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Multi-realization of nonlinear systems

Steven W. Su, Brian D.O. Anderson, Weidong Chen, and Hung T. Nguyen

Abstract—The system multi-realization problem is to find a consider the multi-realization of a finite set of feedback
state-variable realization for a set of systems, sharing as many linearizable systems [7] [15].
parameters as possible. A multi-realization can be used to ef- |, tha next section, we recall the result on multi-realization
ficiently implement a multi-controller architecture for multiple . .
model adaptive control. We extend the linear multi-realization ~ Of @ Set of linear SISO systems by state sharing and feedback.
problem to nonlinear systems. The problem of minimal multi-  In Section Ill, we introduce the problem of feedback multi-
realization of a set of MIMO systems is introduced and solved realization of a set of nonlinear systems, and present the
for feedback linearizable systems. result on minimal multi-realization of a set of feedback
linearizable nonlinear systems. Two illustrative examples are
given in Section IV.

For the implementation of multiple model adaptive con-
trol (MMAC) [1] [2] [6] [14] using switching between a Il. MULTI-REALIZATION FOR LINEAR SISOSYSTEMS
finite number of distinct controllers [12] [13], Morse [12] Suppose that it is desired to implement a finite number of
[13] proposed (for the SISO case) a new concept, viz. th®ISO linear proper rational systems with transfer functions
multi-controller can be efficiently implemented by using &;(s) = %(i € .#), where(ni(s),di(s)) are coprime polyno-
parameter-dependent feedback structure around a single fixagls. A'ssuming an upper boumdor the McMillan Degree
set of components of the controller. As argued in [12]of the k;(s), it is shown in [12] that we can always find an
because at any instant of time only one of the finite se{-dimensional controllable paji, bo) with Re{A(Ag)} <0
of possible controllers is to be applied to the plant, it isuch that{ Ao -+ bokg , bo, ¢, g } iS @ State space realization
only necessary to generate one candidate control signal. Thefeach transfer functior;(s), with corresponding adjustable
instead of implementing each of the controllers in the fam”)parameterskqi € %" cq € %“",dqi €, ic{12.. . N}
as a separate dynamic system, one can often achieve the samere is a MIMO generalization of the problem, see [4] [18]
results using a single controller with adjustable parametergnd we will return to this later.
viz. the multicontroller.

This implementation strategy motivates the multi- [Il. EXTENSION TO NONLINEAR SYSTEMS

realization problem [4] [18]. In standard linear system re- firstly we introduce some basic notation and facts of

alization, we only need to find a state space realization @erential geometry drawn from [7] and [15].
realize one transfer function. For a multi-realization, we need

to find a parameter-dependent state space description foAa Some notations in differential geometry
finite collection of systems, which may be those of the family A smooth vector field fdefined on an open set of %"

of controllers. can be intuitively interpreted as a smooth mapping assigning

Most literature on system realization deals with the img .\ dimensional vectof (x) to each poink of U. Suppose
plementation of a single linear time-invariant (LTI) system, o thatd smooth vector fieldsfy,--- , f4 are given, all

[3] [5] [8] [11] [20] [21] based on one of a state SpacEjgfinag on the same open détand note that, at any fixed
description approach or matrix fraction description approachy ...+ in U, the vectorsfy(x), - , f4(X) span a vector space
Morse [12] presented some results for the multi-realizatio subspace of the vector épaée in which all f{&)’s are
of several linear SISO systems in the context of examinin efined, i.e. a subspace @), Let this vector space, which
MMAC for scalar plants. Papers [4] [18] investigate thedepends o, be denoted byA(x), i.e. set

multi-realization of several linear multiple input multiple out-
put (MIMO) systems. The results are applicable to MMAC A(x) =spar{ f1(x),---, fa(x)}
problems for linear MIMO plants. In this paper, we give

a modest extension to the nonlinear case. Specifically, vi@d note that, in doing this, we have essentially assigned
a vector space to each poirtof the setU. The object
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X is the function

Lh(x) = X)) = 9 (0 X(x).

