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Abstract

In this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing
measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where
the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances.
The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an
individual random variable satisfying a certain probability distribution over the interval [0, 1]. Such a probability distribution
is allowed to be any commonly used distribution over the interval [0, 1] with known conditional probability. The aim of the
addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple
missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is
minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in
terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online
applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.

Key words: Nonlinear systems; Extended Kalman filter; Stochastic nonlinearities; Multiple missing measurements; Recursive
filter; Riccati-like difference equation.

1 Introduction

In the past few decades, the filtering or state estimation
problems for stochastic systems have been extensively
investigated. Accordingly, the filter theory has been suc-
cessfully applied in many branches of practical domains
such as computer vision, communications, navigation
and tracking systems, econometrics and finance, etc. It
is well known that the traditional Kalman filter (KF)
serves as an optimal filter in the least mean square sense
for linear systems with the assumption that the system
model is exactly known. In the case that the system
model is nonlinear and/or uncertain, there has been an
increasing research effort to improve KF with hope to
enhance their capabilities of handling nonlinearities and
uncertainties. Along this direction, many alternative fil-
tering schemes have been reported in the literature in-
cluding theH∞ filtering [15,21,27,30,36],mixedH2/H∞

filtering [20, 29], set-value estimation [1, 5, 6, 18] and ro-
bust extended Kalman filter (EKF) design [11,12,31,32].
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Among them, the EKF has shown to be an effective way
for tackling the nonlinear system estimation problems.
In fact, EKF has recently gain particular research at-
tention with promising application potentials in various
engineering practice. For example, the EKF has been
designed in [11,12] for uncertain systems with quadratic
constraints. Moreover, the EKF algorithm has been suc-
cessfully applied in [25] to identify the parameters and
predict the states of a nonlinear stochastic biological net-
work modeled by time series data.

Apart from the stochastcity, the nonlinearity is another
ubiquitous feature existing in almost all practical sys-
tems that contributes significantly to the complexity of
system modeling. Since nonlinearities may cause unde-
sirable dynamic behaviors such as oscillation or even in-
stability, the analysis and synthesis problems for nonlin-
ear systems have long been the main stream of research
topics and much effort has been made to deal with the
nonlinear stochastic systems, see e.g. [2, 4, 14, 19, 33]. It
is worth pointing out that, in most literature, the non-
linearities are assumed to occur in a deterministic way.
While this assumption is generally true especially for sys-
temsmodeled according to physical laws, another kind of
nonlinearities, namely, stochastic nonlinearities, deserve
particular research attention since they occur randomly
due probably to the high manoeuvrability of the tracked
target, intermittent network congestion, random failures
and repairs of the components, changes in the intercon-
nections of subsystems, sudden environment changes,
modification of the operating point of a linearized model
of nonlinear systems. In fact, such stochastic nonlin-
earities include the state-multiplicative noises as spe-
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cial cases. Recently, the filtering problem with stochastic
nonlinearities described by statistical means has already
stirred some research interests, and some latest results
can be found in [26, 35] and the references therein. On
the other hand, almost all real-time systems are time-
varying and therefore finite-horizon filtering problem is
of practical significance. However, so far, there have been
very few results in the literature regarding filtering prob-
lems with stochastic nonlinearities over a finite horizon
due probably to the mathematical complexity and/or
the computational difficulty.

In recent years, networked systems have become very
prevalent and, accordingly, much work has been done
in the literature on the network-induced problems
such as missing measurements (also called packet loss
or dropout) and random communication delays, see
e.g. [3, 8–10, 22, 34]. To be more specific, the optimal
estimation problems have been investigated in [8, 22]
for linear systems with multiple packet dropouts and
the random sensor delays have been taken into account
in [9, 34]. It is worth mentioning that, in most reported
results, the measurement signal has been assumed to be
either completely lost or successfully transferred, and
a typical way is to model the missing measurements
by the Bernoulli distribution. However, in practical ap-
plications, owing to the sensors aging, sensor temporal
failure or some of the data coming from a highly noisy
environment, the measurement missing might be partial
and individual sensor could have different missing prob-
ability in the data transmission process [26]. It is noted
that most available results with respect to filtering prob-
lem with missing measurements have been concentrated
on linear systems only, and the corresponding results for
nonlinear systems have been very few. It is mentioning
that, in [13], the stochastic stability has been analyzed
for EKF with intermittent observations. Up to now, to
the best of the authors’ knowledge, the finite-horizon
extended Kalman filtering problem with both stochas-
tic nonlinearities and multiple missing measurements
has not been addressed yet, which still remains as a
challenging research issue. It is, therefore, the purpose
of this paper to shorten such a gap by resorting to a
recursive Riccati-like equation approach.

