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Multi-realization of nonlinear systems

Steven W. Su, Brian D.O. Anderson, Weidong Chen, and Hung T. Nguyen

Abstract— The system multi-realization problem is to find a
state-variable realization for a set of systems, sharing as many
parameters as possible. A multi-realization can be used to ef-
ficiently implement a multi-controller architecture for multiple
model adaptive control. We extend the linear multi-realization
problem to nonlinear systems. The problem of minimal multi-
realization of a set of MIMO systems is introduced and solved
for feedback linearizable systems.

I. I NTRODUCTION

For the implementation of multiple model adaptive con-
trol (MMAC) [1] [2] [6] [14] using switching between a
finite number of distinct controllers [12] [13], Morse [12]
[13] proposed (for the SISO case) a new concept, viz. the
multi-controller can be efficiently implemented by using a
parameter-dependent feedback structure around a single fixed
set of components of the controller. As argued in [12],
because at any instant of time only one of the finite set
of possible controllers is to be applied to the plant, it is
only necessary to generate one candidate control signal. Then
instead of implementing each of the controllers in the family
as a separate dynamic system, one can often achieve the same
results using a single controller with adjustable parameters,
viz. the multicontroller.

This implementation strategy motivates the multi-
realization problem [4] [18]. In standard linear system re-
alization, we only need to find a state space realization to
realize one transfer function. For a multi-realization, we need
to find a parameter-dependent state space description for a
finite collection of systems, which may be those of the family
of controllers.

Most literature on system realization deals with the im-
plementation of a single linear time-invariant (LTI) system
[3] [5] [8] [11] [20] [21] based on one of a state space
description approach or matrix fraction description approach.
Morse [12] presented some results for the multi-realization
of several linear SISO systems in the context of examining
MMAC for scalar plants. Papers [4] [18] investigate the
multi-realization of several linear multiple input multiple out-
put (MIMO) systems. The results are applicable to MMAC
problems for linear MIMO plants. In this paper, we give
a modest extension to the nonlinear case. Specifically, we
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consider the multi-realization of a finite set of feedback
linearizable systems [7] [15].

In the next section, we recall the result on multi-realization
of a set of linear SISO systems by state sharing and feedback.
In Section III, we introduce the problem of feedback multi-
realization of a set of nonlinear systems, and present the
result on minimal multi-realization of a set of feedback
linearizable nonlinear systems. Two illustrative examples are
given in Section IV.

II. M ULTI -REALIZATION FOR LINEAR SISOSYSTEMS

Suppose that it is desired to implement a finite number of
SISO linear proper rational systems with transfer functions
κi(s) = ni(s)

di(s)
(i ∈I ), where(ni(s),di(s)) are coprime polyno-

mials. Assuming an upper boundn for the McMillan Degree
of the κi(s), it is shown in [12] that we can always find an
n-dimensional controllable pair(A0,b0) with Re{λi(A0)}< 0
such that{A0 +b0kqi ,b0,cqi ,dqi} is a state space realization
of each transfer functionκi(s), with corresponding adjustable
parameterskqi ∈ Rn,cqi ∈ R1×n,dqi ∈ R, i ∈ {1,2, . . . ,N}.
There is a MIMO generalization of the problem, see [4] [18]
and we will return to this later.

III. E XTENSION TO NONLINEAR SYSTEMS

Firstly, we introduce some basic notation and facts of
differential geometry drawn from [7] and [15].

A. Some notations in differential geometry

A smooth vector f ield f, defined on an open setU of Rn,
can be intuitively interpreted as a smooth mapping assigning
then-dimensional vectorf (x) to each pointx of U . Suppose
now that d smooth vector fieldsf1, · · · , fd are given, all
defined on the same open setU and note that, at any fixed
point x in U , the vectorsf1(x), · · · , fd(x) span a vector space
(a subspace of the vector space in which all thefi(x)′s are
defined, i.e. a subspace ofRn). Let this vector space, which
depends onx, be denoted by∆(x), i.e. set

∆(x) = span{ f1(x), · · · , fd(x)}
and note that, in doing this, we have essentially assigned
a vector space to each pointx of the setU . The object
thus characterized, namely the assignment of the subspace
spanned by the values atx of some smooth vector fields
defined onU , is called asmooth distribution.

Next, we recall some facts about Lie derivatives of func-
tions (155-156 in [15]).

Given a smooth vector-fieldX on Rn and a smooth
function h on Rn the Lie derivative ofh with respect to



X is the function

LXh(x) = X(h)(x) =
∂h
∂x

(x) ·X(x).

