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a b s t r a c t

The primary concern of the present paper is the regulation of an uncertain heat process with collocated
boundary sensing and actuation. The underlying heat process is governed by an uncertain parabolic
partial differential equation (PDE) with Neumann boundary conditions. It exhibits an unknown constant
diffusivity parameter and it is affected by a smooth boundary disturbance, which is not available for
measurements and which is possibly unbounded in magnitude. The proposed robust synthesis is formed
by the linear feedbackdesign andby the ’’Twisting’’ second-order sliding-mode control algorithm, suitably
combined and re-worked in the infinite-dimensional setting. A non-standard Lyapunov functional is
invoked to establish the global asymptotic stability in a Sobolev space, involving spatial state derivatives of
the same order as that of the plant equation. The stability proof is accompanied by a set of simple tuning
rules for the controller parameters. The effectiveness of the developed control scheme is supported by
simulation results.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sliding-mode control has long been recognized as a powerful
controlmethod to counteract non-vanishing external disturbances
and unmodeled dynamics (Utkin, 1983). This method is based
on the deliberate introduction of sliding motions into the control
system, and, since the motion along the sliding manifold proves to
be uncorrupted by matched disturbances, the closed-loop system
is guaranteed to exhibit strong properties of robustness against
significant classes of disturbances and model uncertainties. Due to
these advantages and the simplicity of implementation, sliding-
mode controllers have widely been used in various applications
(Orlov, 2009).

On the other hand, many important engineering systems and
industrial processes are governed by partial differential equations
(PDEs) and are often subject to a significant degree of uncertainty.
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Therefore, a growing interest is arising towards extending the
discontinuous control methods to infinite-dimensional systems.
Presently, the discontinuous control synthesis in the infinite-
dimensional setting is well documented (Levaggi, 2002; Orlov,
2000; Orlov, Liu, & Christofides, 2004; Orlov & Utkin, 1987) and
it is generally shown to retain the main robustness features
as those possessed by its finite-dimensional counterpart. Other
robust control paradigms have been fruitfully applied as well in
the infinite dimensional setting such as adaptive control (Krstic
& Smyshlyaev, 2008b), and LMI-based design (Fridman & Orlov,
2009). The recent books (Christofides, 2001; Orlov, 2009) illustrate
some existing results in the field of robust control of infinite
dimensional systems.

The boundary control problem for heat processes was studied,
e.g., in Boskovic, Krstic, and Liu (2001), Fridman and Orlov (2009)
and Krstic and Smyshlyaev (2008a) under more strict assumptions
on the admitted uncertainties and perturbations compared to
those made in the present work. In this paper we address the
boundary control problem for an uncertain heat process, governed
by a parabolic PDE with a scalar spatial variable ξ ∈ [0, 1]
and with Neumann boundary conditions (BC’s). An appropriate
extension of second-order slidingmode (2-SM) control techniques
(Levant, 1993;Orlov, 2009) allows us to address the followingmain
features:

• Thediffusivity parameter is admitted to be anunknownpositive
constant.

• Only collocated boundary sensing and actuation are assumed to
be available.
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http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:pisano@diee.unica.it
mailto:yorlov@cicese.mx
http://dx.doi.org/10.1016/j.automatica.2012.05.041


A. Pisano, Y. Orlov / Automatica 48 (2012) 1768–1775 1769
• The proposed dynamic controller rejects a class of locally
integrable matched disturbances of an arbitrary shape. Such a
disturbance is admitted to be non-vanishing and unbounded in
magnitude whereas the norm of its time derivative is assumed
to be uniformly bounded by an a priori known constant.

• The plant input is continuous, whereas its first-order time
derivative is composed of a discontinuous part (implementing
the ‘‘Twisting’’ 2-SM algorithm Levant, 1993) and a continuous
linear part.

• The global asymptotic stability of the closed-loop system is
achieved in an appropriate Sobolev space.

The combined use of the Twisting 2-SM and linear feedback
was already suggested in Orlov (2009), and the main novelty
here is the application of this algorithm to regulate an infinite
dimensional system through its boundary. In the resulting closed-
loop system, the controller is connected to the plant through a
dynamical filter (an integrator) thereby augmenting the system
statewith its timederivative.While passing through the integrator,
the discontinuous signal is smoothed out, and the so-called
chattering phenomenon, extremely undesired in practice, is thus
attenuated. Due to such a dynamic input extension, the global
asymptotic stabilization of the underlying uncertain heat process
is achieved in a stronger norm of a Sobolev space, involving spatial
state derivatives up to the second order. This constitutes the
main contribution of the paper. The stability proof is based on a
non-standard Lyapunov functional construction, invented for the
proposed closed-loop system. The proof leads to a set of simple
tuning rules for the controller parameters.

Some related works (Orlov, Pisano, & Usai, 2010, 2011a,b)
have recently been published by the authors. In those works
natural generalizations of the Twisting and Supertwisting 2-SM
algorithms to the infinite-dimensional setting were developed
to address the tracking control of uncertain and perturbed heat
and wave propagation processes. In the aforementioned works,
however, the available sensing and actuation were assumed to
be distributed over the entire state spatial domain, whereas the
present development makes a fundamental step beyond that
assumption by admitting only boundary sensing and actuation to
be available.

The rest of the paper is outlined as follows. In Section 2, a family
of perturbed heat equations is introduced and the control problem
is formulated. In Section 3, a stabilizing boundary controller
is developed and appropriate solution concepts are specified.
In Section 4 the main result and the associated stability proof
are presented. Simulation results are given in Section 5. Finally,
Section 6 collects some concluding remarks.

1.1. Notation

The notation used throughout is fairly standard. H l(0, 1),
with l = 0, 1, 2, . . . , denotes the Sobolev space of absolutely
continuous scalar functions z(ζ ) on (0, 1) with square integrable
derivatives z(i)(ζ ) up to the order l and the H l-norm

∥z(·)∥l =

 1

0
Σ l

i=0[z(i)(ζ )]2dζ . (1)

Throughout thepaperwe shall also utilize the standardnotation
H0(0, 1) = L2(0.1).
2. Problem formulation

Consider the space- and time-varying scalar field Q (ξ , t) with
the monodimensional (1D) spatial variable ξ ∈ [0, 1] and time
variable t ≥ 0. Let it be governed by a parabolic PDE which is
commonly referred to as the ‘‘Heat Equation’’:

Qt(ξ , t) = θQξξ (ξ , t), (2)

where Qt and Qξξ denote temporal and second-order spatial
derivatives, respectively, and θ is a positive unknown coefficient
called thermal conductivity (or, more generally, diffusivity). The
initial condition (IC) is

Q (ξ , 0) = Q 0(ξ) ∈ H4(0, 1). (3)

Throughout, we consider controlled and perturbed Neumann-
type BC’s of the form

Qξ (0, t) = 0, