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Abstract

In this paper two approaches are given for anti-windup design for nonlinear control systems with linear plants subject to
limitations both in the magnitude and the rate of variation of the control input. Both approaches are based on the so-called
Model Recovery Anti-windup (MRAW) framework. The first approach is built by treating the rate+magnitude saturation
as a single dynamic nonlinearity, while in the second one, the dynamic compensator dynamics is extended with extra states
to treat the two saturations separately. Both approaches lead to global stability with exponentially stable plants and local
stability in all other cases. For both approaches, stability and performance guarantees are proven, numerical recipes are given
and the relative merits are comparatively highlighted on a simulation example.
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1 Introduction

1.1 Motivation and background

Input saturation is a relevant problem in any high per-
formance control system where lightweight structures
and/or full utilization of the available input power is re-
quired. Indeed, these phenomena can be neglected when-
ever one can oversize the actuators so that during nor-
mal operation the saturation limits are never reached by
the controller command. Much research has been car-
ried out in the past years to characterize and address the
problem of magnitude and rate saturation. This arises
whenever the actuator under consideration imposes con-
straints not only on the size of the requested input effort,
but also on the variation of that request. This type of
problem has been studied in the aerospace context where
it has caused some plane crashes [6,29,34]. It also arises in
plasma control systems in Tokamaks [28] and in several
applications of process control. As with magnitude-only
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saturation, rate and magnitude saturation can be ad-
dressed by designing a controller directly considering the
limitations (see, e.g., the approaches in [4,16,20,21,31,37]
and references therein or even the standard formulation
of Model Predictive Control, which easily incorporates
rate limits in the dynamic constraints). An alternative
approach, considered here, is that of adding some mod-
ifications to an existing small signal controller, which
achieves a desirable performance as long as the satu-
ration limits are not exceeded. These modifications are
called anti-windup compensation and hinge upon the
strict requirement that no modification should be en-
forced on the existing (so-called “unconstrained”) con-
troller unless saturation occurs.

Anti-windup compensation schemes have been histori-
cally addressed in the magnitude-only saturation con-
text, where two main approaches have been proposed
to solve the problem (see also [13,32,44]): Direct Lin-
ear Anti-Windup (DLAW) for linear control systems
and Model Recovery Anti-Windup (MRAW), also called
“L2 anti-windup.” In the recent literature, a number of
anti-windup results have been produced addressing the
design problem for rate and magnitude saturated sys-
tems. In particular, some hints about directions where
the Model recovery anti-windup framework could be ex-
tended to the rate+magnitude saturation case have been
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given, with reference to flight control, in [1,34] (slightly
generalized in [2]). Other works succeeded in extend-
ing the DLAW approaches to the rate+magnitude satu-
rated case. These approaches mostly arise from selecting
a suitable characterization of the rate+magnitude satu-
ration nonlinearity, for which the LMI-based approach
can be extended and successfully applied. For example,
in the anti-windup solution of [6], a dynamic actuator
model suitable for flight control applications has been
used, which incorporates both magnitude and rate satu-
ration. A similar approach has been also taken in [30,40]
with reference to general linear control systems. Using
similar tools, in [12,26,30,38,39], DLAW is applied by
saturating the derivative of the controller output, assum-
ing that it is available. Rate and magnitude saturation
can also be seen as a special case of the nested saturation
nonlinearities addressed in [3,4,31] where direct designs
(in a non anti-windup fashion) are proposed. Finally, the
so-called reference governor (or command-governor) ap-
proaches which rely on Receding Horizon optimal Con-
trol (RHC) ideas (see, e.g., [5,14]) can be formulated by
incorporating rate saturation in the control design prob-
lem (see also [15], where RHC tools are used to directly
address the rate and magnitude saturation problem).

1.2 Contribution

This paper defines and provides solutions to the
rate+magnitude anti-windup problem when cast into
the model recovery anti-windup framework (introduced
for the magnitude-only saturation case in [35,43]). To
this aim, we propose two architectures, each one leading
to three solutions, as commented next. A preliminary
version of this work appeared in [9]. Preliminary re-
sults in this direction had appeared in [42] and in [34]
with reference to specific flight control examples, but
without any characterization of the guarantees of these
architectures. Moreover, in [1,2] a similar solution was
given for exponentially unstable plants, assuming that
it was possible to design some suitable nontrivial sta-
bilizing laws. The attractive feature of MRAW as com-
pared to the DLAW solutions listed above (see [12]
and references therein) is that MRAW only depends
on the plant dynamics and can be applied with any
(possibly nonlinear) controller without any requirement
about its nature, structure and properties, while the
previous DLAW approaches require linearity of the
controller. As compared to the nested saturations re-
sults in [3,4,31], we solve here an anti-windup type of
problem, where a (possibly nonlinear) controller dy-
namics is pre-specified and should be retained for small
signals, whereas in [3,4,31] the whole control system
is designed from scratch and consists in a linear state
feedback gain. One of the challenges of the approach
used here is that using the MRAW framework (thereby
allowing for nonlinear controllers) requires introducing
a rate+magnitude saturation function which acts like
an identity for small signals. This property is achieved
using the discontinuous description which appeared

in [12,34,41] and reported in the following equation (5).

The first architecture proposed here (in Section 3) deals
with the magnitude and rate saturation altogether as
a single (dynamic) nonlinearity, while the second ar-
chitecture (given in Section 4) separates the saturation
into the two (magnitude and rate) components and a
scheme accounting for the two phenomena separately is
proposed, with extra states added to the anti-windup
compensator. For both architectures, the design hinges
upon the selection of a possibly nonlinear stabilizer for
which we propose three design strategies leading to three
different anti-windup solutions for each one of the two
architectures. A global solution (G) guaranteeing global
performance guarantees at the cost of limited applica-
bility (global bounded stabilization is known to only
be possible with asymptotically null controllable with
bounded controls (ANCBC) plants, namely plants with-
out exponentially unstable modes) and possibly unsat-
isfactory medium signals performance. A local solution
(L) associated with simple designs for which closed-loop
properties are only guaranteed locally (these local per-
formances are typically very desirable). A trade-off so-
lution (T) where the size of the region with guaranteed
performance and the convergence speed in that region
are traded off using optimization techniques. For each
one of the two proposed architectures, the (G), (L) and
(T) solutions provide a full set of tools for the designer;
the first one, (G), being suitable where global guarantees
are mandatory (maybe due to safety reasons); the sec-
ond one, (L), whose design is straightforward, for cases
where the very large signals behavior is not a concern
and it is desirable to enhance the medium signals perfor-
mance of the anti-windup compensation (this provides
a simple, yet very efficient solution of the anti-windup
problem with some degree of performance guarantees);
the last one, (T), where a trade-off is possible between
large operating regions and fast performance recovery
at the price of extra computational burden in the anti-
windup design. For both the (T) solutions, the general-
ized sector condition of [8,19] is used to characterize the
saturation nonlinearity.

Comparatively, the (T) solutions for the two architec-
tures have advantages and disadvantages. Indeed, for the
first architecture (Section 3), the (T) solution is shown to
induce arbitrarily large operating regions with ANCBC
plants (see Proposition 1) at the cost of being computa-
tionally hard, because it requires the solution of (non-
convex) bilinear matrix inequality (BMI) constraints.
Conversely, for the second architecture (Section 4), the
(T) solution is not guaranteed to give semiglobal re-
sults with ANCBC plants, but its design is more com-
putationally attractive because it requires solving (con-
vex) linear matrix inequality (LMI) constraints. There-
fore, the latter case is preferred from the design phase
viewpoint although it leads to worse performance guar-
antees than the former one. Moreover, the LMI nature
of the latter solution enables to also provide a tool for
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global anti-windup with optimized convergence rate (see
Proposition 2). The two (T) solutions are comparatively
illustrated in Section 5 where, for an example study, the
arising trade-off curves are computed, and it is shown
(see Figure 5) that the nonconvex design achieves better
values than the convex one.