Similarly the functionsLk
Xh are defined as follows. By

convention we setL0
Xh(x) = h(x) and inductively fork≥ 1,

Lk
Xh(x) = LX(Lk−1

X h)(x).

Analogously for a smooth mappingh : Rn 7→ Rp

we define Lk
Xh(x) = Lk

Xh component-wise, i.e.Lk
Xh =

(Lk
Xh1, · · · ,Lk

Xhp)T . For the nonlinear system

P :

{
ẋ = f (x)+g(x)u x∈Rnx,u∈Rm

y = h(x) y∈Rp,
(1)

we introduce (in the local coordinatesx) the mapping

Wk(x) =




h(x)
L f h(x)
...
Lk−1

f h(x)


 . (2)

For any two vector-fields off andg onRn, the Lie bracket
[ f ,g] is a vector field as given in [17]

[ f ,g] =
∂g
∂x

f − ∂ f
∂x

g

We define the repeated Lie bracketadk
f g, k = 0,1,2, · · · ,

inductively asadk
f g = [ f ,adk−1

f g], k≥ 1, with ad0
f g = g

A set of vector fields{X1, · · · ,Xm} is said to be involutive
if there are scalar fieldsαi jk such that

[Xi ,Xj ] =
m

∑
k=1

αi jkXk.

A multivariable nonlinear system of the form (1) has a
(vector) relative degree[7] {r1, r2, · · · , rm} at a pointx0 if

i)

Lg j L
k
f hi(x) = 0

for all 1≤ j ≤m, for all 1≤ i ≤m for all 0≤ k < r i−1, and
for all x in a neighbourhood ofx0, and

ii) the m×m matrix

A(x) =




Lg1Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)
Lg1Lr2−1

f h2(x) · · · LgmLr2−1
f h2(x)

· · · · · · · · ·
Lg1Lrm−1

f hm(x) · · · LgmLrm−1
f hm(x)




is non-singular atx = x0.
More detailed statements about differential geometry and

fundamentals of nonlinear control can be found in [7], [9],
and [15].

B. Multi-realization problem for nonlinear systems

We first define the problem of finding a multi-realization
of a set of nonlinear systems as an extension of the linear
multi-realization problem.

Definition 1: Assume that there are given a number of
m-input p-output nonlinear systemsPi (i ∈ {1,2, . . . ,N})
described by

Pi :

{
ẋ = fi(x)+gi(x)u x∈Rnix ,u∈Rm

y = hi(x) y∈Rp.
(3)

Provided that a state space description

P̃i :

{
ξ̇ = fs0(ξ )+gs0(ξ )vqi ξ ∈Rnξ ,vqi ∈Rm

y = hs0qi (ξ ) y∈Rp.
(4)

with coordinate transformation (a smooth invertible transfor-
mation x = Φi(ξ ) in a neighborhood ofξ0 [7]) and state
feedback (vqi = αqi (ξ ) + βqi (ξ )u) can “realize” (locally or
globally) each systemPi (thus the functionsαqi (ξ ), βqi (ξ )
and hsoqi (ξ ) are adjustable whilefs0 and gs0 remain fixed),
then we call the state space description (4) a multi-realization
of the set of systemsPi (i ∈ {1,2, . . . ,N}). If the unforced
systemξ̇ = fs0(ξ ) is asymptotically stable, we say that the
state space description (4) is astably-basedmulti-realization
of the set of systemsPi (i ∈ {1,2, . . . ,N}).

Furthermore, if the dimension of the system̃Pi (nξ ) is
the smallest of all suchstably-basedmulti-realizations, then
we call the state space description (4) aminimal stably-
based multi-realization of the set of nonlinear systemsPi

(i ∈ {1,2, . . . ,N}).
Note 1: In the statement of Definition 1, the word “re-

alize” means that system̃Pi can be transformed intoPi by
means of feedback and change of coordinates in the state
space.

The problem of multi-realization of nonlinear systems
is obviously more complicated and difficult than in the
linear case, especially the nonlinear minimalstably-based
multi-realization problem. In the next section, we will only
consider a special nonlinear multi-realization problem: the
multi-realization of state equations of feedback linearizable
nonlinear systems.

