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Abstract

This paper presents a numerical method to calculate the value function for a general
discounted impulse control problem for piecewise deterministic Markov processes. Our
approach is based on a quantization technique for the underlying Markov chain defined
by the post jump location and inter-arrival time. Convergence results are obtained
and more importantly we are able to give a convergence rate of the algorithm. The
paper is illustrated by a numerical example.
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1 Introduction

We present here a numerical method to compute the value function of an impulse control
problem for a piecewise deterministic Markov process. Our approach is based on the
quantization of an underlying discrete-time Markov chain related to the continuous-time
process and path-adapted time discretization grids.

Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the lit-
erature by M. Davis [6] as a general class of stochastic hybrid models. PDMP’s are a
family of Markov processes involving deterministic motion punctuated by random jumps.
The motion of the PDMP includes both continuous and discrete variables {(X(t),Υ(t))}.
The hybrid state space (continuous/discrete) is defined as Rd×M where M is a countable
set. The process depends on three local characteristics, namely the flow φ, the jump rate
λ and the transition measure Q, which specifies the post-jump location. Starting from
(x, ν) ∈ Rd ×M the motion of the process follows the trajectory (φν(x, t), ν) until the
first jump time T1 which occurs either spontaneously in a Poisson-like fashion with rate
λν(φν(x, t)) or when the flow φν(x, t) hits the boundary of the state-space. In either case
the location of the process at the jump time T1:

(
X(T1),Υ(T1)

)
=
(
Z1, y1

)
is selected
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by the transition measure Qν(φν(x, T1), ·). Starting from
(
Z1, y1

)
, we now select the next

inter-jump time T2 − T1 and postjump location
(
X(T2),Υ(T2)

)
=
(
Z2, y2

)
. This gives a

piecewise deterministic trajectory for {(X(t),Υ(t))} with jump times {Tk} and post jump
locations {(Zk, yk)} which follows the flow φ between two jumps. A suitable choice of the
state space and the local characteristics φ, λ, and Q provides stochastic models covering
a great number of problems of operations research, see [6]. To simplify notation, there is
no loss of generality in considering that the state space of the PDMP is taken simply as a
subset of Rd rather than a product space Rd ×M as described above, see Remark 24.9 in
[6] for details.

An impulse control strategy consists in a sequence of single interventions introducing a
jump of the process at some controller-specified stopping time and moving the process at
that time to some new point in the state space. Our impulse control problem consists in
choosing a strategy (if it exists) that minimizes the expected sum of discounted running
and intervention costs up to infinity, and computing the optimal cost thus achieved. Many
applied problems fall into this class, such as inventory problems in which a sequence of
restocking decisions is made, or optimal maintenance of complex systems with components
subject to failure and repair.

Impulse control problems of PDMP’s in the context of an expected discounted cost have
been considered in [5, 8, 9, 10, 13]. Roughly speaking, in [5] the authors study this impulse
control problem by using the value improvement approach while in [8, 9, 10, 13] the authors
choose to analyze it by using the variational inequality approach. In [5], the authors
also consider a numerical procedure. By showing that iteration of the single-jump-or-
intervention operator generates a sequence of functions converging to the value function of
the problem, they derive an algorithm to compute an approximation of that value function.
Their approach is also based on a uniform discretization of the state space similar to the
one proposed by H. J. Kushner in [12]. In particular, they derive a convergence result for
the approximation scheme but no estimation of the rate of convergence is given. To the
best of our knowledge, it is the only paper presenting a computational method for solving
the impulse control problem for a PDMP in the context of discounted cost. Remark that
a similar procedure has been applied by O. Costa in [3] to derive a numerical scheme for
the impulse control problem with a long run average cost.

Our approach is also based on the iteration of the single-jump-or-intervention operator,
but we want to derive a convergence rate for our approximation. Our method does not
rely on a blind discretization of the state space, but on a discretization that depends on
time and takes into account the random nature of the process. Our approach involves a
quantization procedure. Roughly speaking, quantization is a technique that approximates
a continuous state space random variable X by a a random variable X̂ taking only finitely
many values and such that the difference between X and X̂ is minimal for the Lp norm.
Quantization methods have been developed recently in numerical probability, nonlinear
filtering or optimal stochastic control with applications in finance, see e.g. [1, 2, 14, 15, 16,
17] and references therein. It has also been successfully used by the authors to compute
an approximation of the value function and optimal strategy for the optimal stopping
problem for PDMP’s [7].

Although the value function of the impulse control problem can be computed by iter-
ating implicit optimal stopping problems, see [5] Proposition 2 or [6] Proposition 54.18,
from a numerical point of view the impulse control is much more difficult to handle than
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the optimal stopping problem. Indeed, for the optimal stopping problem, the value func-
tion is computed as the limit of a sequence (vn) constructed by iterating an operator L.
This iteration procedure yields an iterative construction of a sequence of random variables
vn(Zn) (where (Zn) is an embedded discrete-time process). This was the keystone of our
approximation procedure. As regards impulse control, the iterative construction for the
corresponding random variables does not hold anymore, see Section 4 for details. This
is mostly due to the fact that not only does the controller choose times to stop the pro-
cess, but they also choose a new starting point for the process to restart from after each
intervention. This makes the single-jump-or-intervention operator significantly more com-
plicated to iterate that the single-jump-or-stop operator used for optimal stopping. We
manage to overcome this extra difficulty by using two series of quantization grids instead
of just the one we used for optimal stopping.

The paper is organized as follows. In Section 2 we give a precise definition of a PDMP
and state our notation and assumptions. In Section 4, we present the impulse control
problem and recall the iterative construction of the value function presented in [5]. In
Section 5, we explain our approximation procedure and prove its convergence with error
bounds. Finally in Section 6 we present a numerical example. Some technical results are
postponed to the Appendix.

2 Definitions and assumptions

We first give a precise definition of a piecewise deterministic Markov process (PDMP).
Some general assumptions are presented in the end of this section. Let us introduce
first some standard notation. Let M be a metric space. B(M) is the set of real-valued,
bounded, measurable functions defined on M . The Borel σ-field of M is denoted by B(M).

Let Q be a Markov kernel on (M,B(M)) and w ∈ B(M), Qw(x) =

∫

M
w(y)Q(x, dy) for

x ∈M . For (a, b) ∈ R2, a ∧ b = min(a, b) and a ∨ b = max(a, b).
Let E be an open subset of Rd, ∂E its boundary and E its closure. A PDMP is

determined by its local characteristics (φ, λ,Q) where:
• the flow φ : Rd×R→ Rd is a one-parameter group of homeomorphisms: φ is continuous,
φ(·, t) is an homeomorphism for each t ∈ R satisfying φ(·, t+ s) = φ(φ(·, s), t).
For all x in E, let us denote

t∗(x)
.
= inf{t > 0 : φ(x, t) ∈ ∂E},

with the convention inf ∅ =∞.
• the jump rate λ : E → R+ is assumed to be a measurable function.
• Q is a Markov kernel on (E,B(E)) satisfying the following property:

(∀x ∈ E), Q(x,E − {x}) = 1.

From these characteristics, it can be shown [6, p. 62-66] that there exists a filtered prob-
ability space (Ω,F , {Ft}, {Px}x∈E) such that the motion of the process {X(t)} starting
from a point x ∈ E may be constructed as follows. Take a random variable T1 such that

Px(T1 > t)
.
=

{
e−Λ(x,t) for t < t∗(x),

0 for t ≥ t∗(x),
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where for x ∈ E and t ∈ [0, t∗(x)]

Λ(x, t)
.
=

∫ t

0
λ(φ(x, s))ds.

If T1 generated according to the above probability is equal to infinity, then for t ∈ R+,
X(t) = φ(x, t). Otherwise select independently an E-valued random variable (labelled Z1)
having distribution Q(φ(x, T1), ·), namely Px(Z1 ∈ A) = Q(φ(x, T1), A) for any A ∈ B(E).
The trajectory of {X(t)} starting at x, for t ≤ T1 , is given by

X(t)
.
=

{
φ(x, t) for t < T1,

Z1 for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time T2−T1 and post-jump
location X(T2) = Z2 is a similar way.

This gives a strong Markov process {X(t)} with jump times
{
Tk
}
k∈N (where T0 = 0).

Associated to {X(t)}, there exists a discrete time process
(
Θn

)
n∈N defined by Θn =

(Zn, Sn) with Zn = X(Tn) and Sn = Tn− Tn−1 for n ≥ 1 and S0 = 0. Clearly, the process
(Θn)n∈N is a Markov chain, and it is the only source of randomness of the process.

We define the following space of functions continuous along the flow with limit towards
the boundary:

C =
{
w ∈ B(E) : w(φ(x, ·)) : [0, t∗(x)) 7→ R is continuous for each x ∈ E
and whenever t∗(x) <∞ the limit lim

t→t∗(x)
w(φ(x, t)) exists

}
.

For w ∈ C, we define w(φ(x, t∗(x))) by the limit lim
t→t∗(x)

w(φ(x, t)) (note that the limit

exists by assumption). Let us introduce L as the set of functions w ∈ C satisfying the
following properties:

1. there exists
[
w
]
1
∈ R+ such that for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)], one has

∣∣w(φ(x, u))− w(φ(y, u))
∣∣ ≤

[
w
]
1
|x− y|,

2. there exists
[
w
]
2
∈ R+ such that for any x ∈ E, and (t, s) ∈ [0, t∗(x)]2, one has

∣∣w(φ(x, t))− w(φ(x, s))
∣∣ ≤

[
w
]
2
|t− s|,

3. there exists
[
w
]
∗ ∈ R+ such that for any (x, y) ∈ E2, one has

∣∣w(φ(x, t∗(x)))− w(φ(y, t∗(y)))
∣∣ ≤

[
w
]
∗|x− y|.

In the sequel, for any function w in C, we denote by Cw its bound:

Cw = sup
x∈E
|w(x)|.

The following assumptions will be in force throughout.
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Assumption 2.1 The jump rate λ is bounded and there exists
[
λ
]
1
∈ R+ such that for

any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)[,
∣∣λ(φ(x, u))− λ(φ(y, u))

∣∣ ≤
[
λ
]
1
|x− y|.

Assumption 2.2 The exit time t∗ is bounded and Lipschitz-continuous on E.

Assumption 2.3 The Markov kernel Q is Lipschitz in the following sense: there exists[
Q
]
∈ R+ such that for any function w ∈ L the following two conditions are satisfied:

1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)], one has
∣∣Qw(φ(x, u))−Qw(φ(y, u))

∣∣ ≤
[
Q
][
w
]
1
|x− y|,

2. for any (x, y) ∈ E2, one has
∣∣Qw(φ(x, t∗(x)))−Qw(φ(y, t∗(y)))

∣∣ ≤
[
Q
][
w
]
∗|x− y|.

3 Quantization

The aim of this section is to describe the quantization procedure for a random variable
and to recall some important properties that will be used in the sequel. There exists
an extensive literature on quantization methods for random variables and processes. We
do not pretend to present here an exhaustive panorama of these methods. However, the
interested reader may for instance, consult the following works [11, 14, 17] and references
therein. Consider X an Rq-valued random variable such that

∥∥X
∥∥
p
< ∞ where

∥∥X
∥∥
p

denotes the Lp-nom of X:
∥∥X
∥∥
p

=
(
E[|X|p]

)1/p
.

Let K be a fixed integer, the optimal Lp-quantization of the random variable X consists

in finding the best possible Lp-approximation of X by a random vector X̂ taking at most

N values: X̂ ∈ {x1, . . . , xK}. This procedure consists in the following two steps:

1. Find a finite weighted grid Γ ⊂ Rq with Γ = {x1, . . . , xK}.
2. Set X̂ = X̂Γ where X̂Γ = pΓ(X) with pΓ denotes the closest neighbour projection

on Γ.

The asymptotic properties of the Lp-quantization are given by the following result, see
e.g. [14].

Theorem 3.1 If E[|X|p+η] < +∞ for some η > 0 then one has

lim
K→∞

Kp/q min
|Γ|≤K

‖X − X̂Γ‖pp = Jp,q

∫
|h|q/(q+p)(u)du,

where the law of X is PX(du) = h(u)λq(du) + ν with ν ⊥ λd, Jp,d a constant and λq the
Lebesgue measure in Rq.
Remark that X needs to have finite moments up to the order p+η to ensure the above con-
vergence. There exists a similar procedure for the optimal quantization of a Markov chain
{Xk}k∈N. There are two approaches to provide the quantized approximation of a Markov
chain. The first one, based on the quantization at each time k of the random variable
Xk is called the marginal quantization. The second one that enhances the preservation of
the Markov property is called Markovian quantization. Remark that for the latter, the
quantized Markov process is not homogeneous. These two methods are described in details
in [17, section 3]. In this work, we used the marginal quantization approach for simplicity
reasons.
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4 Impulse control problem

The formal probabilistic apparatus necessary to precisely define the impulse control prob-
lem is rather cumbersome, and will not be used in the sequel, therefore, for the sake of
simplicity, we only present a rough description of the problem. The interested reader is
referred to [5] for a rigorous definition.

A strategy S = (τn, Rn)n≥1 is a sequence of non-anticipative intervention times (τn)n≥1

and non-anticipative E-valued random variables (Rn)n≥1 on a measurable space (Ω,F).
Between the intervention times τi and τi+1, the motion of the system is determined by the
PDMP {X(t)} starting from Ri. If an intervention takes place at x ∈ E, then the set of
admissible points where the decision-maker can send the system to is denoted by U ⊂ E.
We suppose that the control set U is finite and does not depend on x. The cardinal of the
set U is denoted by u:

U =
{
yi : 1 ≤ i ≤ u

}
.

The strategy S induces a family of probability measures PSx , x ∈ E, on (Ω,F). We define
the class S of admissible strategies as the strategies S which satisfy τ∞ = ∞ PSx -a.s. for
all x ∈ E.

Associated to the strategy S, we define the following discounted cost for a process
starting at x ∈ E

J S(x) = ESx

[∫ ∞

0
e−αsf(Ys)ds+

∞∑

i=1

e−ατic(Yτi , Yτ+i
)

]
,

where ESx is the expectation with respect to PSx and {Yt} is the process with interven-
tions. The function f then corresponds to the running cost and c(x, y) corresponds to the
intervention cost of moving the process from x to y, α is a positive discount factor. We
make the following assumption on the cost functions.

Assumption 4.1 f is a positive function in L.

Assumption 4.2 The function c is continuous on E × U and there exist
[
c
]
1
∈ R+,[

c
]
2
∈ R+ and

[
c
]
∗ ∈ R+ such that

1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)],

max
z∈U

∣∣c(φ(x, u), z)− c(φ(y, u), z)
∣∣ ≤

[
c
]
1
|x− y|,

2. for any x ∈ E, and (t, s) ∈ [0, t∗(x)]2,

max
z∈U

∣∣c(φ(x, t), z)− c(φ(x, s), z)
∣∣ ≤

[
c
]
2
|t− s|,

3. for any (x, y) ∈ E2,

max
z∈U

∣∣c(φ(x, t∗(x)), z)− c(φ(y, t∗(y)), z)
∣∣ ≤

[
c
]
∗|x− y|,

4. for any (x, y) ∈ E × U, 0 < c0 ≤ c(x, y) ≤ Cc,
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5. for any (x, y, z) ∈ E × U× U,

c(x, y) + c(y, z) ≥ c(x, z).

The last assumption implies that the cost of taking two or more interventions instanta-
neously will not be lower than taking a single intervention. Finally, the value function for
the discounted infinite horizon impulse control problem is defined for all x in E by

V(x) = inf
S∈S
J S(x).

Associated to this impulse control problem, we define the following operators. For x ∈ E,
t ≥ 0, (v, w) ∈ C2, set

F (x, t) =

∫ t∧t∗(x)

0
e−αs−Λ(x,s)f

(
φ(x, s)

)
ds,

Hv(x, t) = e−αt∧t
∗(x)−Λ(x,t∧t∗(x))v

(
φ(x, t ∧ t∗(x))

)

= E
[
e−α(t∧t∗(Z0))v

(
φ(Z0, t ∧ t∗(Z0))

)
1{S1≥t∧t∗(Z0)}

∣∣∣Z0 = x
]
,

Iw(x, t) =

∫ t∧t∗(x)

0
e−αs−Λ(x,s)λQw

(
φ(x, s)

)
ds,

= E
[
e−αS1w(Z1)1{S1<t∧t∗(Z0)}

∣∣∣Z0 = x
]
.

Finally for notational convenience, let us introduce for (v, w) ∈ C2, x ∈ E and t ≥ 0.

J(v, w)(x, t) = F (x, t) +Hv(x, t) + Iw(x, t),

Kw(x) = F (x, t∗(x)) +HQw(x, t∗(x)) + Iw(x, t∗(x)),

It is easy to show that for all n ∈ N

Kv(x) = E
[
F (Zn, t

∗(Zn)) + e−αSn+1v(Zn+1)
∣∣Zn = x

]
, (4.1)

J(v, w)(x, t) = E
[
F (Zn, t) + e−αSn+1w(Zn+1)1{Sn+1<t∧t∗(Zn)}

+e−αt∧t
∗(Zn)v(φ(Zn, t ∧ t∗(Zn))1{Sn+1≥t∧t∗(Zn)}

∣∣Zn = x
]
. (4.2)

Note that these operators involve the original non controlled process {X(t)} and only
depend on the underlying Markov chain (Θn) = (Zn, Sn). The equalities above are valid
for all n because (Θn) is an homogeneous Markov chain. Finally, for (v, w) ∈ C2, ϕ defined
on U and x ∈ E, set

Mϕ(x) = inf
y∈U

{
c(x, y) + ϕ(y)

}
,

L(v, w)(x) = inf
t∈R+

J(v, w)(x, t) ∧Kw(x),

Lw(x) = L(Mw,w)(x).

As explained in [5], operator L applied to w is the value function of the single-jump-or-
intervention problem with cost function w and the value function V can be computed by
iterating L. More precisely, let h be the cost associated to the no-impulse strategy:

h(x) = Ex

[∫ ∞

0
e−αsf(Xs)ds

]
,

for all x ∈ E. Then we recall proposition 4 of [5].
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Proposition 4.3 Assume that g is in L and g ≥ h. Define Vg0 = g and Vgn+1 = L(Vgn),
for all n ≥ 0. Then for all x ∈ E

V(x) = lim
n→∞

Vgn(x).

As pointed out in [5], if one chooses exactly g = h, then Vhn corresponds to the value
function of the impulse problem where only n jumps plus interventions are allowed, and
after that, there are no further interventions.

Remark 4.4 Note that operator L is quite similar to the operator used in optimal stop-
ping, see e.g. [4, 7]. However, the iteration procedure here does not rely on L but on
L. The difference between operators L and L comes from the operator M that chooses
optimally the next starting point. This is one of the main technical differences between ap-
proximating the value functions of an optimal stopping and impulse problems, and it makes
the approximation scheme significantly more difficult, as explained in the next section.

5 Approximation of the value function

From now on, we assume that the distribution of X(0) is given by δx0 for some fixed
point x0 in the state space E. We also choose a function g in L satisfying g ≥ h. Our
approximation of the value function at x0 is based on Proposition 4.3. Following the
approach proposed by M. Davis and O. Costa in [5], we suppose now that we have selected
a suitable index N such that V(x0) − VgN (x0) is small enough see the example in section
6. We turn to the approximation of VgN (x0) which is the main object of this paper. In
all generality, finding an index N such that V(x0)− VgN (x0) is below a prescribed level is
a very difficult problem to solve. However, in particular cases one can hope to be able
to evaluate the distance between V(x0) and VgN (x0). As suggested by M. Davis and O.
Costa in [5], a value of N can be chosen by calculating Vgn(x0) for different values of n and
stopping when the difference between two consecutive values is small enough. Our results
of convergence are derived for a fixed but arbitrary N .