Summarizing, this paper formalizes for the first time the
magnitude and rate model recovery anti-windup prob-
lem and provides several solutions applicable to rate and
magnitude saturated linear plants in feedback with (pos-
sibly) nonlinear controllers. From a technical viewpoint,
in addition to formalizing the problem above, the nov-
elty and main contribution of this paper is two-fold:
(1) The L2 performance recovery properties of the two
proposed architectures are established by characterizing
the L2 stability of the discontinuous rate+magnitude
saturation nonlinearity and showing how it can be used
within the proposed schemes. This gives insightful guar-
antees, previously unavailable, on the medium signals
performance induced by the two (L) solutions (the (L)
solutions had been suggested in the past, in [34] and [42],
respectively, for the two proposed architectures).
(2) For both architectures, we present here the global so-
lutions (G) inducing global performance recovery prop-
erties and the trade-off solutions (T) commented above,
which benefit from semiglobality for the first architec-
ture and convexity for the second architecture.

The paper is organized as follows. In Section 2 the prob-
lem of interest is formally defined and the (G), (L), and
(T) design goals are clarified. The two proposed architec-
tures and the corresponding (G), (L), and (T) solutions
are described in Sections 3 and 4. Finally, simulations
based on a physical example are provided in Section 5
and proofs of the main results are reported in Section 6.

Notation: Given a square matrix X, define He(X) :=
X + XT . A ⋆ symbol in a matrix denotes symmetri-
cal entries. Given a vector v, diag(v) denotes a diagonal
matrix whose diagonal entries are the entries of v and
|v|∞ := max{|vi|}. The Euclidean norm and its induced
matrix norm are both denoted by | · |. The L2 norm
of a signal is denoted by ‖ · ‖2. A continuous function
κ(·) : [0, a) → [0,+∞) is of class K if it is strictly in-
creasing and κ(0) = 0; it is of class K∞ if a = +∞ and
limr→+∞ κ(r) = +∞. Given a > 0, B(a) := {x : |x|2 ≤
a}. satM (·) denotes the decentralized magnitude satu-
ration with limits M and s 7→ dzM (s) := s − satM (s)
denotes the decentralized deadzone.

2 Problem definition

Consider the following linear plant

ẋ = Ax+Buu+Bdd, (1a)

y = Cyx+Dyuu+Dydd, (1b)

z = Czx+Dzuu+Dzdd, (1c)

where x ∈ R
n is the plant state, u ∈ R

m is the plant
control input, y is the measurement output, z is the
performance output and d is a disturbance input. We
assume that plant (1) is stabilizable from u.

Assumption 1 The pair (A,Bu) is stabilizable.

Following the standard anti-windup approach, we as-
sume that a controller has been already designed for
plant (1). , which corresponds to:

ẋc = f(xc, uc, r), yc = g(xc, uc, r), (2)

where xc is the controller state, uc is its measurement
input and r is an external reference signal. To guarantee
existence and uniqueness of solutions, we assume that
both f and g are locally Lipschitz functions.

The following assumption entails the necessary property
that the closed-loop between plant (1) and controller (2)
is well behaved in the absence of saturation, namely with
the following “unconstrained” interconnection:

uc = y, u = yc. (3)

Assumption 2 The closed-loop between plant (1) and
controller (2) via the interconnection (3) is well posed
and forward complete.

In this paper we address the so-called anti-windup aug-
mentation problem for the interconnection (1), (2), (3)
when rate and magnitude saturation affects the control
input of the plant. In particular, we interconnect plant
(1) and controller (2) as follows:

uc = y, ν = yc, (4)

u̇ = diag(R)sign(satM (ν)− u), (5)

where ν is the plant input before (rate and magnitude)
saturation, satM (·) is the decentralized magnitude sat-
uration with saturation limits M := [M1, . . . ,Mm],
sign(·) is the decentralized sign function and R :=
[R1, . . . , Rm] is the vector containing the rate saturation
limits. In this paper, we will often use the placeholder
satMR(·) to denote the rate and magnitude saturation
nonlinearity (5). In particular, we will use the expres-
sion u = satMR(ν) as a shortcut to say that u is the
unique 1 solution of the discontinuous dynamics (5).

The rate saturation model (5) has been used in previ-
ous work [1,12,34,41], and has the useful feature of guar-
anteeing that u(t) = ν(t) ∀t ≥ 0 as long as ν(t) =

1 An exact description of the discontinuous dynamics (5)
would require the use of set valued maps and differential
inclusions. However to keep the discussion simple we will
abuse notation here and assume that the sign(·) function
in (5), when evaluated at zero, returns the correct value
to guarantee existence and uniqueness of solutions (see [41,
Lemma B.1, p. 145]).
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satM (ν(t)), ν̇(t) = satR(ν̇(t)), ∀t ≥ 0 and u(0) = ν(0)
(namely, it acts like an identity if its input is below the
saturation limits). The model correspond to a natural
abstraction of the effect of the widely used safety fix of
limiting the plant input increment in real-time control
systems, therefore it is a mathematically sound and ac-
curate representation of a common practical situation.
Moreover, it guarantees that, if u(0) = satM (u(0)), then
for any ν(t), u(t) = satM (u(t)) and u̇(t) = satR(u̇(t))
for almost all t. These properties (see [12, Lemma 1] for
their proof) imply that satMR(satMR(yc)) = satMR(yc)
and that when yc is small enough (in magnitude and
rate), then satMR(yc) = yc, just like in a standard sat-
uration function. The latter property is a mandatory
requirement for the statement of an anti-windup prob-
lem where the saturated closed-loop (1), (2), (4), (5) co-
incides with the unconstrained closed-loop (1), (2), (3)
for small enough signals and the anti-windup design is
aimed to resolving he negative effects experienced on the
saturated closed-loop (1), (2), (4), (5) for larger signals
activating the saturation nonlinearity (5).For compact
notation, given external signals r(·) and d(·) and ini-
tial states for the plant (1) and the controller (2) the
response of the unconstrained closed loop (given by (1),
(2) and (3)) will be denoted by a hat ·̂ over the vari-
able of interest (e.g. ûc and x̂), whereas the response of
the anti-windup closed loop (given by (1), (2), (5) and
the anti-windup dynamics with suitable interconnection
and initial conditions) to the same external signals and
initial conditions will be denoted by a bar ·̄ over the vari-
able of interest (e.g. ūc and x̄). With this notation at
hand, the anti-windup goal is stated as aiming to keep-
ing small the mismatch z̄ − ẑ between the anti-windup
and the unconstrained performance outputs. In partic-
ular, we will measure this mismatch via its L2 norm
‖z̄− ẑ‖2. Then, for this L2 norm to be finite, we require
that the unconstrained plant input û converges (in an L2

sense) below some ε-small restriction of the saturation
limits (see also [35, Remark 2.2] for the magnitude-only
saturated case). To this aim, we will refer, next and in
our results, to an ε-restricted saturation satMR(1−ε)(·)
denoting a rate and magnitude saturation rescaled by
the factor (1 − ε) ∈ [0, 1], namely such that its magni-
tude and rate saturation levels are, respectively, given
by (1 − ε)M and (1 − ε)R. We formally state next the
problem addressed and solved in this paper.

Problem 1 Given the plant-controller pair (1), (2) and
the magnitude and rate saturation in (5), design a dy-
namic compensator which only uses measurements from
the controller signals and injects modifications at the con-
troller input and output and whose interconnection to the
plant-controller pair (1), (2) guarantees (at least one of)
the following properties:

(G) (global anti-windup) for any scalar ε ∈ (0, 1) and for
any pair (r(·), d(·)) such that dzM(1−ε)(û) ∈ L2 and

dzR(1−ε)( ˙̂u) ∈ L2, there exists a class K∞ function

γ(·) such that

‖z̄ − ẑ‖2 < γ





∥

∥

∥

∥

∥

[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

] ∥

∥

∥

∥

∥

2



 ; (6)

(L) (local anti-windup) there exists ρ > 0 and a class K
function γ(·) such that inequality (6) holds for any
scalar ε ∈ (0, 1), for any initial condition such that
‖(x̂(0), x̂c(0))‖ < ρ and for any pair (r(·), d(·)) such
that ‖dzM(1−ε)(û)‖2 < ρ and ‖dzR(1−ε)( ˙̂u)‖2 < ρ;

(T) (trade-off: regional anti-windup with exponential re-
covery) for any scalar ε ∈ (0, 1) and for any pair

(r(·), d(·)) such that dzM(1−ε)(û) and dzR(1−ε)( ˙̂u)

have compact support 2 [0, T ], if the state of the anti-
windup compensator for t = T belongs to a suit-
able region R (possibly depending on ŷc(T )), then
z̄(t)− ẑ(t) converges to zero exponentially fast with
convergence rate α.