C. The multi-realization of state equations of feedback lin-
earizable nonlinear systems

Problem 1: Assume that there are given a number of state
equations (without output equations) of nonlinear systemsPi

(i ∈ {1,2, . . . ,N}) described by

Pi : ẋ = fi(x)+gi(x)u x∈Rnix ,u∈Rm. (5)

Find a state equation (6)

P̃i : ξ̇ = A0ξ +B0vi ξ ∈Rnξ ,vi ∈Rm. (6)

with coordinate transformation (a smooth invertible transfor-
mationx= Φi(ξ ) in a neighborhood ofξ0) and state feedback
(vi = αi(ξ )+ βi(ξ )u) to “realize” (locally or globally) each
state equation (5), where the functionsαi(ξ ) and βi(ξ )
are adjustable. Further,A0 is required to be stable (i.e. all



eigenvalues should lie in the open left half plane) and be of
smallest possible dimension.

Note 2: 1) The state feedback

vi = αi(ξ )+βi(ξ )u

in which

αi(ξ )=




αi1(ξ )
αi2(ξ )

...
αim(ξ )


 , βi(ξ )=




βi11(ξ ) · · · βi1m(ξ )
· · · · · · · · ·

βim1(ξ ) · · · βimm(ξ )




are anm×1 vector and, respectively, anm×m matrix, and
the entries ofαi(ξ ) andβi(ξ ) are smooth functions defined
on an open subset ofRn. In the following discussions, we
also assume that the matrixβi(ξ ) is nonsingular for allξ .
Accordingly, the feedback is called a “regular static state
feedback” [7].

2) In the statement of Problem 1, the word “realize”
means that the state equation (5) can be constructed by
selectingsome or all transformed (feedback and change
of coordinates) states of the state equation (6). Hence, it is
obvious thatnξ ≥ nix,∀i ∈ {1,2, · · · ,N}.

In order to solve Problem 1, we present some results about
feedback linearizable systems from [7].

Firstly, we introduce the so-called “State Space Exact
Linearization Problem” [7].

Problem 2: Given a state equation (without output equa-
tion) of a nonlinear systemP described by

P : ẋ = f (x)+g(x)u, (7)

and an initial statex0, find (if possible), a neighborhoodU
of x0, a pair of feedback functionsα(x) andβ (x) defined on
U , a coordinate transformationξ = Φ(x) also defined onU ,
a matrixA∈Rn×n and a matrixB∈Rn×m, such that

[ ∂Φ
∂x ( f (x)+g(x)α(x))]x=Φ−1(ξ ) = Aξ (8)

[ ∂Φ
∂x (g(x)β (x))]x=Φ−1(ξ ) = B (9)

and
rank(BAB· · · An−1B) = n.

The following results for the “State Space Exact Lineariza-
tion Problem” are directly from [7].

Lemma 1:Suppose the matrixg(x0) has rankm. Then,
the “State Space Exact Linearization Problem” is solvable if
and only if there exist a neighborhoodU of x0 and m real-
valued functionsh1(x), · · · ,hm(x) defined onU , such that the
system {

ẋ = f (x)+g(x)u
y = h(x) (10)

has some relative degree{r1, r2, · · · , rm} at x0 and r1 + r2 +
· · ·+ rm = n.

Furthermore, the matricesA and B in equation (8) and
equation (9) of Problem 2 could be in the form (Brunowsky
canonical form):

A = diag{A1,A2, · · · ,Am},
B = diag{b1,b2, · · · ,bm}, (11)

whereAi is the r i × r i matrix

Ai =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0




,

andbi is the r i ×1 vector

bi = [0, · · · ,0,1]T .
Proof: See Page 246-248 in [7].

Note 3: 1) From Lemma 1, we can see that the con-
trollable pair{A,B} of the feedback linearized system has
controllability indices{r1, r2, · · · , rm}; this set is invariant
under state feedback, input transformation, and coordinate
transformation.

2) It is easily checked that the order of two transformations
(state feedback and coordinate transformation) used to obtain
the linear form can be interchanged (see Remark 2.1 in Page
158-159 of [7]).

The geometric conditions for the solution of “State Space
Exact Linearization Problem” are presented in the following
lemma [7].

Lemma 2:Suppose the matrixg(x0) has rankm. Then,
there exists a neighborhoodU of x0 and m real-valued
functionsλ1(x),λ2(x), · · · ,λm(x) defined onU , such that the
system {

ẋ = f (x)+g(x)u
y = λ (x) (12)

has some relative degree{r1, r2, · · · , rm} at x0, with

r1 + r2 + · · ·+ rm = n,

if and only if
i) for each0≤ l ≤ n−1, the distributionGl defined below

has constant dimension nearx0;
ii) the distributionGn−1 has dimensionn;
iii) for each0≤ l < n−1, the distributionGl is involutive.
Here,

G0 = span{g1, · · · ,gm}
G1 = span{g1, · · · ,gm,adf g1, ...,adf gm}

...
Gl = span{adk

f g j : 0≤ k≤ l ,1≤ j ≤m}.
(13)

Proof: See Page 249-256 in [7].
Note 4: (1)This lemma presents geometric conditions for

the solvability of the “State Space Exact Linearization Prob-
lem”.