Recall that if V0 = h, then VhN corresponds to the value function of the impulse problem
where only N jumps plus interventions are allowed. This is an interesting problem to be
solved in itself. For notational convenience, we will change our notation in the sequel and
reverse the indices for the sequence (Vgn)0≤n≤N . Set

{
vN = g = Vg0 ,
vn = Lvn+1 = VgN−n, for all 0 ≤ n < N.

As explained in the introduction, the keystone of the approximation procedure for op-
timal stopping in [7] is that the analogue of Proposition 4.3 yields a recursive construction
of the random variables vn(Zn). Unfortunately, this key and important property does not
hold anymore here. Indeed, one has:

vn(Zn) = Lvn+1(Zn)

=

(
inf
t∈R+

E
[
F (Zn, t) + e−αSn+1vn+1(Zn+1)1{Sn+1<t∧t∗(Zn)}

+e−αt∧t
∗(Zn)Mvn+1(φ(Zn, t ∧ t∗(Zn))1{Sn+1≥t∧t∗(Zn)}

∣∣Zn
])

∧E
[
F (Zn, t

∗(Zn)) + e−αSn+1vn+1(Zn+1)
∣∣Zn
]
.
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And Mvn+1(φ(Zn, t ∧ t∗(Zn)) cannot be written as a function of vn+1(Zn+1). Hence, we
have no recursive construction of the random variables vn(Zn) and we cannot apply the
same procedure that we used for optimal stopping. Thus, we propose a new procedure
to evaluate Mvn+1(φ(Zn, t ∧ t∗(Zn)) separately from the main computation of the value
function.

Note that for all 0 ≤ n < N , to compute Mvn+1 at any point, one actually only needs
to evaluate the value functions vn+1 at the points of the control grid U. We propose again
a recursive computation based on the Markov chain (Zn, Sn) but with a different starting
point. Set Zy0 = y ∈ U and Sy0 = 0. We denote by (Zyn, S

y
n) the Markov chain starting

from this point (y, 0). One clearly knows vN = g on U. Now suppose we have computed
all the vn on U for k + 1 ≤ n ≤ N . Therefore, all functions Mvn are known everywhere.
We can then propose the following recursive computation to evaluate vk at y ∈ U:

{
vN (ZyN−k) = g(ZyN−k)
vk+n(Zyn) = L(Mvk+n+1, vk+n+1)(Zyn), for all 0 ≤ n ≤ N − k − 1.

(5.1)

This way, one obtains vk(Z
y
0 ) that exactly equals vk(y). Note that, since the functions

Mvk+n are known, this provides a tractable recurrence relation on the random variables
vk+n(Zyk ).

Remark 5.1 Note that this procedure requires the knowledge of function g for all the
random variables (Zyn)n≤N−1 defined for the different starting points y ∈ U. This is why,
in general, we are not able to use the no-impulse cost function h. Indeed, it is hard to
compute this function, especially if we need to know it everywhere on the state space. The
most practical solution is to take g equal to a upper bound of h, and therefore constant.

There is yet another new difficulty hidden in the recurrence relation (5.1) above as
regards its discretization. Indeed, to compute vn(y), one needs first to compute all the
vk+n(Zyn) with 1 ≤ n ≤ N − k, and to compute vk+1(y) for instance, one has already
computed all the vk+n(Zyn−1) for 2 ≤ n ≤ N − k. Unfortunately, one cannot re-use the
values of vk+n(Zyn−1) to compute that of vk+n(Zyn), so the computation has to be started
all over again each time, and one has to be very careful in the design of the approximation
scheme. However, all these computations can be done with the same discretization grids
for (Zyn, S

y
n), so that our procedure is still reasonably fast, see section 5.2 for details, and

figure 5.1 for a graphical illustration of our procedure.

Remark 5.2 The recursive procedure (5.1) is triangular in the sense that one needs to
compute all the vk+n(Zyn) for 0 ≤ k ≤ N and 0 ≤ n ≤ N − k.

Our approximation procedure is in three steps, as explained in the following sections.
The first step consists in replacing the continuous minimization in the definition of operator
L by a discrete-time minimization, on path adapted grids. The second step is specific to the
impulse problem, and is due to the operator M as explained in details above. The second
step hence consists in carefully approximating the value functions vn on the control grid U.
The last step will then be similar to the approximation of the optimal stopping problem
and will consist in approximating the value functions at the points of the quantization
grids of the no impulse process.
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5.1 Time discretization

We define the path-adapted discretization grids as follows.

Definition 5.3 For z ∈ E, set ∆(z) ∈]0, t∗(z)[. Define n(z) = int
( t∗(z)

∆(z)

)
−1, where int(x)

denotes the greatest integer smaller than or equal to x. The set of points (ti)i∈{0,...,n(z)} with
ti = i∆(z) is denoted by G(z). This is the grid associated to the time interval [0, t∗(z)].

Remark 5.4 It is important to note that, for all z ∈ E, not only one has t∗(z) /∈ G(z),
but also maxG(z) = tn(z) ≤ t∗(z)−∆(z). This property is crucial for the sequel.

We propose the following approximation of operator L, where the continuous minimization
is replaced by a discrete-time minimization on the path-adapted grids.

Definition 5.5 For (v, w) ∈ L2 and x ∈ E, set

Ld(v, w)(x) = min
t∈G(x)

J(v, w)(x, t) ∧Kw(x).

Now we compute the error induced by the replacement of the continuous minimization by
the discrete one.

Lemma 5.6 Let (v, w) ∈ L2. Then for all x ∈ E,

∣∣ inf
t≤t∗(x)

J(v, w)(x, t)− min
s∈G(x)

J(v, w)(x, s)
∣∣ ≤

(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)

∆(x).

Proof: We have

∣∣ inf
t≤t∗(x)

J(v, w)(x, t)− min
s∈G(x)

J(v, w)(x, s)
∣∣ = min

s∈G(x)
J(v, w)(x, s)− inf

t≤t∗(x)
J(v, w)(x, t).

Clearly, there exists t ∈ [0, t∗(x)] such that inf
t≤t∗(x)

J(v, w)(x, t) = J(v, w)(x, t). Moreover,

there exists 0 ≤ i ≤ n(x) such that t ∈ [ti, ti+1] (with tn(x)+1 = t∗(x)). Consequently,
Lemma A.5 yields

∣∣ inf
t≤t∗(x)

J(v, w)(x, t)− min
s∈G(x)

J(v, w)(x, s)
∣∣ ≤ J(v, w)(x, ti)− J(v, w)(x, t)

≤
(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)
|t− ti|.

implying the result. 2

Lemma 5.7 Let (v, w) ∈ L2 be nonnegative functions. Then for all x ∈ E,

∣∣L(v, w)(x)− Ld(v, w)(x)
∣∣ ≤

(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)

∆(x).

Proof: Since the functions v and w are nonnegative, it follows from the definition of L
and Ld that

∣∣L(v, w)(x)− Ld(v, w)(x)
∣∣ ≤

∣∣ inf
t≤t∗(x)

J(v, w)(x, t)− min
s∈G(x)

J(v, w)(x, s)
∣∣.

Now in view of the previous lemma, one obtains the result. 2
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5.2 Approximation of the value functions on the control grid U

We now need to introduce the quantized approximations of the underlying Markov chains
(Θy

n). More precisely, we need several approximations at this stage, one for each starting
point y in the control set U. Recall that U = {yi, 1 ≤ i ≤ u}. For all 1 ≤ i ≤
u, let (Zin, S

i
n)0≤n≤N−1 be the Markov chain (Zn, Sn)0≤n≤N−1 with starting point Z0 =

yi, S0 = 0, and let (Ẑin, Ŝ
i
n)0≤n≤N−1 be the quantized approximation of the sequence

(Zin, S
i
n)0≤n≤N−1, see Section 3. The quantization algorithm provides us with a finite grid

Γi,Θn ⊂ E × R+ at each time 0 ≤ n ≤ N − 1 as well as weights for each point of the grid
and transition probabilities from one grid to the next one, see e.g. [1, 14, 17] for details.
Set p ≥ 1 such that Θn has finite moments at least up to the order p+ ε for some positive
ε and let pin be the closest-neighbour projection from E × R+ onto Γi,Θn (for the distance
of norm p; if there are several equally close neighbours, pick the one with the smallest
index). Then the quantization of Θi

n conditionally to Z0 = yi is defined by

Θ̂i
n =

(
Ẑin, Ŝ

i
n

)
= pin

(
Zin, S

i
n

)
.

We will also denote Γi,Zn the projection of Γi,Θn on E and Γi,Sn the projection of Γi,Θn on R+.

Although (Zin, S
i
n) is a Markov chain, its quantized approximation is usually not a

Markov chain. It can be turned into a Markov chain by slightly changing the ponderations
in the grids, see [16], but this Markov chain will not be homogeneous in any case. Therefore,
the following quantized approximations of operators H, I, K, J and Ld depend on both
indices n and i.

Definition 5.8 For v ∈ L2, w defined on Γi,Zn+1, x ∈ E, 0 ≤ n ≤ N − 1, 1 ≤ i ≤ u and

z ∈ Γi,Zn , consider

Ĥ i
n+1v(z, t) = E

[
e−α(t∧t∗(Ẑin))v

(
φ(Ẑin, t ∧ t∗(Ẑin))

)
1{Ŝin+1≥t∧t∗(Ẑin)}

∣∣∣Ẑin = z
]
,

Îin+1w(z, t) = E
[
e−αŜ

i
n+1w(Ẑin+1)1{Ŝin+1<t∧t∗(Ẑin)}

∣∣∣Ẑin = z
]
,

K̂i
n+1w(z) = E

[
F (Ẑin, t

∗(Ẑin)) + e−αŜ
i
n+1w(Ẑin+1)

∣∣Ẑin = z
]
,

Ĵ in+1(v, w)(z, t) = E
[
F (Ẑin, t) + e−αŜ

i
n+1w(Ẑin+1)1{Ŝin+1<t∧t∗(Ẑin)}

∣∣Ẑin = z
]

+ E
[
e−α(t∧t∗(Ẑin))v(φ(Ẑin, t ∧ t∗(Ẑin)))1{Ŝin+1≥t∧t∗(Ẑin)}

∣∣Ẑin = z
]
,

L̂i,dn+1(v, w)(z) = min
t∈G(z)

Ĵ in+1(v, w)(z, t) ∧ K̂i
n+1w(z).