Similarly the functionsLkh are defined as follows. By
convention we set$h(x) = h(x) and inductively fork > 1,

Lkh(x) = L (L) ().

Analogously for a smooth mappindg : #" — %P
we define Lh(x) = LYh component-wise, i.e.l¥h =
(Lxhy,---,L¥hy)T. For the nonlinear system

P x = f(xX)+g(x)u xe Z™ ueZE™ 1)
Ly = ) y € %P,

we introduce (in the local coordinate} the mapping

h(x)
" L+ h(X)
WEX) = | . . (2)

L~ th(x)

For any two vector-fields of andg on %", the Lie bracket
[f,g] is a vector field as given in [17]

7] of
fg=01-5

ox 0xg
We define the repeated Lie bracl@i'f‘g, k=012,
inductively asadsg = [f,ad"1g], k> 1, with ad%g =g
A set of vector field{Xs,--- ,Xmn} is said to be involutive
if there are scalar fielde;j such that

XXl = dijX.
[ ﬂ k; ik

A multivariable nonlinear system of the form (1) has &

(vector)relative degree[7] {r1,r2,---,rm} at a pointxg if
D)
Lo, Lfhi(x) =0
forall1<j<m,foralll1<i<mforall0<k<ri—1, and

for all x in a neighbourhood ofgy, and
i) the mx m matrix

Lali (0 o Lol *hu(x)

ro—1 ro—1
AX) = LglLf2 ha(x) - I-lel-f2 ha(X)
Lol im0 - LgyLy™ (¥

is non-singular ak = Xo.

B. Multi-realization problem for nonlinear systems

We first define the problem of finding a multi-realization
of a set of nonlinear systems as an extension of the linear
multi-realization problem.

Definition 1: Assume that there are given a number of
minput p-output nonlinear system® (i € {1,2,...,N})
described by

B x = fiX+g(Xu xe 2™ ueZ™ 3)
" ly = h®® y e %P,
Provided that a state space description
P { E = fo(é)+a0u(é)vg &€ %HE7VQi S
y = heog (&) y € %P.

4)
with coordinate transformation (a smooth invertible transfor-
mation x = ®;(&) in a neighborhood o€y [7]) and state
feedback Vg = aq (&) + By (§)u) can “realize” (locally or
globally) each systen® (thus the functionsug (), By (€)
andhseq (&) are adjustable whildsy and gsp remain fixed),
then we call the state space description (4) a multi-realization
of the set of system® (i € {1,2,...,N}). If the unforced
systemé = (&) is asymptotically stable, we say that the
state space description (4) istablybasedmulti-realization
of the set of systemB (i € {1,2,...,N}).

Furthermore, if the dimension of the systef (ng) is
the smallest of all sucktablybasedmulti-realizations, then
we call the state space description (4)m@nimal stably
based multi-realization of the set of nonlinear systerBs
(ie{1,2,....,N}).

Note 1: In the statement of Definition 1, the word “re-
alize” means that systef can be transformed int® by
means of feedback and change of coordinates in the state
space.

The problem of multi-realization of nonlinear systems
is obviously more complicated and difficult than in the
linear case, especially the nonlinear mininsdablybased
multi-realization problem. In the next section, we will only
onsider a special nonlinear multi-realization problem: the
multi-realization of state equations of feedback linearizable
nonlinear systems.

C. The multi-realization of state equations of feedback lin-
earizable nonlinear systems

Problem 1: Assume that there are given a number of state
equations (without output equations) of nonlinear syst€ms
(ie{1,2,...,N}) described by

R: x = fi®+g(x)u xeZ™uez™ (5
Find a state equation (6)
B: & = A+Bovi EcZEvic®Z  (6)

with coordinate transformation (a smooth invertible transfor-
mationx= @;(&) in a neighborhood ofp) and state feedback

More detailed statements about differential geometry an@; = ai(&) + $i(¢)u) to “realize” (locally or globally) each
fundamentals of nonlinear control can be found in [7], [9]state equation (5), where the functiowns(é) and Si(&)

and [15].