(2)The relative degreesr1, r2, · · · , rm are directly iden-
tified in terms of the dimensions of the distributions
G0,G1, · · · ,Gn−2 (see Remark 2.7 in Page 256 of [7]).
Therefore, the relative degreesr1, r2, · · · , rm are invariant
under feedback and coordinate transformation. Furthermore,
the relative degrees are equal to the controllability indices of
the controllable pair(A0,B0) for the linearized systems (see
Note 3).



Now that the conditions for “State Space Exact Lin-
earization Problem” are clear, the next step returns to the
problem of multi-realization of a set of linear systems by
using state feedback, input transformation and coordinate
transformation.

Now, we give a definition for the minimalstably-based
multi-realization (with input transformation) for a set of
linear systems.

Definition 2: Assume that there are given a number ofm-
input p-output strictly proper real rational transfer function
matricesPi (i ∈ {1,2, . . . ,N}). Provided that there exist state-
variable realizations{A0 + B0Kqi ,B0Gqi,Cqi} (with the pair
(A0,B0) being controllable) that can realize all the systems
Pi with adjustable parametersCqi , Kqi and Gqi, then we
call {A0 + B0Kqi ,B0Gqi,Cqi} a multi-realization (with input
transformation) of the set of systemsPi (i ∈ {1,2, . . . ,N}). If
all eigenvalues ofA0 are in the left half plane, we say that
{A0 + B0Kqi ,B0Gqi,Cqi} is a stably-based multi-realization
(with input transformation) of the set of systemsPi (i ∈
{1,2, . . . ,N}). Furthermore, if the dimension ofA0 is the
smallest of all such stably-based multi-realizations, then we
call {A0 + B0Kqi ,B0Gqi,Cqi} a minimal stably-based multi-
realization (with input transformation) of the set of systems
Pi (i ∈ {1,2, . . . ,N}). We now develop preliminary results
used in proving the first Theorem below, which characterizes
the minimal dimensionA0 in a stably-based multi-realization.

Lemma 3:Assume given a number ofm-input p-output
strictly proper linear systemsPi (i ∈{1,2, . . . ,N}). Then there
exists a controllable pair(A0,B0) (A0 ∈Rn×n, B0 ∈Rn×m),
and appropriately dimensioned real matricesCqi , Kqi and
Gqi (for i ∈ {1,2, . . . ,N}) such thatA0 is stable, and{A0 +
B0Kqi ,B0Gqi,Cqi} is a controllable realization of systemPi

(for i ∈ {1,2, . . . ,N}), if and only if there exists a state space
realization{Ai ∈ Rn×n,Bi ∈ Rn×m,Ci ∈ Rp×n} (where the
pair (Ai ,Bi) is controllable, andBi has full column rank.) for
each systemPi such that all controllable pairs(Ai ,Bi) (for
each i ∈ {1,2, . . . ,N}) have identical controllability indices
sets as{d1,d2, . . . ,dm} (without ordering requirement).

Proof: See Theorem 3 and its related remarks in Pages
260-261 of [16]. The unordered controllability indices are in-
variant under feedback, input transformation and coordinate
transformation. This shows the condition of the theorem is
necessary.

Now, we prove the sufficiency. According to item (1)-
(9) in Page 507-508 of [8] (and Theorem 3 in Page 260-
261 of [16]), we can find a controller form realization
{A′0 + B0K′

qi
,B0Gqi,Cqi} for each systemPi with {A′0,B0}

controllable by adjusting parametersK′
qi

, Gqi andCqi . Fur-
thermore, if A′0 is not stable, we can select a stableA0

and a new adjustable feedback gain matrixKqi such that
A′0 + B0K′

qi
= A0 + B0Kqi because{A′0,B0} is controllable.

Thus, we can construct a state-variable description{A0 +
B0Kqi ,B0Gqi,Cqi} which is a (multi-) realization of system
Pi (for i ∈ {1,2, . . . ,N}).