Our approximation scheme goes backwards in time, in as much as it is initialized with
computing vN at the points of the last quantization grids Γi,ZN , then vN−1 is computed on

Γi,ZN−1 and so on.

Definition 5.9 Set ṽN (yi) = g(yi) for 1 ≤ i ≤ u. Then, for 1 ≤ k ≤ N−1 and 1 ≤ i ≤ u,

set ṽk(y
i) = v̂i,kk (yi), where

v̂i,kN (z) = g(z), z ∈ Γi,ZN−k,

v̂i,kk+n−1(z) = L̂i,dn (Mṽk+n, v̂
k
k+n)(z), z ∈ Γi,Zn−1, n ∈ {1, . . . , N − k}.

See figure 5.1 for a graphical illustration of this numerical procedure.
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Remark 5.10 Note the use of both ṽk+n and v̂kk+n in the scheme above. This is due to
the fact that we have to reset all our calculations for each value function ṽk and cannot use
the calculations made for e.g. ṽk+1 because the value functions are evaluated at different
points, and are approximated with different discrete operators. This is mostly because the
quantized process (Ẑin, Ŝ

i
n) is not an homogeneous Markov chain.

We can now state our first result on the convergence rate of this approximation.

Theorem 5.11 For all 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − k − 1 and 1 ≤ i ≤ d, suppose that
∆(z) for z ∈ Γi,Zn is such that

√
d4‖Zin − Ẑin‖p + d5

∥∥Sin+1 − Ŝin+1

∥∥
p

d3
< min

z∈Γi,Zn

{∆(z)}.

Then we have

‖vk+n(Zin)− v̂i,kk+n(Ẑin)‖p
≤

∥∥vk+n+1(Zin+1)− v̂i,kk+n+1(Ẑin+1)
∥∥
p

+ max
y∈U

∣∣vk+n+1(y)− ṽk+n+1(y)
∣∣

+d1
k,n‖Zin − Ẑin‖p + 2

[
vk+n+1

]∥∥Zin+1 − Ẑin+1

∥∥
p

+ Cf
∥∥Sin+1 − Ŝin+1

∥∥
p

+d2
k,n

∥∥∆(Ẑin)
∥∥
p

+ +2
√
d3
(
d4‖Zin − Ẑin‖p + d5

∥∥Sin+1 − Ŝin+1

∥∥
p

)
,

with

d1
k,n =

{[
Q
][
vk+n+1

]
∗ + 2E3

}
∨
{
Cc(E1 + α

[
t∗
]
) + 2(

[
c
]
1

+
[
c
]
2

[
t∗
]
)

}

+[vk+n] +
[
Q
][
vk+n+1

]
1

Cλ
α

+
Cf
α

(E1 + E2),

d2
k,n = Cf + Cvk+n+1

Cλ +
[
c
]
2

+ (Cc + Cvk+n+1
)(Cλ + α),

d3 =
(2Cf
α

+ Cc
)
Cλ,

d4 =
Cf
α

(1 +
[
t∗
]
) + Cc

[
t∗
]
,

d5 = 2
(

2
Cf
α

+ Cc

)
.

Remark 5.12 Recall that vN = v̂i,kN = ṽN = g. Hence, one has

‖vN (ZiN−k)− v̂i,kN (ẐiN−k)‖p ≤ [g]
∥∥ẐiN − ZiN

∥∥
p

and max
y∈U

∣∣vN (y)− ṽN (y)
∣∣ = 0.

In addition, the quantization error ‖Θi
n− Θ̂i

n‖p goes to zero as the number of points in the
grids goes to infinity, see e.g. [14]. Therefore, according to Definition 5.9 and by using an
induction procedure maxy∈U

∣∣vk(y) − ṽk(y)
∣∣ can be made arbitrarily small by an adequate

choice of the discretization parameters. From a theoretical point of view, the error can be
calculated by iterating the result of Theorem 5.11. However, this result is not presented
here because it would lead to an intricate expression. From a numerical point of view, a
computer can easily estimate this error as shown in the example of section 6.
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The proof is going to be detailed in the following sections. We first split the error into
four terms. For all 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − k − 1 and 1 ≤ i ≤ d, we have

‖vk+n(Zin)− v̂i,kk+n(Ẑin)‖p ≤
4∑

j=1

Υi
j ,

where

Υi
1 = ‖vk+n(Zin)− vk+n(Ẑin)‖p,

Υi
2 = ‖L(Mvk+n+1, vk+n+1)(Ẑin)− Ld(Mvk+n+1, vk+n+1)(Ẑin)‖p,

Υi
3 = ‖Ld(Mvk+n+1, vk+n+1)(Ẑin)− L̂i,dn+1(Mvk+n+1, vk+n+1)(Ẑin)‖p,

Υi
4 = ‖L̂i,dn+1(Mvk+n+1, vk+n+1)(Ẑin)− L̂i,dn+1(Mṽk+n+1, v̂

i,k
k+n+1)(Ẑin)‖p.

The first two terms are easy enough to handle thanks to Corollary A.12 and lemma 5.7.

Lemma 5.13 A upper bound for Υi
1 is

‖vk+n(Zin)− vk+n(Ẑin)‖p ≤ [vk+n]‖Zin − Ẑin‖p.

Lemma 5.14 A upper bound for Υi
2 is

‖L(Mvk+n+1, vk+n+1)(Ẑin)− Ld(Mvk+n+1, vk+n+1)(Ẑin)‖p
≤

(
Cf + Cvk+n+1

Cλ +
[
c
]
2

+ (Cc + Cvk+n+1
)(Cλ + α)

)∥∥∆(Ẑin)
∥∥
p
.

The fourth term is also easy enough to deal with as it is a mere comparison of two
finite weighted sums.

Lemma 5.15 A upper bound for Υi
4 is

‖L̂i,dn+1(Mvk+n+1, vk+n+1)(Ẑin)− L̂i,dn+1(Mṽk+n+1, v̂
i,k
k+n+1)(Ẑin)‖p

≤
[
vk+n+1

]∥∥Zin+1 − Ẑin+1

∥∥
p

+
∥∥vk+n+1(Zin+1)− v̂i,kk+n+1(Ẑin+1)

∥∥
p

+ max
y∈U

∣∣vk+n+1(y)− ṽk+n+1(y)
∣∣.

Proof: We clearly have

∥∥L̂dn+1(Mvk+n+1, vk+n+1)(Ẑin)− L̂i,dn+1(Mṽk+n+1, v̂
i,k
k+n+1)(Ẑin)

∥∥
p

≤
∥∥∥ max
t∈G(Ẑin)

∣∣Ĵ in+1(Mvk+n+1, vk+n+1)(Ẑin, t)− Ĵ in+1(Mṽk+n+1, v̂
i,k
k+n+1)(Ẑin, t)

∣∣
∥∥∥
p

∨
∥∥∥K̂i

n+1vk+n+1(Ẑin)− K̂i
n+1v̂

i,k
k+n+1(Ẑin)

∥∥∥
p

≤
∥∥E[vk+n+1(Ẑin+1)− v̂i,kk+n+1(Ẑin+1)

∣∣Ẑin]
∥∥
p

+
∥∥∥E
[
Mvk+n+1

(
φ(Ẑin, t ∧ t∗(Ẑin))

)
−Mṽk+n+1

(
φ(Ẑin, t ∧ t∗(Ẑin))

)∣∣∣Ẑin
]∥∥∥

p

≤
∥∥vk+n+1(Ẑin+1)− vk+n+1(Zin+1)

∥∥
p

+
∥∥vk+n+1(Zin+1)− v̂i,kk+n+1(Ẑin+1)

∥∥
p

+ max
y∈U

∣∣vk+n+1(y)− ṽk+n+1(y)
∣∣,

showing the result. 2
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We now turn to the third term. This is the key step of the error evaluation, because
on the one hand, this is where we deal with the indicator functions. The main idea is
that although they are not continuous, we prove in the following two lemmas that the set
where the discontinuity actually occurs is of small enough probability. This is also where
our special choice of time discretization grids is crucial. On the other hand, we use here
the specific properties of quantization.

Lemma 5.16 For all 1 ≤ i ≤ d, n ∈ {0, . . . , N − 1} and 0 < η < min
z∈Γi,Zn

{∆(z)},

∥∥1
t∗(Zin)<t∗(Ẑin)−η

∥∥
p
≤ [t∗]‖Zin − Ẑin‖p

η
.

Proof: By using the Chebychev’s inequality, one clearly has

E
[
|1
t∗(Zin)<t∗(Ẑin)−η|

p
]

= P
(
t∗(Zin) < t∗(Ẑin)− η

)

≤ P
(∣∣t∗(Zin)− t∗(Ẑin)

∣∣ > η
)
≤ [t∗]p‖Zin − Ẑin‖pp

ηp
,

showing the result. 2

Lemma 5.17 For all 1 ≤ i ≤ d, n ∈ {0, . . . , N − 1} and 0 < η < min
z∈Γi,Zn

{∆(z)},

∥∥∥ max
s∈G(Ẑin)

E
[
|1{Sin+1<s∧t∗(Zin)} − 1{Ŝin+1<s∧t∗(Ẑin)}|

∣∣Ẑin
]∥∥∥
p

≤ 2

η
‖Sin+1 − Ŝin+1‖p + Cλη +

2[t∗]
η
‖Zin − Ẑin‖p.