Motivated by the above discussion, in this paper, we
make a major effort to design the EKF for a class of
discrete time-varying systems with stochastic nonlinear-
ities and multiple missing measurements. The consid-
ered stochastic nonlinearities are governed by zero mean
Gaussian noises. Themultiple missingmeasurements are
included to model the randomly intermittent behaviors
of the individual sensors. The description of the multi-
ple missing measurements is more general than the com-
monly used one modeled by Bernoulli distribution. The
probability distribution governing the missing measure-
ments from individual sensor is allowed to be any discrete
distribution taking values over the interval [0, 1] with
known occurrence probability. A recursive approach is
developed here to deal with the EKF design problem.
An optimized upper bound is guaranteed on the filter-
ing error covariance for both the stochastic nonlineari-
ties and multiple missing measurements. The main con-
tributions of this paper can be summarized (from the
aspects of model, problem and algorithm) as follows: 1)
the system model is comprehensive that covers stochas-

Physical

Plant
Network

Measurement

Output
Filter

k

k

ky

k

k

kkx |
ˆ

Fig. 1. Schematic structure for the plant and filter over net-
work

tic nonlinearities and multiple missing measurements,
thereby better reflecting the reality; 2) the addressed ex-
tended Kalman filtering problem over a finite horizon is
new especially when multiple missing measurements are
presented; and 3) the developed filter design algorithm
is of a form suitable for recursive computation in online
applications.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the problem under considera-
tion. In Section 3, the linearization is firstly enforced to
facilitate the filter design. Then, the evolution of one-
step prediction error covariance and filtering error co-
variance are derived for the addressedmodel. In the same
section, an upper bound of the filtering error covariance
is obtained and the filter gain is then designed to min-
imize such an upper bound at each sampling instant.
An illustrative example is utilized in Section 4 to show
the effectiveness of the proposed algorithm. The paper
is concluded in Section 5.

Notation The notations used throughout the paper are
standard. Rn and R

n×m denote the n-dimensional Eu-
clidean space and the set of all n×m matrices, respec-
tively. For a matrix P , PT and P−1 represent its trans-
pose and inverse, respectively. P > 0 means that the
matrix P is real symmetric and positive definite. ◦ is
the Hadamard product with this product being defined
as [A ◦ B]ij = Aij · Bij . tr(·) stands for the trace of a
matrix. E{x} stands for the expectation of random vari-
able x. I and 0 represent the identity matrix and the
zero matrix with appropriate dimensions, respectively.
diag{X1, X2, . . . , Xn} stands for a block-diagonal ma-
trix with matrices X1, X2, . . . , Xn on the diagonal. Ma-
trices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2 Problem Formulation and Preliminaries

In this paper, we consider the filtering problem for a gen-
eral class of discrete time-varying systems with stochas-
tic nonlinearities and multiple missing measurements,
where the schematic diagram is shown in Fig. 1. The
plant under consideration is of the following form:

xk+1 = f (xk) + g (xk, ηk) +Dkωk (1)

yk =Ξkh (xk) + s (xk, ζk) + νk (2)

where k is the sampling instant, xk ∈ R
n is the state vec-

tor to be estimated, yk ∈ R
q is the measurement output,

ηk and ζk are zero-mean Gaussian noise sequences,Dk is
a known matrix with appropriate dimension, ωk ∈ R

m is
the process noise, and νk ∈ R

q is the measurement noise.
Ξk := diag{α1

k, α
2
k, . . . , α

q
k} where αi

k (i = 1, 2, . . . , q)
are q independent random variables in k as well as i and
are independent of all noise signals. It is assumed that
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αi
k has the probability density function pik(s) on the in-

terval [0, 1] with mathematical expectation µi
k and vari-

ance (σi
k)

2 (i = 1, 2, . . . , q). Also, the noise signals ηk,
ζk, ωk and νk are uncorrelated with each other.

The deterministic nonlinearities f (xk) : R
n → R

n and
h (xk) : R

n → R
q are known and continuously differen-

tiable with

‖h (xk) ‖ ≤ a1‖xk‖+ a2, (3)

for some nonnegative scalars a1 and a2. On the other
hand, the stochastic nonlinearities g(xk, ηk) : R

n×R
n →

R
n and s(xk, ζk) : Rn × R

n → R
q satisfy g(0, ηk) = 0

and s(0, ζk) = 0, respectively, and are assumed to have
the following first moment for all xk:

E

{[

g(xk, ηk)

s(xk, ζk)

] ∣

∣

∣

∣

∣

xk

}

= 0 (4)

and the covariance given by

E







[

g(xk, ηk)

s(xk, ζk)

][

g(xj , ηj)

s(xj , ζj)

]T ∣

∣

∣

∣

∣

xk







= 0, k 6= j

E







[

g(xk, ηk)

s(xk, ζk)

][

g(xk, ηk)

s(xk, ζk)

]T ∣

∣

∣

∣

∣

xk







=
r

∑

i=1

Πi
kx

T
k Γ

i
kxk

(5)

where r is a knownpositive integer, Πi
k = diag

{

Π1i
k ,Π2i

k

}

and Γi
k (i = 1, 2, . . . , r) are known matrices with appro-

priate dimensions.

The initial state x0, the process noise ωk and the mea-
surement noise νk are mutually uncorrelated and have
the following statistical properties:

E {x0} = x̄0, E

{

(x0 − x̄0) (x0 − x̄0)
T
}

= P0|0,

E {ωk} = 0, E {νk} = 0,

E
{

ωkω
T
k

}

= Qk, E
{

νkν
T
k

}

= Rk,

(6)

where P0|0 > 0, Qk > 0 and Rk > 0 are known matrices
with appropriate dimensions.

The recursive filter to be designed is of the following
form:

x̂k+1|k = f
(

x̂k|k

)

, (7)

x̂k+1|k+1 = x̂k+1|k +Kk+1

[

yk+1 − Ξ̄k+1h
(

x̂k+1|k

)]

, (8)

where x̂k|k is the estimate of xk at time k with x̂0|0 = x̄0,
x̂k+1|k is the one-step prediction at time k, Kk+1 is the

filter gain to be determined, and Ξ̄k+1 := E{Ξk+1} :=
diag{µ1

k+1
, µ2

k+1
, . . . , µq

k+1
}.