Remark 1 Note that we don’t ask for any stability or
convergence property in Assumption 2. Although guar-
anteed by essentially any reasonable choice of the given
controller (2), these properties are actually not required
to state our main results which only require that the
anti-windup response z̄ converges in an L2 sense (see [33]
for a discussion about how finite L2 norms relate to
asymptotic convergence) to the unconstrained response
ẑ whenever the right hand side of (6) is finite. Clearly,
saturation will impose some limits on the trackable re-
sponses, i.e. on the unconstrained responses leading to
a finite value of the right hand side of (6). In particular,
while items G and L only require that the unconstrained
response plant input û spends a finite amount of en-
ergy outside the saturation bounds (recall that dz(s) =
s− sat(s) and that the L2 norm of a signal corresponds
to its energy), which is mostly a necessary assumption
to satisfy ‖z̄ − ẑ‖2 ∈ L2, item T requires a stronger
property that after a finite time T , û remains within
the saturation bounds, namely that large values of û,
˙̂u produced by the unconstrained appear only during
the initial transient. An example of this behavior is an
unconstrained step response where the transient causes
plant input peaks beyond the saturation bounds but the
steady-state input remains within the bounds. ◦

The difference between the requirements in items (G)
and (L) of Problem 1 is that in item (G) the per-
formance degradation (as measured by ‖z̄ − ẑ‖2) is
guaranteed to be bounded for any response such that
‖dzM(1−ε)(û)‖2 and ‖dzR(1−ε)( ˙̂u)‖2 are finite (possi-
bly arbitrarily large), whereas in item (L) this perfor-
mance degradation is only guaranteed to be bounded if

2 A function f(·) has support [0, T ] if f(t) = 0 for t 6∈ [0, T ].
This requirement imposes that the unconstrained response
eventually comes back and remains within the ε-restricted
saturation limits.
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‖dzM(1−ε)(û)‖2, ‖dzR(1−ε)( ˙̂u)‖2 and the initial condi-
tions are sufficiently small. It will be shown in the rest of
the paper that it is possible to come up with solutions to
to item (G) at the price of sacrificing local performance.
Conversely, solutions to item (L) will induce better local
performance at the price of not giving guarantees for
larger signals. Hence, in order to identify more desirable
solutions (achieving a trade-off between the merits and
the pitfalls of the two extreme solutions cited above)
item (T) of Problem 1 is introduced, where an explicit
quantification is given of both the guaranteed (expo-
nential) convergence rate and of the size of the region
of the state space of the anti-windup compensator from
which such a convergence rate is achieved.

3 Plant-order anti-windup architecture

A first architecture that we propose to solve Problem 1
is carried out along the same lines as those in [1,2,34],
where a dynamical system reproducing the dynamics of
the plant (1) from the control input u to the measure-
ment output y is inserted in the closed-loop to gener-
ate the mismatch between the actual plant behavior and
the virtual behavior in the absence of saturation. In par-
ticular, this system, called “anti-windup compensator”
corresponds to the following dynamics:

ẋaw = Axaw +Bu(u− yc) (7a)

yaw = Cyxaw +Dyu(u− yc) (7b)

zaw = Czxaw +Dzu(u− yc), (7c)

The anti-windup compensator (7) is to be connected to
the saturated plant (1), (5) and the controller (2) via the
following anti-windup interconnection equations:

uc = y − yaw, ν = satMR(1−ε)(yc) + v1, (8)

where the signal v1 is a degree of freedom left by the com-
pensation scheme to guarantee that the actual plant re-
sponse x̄ converges to the virtual response x̂ correspond-
ing to the absence of the saturation effects. A block di-
agram of the overall anti-windup scheme is represented
in Figure 1. Note that, according to (8), the controller
output is passed through an ε-restricted copy of (5) be-
fore being fed to the saturated plant (5), (1). Note also
that we assume that the plant input after saturation u
is accessible, but one could as well compute it based on
the model (5) and then feed it to the saturated plant (5),
(1), indeed it has been highlighted in Section 2 that the
second saturation acts like an identity.

The following theorem, whose proof is reported in Sec-
tion 6.1, establishes three solutions to Problem 1, hing-
ing upon three designs of the stabilizing signal v1 in (8).

Theorem 1 Consider the anti-windup closed-loop (1),
(2), (5), (7), (8). Under Assumptions 1 and 2, the con-
troller state and output responses (x̄c, ȳc) coincide with

+

u y

d
Saturation

yc

yaw
- +

Mag & Rate
MR Saturation
ε-Restricted

v1

+
ν Linear

Plant (1)

r Unconstr’d
Controller

(2)

Anti-windup
Compensator

(7)

(5)

Fig. 1. Plant-order anti-windup architecture.

the unconstrained controller state and output responses
(x̂c, û). Moreover the following holds:

(G) If A is Hurwitz, then the selection v1 = 0 solves the
global anti-windup problem (G) in Problem 1.

(L) Selecting v1 as any stabilizing linear state feedback
for ẋaw = Axaw+Buv1 solves the local anti-windup
problem (L) in Problem 1.

(T) Selecting v1 = Kxaw, where K is a feasible solution
to the following BMI problem in the variables P =
PT > 0, K, H, α > 0, 1

β
> 0, UM > 0 diagonal

1

β
I > P (9a)

0 > He

[

P (A+ αI +BuK) −PBu

UM (K −H) −UM

]

(9b)

0 ≤
[

ε2R2
iP ⋆

[K(A+BuK)]i 1

]

, i = 1, . . .m, (9c)

0 ≤
[

ε2M2
i P ⋆

[H]i 1

]

, i = 1, . . .m, (9d)

(where [Z]i denotes the i-th row of the matrix Z)
solves the local anti-windup (L) and the trade-off
anti-windup (T) problems in Problem 1 with ex-
ponential bound α in the guaranteed region B (β),
namely a ball of size β.

The solution at item (G) of Theorem 1 corresponds to
a generalization of the so-called IMC anti-windup solu-
tion (which is a well known anti-windup solution in the
magnitude-only saturation case – see e.g., [24]). This so-
lution relies on the exponentially decaying modes of the
plant (whose matrixA is Hurwitz) and is also well known
for its global exponential stability guarantees in spite of
poor performance when used for lightly damped plants.
Also in [30] an IMC-like structure is highlighted within
a Riccati equation-based anti-windup scheme for rate-
saturated systems. The difference with respect to our
approach is that in [30] the rate-limited closed-loop is
transformed to a linear closed-loop with magnitude sat-
urations, whereas here the IMC nature of the solution
is designed based on feeding the plant input mismatch
(caused by both the magnitude and rate saturation ef-
fects) into a model of the plant and relying on the expo-
nentially stable modes of the plant for the convergence to
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zero of the output mismatch (see, [17] and [44, §6.5.1]).
The same comment applies to the solution at item (G)
of Theorem 2 as well. The solution at item (L) corre-
sponds to a practical approach to the problem, wherein
the saturation effects are completely disregarded in the
design of v1. This item establishes that any such solu-
tion will guarantee the local statement (L) in Problem 1,
however there’s no guarantee on the size of the region
from which the unconstrained performance can be re-
covered by the compensated system. The advantages of
this solution are simplicity and local performance. The
main disadvantage is the lack of stability guarantees for
large signals. Nevertheless, from a practical viewpoint,
the property that (x̄c, ȳc) ≡ (x̂c, û) established at the
top of the theorem ensures that the controller states are
well-behaved and for all the cases where the windup phe-
nomenon is made worse by undesirable dynamics gen-
erated by the saturated interconnection, this solution
leads to extremely desirable results. For example, it was
adopted in [34] and we establish here its formal proper-
ties in terms of local L2 performance recovery as stated
in item (L) of Problem 1. The last solution at item (T)
overcomes the limitations of the previous two approaches
by enforcing a guaranteed exponential decay of the per-
formance output mismatch z̄ − ẑ while ensuring that
this bound holds in a guaranteed region. The trade off
in the BMIs (9) is between α (associated with the decay-
ing exponential bound) and β (associated with the size
of the guaranteed region). A last comment pertains to
the BMI nature of the conditions (9), which makes them
not straightforward to solve in general. In Section 5 we
discuss a case study where using the branch-and-bound
solver bmibnb in YALMIP [27] and the commercial pack-
age PENBMI [23] it is possible to derive a solution. Al-
ternative approaches are also possible, such as the path-
following method of [18], the Lagrangian dual method
of [36], or alternative techniques.