are adjustable. Furtheh is required to be stable (i.e. all



eigenvalues should lie in the open left half plane) and be afhereA; is ther; x rj matrix

smallest possible dimension. O 1 0 ... 0
Note 2: 1) The state feedback o 0 1 --- 0
vi=o(&)+Gi(&)u A | o
. . 0O 0 ©O 1|
in which 0
ain(€)
ai2(€) Bi(&) - Bim($) .
ai(§) = _ . Bi(&)= andb; is ther; x 1 vector
1 Bra(&) -+ Binm(&) bi=[0,---,0,1".
aim(f) P ] ( s g}
roof: See Page 246-248 in [7]. [ ]

are anmx 1 vector and, respectively, amnx m matrix, and Note 3: 1) From Lemma 1, we can see that the con-
the entries ofai(¢) a”dfi(g) are smooth functions defined yo|japle pair {A,B} of the feedback linearized system has
on an open subset 6#". In the following discussions, we controllability indices {r1,ra,---,rm}; this set is invariant

also assume that the matrf(¢) is nonsingular for allé.  nder state feedback, input transformation, and coordinate
Accordingly, the feedback is called a “regular static statgansformation.

feedback” [7]. __ 2)ltis easily checked that the order of two transformations
2) In the statement of Problem 1, the word *realiz€’(state feedback and coordinate transformation) used to obtain
means that the state equation (5) can be constructed i jinear form can be interchanged (see Remark 2.1 in Page

selectingsome or all transformed (feedback and change gg.159 of [7]).
of coordinates) states of the state equation (6). Hence, it isThe geometric conditions for the solution of “State Space

obvious thamg > ni, Vi € {1,2,---,N}. Exact Linearization Problem” are presented in the following
In order to solve Problem 1, we present some results abogt,,ma [7].
feedback linearizable systems from [7]-“ Lemma 2:Suppose the matrig(xo) has rankm. Then,
_Firstly, we introduce the so-called “State Space Exaghere exists a neighborhodd of x, and m real-valued
Linearization Problem” [7]. _ _ functionsA1(x), A2(x), -, Am(x) defined orl, such that the
Problem 2: Given a state equation (without output equa—,5ystem
tion) of a nonlinear syster® described by { x = f(X)+gxu (12)
P: x = f(X)+gxu, @) y = A
and an initial statex, find (if possible), a neighborhood ~ has some relative degrees, ra,---,rm} at xo, with
of Xo, a pair of feedback functions(x) and3(x) defined on f1+ra+-+rm=n,
U, a coordinate transformatich= ®(x) also defined otJ, .
a matrixA € Z™" and a matrixB € Z™™, such that if and only if
o0 i) for eachO <1 < n-—1, the distributionG, defined below
[ (F)+9)a(X)]xo-16) = AS (8)  has constant dimension nesy;
i) the distributionGp_1 has dimensiom;
[%(Q(X)B(X))]xzm—l(f) - B (9) iii) for each0 <1 < n—1, the distributionG, is involutive.
Here,
and
rank(BAB--- A" 1B) =n. S
The following results for the “State Space Exact Lineariza- GO - spangs, -+, Gm} d d
tion Problem” are directly from [7]. 1 =span{gi, - ,gm,adsds,...,adsgm}
Lemma 1:Suppose the matrig(xp) has rankm. Then, o ) (13)
the “State Space Exact Linearization Problem” is solvable if ~ & =spanadgj:0<k<l,1<j<m}.
and only if there exist a neighborhoadl of xo andm real- ] .
valued functiongy (x), - - - ,hm(x) defined orlJ, such that the Proof. See Page 249-256 in [7] : -
system Note 4: (1)This lemma presents geometric conditions for
. the solvability of the “State Space Exact Linearization Prob-
X f(x)+g(x)u
y = h(X) (10) lem”.

. (2)The relative degreess,ry,---,ry are directly iden-
has some relative degrees,ra,---,fm} atxo andri+r2+ iied in terms of the dimensions of the distributions
o fm=n. _ _ _ Go,Gy, - ,Gn2 (see Remark 2.7 in Page 256 of [7]).