The objective of this paper is to design a finite-horizon
filter of the structure (7)-(8) such that, for all stochastic
nonlinearities and multiple missing measurements, an

upper bound for the filtering error covariance is guaran-
teed, that is, there exists a sequence of positive-definite
matrices Σk+1|k+1 (0 ≤ k ≤ N) satisfying

E

{

(

xk+1 − x̂k+1|k+1

) (

xk+1 − x̂k+1|k+1

)T
}

≤ Σk+1|k+1.

(9)

Moreover, the designed filter gain Kk+1 is expected to
minimize the upper bound Σk+1|k+1 through a recursive
scheme.

Remark 1 In (2), h(xk) represents the sensor outputs
coupled with nonlinearities. In engineering practice, the
nonlinearities in the sensor outputs result primarily from
the sensor saturations due to finite register-length of dig-
ital hardware, and such kind of nonlinearities can be cov-
ered by the assumption made in (3). To be more spe-
cific, the assumption in (3) could encompass a number
of frequently occurred sensor-related nonlinearities such
as sector-bounded nonlinearities, quantization, overflow
nonlinearities, etc. Note that, under the same norm-
bounded assumption, the control and filtering problems
have been extensively investigated for nonlinear stochas-
tic systems, see e.g. [16,17].

Remark 2 In recent years, it is quite common that the
measurement signals are transmitted through a large
number of sensors in a network. Due to the limited
bandwidth of a network, the missing measurement phe-
nomenon may occur intermittently and the data-missing
probability may be different for individual sensor. In (2),
the multiple missing measurements (i.e., data missing
with multiple sensors) are taken into account, where the
diagonal matrix Ξk stands for the missing status for all
sensors as a whole and the random variable αi

k corre-
sponds to the ith sensor (i = 1, 2, . . . , q). As discussed
in [26], the random variable αi

k can take any value
over the interval [0, 1] and the probability for αi

k to take
different values may vary with the sensors. Moreover,
αi
k can obey any discrete probability distributions over

the interval [0, 1] that includes the Bernoulli (binary)
distribution as a special case. By considering the phe-
nomenon of the multiple missing measurements, the new
measurement model (2) is capable of describing the ac-
tual arrivals of the measured information from multiple
sensors especially when only partial data is missing.

Before proceeding further, we are in a position to intro-
duce the following lemmas which will be used in subse-
quent developments.

Lemma 1 [7] Let A = [aij ]p×p be a real-valued matrix
and B = diag{b1, b2, . . . , bp} be a diagonal random ma-
trix. Then

E{BABT } =













E{b21} E{b1b2} · · · E{b1bp}

E{b2b1} E{b22} · · · E{b2bp}
...

...
. . .

...

E{bpb1} E{bpb2} · · · E{b2p}













◦A

where ◦ is the Hadamard product.

Lemma 2 [28] Given matrices A, H, E and F with
appropriate dimensions such that FFT ≤ I. Let X be a

3



symmetric positive definite matrix and γ be an arbitrary
positive constant such that γ−1I−EXET > 0. Then the
following inequality holds

(A+HFE)X (A+HFE)
T

≤A
(

X−1 − γETE
)−1

AT + γ−1HHT .
(10)

Lemma 3 [23] For 0 ≤ k ≤ N , suppose that X =
XT > 0, Sk (X) = ST

k (X) ∈ R
n×n and Hk (X) =

HT
k (X) ∈ R

n×n. If

Sk (Y ) ≥ Sk (X) , ∀ X ≤ Y = Y T (11)

and

Hk (Y ) ≥ Sk (Y ) , (12)

then the solutions Mk and Nk to the following difference
equations

Mk+1 = Sk (Mk) , Nk+1 = Hk (Nk) , M0 = N0 > 0
(13)

satisfy

Mk ≤ Nk.

3 Main Results

In this section, we aim to establish a unified framework
to deal with the addressed filtering problem in the si-
multaneous presence of stochastic nonlinearities as well
as multiple missing measurements. The linearization is
firstly enforced to facilitate the later developments. Sub-
sequently, the one-step prediction error covariance and
the filtering error covariance are calculated so as to de-
sign the finite-horizon EKF, where special effort is made
to compensate the effects of multiple missing measure-
ments. Next, the upper bound of the filtering error co-
variance is presented and the filter gain is designed to
guarantee that such an upper bound is minimized.