Remark 2 Regarding the solution at item (T) of The-
orem 1, the constraints (9) are typically solved in one of
the following two ways: either a desired decay rate ᾱ is
fixed and the BMIs are solved with α = ᾱ with the goal
of maximizing β, so that the associated guaranteed re-
gion is maximized, or a desired guaranteed region size
β̄ is fixed and the BMIs are solved with β = β̄ with the
goal of maximizing α, so that the associated decay rate
is maximized. In this last case, an appealing feature is
that as long as the plant is not exponentially unstable
(thus also including the polynomially unstable case), the
BMI constraints are semiglobal, namely they are feasi-
ble for any arbitrarily large β̄ thereby allowing one to
design anti-windup compensation inducing an arbitrar-
ily large guaranteed region. This fact is formalized in the
next statement (whose proof is in Section 6.1). Note that
this is as good as one can get because exponentially un-
stable plants are known to have bounded controllability
regions and linear stabilizers are known to be insufficient
to globally asymptotically stabilize certain polynomially
unstable plants with bounded inputs.

Proposition 1 If the matrix A only has eigenvalues in
the closed left half plane, then given any fixed β = β̄ > 0,
the BMIs (9) in the variables P = PT > 0, K, α > 0,
UM > 0 diagonal are feasible. ◦

4 Extended anti-windup architecture

We propose here an alternative architecture to solve
Problem 1 which uses, within the MRAW framework, a
recently proposed alternative method to represent rate
and magnitude saturation in anti-windup schemes [12].
The core idea behind this approach is to assume that
it is possible 3 to compute the derivative of the con-
troller output yc in (2) and impose the rate saturation
directly on this signal, so that the arising dynamics is
not discontinuous and the magnitude and rate satura-
tion limits are still satisfied. To this aim, we define an
extended anti-windup compensator (extended because
as compared to the previous solution in (7), this com-
pensator has a larger number of states) having the form:

ẋaw = Axaw +Bu(u− yc) (10a)

δ̇ = satR(yc,dot + v1) (10b)

yaw = Cyxaw +Dyu(u− yc) (10c)

zaw = Czxaw +Dzu(u− yc), (10d)

where v1 is a stabilizing signal to be designed and yc,dot
is a signal reproducing as accurately as possible the
derivative of the controller output yc. The extended anti-
windup compensator (10) should be interconnected to
the saturated plant-controller pair (1), (2), (5) via the
following anti-windup interconnection:

uc = y − yaw, ν = satM (δ). (11)

yaw
- +

+

δ ν y

d
Saturation Saturation

MagnitudeRate

v1

+

δaw

r

yc

yc,dot
+Unconstr’d

Controller
(2)

Anti-windup
Compensator

(10a)

Saturated
Plant
(1), (5)(10b)

1
s–

Fig. 2. Extended anti-windup architecture.

A block diagram of the overall anti-windup scheme is
represented in Figure 2. Note that, differently from typ-
ical anti-windup approaches, we don’t compute the in-
put/output mismatch provided by the saturation func-
tion to drive the anti-windup dynamics, but we rely on
the peculiar dynamics in (10) to drive the input ν to the
saturated plant (5), (1).

3 This assumption is always satisfied if the controller is
strictly proper. Nevertheless, if the controller is not strictly
proper then approximate implementations are possible (see
the following Remark 4).
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The next theorem, whose proof is reported in Section 6.2,
establishes three solutions to Problem 1, hinging upon
suitable designs of the stabilizing signal v1 in (10).

Theorem 2 Consider the anti-windup closed-loop (1),
(2), (5), (10), (11). Under Assumptions 1 and 2, the con-
troller state and output responses (x̄c, ȳc) coincide with
the unconstrained controller state and output responses
(x̂c, û). Moreover, the following holds:

(G) If A is Hurwitz, then for any diagonal Kδ > 0, the
selection v1 = −Kδ(δ − yc) solves the global anti-
windup problem (G) in Problem 1.

(L) Selecting v1 = −Kaw

[ xaw

δ−yc

]

, whereKaw is any sta-
bilizing linear state feedback for

ẋaw = Axaw +Buδaw (12a)

δ̇aw = −Kaw

[ xaw

δaw

]

(12b)

solves the local anti-windup problem (L) in Prob-
lem 1.

(T) Consider any feasible solution to the following gen-
eralized eigenvalue problem in the variables Q =
QT > 0, X, α > 0, β > 0, WM > 0 diagonal: 4

βI < Q (13a)

0 > He









[

A+ αIn Bu

]

Q −BuWM
[

0 αIm

0 Im

]

Q+

[

0 Im

−Im 0

]

X
0

−WM









(13b)

0 ≤
[

ε2SiQ [X]Ti

[X]i 1

]

, i = 1, . . . , 2m, (13c)

where Si = Mi and Sm+i = Ri for all i = 1, . . . ,m.
Then, the following LMIs in the variables Kx, Kδ,
kmax, WR > 0 diagonal are feasible:

0>He















[

A+ αIn Bu

Kx Kδ + αIm

]

Q
−BuWM 0

0 −WR
[

0 Im

Kx Kδ

]

Q+

[

0 Im

−Im 0

]

X
−WM 0

0 −WR















(14a)

0 ≤
[

kmaxI [Kx Kδ]

⋆ kmaxI

]

. (14b)

Moreover, selecting v1 = [Kx Kδ]
[ xaw

δ−yc

]

, whereKx

and Kδ arise from any solution to (14), solves the

4 Note that, while the overall sizes are consistent, the diago-
nal blocks in the partition of (13b) are not square; their sizes
are n×n+m, n×m, 2m×n+m and 2m×m, respectively,
from left to right, top to bottom.

local (L) and the trade-off (T) anti-windup problems
in Problem 1 with exponential bound α in the guar-
anteed region B (β).

The solution at item (G) parallels the solution at
item (G) of Theorem 1 as some generalization of the
IMC anti-windup scheme (see [24]). Indeed, in this
solution only the δaw subsystem in the transformed
dynamics (12) is stabilized by the feedback function
and the rest of the state (namely, xaw) will converge
to zero following the decay rate of A. Due to its IMC
nature, this solution only applies to exponentially sta-
ble plants and behaves in unacceptable ways when
the plant dynamics is lightly damped. The solution at
item (L) parallels that at item (L) of Theorem 1 and has
the same advantages/disadvantages discussed after the
proof of Theorem 1, strengthened by the property that
the controller states are well behaved. This solution was
adopted in [42]. Similarly, the solution at item (T) par-
allels the solution at item (T) of Theorem 1 even though
the trade off between β and α is carried out here by way
of (quasi) convex constraints, so that global optima can
always be determined. This is a strong advantage of this
second approach versus the one of Section 3.

