solution of
(3.1) with ε = ε∗. Therefore, we conclude that

V (k + 1) − V (k) ≤ x(k + 1)′[P(k + 1) − P(k)]x(k + 1)

− ε(k)V (k) + aµ(k)∥d(k)∥2. (4.3)

Note that this implies that

V (k + 1) − V (k) ≤ max{−ε(k)V (k) + aµ(k)∥d(k)∥2, 0} (4.4)

since V (k + 1) − V (k) and x(k + 1)′[P(k + 1) − P(k)]x(k + 1) can
not have the same sign. Let us first address the case of p = ∞. We
will show that there exists a c1 such that V (k) ≤ c1 for all k ≥ 0
with V (0) = 0.

If

V (k) ≥ a
µ(k)
ε(k)

∥d(k)∥2, (4.5)

we have

V (k + 1) − V (k) ≤ 0. (4.6)

Property 5 of Lemma1 yields that there exists aMε∗ independent of
k and d such that V (k) ≥ abMε∗∥d∥2

∞
implies that (4.5) is satisfied

and therefore V (k + 1) − V (k) ≤ 0, where, as defined earlier,
b = 2 trace(BB′).

On the other hand, we have

V (k + 1) − V (k) ≤ aµ(k)∥d(k)∥2
≤ aµ∗

∥d∥2
∞

.

We conclude that

V (k) ≤ V (0) + abMε∗∥d∥2
∞

+ aµ∗
∥d∥2

∞
. (4.7)

Property 5 of our scheduling then implies that x(k) is bounded for
all k ≥ 0. This shows ℓ∞ stability of the closed-loop system with
arbitrary initial condition.

We proceed now with the case of p ∈ [1, ∞). First of all, due
to the fact that ∥d∥∞ ≤ ∥d∥p, (4.7) implies that V (k) is bounded
for all k ≥ 0. Hence by our scheduling, there exists an ε0 such that
ε(k) ≥ ε0 for all k ≥ 0.

Next, we consider two possible cases:
Case 1. For V (k + 1) − V (k) ≥ 0, (4.4) implies that

V (k + 1) − V (k) ≤ −ε(k)V (k) + aµ(k)∥d(k)∥2. (4.8)

Case 2. For V (k + 1) − V (k) ≤ 0, our scheduling implies that

x(k + 1)′[P(k + 1) − P(k)]x(k + 1) ≥ 0.

But this implies that ε(k) ≤ ε(k + 1) ≤ ε∗, and thus

V (k + 1) trace(P(k + 1)) ≤ V (k) trace(P(k)).

Hence

[V (k + 1) − V (k)] trace(P(k + 1))
≤ −V (k) trace[P(k + 1) − P(k)].
Then we have

|x(k + 1)′[P(k + 1) − P(k)]x(k + 1)|
≤ | trace(P(k + 1) − P(k))| · ∥x(k + 1)∥2

≤
trace(P(k + 1))

V (k)
· |V (k + 1) − V (k)| · ∥x(k + 1)∥2

≤
V (k + 1) trace(P(k + 1))

V (k)λminP(k + 1)
· |V (k + 1) − V (k)|

≤
trace(P∗)

λminP(k)
· |V (k + 1) − V (k)|

≤ L(k) · |V (k + 1) − V (k)|

where L(k) =
trace(P∗)

λmin(P(k)) . We have

V (k + 1) − V (k) ≤
−ε(k)

1 + L(k)
V (k) + aµ(k)∥d(k)∥2. (4.9)

Given ε(k) ∈ [ε0, ε
∗
] for all k ≥ 0, (4.8) in case 1 and (4.9) in case

2 ensure that

V (k + 1) − V (k) ≤ −
ε0

1 + L
V (k) + aµ∗

∥d(k)∥2, (4.10)

where L =
trace(P∗)

λminP0
and P0 is the solution of (3.1) with ε = ε0. Also,

ε0 < 1 implies that ε0/(1 + L) < 1.
Applying Lemma 3 with η such that

(1 + η)(1 −
ε0

1 + L
)p/2 < 1,

we find that there exists a β such that

V (k + 1)p/2 ≤ (1 + η)


1 −

ε0

1 + L

p/2

V (k)p/2

+ β(aµ∗)p/2∥d(k)∥p.

This yields
1 − (1 + η)


1 −

ε0

1 + L

p/2


∞
k=0

V (k)p/2

≤ β(aµ∗)p/2∥d∥p
p + V (0)p/2.