Proof: Set 0 < η < min
z∈Γi,Zn

{∆(z)} and s ∈ G(Ẑin). By definition of the grid G(Ẑin) and η,

one has s+ η < t∗(Ẑin), see Remark 5.4. Thus, the difference of indicator functions can be
written as

∣∣1{Sin+1<s∧t∗(Zin)} − 1{Ŝin+1<s∧t∗(Ẑin)}
∣∣

≤
∣∣1{Sin+1<s∧t∗(Zin)} − 1{Ŝin+1<s∧t∗(Ẑin)}

∣∣
[
1{t∗(Zin)≤t∗(Ẑin)− η

2
} + 1{t∗(Zin)>t∗(Ẑin)− η

2
}

]

≤ 1{t∗(Zin)≤t∗(Ẑin)− η
2
} + 1{t∗(Zin)>s+ η

2
}
∣∣1{Sin+1<s} − 1{Ŝin+1<s}

∣∣

≤ 1{t∗(Zin)≤t∗(Ẑin)− η
2
} + 1{|Sin+1−Ŝin+1|>

η
2
} + 1{t∗(Zin)>s+ η

2
}1{|Sin+1−s|≤

η
2
}.

This yields

∥∥∥ max
s∈G(Ẑin)

E
[
|1{Sin+1<s∧t∗(Zin)} − 1{Ŝin+1<s∧t∗(Ẑin)}|

∣∣Ẑin
]∥∥∥
p
≤
∥∥1{t∗(Zin)≤t∗(Ẑin)− η

2
}
∥∥
p

+
∥∥1{|Sin+1−Ŝin+1|>

η
2
}
∥∥
p

+
∥∥ max
s∈G(Ẑin)

E
[
1{t∗(Zin)>s+ η

2
}1{|Sin+1−s|≤

η
2
}
∣∣Ẑin
]∥∥
p
. (5.2)

On the one hand, Chebychev’s inequality gives

∥∥1{|Sin+1−Ŝin+1|>
η
2
}
∥∥p
p

= P(|Sin+1 − Ŝin+1| >
η

2
) ≤

2p
∥∥Sin+1 − Ŝin+1

∥∥p
p

ηp
. (5.3)
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On the other hand, one has

E
[
1{t∗(Zin)>s+ η

2
}1{|Sin+1−s|≤

η
2
}
∣∣Ẑin
]

= E
[
E
[
1{t∗(Zin)>s+ η

2
}1{s− η

2
≤Sin+1≤s+

η
2
}|Zin

]∣∣∣Ẑin
]

= E
[
1{t∗(Zin)>s+ η

2
}

∫ s+ η
2

s− η
2

λ(φ(Zin, u))du
∣∣∣Ẑin
]

≤ ηCλ. (5.4)

Combining Lemma 5.16 and equations (5.2)-(5.4), the result follows. 2

We now look up the error made in replacing K by K̂i
n+1. This is where we use the

specific properties of quantization.

Lemma 5.18 For all 1 ≤ i ≤ d, k ∈ {1, . . . , N − 1} and n ∈ {1, . . . , N − k}, one has

∥∥∥Kvk+n+1(Ẑin)− K̂i
n+1vk+n+1(Ẑin)

∥∥∥
p
≤ Cf‖Sin+1 − Ŝin+1‖p +

[
vk+n+1

]
‖Zin+1 − Ẑin+1‖p

+

{[
Q
][
vk+n+1

]
1

Cλ
α

+
[
Q
][
vk+n+1

]
∗ +

Cf
α

(
E1 + E2

)
+ 2E3

}
‖Zin − Ẑin‖p.

Proof: We have
∣∣∣Kvk+n+1(Ẑin)− K̂i

n+1vk+n+1(Ẑin)
∣∣∣ (5.5)

≤
∣∣∣Kvk+n+1(Ẑin)− E

[
Kvk+n+1(Zin)

∣∣Ẑin
]∣∣∣+

∣∣∣E
[
Kvk+n+1(Zin)

∣∣Ẑin
]
− K̂i

n+1vk+n+1(Ẑin)
∣∣∣

≤ E
[∣∣Kvk+n+1(Ẑin)−Kvk+n+1(Zin)

∣∣
∣∣∣Ẑin
]

+
∣∣∣E
[
Kvk+n+1(Zin)

∣∣Ẑin
]
− K̂i

n+1vk+n+1(Ẑin)
∣∣∣.

By using the Lipschitz property of K stated in Lemma A.4, we obtain
∥∥∥E
[∣∣Kvk+n+1(Ẑin)−Kvk+n+1(Zin)

∣∣
∣∣∣Ẑin
]∥∥∥

p
(5.6)

≤
{[
Q
][
vk+n+1

]
1

Cλ
α

+
[
Q
][
vk+n+1

]
∗ + Cvk+n+1

(
E1 + E2

)
+ E3

}
‖Zin − Ẑin‖p.

Then, recall that by construction of the quantized process, one has
(
Ẑin, Ŝ

i
n

)
= pin

(
Zin, S

i
n

)
.

Hence we have the following crucial property: σ{Ẑin} ⊂ σ{Zin, Sin}. By using the special
structure of the PDMP {X(t)}, we also have σ{Zin, Sin} ⊂ FTn , so that one has σ{Ẑin} ⊂
σ{Zin}. It now follows from the definition of K given in equation (4.1) that

∣∣∣E
[
Kvk+n+1(Zin)

∣∣Ẑin
]
−K̂i

n+1vk+n+1(Ẑin)
∣∣∣ ≤ E

[∣∣F (Zin, t
∗(Zin))− F (Ẑin, t

∗(Ẑin))
∣∣
∣∣∣Ẑin
]

+ E
[∣∣e−αSin+1vk+n+1(Zin+1)− e−αŜ

i
n+1vk+n+1(Ẑin+1)

∣∣
∣∣∣Ẑin
]
. (5.7)

From Lemma A.3, we readily obtain
∥∥∥E
[∣∣F (Zin, t

∗(Zin))− F (Ẑin, t
∗(Ẑin))

∣∣
∣∣∣Ẑin
]∥∥∥

p
≤ E3‖Zin − Ẑin‖p, (5.8)

and it is easy to show that
∥∥∥E
[∣∣e−αSin+1vk+n+1(Zin+1)− e−αŜ

i
n+1vk+n+1(Ẑin+1)

∣∣
∣∣∣Ẑin
]∥∥∥

p

≤
[
vk+n+1

]
‖Zin+1 − Ẑin+1‖p + αCvk+n+1

‖Sin+1 − Ŝin+1‖p. (5.9)
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Finally, recalling that Cvk+n ≤
Cf
α and combining equations (5.5)-(5.9) we obtain the

expected result. 2

We turn to the error made in replacing J by Ĵ in+1. Here we use the specific properties
of quantization again, and the lemmas on indicator functions.

Lemma 5.19 For all 1 ≤ i ≤ d, k ∈ {1, . . . , N − 1}, n ∈ {1, . . . , N − k}, and 0 < η <
min
z∈Γi,Zn

{∆(z)}, one has

∥∥∥ max
t∈G(Ẑin)

∣∣J(Mvk+n+1, vk+n+1)(Ẑin, t)− Ĵ in+1(Mvk+n+1, vk+n+1)(Ẑin, t)
∣∣
∥∥∥
p

≤
{[
Q
][
vk+n+1

]
1

Cλ
α

+
Cf
α

(E1 + E2 + α
[
t∗
]
) + Cc(E1 + α

[
t∗
]
)

+ 2(
[
c
]
1

+
[
c
]
2

[
t∗
]
) +

1

η

(Cf
α

(1 +
[
t∗
]
) + Cc

[
t∗
])}
‖Zin − Ẑin‖p

+
{2

η

(
2
Cf
α

+ Cc

)
+ Cf

}∥∥Sin+1 − Ŝin+1

∥∥
p

+
[
vk+n+1

]∥∥Zin+1 − Ẑin+1

∥∥
p

+
(2Cf
α

+ Cc
)
Cλη.

Proof: By definition of J , we have
∣∣∣J(Mvk+n+1, vk+n+1)(Ẑin, t)− Ĵ in+1(Mvk+n+1, vk+n+1)(Ẑin, t)

∣∣∣ (5.10)

≤
∣∣∣Ivk+n+1(Ẑin, t)− Îin+1vk+n+1(Ẑin, t)

∣∣∣+
∣∣∣HMvk+n+1(Ẑin, t)− Ĥ i

n+1Mvk+n+1(Ẑin, t)
∣∣∣.

For the first term on the right hand side of equation (5.10), we proceed as for K in the
preceding lemma
∣∣∣Ivk+n+1(Ẑin, t)− Îin+1vk+n+1(Ẑin, t)

∣∣∣ ≤ E
[∣∣Ivk+n+1(Ẑin, t)− Ivk+n+1(Zin, t)

∣∣
∣∣∣Ẑin
]

+
∣∣∣E
[
Ivk+n+1(Zin, t)

∣∣Ẑin
]
− Îin+1vk+n+1(Ẑin, t)

∣∣∣.

On the one hand, it follows from Lemma A.3 that
∥∥∥ max
t∈G(Ẑin)

E
[∣∣Ivk+n+1(Ẑin, t)− Ivk+n+1(Zin, t)

∣∣
∣∣∣Ẑin
]∥∥∥

p

≤
{

1

α

([
Q
][
vk+n+1

]
1
Cλ + Cvk+n+1

[
λ
]
1

(
1 + CλCt∗

))
+ Cvk+n+1

Cλ
[
t∗
]}
‖Zin − Ẑin‖p.