Remark 3 Regarding the solution at item (T) of Theo-
rem 2, the constraints (13) are typically solved in one of
the following two ways: either a desired decay rate ᾱ is
fixed and the LMIs arising from fixing α = ᾱ are solved
with the goal of maximizing β, so that the associated
guaranteed region is maximized, or a desired guaranteed
region size β̄ is fixed and the constraints arising from
fixing β = β̄ are solved maximizing α via a generalized
eigenvalue problem, so that the associated decay rate is
maximized. It may be also desirable to maximize the de-
cay rate α while guaranteeing global properties (namely,
β → ∞). This can be done by transforming the regional
constraints of item (T) into global ones, so that anti-
windup with global exponential performance guarantees
can be determined. This strategy is illustrated next and
only applies to exponentially stable plants, which is rea-
sonable to expect since global exponential convergence
is not achievable via a bounded input on a non exponen-
tially stable linear plant.

Proposition 2 If A is Hurwitz, consider any solution
to the generalized eigenvalue problem (13b) with X = 0,
in the variables Q = QT > 0, α > 0, WM > 0 diagonal.
Then, with that solution, the LMIs (14) with X = 0
in the variables Kx, Kδ, kmax, WR > 0 diagonal are
feasible. Moreover, selecting v1 = [Kx Kδ]

[ xaw

δ−yc

]

, where
Kx and Kδ arise from any solution to (14), solves the
global (G) and the trade-off (T) anti-windup problems
in Problem 1 with exponential bound α and guaranteed
region corresponding to the whole space. ◦

As compared to the (T) solution of Theorem 1, the ad-
vantage of the (T) solution of Theorem 2 is that the
constraints are convex (or quasi-convex because of the
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gevp) and can be efficiently solved by determining the
globally optimal solution using commercial solvers such
as the Matlab LMI Toolbox [11] (there wasn’t such a
guarantee with the BMIs of Theorem 1). Another advan-
tage of this approach is that when the plant is exponen-
tially stable the results in Proposition 2 provide a global
solution to the problem of maximizing the exponential
convergence rate. On the other hand, a drawback of the
approach proposed here is that semiglobal results can-
not be established for plants having poles in the closed
left half plane. In other words no parallel statement to
that in Proposition 1 can be proven. 5 .

Remark 4 One of the main difficulties in implement-
ing the anti-windup architecture proposed in this sec-
tion (Figure 2) is that the signal yc,dot, i.e. the deriva-
tive of the controller output yc, must be generated to be
used in (10). If a strictly proper controller is used, such
derivative can be explicitly and easily computed; other-
wise, a viable alternative route, provided that Dyu = 0
in (1b), consists in filtering yc by F (s) = 1

1+τds
[1 s]T

in order to produce [ỹc ˙̃yc]
T and replacing yc by ỹc

in the anti-windup scheme above (with the advantage

that ˙̃yc is explicitly available). If this approach is taken,
the proposed anti-windup scheme will recover the re-
sponse of the modified unconstrained closed loop (with
yc replaced by ỹc) instead of the response of the origi-
nal unconstrained closed loop; but this also guarantees
that the original response is essentially recovered, since
it is possible to show that the modified and the orig-
inal unconstrained closed loop responses can be made
arbitrarily close if a sufficiently small τd is chosen. Note
that the condition Dyu = 0 in (1b) requested above can
be enforced by a preliminary loop transformation where
(1b) is replaced by y = Cyx + Dydd and the first in-
terconnection equation in (8) and (11) is replaced by
uc = y +Dyuyc − yaw (see [10, Fig. 2] for details). This
strategy is adopted in our example in Section 5, where
the controller is not strictly proper. ◦

Remark 5 To improve the transient performance in-
duced by the anti-windup closed-loop, it is possible to
modify the extended anti-windup architecture by us-
ing saturated versions of yc and yc,dot, namely replacing
(10b) by

δ̇ = satR(satR(1−ε)(yc,dot) + v1) (15)

and by choosing signal v1 as a feedback signal from
[

xaw

δ−satM(1−ε)(yc)

]

, rather than
[ xaw

δ−yc

]

. Then it can be

proved (details are omitted for brevity) that all the
stated closed-loop properties are preserved and the tran-
sient performance of the anti-windup law is improved
because the peaks in yc and yc,dot are trimmed out. ◦

5 The main reason for this limitation stands in the nature of
the dynamics (27), which shows internal saturations unlike
the parallel dynamics (18) which only have input saturations.

5 Simulation Example

Consider the short-period longitudinal dynamics of the
VISTA/MATV F-16 at Mach 0.2 and altitude 10000 feet
(corresponding to a dynamic pressure value of 40.8 psf)
at a trim angle of attack of 28 degrees, described lo-
cally by a second order plant as in (1) with two states
corresponding to the angle of attack and the pitch rate,
respectively, and two inputs corresponding to the devi-
ations of the elevator deflection and of the pitch thrust
vectoring from the trim condition (see [34] for details).
As in [34], the controller (2) is nonlinear and corresponds
to a daisy chained allocation of the inputs, driven by a
reference signal for the angle of attack.

We design two anti-windup compensators for this ex-
ample. The first one corresponds to the construction at
item (T) of Theorem 1, where, following Remark 2, we
select β̄ = 0.001 and obtain an optimized guaranteed re-
gional performance of α = 3.7849 by solving the BMIs
with the software YALMIP [27] and the commercial
package PENBMI [23]. The corresponding simulations
are represented by bold curves in Figure 3, where they
are compared to the unconstrained response (solid), to
the saturated response (dotted) and to the response us-
ing the construction in [34] (dashed), which can be seen
as using the approach at item (L) of Theorem 1 (see [34]
for details). Note that the (T) design of Theorem 1 in-
duces a faster convergence than the one induced by the
local solution of [34], in addition to providing stronger
performance guarantees.

0 5 10 15

−10

−5

0

5

10

Angle of attack

 

 

Unconstrained
Saturated
Teel/Buffington 97
Theorem 1

0 5 10 15
−0.5

0

0.5
Control inputs

Fig. 3. Different responses using Theorem 1.

The second construction is the one at item (T) of Theo-
rem 2, where, following Remark 3 we select β̄ = 0.001 so
that the same guaranteed region is obtained. The arising
guaranteed regional performance is α = 2.4537 obtained
by solving the LMIs with the software YALMIP [27]
and the commercial package Matlab LMI Toolbox [11].
Note that this performance is worse than the one ob-
tained with the previous approach. To construct the sig-
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0
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Fig. 4. Different responses using Theorem 2.

nal yc,dot, we rely on Remark 4 by selecting τd = 0.1 be-
cause the controller is not strictly proper. Moreover, to
improve the transient performance we insert the extra
saturation suggested in Remark 5. The corresponding
simulations are represented by bold curves in Figure 4,
where they are compared to the unconstrained response
(solid), to the saturated response (dotted) and to the
response using the construction in [34] (dashed). Once
again, the (T) design of Theorem 2 leads to a faster con-
vergence than the local design in [34]. Note also that, in
spite of the worse guaranteed performance level, the un-
constrained response recovery is slightly more desirable
than that obtained from Theorem 1. This is probably
due to the conservativeness of the performance bounds.

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

β

α

 

 
Plant−order AW (Theorem 1)
Extended AW (Theorem 2)

Fig. 5. Trade-off between achievable stability region size (β)
and guaranteed exponential convergence rate (α) using the
(T) solutions of Theorems 1 and 2.

Finally, in Figure 5 we show the two curves arising from
the trade off between β and α for our two constructions
with guaranteed exponential decay rate. In the figure,
the region on the bottom left of the curve is the feasi-

bility region and the region on the top right is the in-
feasibility region. Note that, quite interestingly, for this
example the first construction appears to achieve a bet-
ter performance than the second one. This fact is com-
pensated by the converse properties in terms of compu-
tational burden, indeed the BMIs associated with the
first approach are solved suboptimally by the PENBMI
solver [23] which requires significant computational ef-
fort and is more prone to numerical problems. The LMIs
associated with the second approach, instead, are effi-
ciently solved using MATLAB’s LMI toolbox [11] and
are guaranteed to provide the globally optimal solution.