Since ε(k) ≥ ε0 for all k,

∥x∥p
p ≤

∞
k=0

V (k)p/2

(λminP0)p/2

≤
β(aµ∗)p/2

(λminP0)p/2

1 − (1 + η)


1 −

ε0
1+L

p/2∥d∥p
p

+
V (0)p/2

(λminP0)p/2

1 − (1 + η)


1 −

ε0
1+L

p/2 , (4.11)

we conclude that d ∈ ℓp implies that x ∈ ℓp for any x(0) ∈ Rn. This
concludes the proof of Theorem 1. �

We observe from (4.7) and (4.11) that as ∥d∥p and x(0) become
larger, the ε0 becomes smaller and the ℓp gain becomes larger. In
order to pursue finite gain ℓp stabilization, it is necessary tomodify
the high gain parameter. We first consider the case p = ∞.

Theorem 2. Consider the system (2.1) satisfying Assumption 2. For
p = ∞, ℓp stabilization with arbitrary initial condition with finite
gain and with bias, as formulated in Problem 4, can be achieved by
the adaptive-low-gain and high-gain controller,

u = −(1 + ρf (x))(I + B′Pε(x)B)−1B′Pε(x)Ax, (4.12)



706 X. Wang et al. / Automatica 48 (2012) 699–711
where Pε(x) is the solution of (3.1) with ε = ε(x), ε(x) is determined
adaptively by (3.6) and ρf (x) is determined by (3.9) and (3.10).

Theorem 2 readily yields the following corollary.

Corollary 2. Consider the system (2.1) satisfying Assumption 2. For
p = ∞, the (Gp/G)fg as formulated in Problem 2 can be solved by the
same adaptive-low-gain and high-gain controller as (4.12).

Proof of Theorem 2. For simplicity, we denote Pε(x(k)), Pε1(x(k))
respectively by P(k) and P1(k) whenever this does not cause any
notational confusions.

Define v(k) = −(I + B′P(k)B)−1B′P(k)Ax(k) and u(k) = v(k) +

ρf (k)v(k). We have already shown that the controller (4.1) along
with (3.6) satisfies ∥v∥∞ < ∆.

Define the Lyapunov function V (k) = x(k)′P(k)x(k) and a set
V(c) = {V (x) ≤ c}where c is given by (3.11). Owing to property 5
of Lemma 1, it is easy to verify that for x(k) ∈ V(c)c , the following
inequality holds:

ε(k)V (k) ≥ 4ε(k)Mε∗b∆2
≥ 8∥B′P(k)B∥∆2. (4.13)

In the absence of d, we can evaluate the increment of V along the
trajectory as

V (k + 1) − V (k) = x(k + 1)′[P(k + 1) − P(k)]x(k + 1)
− ε(k)V (k) − 2v(k)′[σ(u(k)) − v(k)]
+ [σ(u(k)) − v(k)]′

× B′P(k)B[σ(u(k)) − v(k)].

Also, ∥v(k)∥ ≤ ∆ implies that −2v(k)′[σ(u(k)) − v(k)] ≤ 0 for
any ρ(k) > 0. Using this property, we find that for x(k) ∈ V(c)c ,

V (k + 1) − V (k) ≤ x(k + 1)′[P(k + 1) − P(k)]x(k + 1)
− ε(k)V (k) − 2v(k)′[σ(u(k)) − v(k)]
+ 4∥B′P(k)B∥∆2

≤ x(k + 1)′[P(k + 1) − P(k)]x(k + 1)

−
ε(k)
2

V (k).

The last inequality is owing to (4.13). If

x(k + 1)′[P(k + 1) − P(k)]x(k + 1) < 0, (4.14)

the last inequality implies that V (k + 1) − V (k) < 0. But we have
argued earlier that (4.14) and V (k+ 1) − V (k) < 0 cannot happen
simultaneously by our scheduling (3.6). Therefore x(k + 1)′[P(k +

1) − P(k)]x(k + 1) ≥ 0. From the proof of Theorem 1,

x(k + 1)′[P(k + 1) − P(k)]x(k + 1) ≤ L(k)[V (k) − V (k + 1)].

Hence, for x(k) ∈ V(c)c ,

V (k + 1) − V (k) < −
ε(k)

2(1 + L(k))
V (k).