On the other hand, we use again the fact that σ{Ẑin} ⊂ σ{Zin} to obtain
∣∣∣E
[
Ivk+n+1(Zin, t)

∣∣Ẑin
]
− Îin+1vk+n+1(Ẑin, t)

∣∣∣

≤ E
[
1{Sin+1<t∧t∗(Zin)}

∣∣e−αSin+1vk+n+1(Zin+1)− e−αŜ
i
n+1vk+n+1(Ẑin+1)

∣∣
∣∣∣Ẑin
]

+ E
[
e−αŜ

i
n+1vk+n+1(Ẑin+1)

∣∣1{Sin+1<t∧t∗(Zin)} − 1{Ŝin+1<t∧t∗(Ẑin)}
∣∣
∣∣∣Ẑin
]
.

It remains to deal with the indicator function. Lemma 5.17 yields
∥∥∥ max
t∈G(Ẑin)

∣∣E
[
Ivk+n+1(Zin, t)

∣∣Ẑin
]
− Îin+1vk+n+1(Ẑin, t)

∣∣
∥∥∥
p

≤ Cvk+n+1
Cλη + (α+

2

η
)Cvk+n+1

∥∥Sin+1 − Ŝin+1

∥∥
p

+
[
vk+n+1

]∥∥Zin+1 − Ẑin+1

∥∥
p

+
2Cvk+n+1

[
t∗
]

η

∥∥Zin − Ẑin
∥∥
p
.
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By using the same arguments and lemmas A.1 and A.3, we obtain similar results for the
second term on the right hand side of equation (5.10), namely

∥∥∥ max
t∈G(Ẑin)

E
[∣∣HMvk+n+1(Ẑin, t)−HMvk+n+1(Zin, t)

∣∣
∣∣∣Ẑin
]∥∥∥

p

≤
{[
c
]
1

+
[
c
]
2

[
t∗
]

+ (Cvk+n+1
+ Cc)

(
Ct∗
[
λ
]
1

+ (Cλ + α)
[
t∗
])}
‖Zin − Ẑin‖p,

and
∥∥∥ max
t∈G(Ẑin)

∣∣E
[
HMvk+n+1(Zin, t)

∣∣Ẑin
]
− Ĥ i

n+1Mvk+n+1(Ẑin, t)
∣∣
∥∥∥
p

≤
{
α
[
t∗
]
(Cvk+n+1

+ Cc) +
[
c
]
1

+
[
c
]
2

[
t∗
]

+
2[t∗]
η

(Cvk+n+1
+ Cc)

}
‖Zin − Ẑin‖p

+
2

η
(Cvk+n+1

+ Cc)‖Sin+1 − Ŝin+1‖p + Cλ(Cvk+n+1
+ Cc)η,

showing the result. 2

We now add up the preceding results to one obtains the following upper bound for Υi
3.

Lemma 5.20 A upper bound for Υi
3 is

‖Ld(Mvk+n+1, vk+n+1)(Ẑin)− L̂i,dn+1(Mvk+n+1, vk+n+1)(Ẑin)‖p

≤ ‖Zin − Ẑin‖p
{
[
Q
][
vk+n+1

]
1

Cλ
α

+
Cf
α

(E1 + E2) +

{[
Q
][
vk+n+1

]
∗

+2E3

}
∨
{
Cc(E1 + α

[
t∗
]
) + 2(

[
c
]
1

+
[
c
]
2

[
t∗
]
) +

1

η

(Cf
α

(1 +
[
t∗
]
) + Cc

[
t∗
])}

}

+
∥∥Sin+1 − Ŝin+1

∥∥
p

{
Cf +

2

η

(
2
Cf
α

+ Cc

)}

+
[
vk+n+1

]∥∥Zin+1 − Ẑin+1

∥∥
p

+
(2Cf
α

+ Cc
)
Cλη.

5.3 Approximation of the value function

Now we have computed the value functions on the control grid, we turn to the actual
approximation of v0. As in the preceding section, we define the quantized approxi-
mation of the underlying Markov chain (Θn) starting from (x0, 0), the actual starting
point of the PDMP. Let (Ẑn, Ŝn)0≤n≤N−1 be the quantized approximation of the sequence
(Zn, Sn)0≤n≤N−1. The quantization algorithm provides us with another series of finite
grids ΓΘ

n ⊂ E × R+ for all 0 ≤ n ≤ N − 1 as well as weights for each point of the grids
and transition probabilities from one grid to the next one. Let pn be the closest-neighbor
projection from E × R+ onto ΓΘ

n . Then the quantization of Θn conditionally to Z0 = x0

is defined by
Θ̂n =

(
Ẑn, Ŝn

)
= pn

(
Zn, Sn

)
.

We will also denote ΓZn the projection of ΓΘ
n on E and ΓSn the projection of ΓΘ

n on R+. We
use yet again new quantized approximations of operators H, I, K, J and Ld.
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Definition 5.21 For v ∈ L2, w defined on ΓZn+1, x ∈ E, n ∈ {0, . . . , N − 1} and z ∈ Γzn,
consider

Ĥn+1v(z, t) = E
[
e−α(t∧t∗(Ẑn))v

(
φ(Ẑn, t ∧ t∗(Ẑn))

)
1{Ŝn+1≥t∧t∗(Ẑn)}

∣∣∣Ẑn = z
]
,

În+1w(z, t) = E
[
e−αŜn+1w(Ẑn+1)1{Ŝn+1<t∧t∗(Ẑn)}

∣∣∣Ẑn = z
]
,

K̂n+1v(z) = E
[
F (Ẑn, t

∗(Ẑn)) + e−αŜn+1v(Ẑn+1)
∣∣Ẑn = z

]
,

Ĵn+1(v, w)(z, t) = E
[
F (Ẑn, t) + e−αŜn+1w(Ẑn+1)1{Ŝn+1<t∧t∗(Ẑn)}

∣∣Ẑn = z
]

+ E
[
e−α(t∧t∗(Ẑn))v(φ(Ẑn, t ∧ t∗(Ẑn)))1{Ŝn+1≥t∧t∗(Ẑn)}

∣∣Ẑn = z
]
,

L̂dn+1(v, w)(z) = min
t∈G(z)

Ĵn+1(v, w)(z, t) ∧ K̂n+1w(z).

With these discretized operators and the previous evaluation of the ṽk, we propose the
following approximation scheme.

Definition 5.22 Consider v̂N (z) = g(z) where z ∈ ΓZN and for k ∈ {1, . . . , N}
v̂k−1(z) = L̂dk(Mṽk, v̂k)(z), (5.11)

where z ∈ ΓZk−1.

See figure figure 5.1 for a graphical illustration of this numerical procedure. Therefore
v̂0(Ẑ0) will be an approximation of v0(Z0) = v0(x0). The derivation of the error bound
for this scheme follows exactely the same lines as in the preceding section. Therefore we
omit it and only state our main result.

Theorem 5.23 For all 0 ≤ n ≤ N − 1, suppose that ∆(z) for z ∈ ΓZn is such that
√
D4‖Zn − Ẑn‖p +D5

∥∥Sn+1 − Ŝn+1

∥∥
p

D3
< min

z∈ΓZn

{∆(z)}.

Then we have

‖vn(Zn)− v̂n(Ẑn)‖p
≤

∥∥vn+1(Zn+1)− v̂n+1(Ẑn+1)
∥∥
p

+ max
y∈U

∣∣vn+1(y)− ṽn+1(y)
∣∣+D1

n‖Zn − Ẑn‖p

+3
[
vn+1

]∥∥Zn+1 − Ẑn+1

∥∥
p

+ 2Cf
∥∥Sn+1 − Ŝn+1

∥∥
p

+D2
n

∥∥∆(Ẑn)
∥∥
p

+2
√
D3
(
D4‖Zn − Ẑn‖p +D5

∥∥Sn+1 − Ŝn+1

∥∥
p

)
,

with

D1
n = [vn] +

[
Q
][
vn+1

]
1

Cλ
α

+
Cf
α

(
E1 + E2

)

+
{[
Q
][
vn+1

]
∗ + 2E3

}
∨
{

2
([
c
]
1

+
[
c
]
2

[
t∗
])

+ CcE1 + α
[
t∗
]
(
Cf
α

+ Cc)
}
,

D2
n = Cf + Cvn+1Cλ +

[
c
]
2

+ (Cc + Cvn+1)(Cλ + α),

D3 =
(2Cf
α

+ Cc
)
Cλ,

D4 = 2
[
t∗
](2Cf

α
+ Cc

)
,

D5 = 2
(2Cf
α

+ Cc
)
.
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Remark 5.24 By using the same arguments as in Remark 5.12, it can be shown that
‖vn(Zn)−v̂n(Ẑn)‖p can be made arbitrarily small by an adequate choice of the discretization
parameters. From a theoretical point of view, the error can be calculated by iterating the
result of Theorem 5.23. However, this result is not presented here because it would lead to
an intricate expression. From a numerical point of view, a computer can easily estimate
this error as shown in the example of section 6.

5.4 Step by step description of the algorithm

Recall that the main objective of our algorithm is to compute the approximation v̂0(x0) of
the value function of the impulse control problem v0(x0). The global recursive procedure
is described on figure 5.1.

The calculation of v̂0(x0) is based on the backward recursion given in Definition 5.22 and
described in the first line of figure 5.1. It involves the operators L̂dj constructed with the

quantized process Θ̂n starting from x0. This recursion is not self contained and requires
previous evaluation of the functions ṽj on the control set U.

The lower part of figure 5.1, shows how to compute these functions ṽj at each point of the
control grid U. This is the triangular backward recursion given in Definition 5.9. More
precisely, define ṽN = g and set j < N and suppose that all the ṽl for all l > j have already
been computed everywhere on the control set U. One then computes ṽj in the following
way, following the j-th line of figure 5.1 counting from the bottom. One first iterates the
operators L̂1,d

k and uses the quantized process Θ̂1
n, to obtain ṽj(y

1). Then one iterates the

operators L̂2,d
k and uses the quantized process Θ̂2

n, to obtain ṽj(y
2), and so on until the

last point ṽj(y
u). Thus one obtains ṽj at all points of the control set U.