Lemma 3 provides the necessary and sufficient condi-
tion for multi-realization of a set of linear systems by a
state-variable realization{A0 + B0Kqi ,B0Gqi,Cqi} with the

dimension of A0 fixed to n. If the dimension ofA0 is
not fixed to n, the necessary and sufficient condition in
Lemma 3 can be fulfilled by dimension augmentation of
each controllable pair(Ai ,Bi) to ensure all(Ai ,Bi) (for each
i ∈ {1,2, . . . ,N}) have identical controllability indices sets
as{d1,d2, . . . ,dm} (without ordering requirement). Certainly,
the minimal dimension augmentation is desired, and this is
not difficult to achieve. The key to doing this is the following
two lemmas; the first of these is only used within the proof
of the second.

Lemma 4:Let {di1,di2} for i = 1,2, . . . ,N denoteN pairs
of positive integers. Let{r i1, r i2} denote the pair{di1,di2}
possibly reordered, withr i1 ≤ r i2. Then,

2

∑
j=1

max
1≤i≤N

(di j )≥
2

∑
j=1

max
1≤i≤N

(r i j ). (14)

Proof: Denote

sd1 = max1≤i≤N(di1),
sd2 = max1≤i≤N(di2).

(15)

Without loss of generality, assumesd1 ≥ sd2. Then it is
obvioussd1 = max1≤i≤N(r i1, r i2) = max1≤i≤N(r i2), andsd2 ≥
max1≤i≤N(r i1).

Hence, we have

sd1 +sd2 =
2

∑
j=1

max
1≤i≤N

(di j )≥
2

∑
j=1

max
1≤i≤N

(r i j ).

Lemma 5:Let Di = {di1,di2, · · · ,dim} for i = 1,2, . . . ,N
denote N sets of m positive integers, and letRi =
{r i1, r i2, · · · , r im} denote an ordering in which ther i j increase
with j. Then,

m

∑
j=1

max
1≤i≤N

(r i j )≤
m

∑
j=1

max
1≤i≤N

(di j ). (16)

Proof: For each setDi and a fixed integerq ∈
{1,2, · · · ,m}, denote

sdq = max1≤i≤N(diq), i ∈ {1,2, · · · ,N}. (17)

Then the right hand side of (16) can be rewritten as

∑m
j=1max1≤i≤N(di j ) = ∑m

j=1sd j . (18)

For any two fixed integersk, l ∈ {1,2, · · · ,m}, we have

sdk +sdl = max1≤i≤N(dik)+max1≤i≤N(dil ), i ∈ {1,2, · · · ,N}.
(19)

Without loss of generality, assumesdk ≥ sdl . If for someDi ,
dik ≥ dil , keepdik in thekth position anddil in the lth position.
Otherwise, ifdik ≤ dil , adjustdik to in the lth position and
dil to in the kth position. We denote the reordered set as
D̃i = {d̃i1, d̃i2, · · · , d̃im} and set

sd̃q
= max1≤i≤N(d̃iq), i ∈ {1,2, · · · ,N}.

According to Lemma 4, we have

sd̃k
+sd̃l

≤ sdk +sdl .



Repeat this adjustment for every two integersk, l ∈
{1,2, · · · ,m}. Then, after all these adjustments, the setDi

will have been re-ordered as setRi . Hence, we have

m

∑
j=1

max
1≤i≤N

(r i j )≤
m

∑
j=1

max
1≤i≤N

(di j ). (20)

A more general case of the above lemma appears as
TheoremD.7.a in Page 155 of [10].

Theorem 1:Assume givenN distinct m-input p-output
systemsPi (i ∈ {1,2, · · · ,N}) described byAi ∈Rni×ni , Bi ∈
Rni×m and Ci ∈ Rp×ni , and suppose that the pairs(Ai ,Bi)
and (Ci ,Ai) are controllable and observable, andBi has full
column rank. Further, assume the controllability indices for
the pair (Ai ,Bi) are di1,di2, · · · ,dim, and define the ordered
set {r i1, r i2, r i3, . . .} to be the set of controllability indices
reordered so that

r i1 ≤ r i2 ≤ ·· · ≤ r im,∀ i ∈ {1,2, · · · ,N}.
Then the dimension of the minimal stably-based multi-
realization (with input transformation) of the set of systems
Pi (i ∈ {1,2, · · · ,N}) is equal to

n̄ =
m

∑
j=1

max
1≤i≤N

(r i j ).