The trajectory will enter V(c) within finite time. However, for
x(k) ∈ V(c), we have already proved in the proof of Theorem 1
that

V (k + 1) − V (k) < 0

since in V(c), ρ(k) = ρ0(k) =
1

∥B′P(k)B∥ . This proves global
asymptotic stability of the origin.

We proceed to show ℓ∞ stability with arbitrary initial
conditions with finite gain with bias. In order to do so, we first find
an upper bound of V (k)

λminP(k) in terms of ∥d∥∞ and then conclude ℓ∞
stability by observing that ∥x∥∞ ≤


∥

V
λminP

∥∞. To this end, we
note that the case V (k+ 1) − V (k) ≤ 0 is not interesting since it is
equivalent with

V (k + 1)
λminP(k + 1)

−
V (k)

λminP(k)
≤ 0

due to the fact that V (k + 1) ≤ V (k) implies λminP(k + 1) ≥

λminP(k). Therefore, it will not affect the upper bound of V (k)
λminP(k) .

In view of this, throughout the remainder of the proof, we only
consider V (k + 1) − V (k) > 0.

Suppose V (k + 1) − V (k) > 0, scheduling (3.6) implies that
x(k+1)′[P(k+1)−P(k)]x(k+1) ≤ 0. By construction, ∥v(k)∥ ≤ ∆.
We get

V (k + 1) − V (k) ≤ −ε(k)V (k) − 2v(k)′[σ(u(k) + d(k)) − v(k)]
+ 4∥B′P∗B∥∆2

≤ 4(1 + ∥B′P∗B∥)∆2.

Since c > 4(1 + ∥B′P∗B∥)∆2, we have

V (k + 1) − V (k) ≤ c. (4.15)

The above inequality holds for any x(k) ∈ Rn. Since different high-
gains are applied in different regions, we have two possible cases:
Case 1. x(k) ∈ V(c)c . Then (4.15) implies that V (k + 1) ≤ 2V (k).
But this implies that ε1(k) ≤ ε(k + 1) and P1(k) ≤ P(k + 1). Let
vi(k) and di(k) denote the ith element of v(k) and d(k).
If |di(k)| < ρf (k)|vi(k)|, then

−vi(k)[σ(vi(k) + ρf (k)vi(k) + di(k)) − vi(k)] ≤ 0.

If |di(k)| ≤ |ρf (k)vi(k)|, we have

−vi(k)[σ(vi(k) + ρf (k)vi(k) + di(k)) − vi(k)]
= −vi(k)[σ(vi(k) + ρf (k)vi(k) + di(k)) − σ(vi(k))]

≤
|di(k)|
ρf (k)

· |2di(k)|

=
2di(k)2

ρf (k)
.

In summary, we find that

−2v(k)′[σ(u(k) + d(k)) − v(k)] ≤
4∥d(k)∥2

ρf (k)
.

This yields

V (k + 1) − V (k) ≤ −
ε(k)
2

V (k) − 2v(k)′[σ(u(k) + d(k)) − v(k)]

≤ −
ε(k)
2

V (k) + 4
∥d(k)∥2

ρf (k)

≤ −
ε(k)λminP(k)

2


∥x(k)∥2

−
∥d(k)∥2

ρ1(k)


.

Clearly, V (k + 1) − V (k) ≥ 0 requires that

∥x(k)∥2
≤

∥d(k)∥2

ρ1(k)
.

Then
V (k + 1)

λminP(k + 1)
≤

2V (k)
λminP1(k)

≤
2λmaxP(k)
λminP1(k)

∥x(k)∥2

= 2ρ1∥x(k)∥2
≤ 2∥d(k)∥2. (4.16)

Case 2: x(k) ∈ V(c). We have ρ(k) = ρ0(k) and hence the same
controller as in Theorem 1 is used. In the proof of Theorem 1, the
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following two properties have already been shown:

(1) if V (k) ≥ abMε∗∥d(k)∥2, we have V (k + 1) − V (k) ≤ 0;
(2) V (k + 1) − V (k) ≤ aµ∗

∥d(k)∥2.

We can immediately draw the conclusion that forV (k+1)−V (k) >
0 and x(k) ∈ V(c),

V (k + 1) ≤ (abMε∗ + aµ∗)∥d(k)∥2.