6 Proofs

The following lemma, which is a reformulation of [8,
Lemma 1] (see also [19]), will be useful. In particular, we
will use it later with w = Hx, where matrix H is a free
parameter, and then we will establish exponential sta-
bility of a sublevel set of a Lyapunov function contained
in the stripe of the state space where dz(Hx) = 0.

Lemma 1 Given any (magnitude) saturation function
sat(·) : R

m → R
m, define the deadzone function as

dz(s) := s − sat(s). Then, for any v ∈ R
m and any

w ∈ R
m satisfying dz(w) = 0, the following bound holds:

dz(v)TU(dz(v)− v + w) ≤ 0, (16)

where U is any positive definite diagonal matrix.

Proof sketch. Eq. (16) comes from (w − sat(v))(v −
sat(v)) ≤ 0, which holds as long as dz(w) = 0. •

6.1 Proofs of Theorem 1 and Proposition 1

In the following Lemma we show a useful characteristic
of the nonlinearity satMR(·) described by (5)

Lemma 2 Given any pair of functions w1(·) : R → R
m,

w2(·) : R → R
m and any ǫ ∈ (0, 1), the following holds:

satMR(satMRǫ(w1) + satMR(1−ǫ)(w2)) =

satMRǫ(w1) + satMR(1−ǫ)(w2). (17)

Moreover, (5) isL2 stable with finite gain not greater than√
2, namely s ∈ L2 implies that ‖satMR(s)‖2 ≤

√
2‖s‖2.

Proof. Since decentralized saturations are considered, it
is enough to prove the case m = 1.
As for (17), since satMRǫ(w1) has magnitude and rate
not exceeding Mǫ and Rǫ, respectively, and similarly
satMR(1−ǫ)(w2) has magnitude and rate not exceeding
M(1 − ǫ) and R(1 − ǫ), respectively, then, denoting by
s(t) their sum, we have that |s(t)| ≤ M and |ṡ(t)| ≤ R,
∀t ∈ R. Moreover, as established in [41, Lemma B.1,
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p. 145], (5) has unique solutions for all initial conditions
and all input functions. 6 Therefore satMR(s(t)) = s(t),
∀t ∈ R, which implies (17).

As for the bound ‖satMR(s)‖2 ≤
√
2‖s‖2 for s ∈ L2,

let µ̇(t) = R sign(satM (s(t)) − µ(t)) and consider the

storage function V (µ) = |µ|3

3 . It will now be shown that

V̇ (µ) < −Rµ2 + 2Rs2, from which the claim follows by

integration. Taking the time derivative yields V̇ (µ) =
−R|µ|2sign(µ)sign(µ−satM (s)). If |µ| > |satM (s)|, then
sign(µ− satM (s)) = sign(µ) and then V̇ (µ) = −R|µ|2 ≤
−R|µ|2 + 2R|s|2. On the other hand, if |µ| ≤ |satM (s)|,
then V̇ (µ) ≤ R|µ|2 ≤ −R|µ|2 + 2R|µ|2 ≤ −R|µ|2 +
2R|satM (s)|2 ≤ −R|µ|2 + 2R|s|2. •

The advantage in the interconnection between (1), (2)
and (7) via the equation (8) is illustrated by the following
statement.

Lemma 3 For the closed-loop (1), (2), (5), (7), (8) the
following holds.

(i) If xaw(0) = 0 and u(0) = yc(0), then
7 the con-

troller state x̄c and output response ȳc coincides
with the virtual response x̂c and ŷc produced by
the unconstrained closed-loop (1), (2), (3) from
the same initial conditions and under the action
of the same external inputs r and d. Moreover,
z̄aw = z̄ − ẑ.

(ii) If there exists a static feedback control law k(·) from
xaw such that |k(xaw)| ≤ c|xaw| for some c > 0
and the following system

ẋaw = Axaw +BusatMRε(k(xaw)) +Buσ (18)

is locally (respectively, globally) L2 stable from σ to
xaw, then the anti-windup closed-loop (1), (2), (7),
(8) with

v1 = satMRε(k(xaw)) (19)

is such that there exists a local (respectively, global)

nonlinear L2 gain from
[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]

to z̄ − ẑ;

namely as long as the unconstrained trajectory does
not spend infinite energy outside the (restricted)
saturation limits, then the actual output response z̄
converges in the L2 sense to the ideal unconstrained
output response ẑ

Proof. Item (i). The proof of this item is carried out
along the usual lines with the model recovery schemes
(see also [1,35,43] for similar reasonings) so it is only
sketched here. Writing the anti-windup closed-loop dy-
namics (1), (2), (7), (8) in the following coordinates:

6 This property is nontrivial due to the discontinuous dy-
namics in (5).
7 Similar to the results in [12,35], if xaw(0) 6= 0 and/or
u(0) 6= yc(0), then one experiences an extra transient at
startup, but the closed-loop properties remain unchanged.

(xa, xc, xaw) = (x − xaw, xc, xaw), the arising repre-
sentation is in cascade form, where the first subsystem
comprising the states (xa, xc) coincides with the uncon-
strained closed-loop dynamics (1), (2) and (3) and the
second subsystem is the anti-windup compensator (7),
which is driven by the signal yc produced by the first
subsystem. Due to this fact, the controller response coin-
cides with the unconstrained controller response, which
establishes (x̄c, ȳc) = (x̂c, û) for all times. Moreover,
ẑ = za = z̄ − z̄aw.

Item (ii). With the selection for u in (8) and with v1 as in
(19), by equation (17) of Lemma 2 it is easily seen that:

u− yc = satMR(satMR(1−ε)(yc) + satMRε(v1))− yc

= satMR(1−ε)(yc) + satMRε(v1)− yc

= dzMR(1−ε)(yc) + satMRε(v1),

and then (7a) becomes (18) with σ = dzMR(1−ε)(ȳc)

which is an L2 signal if
[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]

∈ L2.

Since ȳc = û and by item (i) of this lemma, z̄ − ẑ =
z̄aw, then the result follows from the L2 stability as-
sumption on (18), the fact that ‖zaw‖2 ≤ |Cz|‖xaw‖2 +
|Dzu|‖dzMR(1−ε)(yc)+ satMRε(k(xaw))‖2 the L2 stabil-
ity of (5) established in Lemma 2 and the fact that
‖k(xaw)‖2 ≤ c‖xaw‖2 since |k(xaw)| ≤ c|xaw|. •

Based on the preliminary statements in Lemma 3, it is
possible to prove Theorem 1 as follows.

Proof of Theorem 1.
Item (G). By Lemma 3, it is sufficient to prove that
system (18) is globally L2 stable from σ to zaw. Since
v1 = 0 and A is Hurwitz, then (18) corresponds to a
linear exponentially stable system under the action of an
L2 disturbance. Therefore the system has a global finite
input/output L2 gain (see, e.g., [22, Cor. 5.1]) and the
result follows.

Item (L). Similar to the previous item, by relying on
Lemma 3, we address the local L2 stability of system
(18). Since for small enough states xaw, the stabilizing
signal v1 remains below the saturation limits, then the
origin of (18) is locally exponentially stable. This implies
local L2 stability from σ to zaw (see, e.g., [22, Cor. 5.1]).

Item (T). Consider the Lyapunov function V =
xT
awPxaw for system (18). Applying a Schur comple-

ment (see, [7]) to (9c) and to (9d), we get, respectively,

([K(A+BuK)]i)
T ([K(A+BuK)]i) ≤ ε2R2

iP,

[H]Ti [H]i ≤ ε2M2
i P,

(20)

for i = 1, . . .m, which imply that in the set E(P, 1) :=
{xaw : V (xaw) ≤ 1} the following bounds hold, respec-
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tively:

|(εR)−1K(A+BuK)xaw|∞ ≤ 1, (21a)

|(εM)−1Hxaw|∞ ≤ 1. (21b)

Using v1 = Kxaw, then for all xaw ∈ E(P, 1), the first
condition in (21) implies that satRε(v̇1) = v̇1, so that
satMRε(v1) = satMε(v1). Moreover, the second condi-
tion in (21) implies that satMε(Hxaw) = Hxaw and, by
the generalized sector condition in Lemma 1, we get for
any positive definite diagonal matrix UM :

dzMRε(Kxaw)
TUM (dzMRε(Kxaw)− (K −H)xaw) ≤ 0,

(22)
for all xaw ∈ E(P, 1).