To start with, let us denote the one-step prediction error
as x̃k+1|k = xk+1 − x̂k+1|k and the filtering error as
x̃k+1|k+1 = xk+1 − x̂k+1|k+1. Subtracting (7) from (1),
we have

x̃k+1|k = f (xk)− f
(

x̂k|k

)

+ g (xk, ηk) +Dkωk. (14)

By using the Taylor series expansion around x̂k|k, we
linearize f (xk) as follows:

f (xk) = f
(

x̂k|k

)

+Akx̃k|k + o(x̃2

k|k) (15)

where

Ak =
∂f (xk)

∂xk

|xk=x̂k|k

and o(x̃2

k|k) represents the high-order terms of the Taylor

series expansion. For presentation convenience, following

[6, 31], the high-order terms are transformed into the
following easy-to-handle formulation:

o(x̃2

k|k) = Bkℵ1,kLkx̃k|k (16)

where Bk is a problem-dependent scaling matrix, Lk is
introduced to provide an extra degree of freedom to tune
the filter, and ℵ1,k is an unknown time-varying matrix
accounting for the linearization errors of the dynamical
model that satisfies

ℵ1,kℵ
T
1,k ≤ I. (17)

It follows from (14)-(16) that

x̃k+1|k = (Ak +Bkℵ1,kLk) x̃k|k + g (xk, ηk) +Dkωk.
(18)

Similarly, by applying the Taylor series expansion for
h(xk+1) around x̂k+1|k, the innovation of the filter can
be obtained as follows:

ỹk+1

=yk+1 − Ξ̄k+1h
(

x̂k+1|k

)

=
(

Ξk+1 − Ξ̄k+1

)

h(xk+1) + Ξ̄k+1(Ck+1 + Ek+1

× ℵ2,k+1Lk+1)x̃k+1|k + s (xk+1, ζk+1) + νk+1

(19)

where

Ck+1 =
∂h (xk+1)

∂xk+1

|xk+1=x̂k+1|k
,

Ek+1 is a problem-dependent scaling matrix, and ℵ2,k+1

is an unknown time-varying matrix representing the lin-
earization errors of the dynamical model that satisfies

ℵ2,k+1ℵ
T
2,k+1 ≤ I. (20)

In this paper, as in [6], the deterministic matrices ℵ1,k,
ℵ2,k+1 and the scaling matrices Bk, Ek+1 are employed
to account for the linearization errors. For more details
we refer the reader to Appendix C of [6].
According to (8) and (19), the filtering error can be writ-
ten as:

x̃k+1|k+1

=
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

x̃k+1|k

−Kk+1

(

Ξk+1 − Ξ̄k+1

)

h(xk+1)

−Kk+1s (xk+1, ζk+1)−Kk+1νk+1.
(21)

Subsequently, in the light of (18) and (21), the covari-
ances for the one-step prediction error and filtering error
can be derived, respectively, in the following theorems.
Theorem 1 The one-step prediction error covariance
Pk+1|k is given by

Pk+1|k =(Ak +Bkℵ1,kLk)Pk|k (Ak +Bkℵ1,kLk)
T

+
r

∑

i=1

Π1i
k tr

(

E
{

xkx
T
k

}

Γi
k

)

+DkQkD
T
k .

(22)
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Proof: It can be shown that (22) follows directly from
(5)-(6) and (18), and therefore the proof is omitted for
conciseness.

Theorem 2 The filtering error covariance Pk+1|k+1

satisfies

Pk+1|k+1

=
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

Pk+1|k

×
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]T

+Kk+1

[

Ξ̆k+1 ◦ E
{

h(xk+1)h
T (xk+1)

}

+

r
∑

i=1

Π2i
k+1tr

(

E
{

xk+1x
T
k+1

}

Γi
k+1

)

+Rk+1

]

KT
k+1

(23)

where

Ξ̆k+1 = diag
{

(σ1
k+1)

2, (σ2
k+1)

2, . . . , (σq
k+1

)2
}

. (24)

Proof: Noting (21), we have

Pk+1|k+1

=E

{

x̃k+1|k+1x̃
T
k+1|k+1

}

=
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

Pk+1|k

×
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]T

+Kk+1E{
(

Ξk+1 − Ξ̄k+1

)

h(xk+1)h
T (xk+1)

×
(

Ξk+1 − Ξ̄k+1

)

}KT
k+1 +Kk+1E{s (xk+1, ζk+1)

× sT (xk+1, ζk+1)}K
T
k+1 +Kk+1E

{

νk+1ν
T
k+1

}

KT
k+1

− Pk+1 − P
T
k+1 − Qk+1 − Q

T
k+1 − Rk+1 − R

T
k+1

+ Xk+1 + X
T
k+1 + Yk+1 + Y

T
k+1 + Zk+1 + Z

T
k+1

(25)

where

Pk+1 =
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

×E
{

x̃k+1|kh
T (xk+1)

(

Ξk+1 − Ξ̄k+1

)}

KT
k+1,

Qk+1 =
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

×E
{

x̃k+1|ks
T (xk+1, ζk+1)

}

KT
k+1,

Rk+1 =
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

×E
{

x̃k+1|kν
T
k+1

}

KT
k+1,

Xk+1 =Kk+1E{
(

Ξk+1 − Ξ̄k+1

)

h(xk+1)

×sT (xk+1, ζk+1)}K
T
k+1,

Yk+1 =Kk+1E
{(

Ξk+1 − Ξ̄k+1

)

h(xk+1)ν
T
k+1

}

KT
k+1,

Zk+1 =Kk+1E
{

s (xk+1, ζk+1) ν
T
k+1

}

KT
k+1.

It is not difficult to show that the terms Pk+1, Qk+1,
Rk+1, Xk+1, Yk+1 and Zk+1 are all equal to zero. It
follows from (5)-(6) that (25) can be rewritten as:

Pk+1|k+1

=
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

Pk+1|k

×
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]T

+Kk+1E{
(

Ξk+1 − Ξ̄k+1

)

h(xk+1)h
T (xk+1)

×
(

Ξk+1 − Ξ̄k+1

)

}KT
k+1 +Kk+1

[ r
∑

i=1

Π2i
k+1

× tr
(

E
{

xk+1x
T
k+1

}

Γi
k+1

)

+Rk+1

]

KT
k+1.