Furthermore, the matrice& and B in equation (8) and Therefore, the relative degrees,ra,---,rm are invariant
equation (9) of Problem 2 could be in the form (Brunowsky,nqer feedback and coordinate transformation. Furthermore,

canonical form): the relative degrees are equal to the controllability indices of
A =diag{A1,A2, - ,An}, (11) the controllable paifAg,Bp) for the linearized systems (see
B — diag{b,bp, - ,bm}, Note 3).



Now that the conditions for “State Space Exact Lin-dimension of Ag fixed to n. If the dimension ofAq is
earization Problem” are clear, the next step returns to thwt fixed to n, the necessary and sufficient condition in
problem of multi-realization of a set of linear systems bytemma 3 can be fulfilled by dimension augmentation of
using state feedback, input transformation and coordinagach controllable paifA;,B;) to ensure al(A;,B;) (for each
transformation. i € {1,2,...,N}) have identical controllability indices sets

Now, we give a definition for the minimadtablybased as{di,dy,...,dn} (without ordering requirement). Certainly,
multi-realization (with input transformation) for a set ofthe minimal dimension augmentation is desired, and this is
linear systems. not difficult to achieve. The key to doing this is the following

Definition 2: Assume that there are given a numberef two lemmas; the first of these is only used within the proof
input p-output strictly proper real rational transfer functionof the second.
matricesR (i € {1,2,...,N}). Provided that there exist state- Lemma 4:Let {d1,di>} fori=1,2,...,N denoteN pairs
variable realizationdAg + BoKg ,BoGqi,Cq } (With the pair  of positive integers. Lefri1,ri2} denote the paifdii,diz}
(Ag,Bp) being controllable) that can realize all the systemgossibly reordered, withi; < rj2. Then,

R with adjustable parameteiGy, Ky and Gy, then we 5 5

call {Ao + BoKg;,BoGqi, Cq } @ multi-realization (with input Z max (dij) > Z max (rjj ). (14)
transformation) of the set of systerRs(i € {1,2,...,N}). If S 1si=N & 1<i=N

all eigenvalues of\y are in the left half plane, we say that Proof: Denote

Ao + BoKg , BoGgi,Cq } IS a stably-based multi-realization
i{with inpuiI trangfocr:?ﬁ}ation) of the set of syster®s (i € S = Mcian(d), (15)
{1,2,...,N}). Furthermore, if the dimension o4 is the St = Max<ion(diz).

smallest of all such stably-based multi-realizations, then w@/ithout loss of generality, assumg, > sq,. Then it is
call {Ag+ BoKg,BoGqi,Cq } @ minimal stably-based multi- obvioussy, = max<i<n(ri1, fi2) = Max<i<n(ri2), andsg, >
realization (with input transformation) of the set of systemsnaxjn(ri1).

R (i€{12,...,N}). We now develop preliminary results Hence, we have

used in proving the first Theorem below, which characterizes )

the minimal dlmen5|omq in a stably-based mult|-reallzat|0n. So, S0, = max (dij) > Z max (ri;).

Lemma 3:Assume given a number oftinput p-output &1 1si=N {1 1<isN
strictly proper linear systen3 (i € {1,2,...,N}). Then there
exists a controllable paifAg,Bp) (Ao € Z™", By € Z™™M),
and appropriately dimensioned real matricgg, Ky and
Gq (forie {1,2,...,N}) such thatAg is stable, andAq+

|
Lemma 5:Let & = {di1,diz, -+ ,dim} for i =1,2,...,N
denote N sets of m positive integers, and letZ7 =