Consider now the time derivative of V along the dy-
namics (18) with σ = 0. Using (22) and defining q =
dzMRε(Kxaw), we get for all xaw ∈ E(P, 1),

V̇ ≤ V̇ − 2qTUM (q − (K −H)xaw)

= xT
aw (He(P (A+BuK)xaw − 2PBuq)

− 2qTUM (q − (K −H)xaw)

=

[

xaw

q

]T

He

[

P (A+BuK) −PBu

UM (K −H) −UM

][

xaw

q

]

< −2αxT
awPxaw = −2αV,

where we have used (9b) in the last step. Since by (9a),

E(P, 1) ⊇ B(β), then the bound above on V̇ implies
that the origin of (18) is locally exponentially stable
with region of attraction including B(β). Similar to the
proof of item (L), local L2 stability of system (18) is
guaranteed. Moreover, exponential recovery trivially
follows from the relation V̇ ≤ −2αV , which holds on
the invariant set E(P, 1) and implies that for xaw(0)
in this set V (xaw(t)) ≤ e−2αtV (xaw(0)); denoting by
λm and λM the minimum and maximum eigenvalues
of the symmetric matrix P > 0, and taking into ac-
count that λm |xaw|22 ≤ V (xaw) ≤ λM |xaw|22 since
V (xaw) = xT

awPxaw, the exponential decay of V implies

that |xaw(t)|2 ≤
√

λM

λm
e−αt |xaw(0)|2. •

Proof of Proposition 1. Under Assumption 1, by [25,
Lemma 2.7], for all ε1 > 0, there exists a unique matrix
P (ε1) > 0 that solves the equation

ATP (ε1)+P (ε1)A−P (ε1)BuB
T
u P (ε1)+ ε1I = 0 (23)

Moreover, P (ε1) → 0 as ε1 → 0 and, by choosing
K(ε1) = −BT

u P (ε1), we have that A + BuK(ε1) is
asymptotically stable for all ε1 > 0.
Consider (9a). For any given β, we can find ε1 small
enough that guarantees P (ε1) <

1
β
.

Consider (9b). Take H(ε1) = K(ε1) and note that

2xTP (ε1)Buq ≤ 2ε22x
Tx + 2qT

BT

u
P (ε1)P (ε1)Bu

ε22
q. Then,

consider (9b) multiplied on the right and on the left by
[x q]T , it follows that the right-hand side of (9b) is less
then or equal to

2xTQ1(ε1, ε2, α)x+ 2qTQ2(ε1, ε2)q (24)

where Q1(ε1, ε2, α) = P (ε1)A + P (ε1)BuK(ε1) + αI +

ε22I and Q2(ε1, ε2) =
BT

u
P (ε1)P (ε1)Bu

ε22
− UM By choos-

ing α and ε2 so that α + ε22 < ε1, (23) guarantees
that Q1(ε1, ε2, α) < 0. Moreover, by choosing UM >
BT

u
P (ε1)P (ε1)Bu

ε22
we have that Q2(ε1, ε2) < 0.

Finally, for each i, by applying the Schur complement to
(9c), we have that ([K(ε1)(A+BuK(ε1))]i)

T ([K(ε1)(A+
BuK(ε1))]i) ≤ ε2R2

iP (ε1) for a small enough ε1. To see
this, note that K(ε1) = −BT

u P (ε1) guarantees that the
left-hand side shrinks to zero faster than ε21 → 0, while
P (ε1) goes to zero as ε1 → 0. A similar argument can
be used with (9d). •

6.2 Proofs of Theorem 2 and Proposition 2

The following Lemma will be used to prove Lemma 5.

Lemma 4 Given any pair v, y ∈ R and any ε ∈ (0, 1),
there exists ǫ ∈ [ε, 2− ε] such that the following holds:

satS(y + v)− y = satSǫ(v) + σ, (25)

where |σ| ≤ |2dzS(1−ε)(y)|

Proof. Let δ = 1− ε. We have that

satS(y+v)−y = satS(satSδ(y)+v)−satSδ(y)+ω1+ω2,

with ω1 = satS(y + v) − satS(satSδ(y) + v) and ω2 =
satSδ(y) − y. Hence |ω1 + ω2| ≤ |ω1| + |ω2| ≤ |dzSδ(y)|
since |ω1| ≤ |satS(y + v) − satS(satSδ(y) + v)| ≤ |y +
v− satSδ(y)−v| ≤ |dzSδ(y)| and |ω2| = |satSδ(y)−y| ≤
|dzSδ(y)|. Moreover, there exists ǫ ∈ [ε, 2− ε] such that

satS(satSδ(y) + v)− satSδ(y) = satSǫ(v) (26)

In fact, if |y| ≥ δ and yv ≥ 0 then (26) is satisfied by
ǫ = ε and if |y| ≥ δ and yv ≤ 0 then (26) is satisfied
by ǫ = 2 − ε. It follows that for |y| < δ the equation is
satisfied by some ǫ ∈ (ε, 2− ε). •

Similar to the case discussed in the previous section, the
key properties of the anti-windup scheme rely on the fact
that the signal yaw keeps the controller well behaved,
while the action of the stabilizer v1 enforces the desired
unconstrained response recovery. This is formalized in
the following lemma.

Lemma 5 For the closed-loop (1), (2), (5), (10), (11)
the following holds.
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(i) If xaw(0) = 0 and u(0) = δ(0) = yc(0), then
8 the

controller state and output response coincides with
the virtual response produced by the unconstrained
closed-loop (1), (2), (3) from the same initial con-
ditions and under the action of the same external
inputs r and d. Moreover, z̄aw = z̄ − ẑ.

(ii) If there exists a static feedback control law k(·) from
[ xaw

δaw

]

such that
∣

∣k(
[ xaw

δaw

]

)
∣

∣

2
≤ c

∣

∣

[ xaw

δaw

]∣

∣

2
for some

c > 0 and for any function ǫ(·) : R → R
m such

that ε ≤ ǫi(t) for all t, i = 1, . . . ,m, the following
system

ẋaw = Axaw +BusatMǫ(t)
(δaw) +BuσM , (27a)

δ̇aw = satRǫ(t)

(

k
([ xaw

δaw

]))

+ σR, (27b)

(withMǫ(t) := diag(M)ǫ(t)) is locally (respectively,
globally) L2 stable from (σM , σR) to (xaw, δaw),
then the anti-windup closed-loop (1), (2), (10), (11)
with v1 = k

([ xaw

δ−yc

])

is such that there exists a lo-

cal (respectively, global) L2 gain from
[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]

to z̄ − ẑ, namely as long as the unconstrained tra-
jectory does not spend infinite energy outside the
(restricted) saturation limits, then the actual out-
put response z converges in the L2 sense to the ideal
unconstrained output response ẑ.

Proof. First note that by [12, Lemma 1], since ν(t) in
(11) is below the saturation limits, then u(t) = ν(t) for
all t, that is, the closed-loop trajectories coincide with
those of (1), (2), (10), (11) interconnected via

uc = y − yaw, u = satM (δ). (28)

Therefore we carry out the proof for this equivalent
closed-loop system.

Item (i). The proof is a generalization of the proof of
item (i) of Lemma 3. The closed-loop dynamics in the
coordinates (xa, xc, xaw, δ) = (x−xaw, xc, xaw, δ) corre-
sponds to a cascade representation where the first sub-
system (whose state is (xa, xc)) coincides with the un-
constrained closed-loop dynamics (1), (2) and (3) and
the second subsystem is the anti-windup compensator
(10), which is driven by the two signals yc and yc,dot.
Due to this fact, the controller response coincides with
the unconstrained controller response, which establishes
(x̄c, ȳc) = (x̂c, û) for all times. Moreover, ẑ = za =
z̄ − z̄aw.