(26)

By using the property of conditional expectation and
applying Lemma 1, the second term of the right-hand
side of (26) can be determined as follows:

E
{(

Ξk+1 − Ξ̄k+1

)

h(xk+1)h
T (xk+1)

(

Ξk+1 − Ξ̄k+1

)}

=Ξ̆k+1 ◦ E
{

h(xk+1)h
T (xk+1)

}

(27)

where Ξ̆k+1 is defined in (24). Then, from (26) and (27),
it can be concluded that (23) is true. The proof is now
complete.

Remark 3 In Theorem 2, the recursive form of the fil-
tering error covariance has been developed. Note that the
linearization is enforced to tackle the nonlinearities f(·)
and h(·). As such, (22) and (23) involve ℵ1,k and ℵ2,k+1

which add extra computational difficulty for the design of
filter gain. Actually, due to the consideration of the lin-
earization errors, it is literally impossible to obtain the
accurate value of the filtering error covariance Pk+1|k+1,
and a seemingly natural way is to design appropriate fil-
ter gain Kk+1 in order to guarantee an upper bound for
the filtering error covariance that can then be minimized
at each sampling instant.

Motivated by [32], in the following theorem, an upper
bound is provided for the filtering error covariance and
the filter gain is then designed to minimize such an upper
bound.

Theorem 3 Consider the covariance matrices of the
one-step prediction error and the filtering error in (22)
and (23). Assume that (17) and (20) are true. Let γ1,k,
γ2,k+1 and εj (j = 1, 2) be positive scalars. If the follow-
ing two discrete-time Riccati-like difference equations:

Σk+1|k

=Ak

(

Σ−1

k|k − γ1,kL
T
kLk

)−1

AT
k + γ−1

1,kBkB
T
k +DkQkD

T
k

+
r

∑

i=1

Π1i
k tr

{[

(1 + ε1)Σk|k +
(

1 + ε−1

1

)

x̂k|kx̂
T
k|k

]

Γi
k

}

(28)
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Σk+1|k+1

=
(

I −Kk+1Ξ̄k+1Ck+1

)

(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

×
(

I −Kk+1Ξ̄k+1Ck+1

)T
+ γ−1

2,k+1
Kk+1Ξ̄k+1Ek+1

× ET
k+1Ξ̄k+1K

T
k+1 +Kk+1

{

Ξ̆k+1 ◦ [2(a
2
1tr

(

Ωk+1|k

)

+ a22)I] +

r
∑

i=1

Π2i
k+1tr

(

Ωk+1|kΓ
i
k+1

)

+Rk+1

}

KT
k+1

(29)

with initial condition Σ0|0 = P0|0 > 0 have positive def-
inite solutions Σk+1|k and Σk+1|k+1 such that, for all
0 ≤ k ≤ N , the following two constraints

γ−1

1,kI − LkΣk|kL
T
k > 0, (30)

γ−1

2,k+1
I − Lk+1Σk+1|kL

T
k+1 > 0 (31)

are satisfied where

Ωk+1|k = (1 + ε2)Σk+1|k +
(

1 + ε−1

2

)

x̂k+1|kx̂
T
k+1|k,

(32)

then with the filter gain Kk+1 given by

Kk+1

=
(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

CT
k+1Ξ̄k+1

{

Ξ̄k+1

× Ck+1

(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

CT
k+1Ξ̄k+1

+ γ−1

2,k+1
Ξ̄k+1Ek+1E

T
k+1Ξ̄k+1

+ Ξ̆k+1 ◦
[

2
(

a21tr
(

Ωk+1|k

)

+ a22
)

I
]

+

r
∑

i=1

Π2i
k+1tr

(

Ωk+1|kΓ
i
k+1

)

+Rk+1

}−1

,

(33)

the matrix Σk+1|k+1 is an upper bound for Pk+1|k+1, i.e.,

Pk+1|k+1 ≤ Σk+1|k+1. (34)

Moreover, the filter gain Kk+1 given by (33) minimizes
the upper bound Σk+1|k+1.

Proof: To begin with, based on (22) and (23), rewrite the
covariancematricesPk+1|k andPk+1|k+1 as the functions
of Pk|k and Pk+1|k as follows:

Pk+1|k

(

Pk|k

)

=(Ak +Bkℵ1,kLk)Pk|k (Ak +Bkℵ1,kLk)
T

+

r
∑

i=1

Π1i
k tr

(

E
{

xkx
T
k

}

Γi
k

)

+DkQkD
T
k

Pk+1|k+1

(

Pk+1|k

)

=
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

Pk+1|k

×
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]T

+Kk+1

[

Ξ̆k+1 ◦ E
{

h(xk+1)h
T (xk+1)

}

+

r
∑

i=1

Π2i
k+1

× tr
(

E
{

xk+1x
T
k+1

}

Γi
k+1

)

+Rk+1

]

KT
k+1.

Then, it is not difficult to verify that the condition (11)
in Lemma 3 is satisfied.