BoKgq , BoGqi,Cq } is @ controllable realization of systef {r.itlh’riz’_'l_'r; Mim} denote an ordering in which tig increase
(forie{1,2,...,N}), if and only if there exists a state spaceW' J. then,
realization {A; € Z™",B; € Z™™ C; € #P*"} (where the m m
pair (Aj,B;) is controllable, and; has full column rank.) for max(rij) < > max(d). (16)
o j=11=1= ===
each'systenP. such that aII' con'trollable paw@éﬂ', BI)' (fpr Proof: For each setZ and a fixed integerq e
eachi € {1,2,...,N}) haye |dent|cal_controllgbnlty indices {1,2,---,m}, denote
sets as{d;,dy,...,dm} (without ordering requirement).
Proof: See Theorem 3 and its related remarks in Pages Si, = Max<i<n(dig), i€{1,2,---,N}. a7)
260-261 of [16]. The unordered controllability indices are in- ) _ )
variant under feedback, input transformation and coordinate Then the right hand side of (16) can be rewritten as
transformation. This shows the condition of the theorem is
necessary. Yiamax<ien(dij) = FiLiSy- (18)
Now, we prove the sufficiency. According to item (1)- For any two fixed integerk,| € {1,2,---,m}, we have
(9) in Page 507-508 of [8] (and Theorem 3 in Page 260- _
261 of [16]), we can find a controller form realization S +Sy = MaX<i<n(dik) +max<i<n(di), i€{1,2--- N}.
{AG + BoK{,,BoGqi,Cq } for each systenR with {Ay,Bo} _ . (19)
controllable by adjusting parametei$,, Gqi and Cq,. Fur-  Without loss of generality, assunsg, > sy . If for some 7,
thermore, if Ay is not stable, we can select a statg i > di, keepdy in theky position andd; in thely, position.
and a new adjustable feedback gain matiy such that Otherwise, ifdi < dj, adjustdy to in thely, position and
A6+50K/i = Ao+ BoKg because{Ay,Bo} is controllable. dij to in the k, position. We denote the reordered set as
Thus, we can construct a state-variable descripigg+ 2 = {di1,diz,-- ,dim} and set
BoKg , BoGqi,Cq } Which is a (multi-) realization of system =
P (f?)r ie ?1% .}..,N}). ] Sdq = max<i<n (dig),i € {1,2,---,N}.
~Lemma 3 provides the necessary and sufficient condixccording to Lemma 4, we have
tion for multi-realization of a set of linear systems by a
state-variable realizatioqAg + BoKg ,BoGgi,Cq } With the Sg, T84 = Sk + ;-



Repeat this adjustment for every two integetd € controllability indices of the linearized model of the second
{1,2,---,m}. Then, after all these adjustments, the $gt systemP, are reordered by using an input transformation).

will have been re-ordered as s#. Hence, we have Now that the existence of amth order stably-based multi-
m m realization (with input transformation) has been proved, we

max (rij) < Z max (ckj). (20) only need to prove is minimal. The minimality is however
f=a1si=N f=a1si=N easily proved by using Lemma 5, which deals with an

m ©equivalent problem of finding the minimal summation of
A more general case of the above lemma appears several sets of integer numbers. Specifically, if we treat each

TheoremD.7.ain Page 155 of [10]. dij in Lemma 5 as the controllability indices of systénin
Theorem 1:Assume givenN distinct m-input p-output this theorem, then the proof of minimality is straightforward.

systemsP (i € {1,2,--- ,N}) described by € Z"*" B; € _ "

Z"*™ and G € %#P*", and suppose that the paits;,Bi) Lemma 1 and 2 solve the “State Space Exact Linearization

and (Gi,A)) are controllable and observable, aBdhas full Problem”. They provide the conditions based on which a

column rank. Further, assume the controllability indices foponlinear system can be linearized by using “regular static
the pair (A, B;) are diy,diz, -+ ,dim, and define the ordered state feedback”and coordinate transformation. Then, based

set {ri1,l2,lia,... } to be the set of controllability indices ©N Lemma 3 and Theorem 1, we can give the answer for

reordered so that Pr(_)b_lem 1, requiring mu_lti-rez_;llization of_state equations of
a finite set of feedback linearizable nonlinear systems.
rig <rjp <--- <rim,Vie {1,2,--- /N}. Theorem 2:(Main Result) Suppose the matrices