On the other hand, (4.15) and the fact V (k) ≤ c imply that
V (k + 1) ≤ 2c. But this implies that there exists a λ1 independent
of d such that

V (k + 1)
λminP(k + 1)

≤
abMε∗ + aµ∗

λ1
∥d∥2

∞
. (4.17)

In summary, whenever V (k) or, equivalently, V (k)
λminP(k) is increasing,

we have either (4.17) or (4.16) holds depending on x(k) ∈ V(c) or
not. Therefore, V
λminP


∞

≤
V (0)

λminP(0)
+ max


2,

abMε∗ + aµ∗

λ1


∥d∥∞.

Using the fact that ∥x∥2
∞

≤ ∥
V

λminP
∥∞, we have

∥x∥∞ ≤

 V
λminP


∞

≤


V (0)

λminP(0)

+ max


√
2,


abMε∗ + aµ∗

λ1


∥d∥∞. (4.18)

Note that


V (0)
λminP(0) is clearly a class K function of ∥x(0)∥. The

finite gain ℓ∞ stability of closed-loop system with arbitrary initial
condition and bias follows. �

In Theorem 2, we only need to consider the case that V (x(k)) is
increasing. However, this does not work when the external input d
is in ℓp with p ∈ [1, ∞). The decay rate of V (x(k)) when V (x(k)) is
decreasing definitely has an impact on the ℓp norm of x. Therefore,
we have to consider both cases and obtain bounds on ∥x∥p in terms
of ∥d∥p. As will be seen in the next theorem, it requires even more
complicated high-gain design and involved analysis.

Theorem 3. Consider the system (2.1) satisfying Assumption 2. For
any p ∈ [1, ∞), the ℓp stabilization with arbitrary initial condition
with finite gain with bias problem as formulated in Problem 4 can be
solved by the adaptive-low-gain and high-gain controller,

u = −(1 + ρf (x))(I + B′Pε(x)B)−1B′Pε(x)Ax, (4.19)

where Pε(x) is the solution of (3.1) with ε = ε(x), ε(x) is determined
adaptively by (3.6) and ρf (x) is determined by (3.9), (3.10) with ρp
sufficiently large.

Theorem 3 also produces as a special case the solution to (Gp/G)fg .
This is stated in the following corollary.

Corollary 3. Consider the system (2.1) satisfying Assumption 2. For
any p ∈ [1, ∞), the (Gp/G)fg as formulated in Problem2 can be solved
by the adaptive-low-gain and high-gain controller (4.19).

Proof of Theorem 3. For simplicity, we denote ε(x(k)), ε1(x(k)),
β(ε(x(k))), ρf (x(k)) and ρ1(x(k)) by ε(k), ε1(k), β(k), ρf (k) and
ρ1(k) respectively and denote Pε(x(k)), Pε1(x(k)), Lε1(x(k)) respectively
by P(k), P1(k) and L1(k). This does not cause any notational
confusions.

Define v(k) = −(I + B′P(k)B)−1B′P(k)Ax(k) and u(k) =

v(k)+ρf (k)v(k).We have already shown that v(k) alongwith (3.6)
satisfies ∥v∥∞ < ∆.
Define the Lyapunov function V (k) = x(k)′P(k)x(k) and a set
V(c) = {x | V (x) ≤ c} with c given by (3.11). As in the proof of
Theorem 2, for x ∈ V(c)c , the following inequality holds:

ε(k)V (k) ≥ 4ε(k)Mε∗b∆2
≥ 8∥B′P(k)B∥∆2. (4.20)

Using exactly the same argument as used in Theorem 2, we
conclude the global asymptotic stability of the origin of the closed-
loop system.

It remains to prove global ℓp stability with finite gain. The proof
proceeds in several steps:

Step 1. Define a function

α(s) =
sp/2

(λminPs)p/2

1 −


1 −

εs
4(1+Ls)

p/2 ,

where εs is a function of s as given by

εs = max

r ∈ [0, ε∗

] | s trace(Pr) ≤
∆2

b


,

and Ps is the solution of (3.1) with ε = εs, Ls =
trace(P∗)

λminPs
. Note that

if s is strictly increasing, by the property of our scheduling, εs is
decreasing and hence λminPs is decreasing and Ls is increasing. This
implies that α(s) is strictly increasing and is a class K function.

Define

κ =

(λminP∗)p/2

1 −


1 −

ε∗

4(1+L∗)

p/2
(λminP2c)p/2


1 −


1 −

ε2c
4(1+L2c )

p/2 ,

where P∗ is the solution of (3.1) with ε = ε∗ and L∗
=

trace(P∗)

λminP∗ .
Since c is given, ε2c , P2c , L2c and κ are fixed constants. Choose
ρp > max{1 + κ, (λminP∗)p/2}. We have ρf (k) ≥ 1 for any x(k).