Proof: The proof of this theorem is based on Lemma 3
and Lemma 5. Based on Lemma 3 we can prove the existence
of a stably-based multirealization with dimension̄n. From
Lemma 5 we can derive that̄n is minimal. Specifically,
according to Lemma 3, to obtain a stably-based multi-
realization with the fixed dimension̄n, we need to find a
state space realization,{Āi ∈Rn̄×n̄, B̄i ∈R n̄×m,C̄i ∈Rp×n̄}
(with the pair (Āi , B̄i) controllable, andB̄i of full column
rank) for each systemPi such that all the controllable pairs
(Āi , B̄i) (i ∈ {1,2, . . . ,N}) have an identical controllability
indices set as{d̄1, d̄2, . . . , d̄m} (without order requirement)
andd̄1+ d̄2+ · · ·+ d̄m = n̄. Now, if we defined̄ j = max

1≤i≤N
(r i j ),

then it is easy to check that̄d1 + d̄2 + · · ·+ d̄m = n̄. For
any systemPi , the ordered set{r i1, r i2, r i3, . . . r im} of con-
trollability indices for the pair(Ai ,Bi) satisfies r i j ≤ d̄ j .
Then it is possible to increase controllability indices by
dimension augmentation so that the pair(Ai ,Bi) is replaced
by a pari (Āi , B̄i) for which the controllability indices are
{d̄1, d̄2, · · · , d̄m}. To see this, consider a right polynomial
matrix fraction description (MFD)NEi(s)D−1

Ei (s) of system
Pi , whereDEi(s) is a Popov polynomial matrix [8]. Based
on Theorem 1 in [4], the augmentation of controllability
indices can be implemented by right multiplication using a
stable diagonal polynomial matrix of bothNEi(s) andDEi(s).
The reordering of the controllability indices can be achieved
by simply using an input transformation matrixGqi. By
usingGqi, the pivot indices of the Popov polynomial matrix
DEi(s) can be adjusted so that the controllability indices are
reordered (In Example 1 of this paper, see the next section,
the controllability indices of the linearized model of the first
systemP1 are increased by dimension augmentation. The

controllability indices of the linearized model of the second
systemP2 are reordered by using an input transformation).

Now that the existence of an̄n-th order stably-based multi-
realization (with input transformation) has been proved, we
only need to provēn is minimal. The minimality is however
easily proved by using Lemma 5, which deals with an
equivalent problem of finding the minimal summation of
several sets of integer numbers. Specifically, if we treat each
di j in Lemma 5 as the controllability indices of systemPi in
this theorem, then the proof of minimality is straightforward.

Lemma 1 and 2 solve the “State Space Exact Linearization
Problem”. They provide the conditions based on which a
nonlinear system can be linearized by using “regular static
state feedback”and coordinate transformation. Then, based
on Lemma 3 and Theorem 1, we can give the answer for
Problem 1, requiring multi-realization of state equations of
a finite set of feedback linearizable nonlinear systems.

Theorem 2:(Main Result) Suppose the matrices
gi(x0),∀i ∈ {1,2, · · · ,N} in equation (5) of Problem 1
have rankm. Then, Problem 1 is solvable if and only if the
following equivalent conditions (a) or (b) hold:

(a) For each systemPi (described by equation (5)), there
exist a neighborhoodU of x0 and m real-valued functions
hi1(x), · · · ,him(x) defined onU , such that the system

{
ẋ = fi(x)+gi(x)u
y = hi(x)

(21)

has some relative degree{r i1, r i2, · · · , r im} atx0 andr i1+r i2+
· · · ,+r im = ni .

(b) i) for each i ∈ {1,2, · · · ,N} and l ∈ {1,2, · · · ,n−1},
the distributionGil defined below has constant dimension
nearx0;

ii) the distributionGi,n−2 (i ∈ {1,2, · · · ,N}) has dimension
n;

iii) for each i ∈ {1,2, · · · ,N} and l ∈ {1,2, · · · ,n−2}, the
distributionGil is involutive.

Here,

Gi0 = span{gi1, · · · ,gim}
Gi1 = span{gi1, · · · ,gim,adfi gi1, ...,adfi gim}

...
Gil = span{adk

fi
gi j : 0≤ k≤ l ,1≤ j ≤m}.

(22)

Furthermore, the smallest possible dimension for equation
(6) to realize (locally or globally) each state equation (5) is
equal to

n̄ =
N

∑
i=1

max
1≤ j≤m

(r i j ).

Proof: From Lemma 1 and 2, we conclude that the set
of nonlinear state space equations (see equation (5) ) can be
expressed as linear state space equations (with feedback and
coordinate transformation) if and only if Conditions i), ii) and
iii) are satisfied. Then, according to Lemma 3 and Theorem
1, we can find a minimal stably-based multi-realization for
these linearized systems. Further, considering that the state
feedback and coordinate transformation are interchangeable



(see Note 3), we conclude that Problem 1 is solvable if the
conditions of (a) and (b) hold.