] ] o 0i(%0),Vi € {1,2,--- N} in equation (5) of Problem 1
Then the dimension of the minimal stably-based multipaye rankm. Then, Problem 1 is solvable if and only if the
realization (with input transformation) of the set of SyStem%Ilowing equivalent conditions (a) or (b) hold:

R (ie€{L2 - ,N})is equal to (a) For each syster® (described by equation (5)), there

om exist a neighborhoodl) of xg and m real-valued functions
n= :1lg}g>§,(rij)- hiz(X), - ,him(x) defined onU, such that the system
Proof: The proof of this theorem is based on Lemma 3 X = fi(x)+g(xu
and Lemma 5. Based on Lemma 3 we can prove the existence { y = hi(x (21)

of a stably-based multirealization with dimensian From

Lemma 5 we can derive thaf is minimal. Specifically, has some relative degrégs, riz, -+ ,fim} atxo andriy +riz+
according to Lemma 3, to obtain a stably-based multi-"*;+Fim = Ni.

realization with the fixed dimension, we need to find a  (b) i) for eachi € {1,2,--- N} andl € {1,2,--- ,n—1},

state space realizatiofA € Z#™" B € #" ™ C; € #P*"}  the distributionG; defined below has constant dimension
(with the pair (A;,B;) controllable, andB; of full column Nearxo;

rank) for each syster such that all the controllable pairs i) the distributionG; n (i € {1,2,--- ,N}) has dimension
(A,Bi) (i € {1,2,...,N}) have an identical controllability M

indices set ag{d;,dy,...,dn} (without order requirement) i) for eachi € {1,2,--- )N} andl € {1,2,--- ,n—2}, the
anddy +dz + - - +dm = N. Now, if we defined; = 12%(“]—), distribution G; is involutive.

then it is easy to check tha1_1+d_2+~-+dm =n. For Here,

any systemPR, the ordered sefrii,riz,ri3,...rm} Oof con- Gio =spangi, - -,0im}

trollability indices for the pair(A;,B;j) satisfiesrjj < d;. Gi1 =spafgi,- - ,0im,adsgi1, ..., ads, Gim}

Then it is possible to increase controllability indices by (22)
dimension augmentation so that the p@h,B;) is replaced G = spar{ad‘ﬁgij 0<k<,1<j<m}.

by a pari(A;,B;) for which the controllability indices are ] ] ] ]
{d1,dp,--- ,dm}. To see this, consider a right polynomial Furthermore, the smallest possible dimension for equation
matrix fraction description (MFDNg;i(s)Dgk(s) of system (6) to realize (locally or globally) each state equation (5) is
R, whereDgj(s) is a Popov polynomial matrix [8]. Based equal to

on Theorem 1 in [4], the augmentation of controllability

indices can be implemented by right multiplication using a & 1<j<m

stable diagonal polynomial matrix of boli;(s) andDg;(s). Proof: From Lemma 1 and 2, we conclude that the set
The reordering of the controllability indices can be achievedf nonlinear state space equations (see equation (5) ) can be
by simply using an input transformation matr;. By expressed as linear state space equations (with feedback and
using Gy, the pivot indices of the Popov polynomial matrix coordinate transformation) if and only if Conditions i), ii) and
Dei(s) can be adjusted so that the controllability indices arei) are satisfied. Then, according to Lemma 3 and Theorem
reordered (In Example 1 of this paper, see the next sectioh, we can find a minimal stably-based multi-realization for
the controllability indices of the linearized model of the firstthese linearized systems. Further, considering that the state
systemP; are increased by dimension augmentation. Thieedback and coordinate transformation are interchangeable

N
n="% max(rjj).



(see Note 3), we conclude that Problem 1 is solvable if the G { = —gx+ g (u— )
conditions of (a) and (b) hold. y=x
Because Conditions i), ii) and iii) of b) are necessary for .1 K 1.3
the set of nonlinear state space equations (see equation (5) Cs: { X=—gx+ g (U=
p q q 1 y=(1-B)x+x] —kBu.