Now, we are in a position to tackle the term of the right-
hand side of (22). Notice that the following elementary
inequality

(

ε
1
2

1 x̃k|k − ε
− 1

2

1 x̂k|k

)(

ε
1
2

1 x̃k|k − ε
− 1

2

1 x̂k|k

)T

≥ 0

yields

x̃k|kx̂
T
k|k + x̂k|kx̃

T
k|k ≤ ε1x̃k|kx̃

T
k|k + ε−1

1 x̂k|kx̂
T
k|k (35)

where ε1 > 0 is a scalar. Based on (35), the second term
of the right-hand side of (22) can be rearranged as

r
∑

i=1

Π1i
k tr

(

E
{

xkx
T
k

}

Γi
k

)

=

r
∑

i=1

Π1i
k tr

(

E

{

(

x̂k|k + x̃k|k

) (

x̂k|k + x̃k|k

)T
}

Γi
k

)

≤

r
∑

i=1

Π1i
k tr

{[

(1 + ε1)Pk|k +
(

1 + ε−1

1

)

x̂k|kx̂
T
k|k

]

Γi
k

}

.

(36)

Together with (22) and (36), we have

Pk+1|k

≤ (Ak +Bkℵ1,kLk)Pk|k (Ak +Bkℵ1,kLk)
T
+DkQkD

T
k

+
r

∑

i=1

Π1i
k tr

{[

(1 + ε1)Pk|k +
(

1 + ε−1

1

)

x̂k|kx̂
T
k|k

]

Γi
k

}

.

(37)

On the other hand, let us handle the terms of the right-
hand side of (23). It follows from (3) that

E
{

h (xk+1)h
T (xk+1)

}

≤E
{

‖h (xk+1) ‖
2
}

I

≤E

{

(a1‖xk+1‖+ a2)
2
}

I

≤
(

2a21E
{

‖xk+1‖
2
}

+ 2a22
)

I

=2
[

a21tr
(

E
{

xk+1x
T
k+1

})

+ a22
]

I.

(38)

Note that, when deriving (38), we have used the ele-
mentary inequality 2ab ≤ a2 + b2. Taking the following
inequality into consideration
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x̃k+1|kx̂
T
k+1|k + x̂k+1|kx̃

T
k+1|k

≤ε2x̃k+1|kx̃
T
k+1|k + ε−1

2
x̂k+1|kx̂

T
k+1|k

(39)

with ε2 > 0 being a scalar, we obtain

E
{

h (xk+1)h
T (xk+1)

}

≤2[a21tr(E{(1 + ε2) x̃k+1|kx̃
T
k+1|k +

(

1 + ε−1

2

)

× x̂k+1|kx̂
T
k+1|k}) + a22]I

=2[a21tr((1 + ε2)Pk+1|k +
(

1 + ε−1

2

)

× x̂k+1|kx̂
T
k+1|k) + a22]I.

(40)

Subsequently, by considering (23), (39) and (40), we have

Pk+1|k+1

≤
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]

Pk+1|k

×
[

I −Kk+1Ξ̄k+1 (Ck+1 + Ek+1ℵ2,k+1Lk+1)
]T

+Kk+1

[

Ξ̆k+1 ◦
(

2
[

a21tr
(

Ψk+1|k

)

+ a22
]

I
)

+

r
∑

i=1

Π2i
k+1tr

(

Ψk+1|kΓ
i
k+1

)

+Rk+1

]

KT
k+1

(41)

where

Ψk+1|k = (1 + ε2)Pk+1|k +
(

1 + ε−1

2

)

x̂k+1|kx̂
T
k+1|k.

Next, according to (28) and (29), we continue to rewrite
Σk+1|k and Σk+1|k+1 as the function of Σk|k and Σk+1|k

as follows:

Σk+1|k

(

Σk|k

)

=Ak

(

Σ−1

k|k − γ1,kL
T
kLk

)−1

AT
k + γ−1

1,kBkB
T
k +DkQkD

T
k

+

r
∑

i=1

Π1i
k tr

{[

(1 + ε1)Σk|k +
(

1 + ε−1

1

)

x̂k|kx̂
T
k|k

]

Γi
k

}

(42)

Σk+1|k+1

(

Σk+1|k

)

=
(

I −Kk+1Ξ̄k+1Ck+1

)

(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

×
(

I −Kk+1Ξ̄k+1Ck+1

)T
+ γ−1

2,k+1
Kk+1Ξ̄k+1Ek+1

× ET
k+1Ξ̄k+1K

T
k+1 +Kk+1

{

Ξ̆k+1 ◦ [2(a
2
1tr

(

Ωk+1|k

)

+ a22)I] +
r

∑

i=1

Π2i
k+1tr

(

Ωk+1|kΓ
i
k+1

)

+Rk+1

}

KT
k+1

(43)

where Ξ̆k+1 and Ωk+1|k are defined in (24) and (32),
respectively. Combining (37), (41), (42) and (43), we can
show that the condition (12) in Lemma 3 is satisfied.
Therefore, it follows from Lemmas 2-3 that

Pk+1|k+1 ≤ Σk+1|k+1.