We can always divide the whole time horizon into a sequence
of successive intervals {Ii}i≥1 with Ii = ki, ki+1 − 1 such that for
each Ii, one of the following cases holds:

(1) For any k ∈ Ii, x(k) ∈ V(2c)c and V (k + 1) − V (k) > 0.
(2) For any k ∈ Ii, x(k) ∈ V(2c)c and V (k + 1) − V (k) ≤ 0.
(3) For any k ∈ Ii, x(k) ∈ V(2c) with ki+1 < ∞.
(4) For any k ∈ Ii, x(k) ∈ V(2c) with ki+1 = ∞.

Step 2. For case 1, since V (k + 1) − V (k) > 0, the adaptation (3.6)
implies that x(k+1)′[P(k+1)−P(k)]x(k+1) ≤ 0. As in the proof
of Theorem 2, we find

V (k + 1) − V (k) ≤ −
ε(k)λminP(k)

2


∥x(k)∥2

−
∥d(k)∥2

ρ1(k)


.

Then, V (k + 1) − V (k) > 0 implies that

∥d(k)∥2
≥ ρ1(k)∥x(k)∥2

≥ ∥x(k)∥2 (4.21)

since ρ1(k) ≥ 1 by construction.
Furthermore,we have already shown that for all x(k),V (k+1)−

V (k) ≤ c . Hence

V (k + 1) ≤ 2V (k).

From the definition of ε1(k) and L1(k), this implies that

ε1(k) ≤ ε(k + 1), L1(k) ≥ L(k + 1), and
λminP1(k) ≤ λminP(k + 1). (4.22)
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Consider specifically k = ki+1 − 1. We have

∥d(ki+1 − 1)∥p
− ∥x(ki+1 − 1)∥p

≥ (ρ1(ki+1 − 1)p/2 − 1)∥x(ki+1 − 1)∥p

≥
ρpλmaxP(ki+1 − 1)p/2∥x(ki+1 − 1)∥p

λminP1(ki+1 − 1)p/2

1 −


1 −

ε1(ki+1−1)
4(1+L1(ki+1−1))

p/2
≥

ρpV (ki+1 − 1)p/2

λminP1(ki+1 − 1)p/2

1 −


1 −

ε(ki+1−1)
4(1+L(ki+1−1))

p/2
≥

(1 + κ)V (ki+1)
p/2

λminP(ki+1)p/2

1 −


1 −

ε(ki+1)
4(1+L(ki+1))

p/2
where we use (4.22), ρp > 1+ κ and V (ki+1 − 1) > V (ki+1) in the
derivation of the last inequality. We get

∥d(ki+1 − 1)∥p
≥ ∥x(ki+1 − 1)∥p

+ (1 + κ)α(V (ki+1)) (4.23)

then (4.21) and (4.23) yield

ki+1−1
k=ki

∥x(k)∥p
≤

ki+1−1
k=ki

∥d(k)∥p
− (1 + κ)α(V (ki+1)).

Step 3. For case 2, the following relationship has been established
in the proof of Theorem 1,

0 ≤ x(k + 1)′[P(k + 1) − P(k)x(k + 1)]
≤ L(k)(V (k) − V (k + 1))

where L(k) =
trace(P∗)

λminP(k) . Therefore,

V (k + 1) − V (k) ≤ −
ε(k)

2(1 + L(k))
V (k)

+
ε(k)λminP(k)

ρ1(k)(1 + L(k))
∥d(k)∥2

≤ −
ε(k)

2(1 + L(k))
V (k) +

λminP(k)
ρ1(k)

∥d(k)∥2,

and hence

V (k + 1) ≤


1 −

ε(k)
2(1 + L(k))


V (k) +

λminP(k)
ρ1(k)

∥d(k)∥2.

Since V (k) is decreasing, we have λminP(k + 1) ≥ λminP(k) and

V (k + 1)
λminP(k + 1)

≤


1 −

ε(k)
2(1 + L(k))


V (k)

λminP(k)
+

1
ρ1(k)

∥d(k)∥2.

By definition of β(k),
V (k + 1)

λminP(k + 1)

p/2

≤


1 −

ε(k)
4(1 + L(k))

p/2  V (k)
λminP(k)

p/2

+ β(k)
∥d(k)∥p

ρ1(k)p/2
.