5.5 Practical implementation

The procedure defined above is the natural one to obtain convergence rates for our ap-
proximations. However, in practice we proceed in a different order.

The first step is to fix the computational horizon N . This point was discussed earlier.
The second step is not the time discretization, but the computation of the quantized
approximations of the sequences (Θn) and (Θi

n). The quantization algorithm may be quite
long to run. However, it must be pointed out that this quantization step only depends on
the optimization procedure through the the control set U but it does not depend on the
cost functions f and c. The sequence (Θ̂n) is obtained in a straightforward way. As for
the (Θ̂i

n), if the control set is very small, it is possible to run as many sequences of grids as
there are points in the control set. Otherwise, one can do with only one sequence of grids
computed with the Markov chain (Θµ

n) with a random starting point Z0 = Zµ0 uniformly
distributed on the control set U. To derive the point-wise approximation error, one simply
uses the finiteness of U and the definition of the Lp norm.

|vk(yi)− ṽk(yi)| ≤ u
u∑

i=1

|vk(yi)− ṽk(yi)|
1

u

≤ u1/p‖vk(Zµ0 )− ṽk(Ẑµ0 )‖p

where u is the cardinal of U. Notice that the last term is bounded in Theorem 5.11. Hence,
one really only needs two series of quantization grids.
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Figure 5.1: Step by step procedure
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Once the quantization grids are computed and stored, one computes the path-adapted
time grids G(z) for all z in all the quantization grids, that is only a finite number of z.
The step ∆(z) can usually be chosen constant equal to ∆, so that either one can store
the whole time grids, or one only needs to store the values of ∆ and t∗(z) for all z in the
quantization grids.

Once these preliminary computations are done, one can finally compute the value
function. This last step is comparatively faster. The only point left to discussion is how to
choose the initializing function g. The most interesting starting function is the cost h of
the no impulse strategy, because then the value function VN has a natural interpretation.
However, in general, one needs additional assumptions on Q to ensure that h is in L.
Another problem, is that in general computing h is a difficult problem, especially as we
need to know its value at many different points, as explained in Remark 5.1. To overcome
these difficulties, one can choose g to be an upper bound of h, for instance, g = α−1Cf .
In the special cases where h can be explicitly computed, we advise to use h.

6 Example

Now we apply our procedure to a simple PDMP and present numerical results. This
example is quite similar to example (54.29) in [6], we only added random jumps to obtain
a non trivial Markov chain (Zn, Sn).

Set E = [0, 1[, and ∂E = {1}. The flow is defined on [0, 1] by φ(x, t) = x + vt for
some positive v, the jump rate is defined on [0, 1] by λ(x) = βx, with β > 0, and for
all x ∈ [0, 1], one sets Q(x, ·) to be the uniform law on [0, 1/2]. Thus, the process moves
with constant speed v towards 1, but the closer it gets to the boundary 1, the higher the
probability to jump backwards on [0, 1/2]. Figure 6.1 shows two trajectories of this process
for x0 = 0, v = 1 and β = 3 and up to the 10-th jump. The running cost is defined on E

Figure 6.1: Two trajectories of the PDMP.

by f(x) = 1−x and the intervention cost is a constant c0. Therefore, the best performance
is obtained when the process is close to the boundary 1. The control set U is the set of k

u ,
0 ≤ k ≤ u − 1 for some fixed integer u. In this special case, the control grid is already a
discretization of the whole state space of the process. Therefore one needs only one series
of grids starting from the control points to obtain an approximation of the value function
at each point of the control grid.
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Figure 6.2: Approximated value function for N = 5.
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Figure 6.3: Approximated value function for N = 10.
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Figure 6.4: Approximated value function for N = 15.
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We ran our algorithm for the parameters x0 = 0, v = 1, β = 3, c0 = 0.08, the discount
factor α = 2 and u = 50 points in the control grid and several values of the horizon N .

For an horizonN = 5 (respectively, N = 10, N = 15) interventions or jumps, Figure 6.2
(respectively, Figure 6.3, Figure 6.4) gives the approximated value function we obtained
(computed at the 50 points of the control grid) for 50, 100 and 500 discretization points
in each quantization grid and. As expected, the approximation gets smoother and lower
as the number of points in the quantization grids increases.

The theoretical errors corresponding to the horizon N = 5 (respectively, N = 10,
N = 15) are given in Table 6.1 (respectively, Table 6.2, Table 6.3). The values of the error
are fairly high and conservative, but it must be pointed out that on the one hand, they do
decrease as the number of points in the quantization grids increase, as expected ; on the
other hand their expressions are calculated and valid for a very wide and general class of
PDMP’s, hence when applied to a specific example, they cannot be very sharp.

Number of points in the quantization grids ‖v0(Z0)− v̂0(Z0)‖2
50 4636
100 3700
500 2141

Table 6.1: Theoretical errors for N = 5.

Number of points in the quantization grids ‖v0(Z0)− v̂0(Z0)‖2
50 5.341·1011

100 4.501·1011

500 2.567·1011

Table 6.2: Theoretical errors for N = 10.

Number of points in the quantization grids ‖v0(Z0)− v̂0(Z0)‖2
50 1.460·1021

100 1.288·1021

500 0.750·1021

Table 6.3: Theoretical errors for N = 15.

Notice also that the approximated value function obtained for the horizon of N = 10
jumps or interventions is much lower than that obtained for the horizon N = 5 jumps
or interventions. This is natural as it is a minimization problem, and the more there are
possible interventions the lower the value function is. This also suggests that the horizon
N = 5 is not large enough to approximate the infinite horizon problem. Figure 6.5 gives
the approximated value function we obtained (computed at the 50 points of the control
grid) for respectively 500 points in the quantization grids and respective horizons of N = 5,
N = 10 and N = 15 jumps or interventions. There is very little difference between the
results for N = 10 and N = 15, suggesting that it is enough to take an horizon of 10 jumps
or intervention to approximate the infinite time optimization problem.
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Figure 6.5: Approximated value function for N = 5, N = 10 and N = 15 for 500 points
in the quantization grids.

A Lipschitz continuity results

A.1 Lipschitz properties of the operators

We start with preliminary results on operators M , H, F and I.

Lemma A.1 For any g defined on U, Mg ∈ L. Moreover,

[
Mg

]
1
≤
[
c
]
1
,

[
Mg

]
2
≤
[
c
]
2
,

[
Mg

]
∗ ≤

[
c
]
∗, CMg ≤ Cc + Cg.

Proof: By using the fact that
∣∣Mg(x)−Mg(y)

∣∣ ≤ supz∈U
∣∣c(x, z)− c(y, z)

∣∣ and assump-
tion 4.2, the result follows easily. 2

Lemma A.2 Let v ∈ L. Then for all (x, y) ∈ E2 and (t, u) ∈ R2
+, one has

∣∣∣Hv(x, t)−Hv(y, u)| ≤ D1(v)|x− y|+D2(v)|t− u|,

where

• if t < t∗(x) and u < t∗(y),

D1(v) =
[
v
]
1

+ CvCt∗
[
λ
]
1
, D2(v) =

[
v
]
2

+ Cv(Cλ + α),

• if t = t∗(x) and u = t∗(y),

D1(v) =
[
v
]
∗ + Cv

(
Ct∗
[
λ
]
1

+ (Cλ + α)
[
t∗
])
, D2(v) = 0,

• otherwise,

D1(v) =
[
v
]
1
+
[
v
]
2

[
t∗
]
+Cv

(
Ct∗
[
λ
]
1
+(Cλ+α)

[
t∗
])
, D2(v) =

[
v
]
2
+Cv(Cλ+α).
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Proof: This is straightforward. 2

Lemma A.3 For all w ∈ L, (x, y) ∈ E2 and (t, u) ∈ R2
+, one has

∣∣∣F (x, t)− F (y, u)
∣∣∣ ≤ 1

α

([
f
]
1

+ CfCt∗
[
λ
]
1

)
|x− y|+ Cf

(
|t− u| ∨

[
t∗
]
|x− y|

)
,

∣∣∣Iw(x, t)− Iw(y, u)
∣∣∣ ≤ 1

α

([
Q
][
w
]
1
Cλ + Cw

[
λ
]
1

(
1 + CλCt∗

))
|x− y|

+CwCλ

(
|t− u| ∨

[
t∗
]
|x− y|

)
.

Proof: Suppose, without loss of generality, that t ∧ t∗(x) ≤ u ∧ t∗(y). Then, one has

∣∣∣F (x, t)− F (y, u)
∣∣∣ ≤
∫ t∧t∗(x)

0
e−αs

∣∣∣f
(
φ(x, s)

)
e−Λ(x,s) − f

(
φ(y, s)

)
e−Λ(y,s)

∣∣∣ds

+

∫ u∧t∗(y)

t∧t∗(x)

∣∣∣f
(
φ(y, s)

)
e−αs−Λ(y,s)

∣∣∣ds

≤
([
f
]
1

+ CfCt∗
[
λ
]
1

)∫ ∞

0
e−αsds|x− y|+ Cf

∣∣u ∧ t∗(y)− t ∧ t∗(x)
∣∣.

From the fact that
∣∣u ∧ t∗(y)− t ∧ t∗(x)

∣∣ ≤ |t− u| ∨
[
t∗
]
|x− y| we get the first inequality.

By using similar arguments, it is easy to obtain the last result. 2

Now we turn to the Lipschitz property of operator K.

Lemma A.4 For w ∈ L and (x, y) ∈ E2, one has

∣∣∣Kw(x)−Kw(y)
∣∣∣ ≤
{[
Q
][
w
]
1

Cλ
α

+
[
Q
][
w
]
∗ + Cw

(
E1 + E2

)
+ E3

}
|x− y|.

Proof: This is a direct consequence of (4.1) and Lemmas A.2, A.3. 2

Finally, we study the the Lipschitz properties of operator J .