Item (ii). Consider the dynamics (10) with the selection
for u in (28), in the coordinates (xaw, δaw) := (xaw, δ −

8 As in [35], if the anti-windup compensation and/or the
dynamics (5) are initialized differently then one experiences
an extra transient at startup, but the closed-loop properties
remain unchanged.

yc) and with v1 = k
([ xaw

δ−yc

])

, namely in the new coor-

dinates v1 = k
([ xaw

δaw

])

:

ẋaw = Axaw +Bu(satM (ȳc + δaw)− ȳc) (29a)

δ̇aw = satR(ȳc,dot + v1)− ȳc,dot (29b)

zaw = Czxaw +Dzu(satM (yc + δaw)− yc) (29c)

By Lemma 4, (29) yields (27) with |σM | ≤ |2dzM(1−ε)(ȳc)|,
|σR| ≤ |2dzR(1−ε)(ȳc,dot)|. Since ȳc = û and ȳc,dot =

˙̄yc = ˙̂u, and by item (i) of this lemma, z̄ − ẑ = z̄aw,
then the result follows from the L2 stability assumption
on (27), the fact that ‖zaw‖2 ≤ |Cz| · ‖xaw‖2 + |Dzu| ·
‖satRε(k

([ xaw

δ−yc

])

)‖2, and ‖k
([ xaw

δ−yc

])

‖2 ≤ c‖xaw‖2
since |k

([ xaw

δ−yc

])

| ≤ c|xaw|. •

Based on the preliminary statements in Lemmas 4 and
5, it is possible to prove Theorem 2 as follows.

Proof. Theorem 2.
Item (G). By Lemma 5, it is sufficient to prove that sys-
tem (27) with k

([ xaw

δ−yc

])

= −Kδδaw is globallyL2 stable
from (σM , σR) to zaw. With that selection, the second

equation in (27) becomes δ̇aw = −satR(Kδδaw) + σR,
which is well known to have a global nonlinear gain from
σR to δaw (a direct proof is obtained by a trivial modifi-
cation of the proof of item (iii) of [12, Lemma 1]). Then
the first equation in (27) is to an exponentially stable
linear system driven by the two L2 signals satM (δaw)
and σM . Then xaw ∈ L2 and finally also zaw ∈ L2.

Item (L). Similar to the previous item, using Lemma 5,
we address the local L2 stability of system (27). Since
for small enough states (xaw, δaw), the stabilizing signal
v1 remains below the saturation limits, then the origin
of (27) is locally exponentially stable. This implies local
L2 stability from (σM , σR) to zaw [22, Cor. 5.1].

Item (T). We first show that any solution to (13a), (13c),
(14), guarantees item (T). Then we show that any solu-
tion to (13) guarantees feasibility of (14). In the proof
we actually disregard constraint (14b) because it is al-
ways feasible for a large enough kmax (it will be used to
determine numerically convenient controller gains).

Consider the Lyapunov function V =
[ xaw

δaw

]T
P
[ xaw

δaw

]

for system (27), where P = Q−1. Pre- and post- multi-
plying (13c) by the matrix [ P 0

0 1 ], we get

0 ≤
[

ε2SiP [H]Ti

[H]i 1

]

, i = 1, . . . , 2m, (30)

where H = XP . Using a Schur complement [7] on (30),
we get [H]Ti [H]i ≤ ε2S2

i P, i = 1, . . . 2m, and then
in E(P, 1) :=

{[ xaw

δaw

]

: V
([ xaw

δaw

])

≤ 1
}

it holds that
∣

∣εS−1H
[ xaw

δaw

]∣

∣

∞
≤ 1. The last inequality implies that

12



for all
[ xaw

δaw

]

∈ E(P, 1), satSε

(

H
[ xaw

δaw

])

= H
[ xaw

δaw

]

and,
by the generalized sector condition in Lemma 1, for any
positive definite diagonal matrix U :=

[

UM 0
0 UR

]

and for

all
[ xaw

δaw

]

∈ E(P, 1),

qTU

(

q −
([

0 Im

Kx Kδ

]

−H

)[

xaw

δaw

])

≤ 0, (31)

where q :=
[

dzTM (δaw) dzTR (Kxxaw +Kδδaw)
]T

.

Consider now the time derivative of V along the dynam-
ics (27) with σM = 0 and σR = 0. Using (31), we get for
all
[ xaw

δaw

]

∈ E(P, 1),

V̇ ≤ V̇ − 2qTU

(

q −
([

0 Im

Kx Kδ

]

+H

)[

xaw

δaw

])

=

[

xaw

δaw

]T

He

(

P

[

A B

Kx Kδ

])[

xaw

δaw

]

+ 2

[

xaw

δaw

]T

P

[

−B 0

0 −Im

]

q

− 2qTU

(

q −
([

0 Im

Kx Kδ

]

−H

)[

xaw

δaw

])

= wTHe















P

[

A B

Kx Kδ

]

P

[

−B 0

0 −Im

]

U

([

0 Im

Kx Kδ

]

−H

)

−U















w

< −2α

[

xaw

δaw

]T

P

[

xaw

δaw

]

= −2αV

([

xaw

δaw

])

,

where w := [xT
aw δTaw qT ]T and where the last step fol-

lows from (14a) after pre- and post-multiplying by the

matrix [ P 0
0 U ], with U =

[

WM 0
0 WR

]−1
(recall that, by def-

inition of H, XP = H). Since by (13a), E(P, 1) ⊇ B(β),
then the bound above on V̇ implies that the origin of
(27) is locally exponentially stable with region of attrac-
tion including B(β). Similar to the proof of item (L) lo-
cal L2 stability of system (27) is guaranteed. Moreover,
letting ξ :=

[ xaw

δaw

]

, exponential recovery follows from

V̇ ≤ −2αV , which holds on the invariant set E(P, 1) and
implies that for ξ(0) in this set V (ξ(t)) ≤ e−2αtV (ξ(0));
denoting by λm and λM the minimum and maximum
eigenvalues of the symmetric matrix P > 0, and tak-
ing into account that λm|ξ|2 ≤ V (ξ) ≤ λM |ξ|2 since
V (ξ) = ξTPξ, the exponential decay of V implies that

|ξ(t)| ≤
√

λM

λm
e−αt|ξ(0)|.

The proof of item (L) is completed by showing that any
solution to (13) guarantees feasibility of (14). Since (14b)
is always feasible for a large enough kmax, it is enough to
show that any solution to (13) guarantees feasibility of
(14a). In particular, only (13b) will be necessary to this
aim. To this aim, it is useful to write (14a) as follows:

He(Φ0 + Y [Kx Kδ]Z
T ) < 0, (32)

where the matrices Φ0, Y and Z are easily derived from
(14a). By the elimination lemma (see, e.g., [7, Sec. 2.6.2])
there exists a [Kx Kδ] satisfying (32) if (and only if):

Y T
⊥ Φ0Y⊥ < 0, ZT

⊥Φ0Z⊥ < 0, (33)

where Y⊥ is an orthogonal complement of Y and Z⊥ is
an orthogonal complement of Z. By choosing

Y⊥ =

[

In+2m

0 −Im 0

]

, Z⊥ =

[

0

I2m

]

.

after some computations (omitted due to space
constraints) the second inequality in (33) becomes
[

WM 0
0 WR

]

> 0, which is always satisfied by assumption,

while the first inequality in (33) coincides with (13b). •

Proof of Proposition 2. When X = 0 in (13), the reason-
ings of the proof of item T of Theorem 2 still apply with
the extra feature that the sector condition (31) is global
(namely it holds for all

[ xaw

δaw

]

). Hence, the results of the
previous item hold globally. •
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7 Conclusions

In this paper we proposed two architectures to solve the
model recovery anti-windup problem for nonlinear con-
trol systems with linear plants subject to magnitude and
rate saturation. For each architecture, three solutions
have been given, optimizing a certain L2 performance
metric. Each one of the two architectures is applicable
with any type of plant, and one of the three proposed
solutions gives global guarantees for exponentially sta-
ble plants. The proposed approaches have been compar-
atively illustrated on a simulation example.
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