Using standard comparison principle, we get for k ≥ ki,
V (k)

λminP(k)

p/2

≤

k
j=ki


1 −

ε(j)
4(1 + L(j))

p/2  V (ki)
λminP(ki)

p/2

+

k−1
j=ki


k−1
s=j


1 −

ε(s)
4(1 + L(s))

p/2

×
β(j)

ρ1(j)p/2
∥d(j)∥p.
Since V (k) is decreasing, [1 −
ε(k)

4(1+L(k)) ]
p/2 is decreasing. Hence,

V (k)
λminP(k)

p/2

≤


1 −

ε(ki)
4(1 + L(ki))

p/2k−ki 
V (ki)

λminP(ki)

p/2

+

k−1
j=ki


1 −

ε(j)
4(1 + L(j))

p/2k−1−j

×
β(j)

ρ1(j)p/2
∥d(j)∥p.

We have
ki+1−1
k=ki


V (k)

λminP(k)

p/2

≤
1

1 −


1 −

ε(ki)
4(1+L(ki))

p/2  V (ki)
λminP(ki)

p/2

+

ki+1−2
j=ki

β(j)

1 −


1 −

ε(j)
4(1+L(j))

p/2 ∥d(j)∥p

ρ1(j)p/2
.

By definition, for any x(k)

ε1(k) ≤ ε(k) and L1(k) ≥ L(k),

and from (3.10)

ρ1(j)p/2 ≥
β(j)

1 −


1 −

ε1(j)
4(1+L1(j))

p/2 ≥
β(j)

1 −


1 −

ε(j)
4(1+L(j))

p/2 .

We conclude that
ki+1−1
k=ki

∥x(k)∥p
≤

ki+1−2
k=ki

∥d(j)∥p
+ α(V (ki))

≤

ki+1−1
k=ki

∥d(j)∥p
+ α(V (ki)).

Note that α(V (ki)) is increasing. Therefore α(V (ki)) ≥ α(V (ki+1)).
We can rewrite the above inequality as

ki+1−1
k=ki

∥x(k)∥p
≤

ki+1−1
k=ki

∥d(j)∥p
+ (1 + κ)α(V (ki)) − κα(V (ki+1)).

Step 4. For case 3 and 4, if x(k) ∈ V(c), from (4.8) and (4.9), we
have

V (k + 1) − V (k) ≤ −
ε(k)

1 + L(k)
V (k) + aµ∗

∥d(k)∥2.

If x(k) ∈ V(c)c ∩ V(2c) and V (k + 1) − V (k) > 0, then
x(k + 1)′[P(k + 1) − P(k)]x(k + 1) ≤ 0, we have

V (k + 1) − V (k) ≤ −
ε(k)
2

V (k) − 2v(k)′[σ(u(k) + d(k)) − v(k)]

≤ −
ε(k)
2

V (k) + 4
∥d(k)∥2

ρf (k)

≤ −
ε(k)
2

V (k) + 4∥d(k)∥2.

If x(k) ∈ V(c)c ∩ V(2c) and V (k + 1) − V (k) ≤ 0, then
x(k + 1)′[P(k + 1) − P(k)]x(k + 1) ≤ L(k)(V (k) − V (k + 1)).
We have

V (k + 1) − V (k) ≤ −
ε(k)

2(1 + L(k))
V (k) + 4

∥d(k)∥2

ρf (k)(1 + L(k))

≤ −
ε(k)

2(1 + L(k))
V (k) + 4∥d(k)∥2.
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Hence there exists a ζ = max{4, aµ∗
} such that for all x(k) ∈

V(2c), we have

V (k + 1) − V (k) ≤ −
ε(k)

2(1 + L(k))
V (k) + ζ∥d(k)∥2.

Note that our adaptation (3.6) and the fact that V (x) ≤ 2c for
k = ki, . . . , ki+1 −1 imply that for k = ki, . . . , ki+1 −1, ε(k) ≥ ε2c
and hence

−
ε(k)

2(1 + L(k))
≤ −

ε2c

2(1 + L2c)
, λminP(k) ≥ λminP2c .

Choose η2c such that
1 −

ε2c

4(1 + L2c)

p/2
≤ (1 + η2c)


1 −

ε2c

2(1 + L2c)

p/2
< 1.