Next, we are ready to show that the filter gain given
by (33) is optimal in the sense that it minimizes the
upper bound Σk+1|k+1. Taking the partial derivative of
Σk+1|k+1 with respect toKk+1 and letting the derivative
be zero, we have

∂tr
(

Σk+1|k+1

)

∂Kk+1

=− 2
(

I −Kk+1Ξ̄k+1Ck+1

)

(Σ−1

k+1|k − γ2,k+1L
T
k+1

× Lk+1)
−1CT

k+1Ξ̄k+1 + 2Kk+1

{

γ−1

2,k+1
Ξ̄k+1Ek+1

× ET
k+1Ξ̄k+1 + Ξ̆k+1 ◦

[

2
(

a21tr
(

Ωk+1|k

)

+ a22
)

I
]

+

r
∑

i=1

Π2i
k+1tr

(

Ωk+1|kΓ
i
k+1

)

+Rk+1

}

= 0.

Based on the above equation, the optimal filter gain
Kk+1 can be determined as

Kk+1

=
(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

CT
k+1Ξ̄k+1

{

Ξ̄k+1

× Ck+1

(

Σ−1

k+1|k − γ2,k+1L
T
k+1Lk+1

)−1

CT
k+1Ξ̄k+1

+ γ−1

2,k+1
Ξ̄k+1Ek+1E

T
k+1Ξ̄k+1

+ Ξ̆k+1 ◦
[

2
(

a21tr
(

Ωk+1|k

)

+ a22
)

I
]

+

r
∑

i=1

Π2i
k+1tr

(

Ωk+1|kΓ
i
k+1

)

+Rk+1

}−1

which is identical to (33). It is clear that the filter gain
given by (33) is optimal that minimizes the upper bound
Σk+1|k+1 for the filtering error covariance. This com-
pletes the proof.
Remark 4 The recursive EKF problem is solved in The-
orems 1-3 for a general class of discrete time-varying
nonlinear systems with stochastic nonlinearities andmul-
tiple missing measurements. Unlike most existing litera-
ture, the EKF scheme presented in this paper has an ad-
vantage to cope with the multiple missing measurements
where each sensor is allowed to have individual data miss-
ing probability especially when only partial information
is missing. Note that such a missing measurement phe-
nomenon is typically encountered in practical engineer-
ing systems including networked control systems. To han-
dle the emergence of multiple missing measurements, we
have made specific efforts to design a recursive filter and
derive the upper bound for the filtering error covariance
that are dependent on the individual missing probability.
Specifically, the Hadamard product has been applied to
facilitate the algorithm development. It is worth pointing
out that the related (first to third) terms in (29) caused
by multiple missing measurements and the fourth term in
(28)-(29) due to the consideration of stochastic nonlin-
earities constitute the main difference between our work
and the work of [32].
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Remark 5 In this paper, our focus is on the recur-
sive filter design problem for time-varying systems with
stochastic nonlinearities and multiple missing measure-
ments. Due to such a complicated time-varying nature,
we carry out the research for the finite-horizon case, that
is, we wish the filtering criteria to be satisfied over a
finite-horizon. Instead of the asymptotic behavior (over
an infinite-horizon), in this paper, we are only inter-
ested in the transient property over the finite-horizon
k ∈ [0, N ], i.e., the upper bound for the filtering er-
ror covariance is obtained at every sampling instant
k ∈ [0, N ], and such an upper bound is minimized by
properly designing the filter gain at each sampling in-
stant. Nevertheless, in case that the convergence analysis
of the proposed filter approach becomes a concern, as dis-
cussed in [13], some additional assumptions can be made
on the system parameters in order to ensure the global
boundedness of the estimation errors, which constitutes
one of our future research topics.
Remark 6 At each sampling instant, the filter gain
Kk+1 is designed in Theorem 3 to guarantee that the up-
per bound for the filtering error covariance is minimized.
The system (1)-(2) under consideration is comprehen-
sive that includes two phenomena of the stochastic non-
linearities and the multiple missing measurements, hence
reflects the reality more closely especially in a networked
environment. In our main results, these two phenomena
are dealt with in a unified yet effective framework and
are explicitly reflected in the design procedure. Specifi-
cally, the matrices Πij

k and Γj
k (i = 1, 2; j = 1, 2, . . . , r)

quantify the effects of the stochastic nonlinearities, and
the constants µi

k and σi
k (i = 1, 2, . . . , q) are there to

account for the multiple missing measurements. Fur-
thermore, the proposed filter is derived in terms of two
discrete Riccati-like difference equations, which are suit-
able for recursive computation in online applications. In
the next section, a simulation example is employed to
show the usefulness of the proposed filter scheme.

4 A Numerical Example

In this section, the effectiveness of the filtering algorithm
developed in this paper is demonstrated. A target track-
ing scenario is used to justify the potential applicability
of the designed filter scheme.
As analyzed in [24], consider a maneuvering target
that is accelerating with random bursts of gas from
its reaction control system thrusters. The state vector
could consist of the position and velocity of the target.
When tracking a maneuvering target through a radar
system equipped with an array of sensors communicat-
ing through a (possibly wireless) network, the multiple
missing phenomenon might occur due to the bandwidth
limit of the signal transmission channel, the sensors
aging and/or sensor temporal failure. Furthermore, the
system may contaminate with the stochastic nonlin-
earities owing to a variety of reasons such as random
failures and repairs of the components, changes in the
interconnections of subsystems, and sudden environ-
ment changes. For real-time tracking, the system pa-
rameters would have to be time-varying. Our objective
is, therefore, to design a filter such that, in the simulta-
neous presence of stochastic nonlinearities and multiple
missing measurements, an optimized upper bound for
the filtering error covariance is guaranteed.