) to be linearizable using feedback and coordinate transfor-
mation, they are necessary for the solvability of Problem 1 In this particular example, the slow controller is a non-
m linear lag compensato€, (equation (2.1) in [19]). The
other two controllersC; and Cz are relatively fast. We
IV. EXAMPLE implement two switching controllers. The first one is the
_controller which switches from the linear compensabar
éfast controller) to the nonlinear lag compensa@t The
‘econd one switches from the nonlinear lag-lead compensator
3 (a fast controller given in equation (2.2) in [19]) to

We build a block diagram (Fig. 1) to illustrate the imple
mentation of the proposed multirealization structure. Her
we use the symbols and notations given in Definition 1. |

distinction to typical labelling conventions in a linear block ) N
yp g the nonlinear lag compensat@,. The switching between

diagram, in Fig. 1, a blockf(-)” means Y= f(u)”, while a ;
block “f(£)” means Y= f(&)-u". This structure has been controllers happens when the system output is close to the
' reference input.

impl ted b ing Matlab Simulink for th trol in th
implemented by using Matlab Simulink for the control in the It is easy to check the relative degrees of these three

following example. controllers are all less thah Thus, the minimal dimension
of the multirealization isn= 1.

Then P, (see Definition 1) can be easily constructed as
follows: K

- 1
=—=—&+ —vq.
E=—"&+ Vg
To implementCy, we can use the following settings:

Vg1 = dq1(§) + B (§)u=u
x=@({)=¢
y=h1(X) =x=hsoq ({) = .

To implementC,, we can use the following settings:

Vg2 = 0q2(&) + Ba(&)u=—£3+u
x=@(0)=¢
Example 1:We first consider the multirealization of non- y=hp(X) =x=hsoe({) = .

linear lag-lead networks proposed in [19]. As pointed in [19], To imol C the followi ttings:
sometimes multiple desired system specifications cannot be 0 Impiementis, We can use the Toflowing settings:

Fig. 1. The block diagram of the proposed stably-based state sharing
multirealization structure.

satisfied simultaneously using classical linear control (purely Vg = 0g3(&) + Bya(é)u= 7%53 +u
linear compensation) methods. For example, in order to limit x=@({)=¢

the absolute amount of overshoot in a step response, the clas- y=hz(x) = (1- B)[x+x3] —kBu
sical linear system is often designed to be overdamped (with = hsog ({) = (1-B)[{ + 3] — kBu.

slow transient response), i.e. with linear control simultaneous .

constraints on step response rise time and overshoot may Hothould be noted that as the output equatin) does not

be achievable. In this example, we will show it is possible t§12nNg€ ¥ = ) for the first switching controller, bumpless
decrease both rise time and overshoot by switching betwegﬁnSfer can be achieved. For the second §W|tch|ng controll_er,
different types of controllers. The main strategy involve®" the other hand, as the output equation changes during
using a fast controller during the rise period, and switchin§Vitching, bumpless transfer cannot be guaranteed. However,
to a slow controller when output is close to steady state. Thig€ State values are continuous during switching for the two
paper does not attempt to prove that the control performané@"tcmng controllers as t_helr s'_cates are shared. It should be
of switching between nonlinear controllers is superior to thdited that a (control affine) single state controller always
of linear controllers. However, it does provide more optionSatisfies the conditions in Theorem 2. In practice, low order
for switching controller selection and proposed stably-basegPntroliers are often the first options.

multirealization approach to implement switching between DUring simulation, the reference input is selecteé,aand
controllers which are not necessarily linear. the switching point is selected &5 (90 percent of reference

Example 1 in [19] provided three controller€; (linear input). The parameters of the three controllers and system

compensator)C, (nonlinear lag compensator) a@j (non- models are all th_e same as in Example 1 of [19], which
linear lag-lead compensator). That is: ensures the stability of the closed loop system under one of

these three controllers. However, there are more options for
C: X= —§x+§u nonlinear compensator design. For example, the nonlinear
1 y=x function f(o) defined in [19] is not restricted to being a



are linearizable. According to Theorem 2, the minimal order
of the multi-realization i1 = 3.