Applying Lemma 3, there exists a β2c independent of d and k such
that

V (k + 1)p/2 ≤


1 −

ε2c

4(1 + L2c)

p/2
V (k)p/2 + β2cζ

p/2
∥d(k)∥p.

Using the same comparison principle as used in case 2, we can find
a constant γ1 dependent on ε2c , L2c , β2c and ζ such that

ki+1−1
k=ki

∥x(k)∥p
≤

ki+1−1
k=ki

V (k)p/2

(λminP2c)p/2

≤ γ1

ki+1−2
k=ki

∥d(k)∥p

+
V (ki)p/2

(λminP2c)p/2

1 −


1 −

ε2c
4(1+L2c )

p/2
≤ γ1

ki+1−2
k=ki

∥d(k)∥p

+
κV (ki)p/2

(λminP(ki))p/2

1 −


1 −

ε(ki)
4(1+L(ki))

p/2
≤ γ1

ki+1−2
k=ki

∥d(k)∥p
+ κα(V (ki)).

For case 3where ki+1 < ∞, consider specifically k = ki+1−1. Since
the states are leaving V(2c), we have V (ki+1) − V (ki+1 − 1) > 0.
Moreover,wehave argued that the increment ofV (k) for any x(k) is
at most c . This implies that x(ki+1 −1) ∈ V(c)c ∩V(2c). Following
the same argument as used in case 1, we have

∥d(ki+1 − 1)∥p
≥ ∥x(ki+1 − 1)∥p

+ (1 + κ)α(V (ki+1)).

Finally, we conclude for k ∈ ki, ki+1 − 1,

ki+1−1
k=ki

∥x(k)∥p
≤ γ1

ki+1−1
k=ki

∥d(k)∥p

+ κα(V (ki)) − (1 + κ)α(V (ki+1)).

For case 4 where ki+1 = ∞, we only have

ki+1
k=ki

∥x(k)∥p
≤ γ1

ki+1
k=ki

∥d(k)∥p
+ κα(V (ki)).
Step 5. In summary of previous steps, we find the following results:

• if Ii belongs to case 1,
ki+1−1

ki

∥x(k)∥p
≤

ki+1−1
k=ki

∥d(k)∥p
− (1 + κ)α(V (ki+1)).

• if Ii belongs to case 2,
ki+1−1
k=ki

∥x(k)∥p
≤

ki+1−1
k=ki

∥d(j)∥p

+ (1 + κ)α(V (ki)) − κα(V (ki+1)).

• if Ii belongs to case 3,
ki+1−1
k=ki

∥x(k)∥p
≤ γ1

ki+1−1
k=ki

∥d(k)∥p

+ κα(V (ki)) − (1 + κ)α(V (ki+1)).

• if Ii belongs to case 4,
ki+1
k=ki

∥x(k)∥p
≤ γ1

ki+1
k=ki

∥d(k)∥p
+ κα(V (ki)).

Note that if Ii belongs to cases 1, 3 and 4, we have either i = 1 or
Ii−1 belongs to cases 1, 2 or 3. Then the positive term κα(V (ki)) of Ii
can always be canceled by the corresponding negative term of Ii−1
for i > 1.

Similarly, if Ii belongs to case 2, we have either i = 1 or Ii−1
belongs to case 1 or 3. The positive term (1 + κ)α(V (ki)) can also
be canceled by the negative term of Ii−1 for i > 1.

In conclusion, we find that for any x(0) and k,

k
k=0

∥x(k)∥p
≤ max{1, γ1}

k
k=0

∥d(k)∥p
+ (1 + κ)α(V (0)).

This completes the proof. �

5. Conclusions

It is shown in this paper that (Gp/G) and (Gp/G)fg problems
for discrete-time linear systems subject to actuator saturation are
solvable if and only if the given linear system is stabilizable and
it has all its poles within the unit disc, i.e. if it is ANCBC. We
also develop here an adaptive-low-gain and high-gain controller
design methodology by using a parametric Lyapunov equation. By
utilizing the developed methodology, one can explicitly construct
the required state feedback controllers that solve the (Gp/G) and
(Gp/G)fg problems whenever they are solvable.

Appendix

We show in this section that for system (2.2) if a feedback
controller of the form u = B′f (xu) achieves (G/Gp) and/or
(G/Gp)f ·g for the unstable dynamics xu, it also achieves (G/Gp)
and/or (G/Gp)f ·g for the overall system.

Let us consider the unstable part of the input-additive case.

x+

u = Axu + Buσ(u + d).