Motivated by this background, we consider the follow-
ing discretized maneuvering target tracking system with
stochastic nonlinearities and multiple missing measure-
ments:

{

xk+1 = f(xk) + g(xk, ηk) +Dkωk

yk = Ξkh(xk) + s(xk, ζk) + νk

where

f(xk) =

[

0.8x1
k + x1

kx
2
k

1.5x2
k − x1

kx
2
k

]

, Dk =

[

0.01

0.03

]

,

h(xk) = 7.5 sin(x2
k),

and xk =
[

x1
k x2

k

]T

is composed of the position and

velocity of the target, ωk ∈ R and νk ∈ R are zero-mean
Gaussian white noises with covariances 0.05. Consider
the following the case of the probability density function
for Ξk:

p1k (s) =











0.05, s = 0

0.10, s = 0.5

0.85, s = 1

.

The expectation and variance can be easily calculated

as µ1
k = 0.9 and

(

σ1
k

)2
= 0.065.

The stochastic nonlinearities g(xk, ηk) and s(xk, ζk) are
chosen as follows:

g(xk, ηk) =

[

0.2

0.3

]

[0.3sign
(

x1
k

)

x1
kη

1
k + 0.4sign

(

x2
k

)

× x2
kη

2
k]

s(xk, ζk) =0.5
[

0.3sign
(

x1
k

)

x1
kζ

1
k + 0.4sign

(

x2
k

)

x2
kζ

2
k

]

where ηik and ζik (i = 1, 2) stand for zero-mean uncorre-
lated Gaussian white noises with unity covariances. It is
not difficult to verify that the above stochastic nonlin-
earities satisfy

E

{[

g(xk, ηk)

s(xk, ζk)

]
∣

∣

∣

∣

∣

xk

}

= 0,

E







[

g(xk, ηk)

s(xk, ζk)

][

g(xk, ηk)

s(xk, ζk)

]T ∣

∣

∣

∣

∣

xk







=







0.04 0.06 0

0.06 0.09 0

0 0 0.25






xT
k

[

0.09 0

0 0.16

]

xk.

In the simulation, set the initial value of estimation

as x̂0|0 = x̄0 =
[

1.8 0.2
]T

and Σ0|0 = 20I2. The

other parameters are chosen as Bk = diag{0.1, 0.2},

Ek+1 =
[

0.1 0.15
]T

, Lk = Lk+1 = 0.01I2, γ1,k =
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Fig. 2. MSE1 and its upper bound
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Fig. 3. MSE2 and its upper bound

0.002, γ2,k+1 = 0.002, ε1 = 0.4, ε2 = 0.35, a1 = 7.5
and a2 = 0.05. Let MSE1 denote the mean square
error (MSE) for the estimation of the first state, i.e.,

(1/K)
∑K

k=1

{[

1 0
]

(

xk − x̂k|k

)

}2

, where K is the

number of the samples. Similarly, MSE2 is the mean
square error for the estimation of the second state, i.e.,

(1/K)
∑K

k=1

{[

0 1
]

(

xk − x̂k|k

)

}2

.

According to (28), (29) and (33) in Theorem 3, the upper
bound of the filtering error covariance and filter gains
at every time step can be recursively calculated. There-
fore, the addressed filter design problem can be solved
by means of the proposed filter structure (7)-(8). The
simulation results are shown in Figs. 2-5. Among them,
Figs. 2-3 show the upper bounds Σ11

k|k and Σ22

k|k as well

as the MSE for the states x1
k and x2

k, which confirm that
the MSE stay below their upper bounds. Moreover, the
trajectories of the actual states xi

k and their estimates
x̂i
k (i = 1, 2) are plotted in Figs. 4-5, which illustrate

that the presented filter scheme can perform well to es-
timate the system states. This is due to the fact that we
have made specific efforts to compensate the effects of
the stochastic nonlinearities and multiple missing mea-
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surements.
Remark 7 As discussed in [31], the matrices Bk, Ek+1

and Lk are used to quantitatively characterize the upper
bound of the linearization errors obtained from the Taylor
series expansion for the nonlinearities. Accordingly, by
taking the inequalities (17) and (20) into consideration,
the high-order terms in the Taylor series expansions can
be approximated. In the simulation, we set the matrix Lk

as δkI (δk is a positive constant) in order to enhance the
feasibility of (30) and (31), and then we can always adjust
the values of scaling matrices Bk and Ek+1 to guarantee
the inequalities (17) and (20). Specifically, it is worth
mentioning that we can simply set Bk = 0 and Ek+1 = 0
if the effects of the linearization errors are negligible for
some problems.

5 Conclusions

In this paper, we have made one of the first few attempts
to design the finite-horizon EKF for a class of time-
varying systems with stochastic nonlinearities and mul-
tiple missing measurements. The stochastic nonlineari-
ties described by statistical means have been taken into
account. The phenomenon of multiple missing measure-
ments has been described by any discrete-time distribu-
tionswith knownprobability density function. A series of

9



mutually independent random variables has been intro-
duced to characterize the operation behavior of each sen-
sor. By means of the Riccati-like equation approach, we
have designed the EKF such that, for both the stochas-
tic nonlinearities and multiple missing measurements,
the upper bound of the filtering error covariance exits
and is then minimized by properly designing the filter
gain at every sampling instant. Finally, the effectiveness
and applicability of the developed algorithm has been
demonstrated by an illustrative simulation example.
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