Because Conditions i), ii) and iii) of b) are necessary for
the set of nonlinear state space equations (see equation (5)
) to be linearizable using feedback and coordinate transfor-
mation, they are necessary for the solvability of Problem 1

IV. EXAMPLE

We build a block diagram (Fig. 1) to illustrate the imple-
mentation of the proposed multirealization structure. Here,
we use the symbols and notations given in Definition 1. In
distinction to typical labelling conventions in a linear block
diagram, in Fig. 1, a block “f (·)” means “y= f (u)”, while a
block “ f (ξ )” means “y = f (ξ ) ·u”. This structure has been
implemented by using Matlab Simulink for the control in the
following example.
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Fig. 1. The block diagram of the proposed stably-based state sharing
multirealization structure.

Example 1:We first consider the multirealization of non-
linear lag-lead networks proposed in [19]. As pointed in [19],
sometimes multiple desired system specifications cannot be
satisfied simultaneously using classical linear control (purely
linear compensation) methods. For example, in order to limit
the absolute amount of overshoot in a step response, the clas-
sical linear system is often designed to be overdamped (with
slow transient response), i.e. with linear control simultaneous
constraints on step response rise time and overshoot may not
be achievable. In this example, we will show it is possible to
decrease both rise time and overshoot by switching between
different types of controllers. The main strategy involves
using a fast controller during the rise period, and switching
to a slow controller when output is close to steady state. This
paper does not attempt to prove that the control performance
of switching between nonlinear controllers is superior to that
of linear controllers. However, it does provide more options
for switching controller selection and proposed stably-based
multirealization approach to implement switching between
controllers which are not necessarily linear.

Example 1 in [19] provided three controllers:C1 (linear
compensator),C2 (nonlinear lag compensator) andC3 (non-
linear lag-lead compensator). That is:

C1 :

{
ẋ =− 1

α x+ k
α u

y = x,

C2 :

{
ẋ =− 1

α x+ k
α (u− 1

kx3)
y = x,

C3 :

{
ẋ =− 1

α x+ k
α (u− 1

kx3)
y = (1−β )[x+x3]−kβu.

In this particular example, the slow controller is a non-
linear lag compensatorC2 (equation (2.1) in [19]). The
other two controllersC1 and C3 are relatively fast. We
implement two switching controllers. The first one is the
controller which switches from the linear compensatorC1

(fast controller) to the nonlinear lag compensatorC2. The
second one switches from the nonlinear lag-lead compensator
C3 (a fast controller given in equation (2.2) in [19]) to
the nonlinear lag compensatorC2. The switching between
controllers happens when the system output is close to the
reference input.

It is easy to check the relative degrees of these three
controllers are all less than1. Thus, the minimal dimension
of the multirealization is̄n = 1.

Then P̃i (see Definition 1) can be easily constructed as
follows:

ξ̇ =− 1
α

ξ +
k
α

vqi.

To implementC1, we can use the following settings:




vq1 = αq1(ξ )+βq1(ξ )u = u
x = φ1 (ζ ) = ζ
y = h1 (x) = x = hsoq1 (ζ ) = ζ .

To implementC2, we can use the following settings:




vq2 = αq2(ξ )+βq2(ξ )u =−1
kζ 3 +u

x = φ2 (ζ ) = ζ
y = h2 (x) = x = hsoq2 (ζ ) = ζ .

To implementC3, we can use the following settings:




vq3 = αq3(ξ )+βq3(ξ )u =−1
kζ 3 +u

x = φ3 (ζ ) = ζ
y = h3 (x) = (1−β )[x+x3]−kβu
= hsoq3 (ζ ) = (1−β )[ζ +ζ 3]−kβu.

It should be noted that as the output equationhi(·) does not
change (y = x) for the first switching controller, bumpless
transfer can be achieved. For the second switching controller,
on the other hand, as the output equation changes during
switching, bumpless transfer cannot be guaranteed. However,
the state values are continuous during switching for the two
switching controllers as their states are shared. It should be
noted that a (control affine) single state controller always
satisfies the conditions in Theorem 2. In practice, low order
controllers are often the first options.

During simulation, the reference input is selected as5, and
the switching point is selected at4.5 (90 percent of reference
input). The parameters of the three controllers and system
models are all the same as in Example 1 of [19], which
ensures the stability of the closed loop system under one of
these three controllers. However, there are more options for
nonlinear compensator design. For example, the nonlinear
function f (σ) defined in [19] is not restricted to being a
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Fig. 2. Control performance comparison.

cubic function. It can be any static passive function, which
gives more freedom for the design of multiple model adaptive
control and switching control.