Assume we have a feedback u = B′
uf (xu) such that xu ∈ ℓp and, if

possible, with finite gain:

∥xu∥ℓp ≤ c1∥d∥ℓp .

Note that we impose a bit of special structure on the feedback.
Namely u = B′

uf (xu) instead of u = f (xu) but all our standard
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controllers satisfy this property which is easily seen if we recall
that:

−(I + B′PεB)−1B′PεA = B′Pε(I + BB′Pε)
−1A.

If we achieve (G/Gp) for the unstable dynamics then it is easily
verified that we must have that

Buσ(B′

uf (xu) + d) ∈ ℓp

while achieving (G/Gp)f ·g for the unstable dynamics implies:

∥Buσ(B′

uf (xu) + d)∥ℓp ≤ c2∥d∥ℓp . (A.1)

Now in order to incorporate the stable dynamics we want to
establish that:

σ(B′

uf (xu) + d) ∈ ℓp

and ideally with a finite gain:

∥σ(B′

uf (xu) + d)∥ℓp ≤ c3∥d∥ℓp .

This implies that for stable dynamics, we shall have

∥xs∥ℓp ≤ γ ∥σ(B′

uf (xu) + d)∥ℓp ≤ c3γ ∥d∥ℓp

where γ is ℓp gain of the pair (As, Bs).
We first note that

Buσ(B′

uf (xu) + d) = Buσ(B′

uf (xu)) + Bud1

with ∥d1∥ℓp ≤ ∥d∥ℓp . But this implies that

∥Buσ(B′

uf (xu))∥ℓp ≤ ∥Buσ(B′

uf (xu) + d)∥ℓp + ∥Bu∥ ∥d∥ℓp .

In other words it is sufficient to prove that

∥σ(B′

uf (xu))∥ℓp ≤ c4∥Buσ(B′

uf (xu))∥ℓp (A.2)

to obtain that:

∥σ(B′

uf (xu) + d)∥ℓp ≤ ∥σ(B′

uf (xu))∥ℓp + ∥d∥ℓp

≤ c4∥Buσ(B′

uf (xu))∥ℓp + ∥d∥ℓp

≤ c4∥Buσ(B′

uf (xu) + d)∥ℓp

+ (1 + c4∥Bu∥)∥d∥ℓp

≤ (c4c2 + 1 + c4∥Bu∥)∥d∥ℓp

where we used (A.1).
Remains to verify (A.2) which is implied by the following static

inequality:

∥σ(B′

uv)∥p ≤ c4∥Buσ(B′

uv)∥p. (A.3)

Since this is a static finite-dimensional problem and all finite-
dimensional norms are equivalent, it suffices to prove (A.3) for
p = 2.

Note that we can find a matrix S such that:

Bu = S

Bu1
0


with Bu1 surjective. Next, we note that it is sufficient to prove that:

∥σ(B′

u1w)∥2 ≤ c5∥Bu1σ(B′

u1w)∥2 (A.4)

for some suitably chosen c5 since for w = Sv we get:

∥σ(B′

uv)∥2 ≤ c5∥Bu1σ(B′

uv)∥2

≤
c5

σmin(S)

S Bu1
0


σ(B′

uv)


2

≤
c5

σmin(S)
∥Buσ(B′

uv)∥2
which yields (A.3) for suitable chosen c4. It remains to show (A.4).
We consider two cases. If B′

u1w saturates at least one channel then

∥Bu1σ(B′

u1w)∥2 ≥ ⟨B′

u1wn, σ (B′

u1w) ⟩

≥ ∥B′

u1wn∥∞

≥
1

√
m

σmin(B′

u1)

where wn =
w

∥w∥
is the normalized vector of w.

In that case:

∥σ(B′

u1w)∥2 ≤
√
m ∥σ(B′

u1w)∥∞

=
√
m

≤
m

σmin(B′

u1)
∥Bu1σ(B′

u1w)∥2.

On the other hand without saturation:

∥B′

u1w∥2 ≤ ∥B′

u1(B
′

u1B
′

u1)
−1Bu1B′

u1w∥2

≤ ∥B′

u1(B
′

u1B
′

u1)
−1

∥2 ∥Bu1B′

u1w∥2.

Combining the two cases with and without saturation yields (A.4)
for suitable chosen c5, i.e.

c5 ≥ max


m
σmin(B′

u1)
, ∥B′

u1(B
′

u1B
′

u1)
−1

∥2


.
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