Therefore, we construct a third order stable syskeiisee
SmeT T T Definition 1) with its controllability indices asl; =1 and

Controlled output comparison
T

Jd | - Y, . ) )
/ Cinear contolir () d> = 2 (the controllability indices are increasingly ordered):

3 // Nonlinear bumpless switching controller (01 to Cz) i -
2r — . — . Nonlinear Bump switching (C3 to Cz) 7 E = fSD(E) + gSD(E)ti
1r ,/ = = = Reference input 1 —3 O O El 1 0 Vei
0 ‘ ‘ ‘ =/ 0 0 1 &L|l+| 00 [m1}
0 5 ) 10 15 20 V, i2

Time (seconds) 0 -1 -2 E3 0 1 q

Control effort i . . .

4 oo By using state transformation and static feedback as shown

N Pe———— | in [7], we can linearize the two systems and obtain the
I ! following settings to implement the two systems.

Nonlinear bumpless switching controller (C1 to Cz)

2r] ~ _ Nonlinear Bump switching (C, to C,) ] To implementP;, we can use the following settings:

Vo = Aqa (&) + B ()u

I ' [351—513+52+53 }Jr[l 0}[u1}
o ‘ ‘ ‘ G+ & +8— (&4 8)3 0 1] w]’
° ° Time (igconds) 1 2 1 0 0 E]_
X=@(&)=|0 1 1 é& |,
00 1|/ &

Fig. 2. Control performance comparison.

o[ 2]oho-[ 3§ 1]

cubic function. It can be any static passive function, which
gives more freedom for the design of multiple model adaptivéhen, the implemented system is
control and switching control.

Control performance comparison are shown in Fig. 2. It
can be seen that the performance of the two switching con-
trollers outweighs the classical linear controller. The second
switching controller achieves the best control performance. y= [ X1
However, bump transfer appears for this switching controller X2

and control effort is bigger, which may be an undesired From the above equation, we can see that skatés

proglertg fordsome cantrol systle_m Ol'_eS'Q”- As the pr:()pos%observable but stable. The reason is the linearized model
stably-based state sharing multirealization approach can & qystemp; needs to be augmented so that its controllability

ficiently implement the switching between not necessaril}ﬁdiceS match with those @1. At the same time, the stability

linear controllers, so evidently this paper at least provideéf the augmented unobservable state is also guaranteed.

more choice fc_)rswnchmg control or multiple model adaptive To implementP,, we can use the following settings:
controller design.

The first example is for SISO case. In engineering practice( v, = dga(&) + (&)U

=3 +Xp + Uy
X= X1—X§+U2 ,
X1 —Xg — X3+ Up

most current nonlinear controllers are still SISO. For the non i o 1
linear MIMO case, we use the following artificial example _| & +§1 +3§1 + [ 2 ] [ U } ,
to further illustrate the proposed implementation approach. 38283 +38 +&+283 35 0 U2
Example 2:We show the multirealization of the following &
two multivariable systems (the symbols and notations arg x= @ (&) = 3
defined as in Definition 1): Ei ’
3 X3 &1
XZ[Xlﬁ;th“l] k= | @4+ y:h2<x>=[§;]:hso¢<z>=[ Y s . ] &
P 22 P X2+ X5+ Up &3

X1
y { X2 ]’ y= 2 . In the above implementation, the input transformaiBg (£ )
is designed to reorder the controllability indices &f so
For systemPy, the relative degrees associated with outputhat they match with those off. However, it should be
channelsi(; andry) satisfy the conditiom;+rp=1+1=n;. emphasized that in order to ensure the feedback is “regular
For systemP,, the relative degreesi( and r;) satisfy the static state feedback” [7] as assumed in Note 2, it is required
conditionr; +r, =2+1=n, as well. Thus, both?, andP, thatés # 0.



V. CONCLUSION

In this paper, the problem of multi-realization of a set
of linear SISO systems is reviewed. Then, the problem of
multi-realization of a set of nonlinear systems is introduced.
A minimal stably-based multi-realization of state equations
of feedback linearizable nonlinear systems is achieved. We
believe these results will make multiple model adaptive
control and swithing control more efficient and practical.
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