Control performance comparison are shown in Fig. 2. It
can be seen that the performance of the two switching con-
trollers outweighs the classical linear controller. The second
switching controller achieves the best control performance.
However, bump transfer appears for this switching controller
and control effort is bigger, which may be an undesired
property for some control system design. As the proposed
stably-based state sharing multirealization approach can ef-
ficiently implement the switching between not necessarily
linear controllers, so evidently this paper at least provides
more choice for switching control or multiple model adaptive
controller design.

The first example is for SISO case. In engineering practice,
most current nonlinear controllers are still SISO. For the non-
linear MIMO case, we use the following artificial example
to further illustrate the proposed implementation approach.

Example 2:We show the multirealization of the following
two multivariable systems (the symbols and notations are
defined as in Definition 1):

P1 :





ẋ =
[ −x3

1 +x2 +u1

x1−x3
2 +u2

]

y =
[

x1

x2

]
,

P2 :





ẋ =




x3
2

x2
1 +x2

2 +u1

x2 +x2
3 +u2




y =
[

x1

x3

]
.

For systemP1, the relative degrees associated with output
channels (r1 andr2) satisfy the conditionr1+r2 = 1+1= n1.
For systemP2, the relative degrees (r1 and r2) satisfy the
condition r1 + r2 = 2+1 = n2 as well. Thus, bothP1 andP2

are linearizable. According to Theorem 2, the minimal order
of the multi-realization is̄n = 3.

Therefore, we construct a third order stable systemP̃i (see
Definition 1) with its controllability indices asd1 = 1 and
d2 = 2 (the controllability indices are increasingly ordered):

ξ̇ = fs0(ξ )+gs0(ξ )vqi

=



−3 0 0
0 0 1
0 −1 −2







ξ1

ξ2

ξ3


+




1 0
0 0
0 1




[
vqi1

vqi2

]
.

By using state transformation and static feedback as shown
in [7], we can linearize the two systems and obtain the
following settings to implement the two systems.

To implementP1, we can use the following settings:




vq1 = αq1(ξ )+βq1(ξ )u

=
[

3ξ1−ξ 3
1 +ξ2 +ξ3

ξ1 +ξ2 +ξ3− (ξ2 +ξ3)3

]
+

[
1 0
0 1

][
u1

u2

]
,

x = φ1 (ξ ) =




1 0 0
0 1 1
0 0 1







ξ1

ξ2

ξ3


 ,

y = h1 (x) =
[

x1

x2

]
= hsoq1 (ξ ) =

[
1
0

0
1

0
1

]


ξ1

ξ2

ξ3


 .

Then, the implemented system is




ẋ =



−x3

1 +x2 +u1

x1−x3
2 +u2

x1−x3−x3
3 +u2


 ,

y =
[

x1

x2

]
.

From the above equation, we can see that statex3 is
unobservable but stable. The reason is the linearized model
of systemP1 needs to be augmented so that its controllability
indices match with those of̃Pi . At the same time, the stability
of the augmented unobservable state is also guaranteed.

To implementP2, we can use the following settings:




vq2 = αq2(ξ )+βq2(ξ )u

=


 ξ

1
3

3 +ξ 2
1 +3ξ1

3ξ 2
2 ξ

2
3

3 +3ξ
4
3

3 +ξ2 +2ξ3


+

[
0 1

3ξ
2
3

3 0

][
u1

u2

]
,

x = φ2 (ξ ) =




ξ2

ξ
1
3

3

ξ1


 ,

y = h2 (x) =
[

x1

x3

]
= hsoq2 (ξ ) =

[
0
1

1
0

0
0

]


ξ1

ξ2

ξ3


 .

In the above implementation, the input transformationβq2(ξ )
is designed to reorder the controllability indices ofP2 so
that they match with those of̃Pi . However, it should be
emphasized that in order to ensure the feedback is “regular
static state feedback” [7] as assumed in Note 2, it is required
that ξ3 6= 0.



V. CONCLUSION

In this paper, the problem of multi-realization of a set
of linear SISO systems is reviewed. Then, the problem of
multi-realization of a set of nonlinear systems is introduced.
A minimal stably-based multi-realization of state equations
of feedback linearizable nonlinear systems is achieved. We
believe these results will make multiple model adaptive
control and swithing control more efficient and practical.
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