Lemma A.5 For all (v, w) ∈ C2, x ∈ E and (t, u) ∈ R2
+, one has

∣∣∣J(v, w)(x, t)− J(v, w)(x, u)
∣∣∣ ≤

(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)
|t− u|.

Proof: By using (4.1) and Lemmas A.2 and A.3, the result follows easily. 2

Lemma A.6 For all (v, w) ∈ L2, (x, y) ∈ E2 and t ≥ 0, one has

∣∣∣J(v, w)(x, t)− J(v, w)(y, t)
∣∣∣ ≤
{[
v
]
1

+
[
v
]
2

[
t∗
]

+ CvE1 +
[
Q
][
w
]
1

Cλ
α

+ CwE2 + E3

}
|x− y|.

where

E1 = Ct∗
[
λ
]
1

+ (Cλ + α)
[
t∗
]
,

E2 = Cλ
[
t∗
]

+
[
λ
]
1

1 + CλCt∗

α
,

E3 =
[
f
]
1

1

α
+ Cf

(Ct∗
[
λ
]
1

α
+
[
t∗
])
.
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Proof: Again, this is a direct consequence of (4.1) and Lemmas A.2 and A.3. 2

Remark A.7 It is easy to obtain that for (v, w) ∈ C2, s ∈ R+ and (x, y) ∈ E2,
∣∣∣ inf
t≥s

J(v, w)(x, t)− inf
t≥s

J(v, w)(y, t)
∣∣∣ ≤ sup

t≥0

∣∣J(v, w)(x, t)− J(v, w)(y, t)
∣∣

Lemma A.8 Let (v, w) ∈ L2. Then for all x ∈ E and (s, t) ∈ R2
+,

∣∣∣ inf
u≥t

J(v, w)(x, u)− inf
u≥s

J(v, w)(x, u)
∣∣∣ ≤

(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)
|t− s|.

Proof: Without loss of generality it can be assumed that s ≤ t. Therefore, one has
∣∣∣ inf
u≥t

J(v, w)(x, u)− inf
u≥s

J(v, w)(x, u)
∣∣∣ = inf

u≥t
J(v, w)(x, u)− inf

u≥s
J(v, w)(x, u). (A.1)

Remark that there exists s ∈ [s ∧ t∗(x), t∗(x)] such that inf
u≥s

J(w, g)(x, u) = J(w, g)(x, s).

Consequently, if s ≥ t ∧ t∗(x) then one has
∣∣∣ inf
u≥t

J(v, w)(x, u)− inf
u≥s

J(v, w)(x, u)
∣∣∣ = 0.

Now if s ∈ [s ∧ t∗(x), t ∧ t∗(x)[, then one has

inf
u≥t

J(v, w)(x, u)− inf
u≥s

J(v, w)(x, u) ≤ J(v, w)(x, t)− J(v, w)(x, s).

From Lemma A.5, we obtain the following inequality

inf
u≥t

J(v, w)(x, u)− inf
u≥s

J(v, w)(x, u) ≤
(
Cf + CwCλ +

[
v
]
2

+ Cv(Cλ + α)
)
|t− s|. (A.2)

Combining equations (A.1), (A.2) and the fact that |t− s| ≤ |t− s| the result follows. 2

A.2 Lipschitz properties of the operator L
Now we study the Lipschitz continnuity of our main operator

Lemma A.9 For all (v, w) ∈ L2, x ∈ E and t ∈ [0, t∗(x)) and u ∈ R+, one has

F
(
φ(x, t), u

)
= eαt+Λ(x,t)

(
F (x, t+ u)− F (x, u)

)
,

Iw
(
φ(x, t), u

)
= eαt+Λ(x,t)

(
Iw(x, t+ u)− Iw(x, u)

)
,

Hv
(
φ(x, t), u

)
= eαt+Λ(x,t)Hv(x, t+ u).

Proof: By using the semi-group property of φ, we have Λ
(
φ(x, t), u

)
= Λ(x, t+u)−Λ(x, t)

for t + u < t∗(x) and noting that t∗(φ(x, t)) = t∗(x) − t for t < t∗(x), a simple change of
variable yields

F
(
φ(x, t), u

)
= eαt+Λ(x,t)

∫ (t+u)∧t∗(x)

t
e−αs−Λ(x,s)f

(
φ(x, s)

)
ds,

and we get the first equation. The other equalities can be obtained by using similar
arguments. 2

Lemma A.10 For all (v, w) ∈ L2, x ∈ E and t ∈ [0, t∗(x)),

L(v, w)
(
φ(x, t)

)
= eαt+Λ(x,t)

[{
inf
s≥t

J(v, w)(x, s) ∧Kw(x)
}
− F (x, t)− Iw(x, t)

]
.
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Proof: For t ∈ [0, t∗(x)) and u ∈ R+, we have from Lemma A.9, (4.1) and (4.1)

J(v, w)
(
φ(x, t), u

)
= eαt+Λ(x,t)

[
J(v, w)(x, t+ u)− F (x, t)− Iw(x, t)

]
,

Kw
(
φ(x, t)

)
= eαt+Λ(x,t)

[
Kw(x)− F (x, t)− Iw(x, t)

]
.

Consequently, from equation (4.3), it follows

L(v, w)
(
φ(x, t)

)
= eαt+Λ(x,t)

[{
inf
u≥0

J(v, w)(x, t+ u) ∧Kw(x)
}
− F (x, t)− Iw(x, t)

]
,

showing the result. 2

Proposition A.11 For all w ∈ L, Lw ∈ L, and

[
Lw
]
1
≤ e(α+Cλ)Ct∗

{[
λ
]
1
Ct∗(Cc +

Cf
α

) +
([
c
]
1

+
[
c
]
2

[
t∗
]

+ CcE1

)
∨
([
Q
][
w
]
∗

)

+2E3 +
2
[
Q
]
Cλ

α

[
w
]
1

+
{
E1 + 2E2 +

[
λ
]
1
Ct∗(1 + Cλ/α)

}
Cw

}
,

[
Lw
]
2
≤ e(α+Cλ)Ct∗

{
3Cf +

[
c
]
2

+ 2Cc(Cλ + α) +
CfCλ
α

+ Cw
[
4Cλ +

C2
λ

α
+ α

]}
,

[
Lw
]
∗ ≤

[
Lw
]
1

+
[
Lw
]
2

[
t
]
∗,

[
Lw
]
≤

{
E1 + E2

}
Cw +

[
Q
]
Cλ

α

[
w
]
1

+ E3 +
([
c
]
1

+
[
c
]
2

[
t∗
]

+ CcE1

)
∨
([
Q
][
w
]
∗

)
.

Proof: Let us denote Lw by g. We have for (x, y) ∈ E2 and t ∈ [0, t∗(x) ∧ t∗(y)]

∣∣∣g(φ(x, t))− g(φ(y, t))
∣∣∣ ≤ eαt+Λ(y,t)

{∣∣F (x, t)− F (y, t)
∣∣+
∣∣Iw(x, t)− Iw(y, t)

∣∣
}

+ eαt+Λ(y,t)
{∣∣ inf

s≥t
J(Mw,w)(x, s)− inf

s≥t
J(Mw,w)(y, s)

∣∣ ∨
∣∣Kw(x)−Kw(y)

∣∣
}

+
∣∣∣eαt+Λ(x,t) − eαt+Λ(y,t)

∣∣∣
∣∣∣∣
{

inf
s≥t

J(Mw,w)(x, s) ∧Kw(x)
}
− F (x, t)− Iw(x, t)

∣∣∣∣.

It is easy to show that for x ∈ E, t ∈ [0, t∗(x)], and w ∈ L we have eαt+Λ(x,t) ≤ e(α+Cλ)Ct∗ ,∣∣∣∣
{

infs≥t J(Mw,w)(x, s) ∧Kw(x)
}
− F (x, t)− Iw(x, t)

∣∣∣∣ ≤ 1
α(Cf + CλCw) + Cc + Cw and

for (x, y) ∈ E2 and t ∈ [0, t∗(x)∧ t∗(y)]
∣∣∣eαt+Λ(x,t)− eαt+Λ(y,t)

∣∣∣ ≤ e(α+Cλ)Ct∗
[
λ
]
1
Ct∗ |x− y|.

Consequently, by using Lemmas A.3 and A.4 and Remark A.7, we get the first equation.

For x ∈ E and (s, t) ∈ [0, t∗(x)]2

∣∣∣g(φ(x, s))− g(φ(x, t))
∣∣∣ ≤ eαt+Λ(x,t)

∣∣Iw(x, s)− Iw(x, t)
∣∣

+ eαt+Λ(x,t)
{∣∣ inf

u≥s
J(Mw,w)(x, u)− inf

u≥t
J(Mw,w)(x, u)

∣∣+
∣∣F (x, s)− F (x, t)

∣∣
}

+
∣∣∣eαs+Λ(x,s) − eαt+Λ(x,t)

∣∣∣
∣∣∣∣
{

inf
u≥s

J(Mw,w)(x, u) ∧Kw(x)
}
− F (x, s)− Iw(x, s)

∣∣∣∣.

Note that for x ∈ E, (s, t) ∈ [0, t∗(x)]2
∣∣∣eαs+Λ(x,s)− eαt+Λ(x,t)

∣∣∣ ≤ e(α+Cλ)Ct∗ (Cλ +α)|t− s|.
Consequently, we have by using Lemmas A.3 and A.8, we obtain the second equation.
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The third inequality is straightforward and finally, for (x, y) ∈ E2 we have

∣∣∣g(x)− g(y)
∣∣∣ ≤

∣∣ inf
s≥0

J(Mw,w)(x, s)− inf
s≥0

J(Mw,w)(y, s)
∣∣ ∨
∣∣Kw(x)−Kw(y)

∣∣.

By using Remark A.7 and Lemma A.4, we get the last equation. 2

Corollary A.12 For all 0 ≤ n ≤ N , the value functions vn are in L.

Proof: As vN = g is in L by assumption, a recursive application of Proposition A.11
yields the result. 2
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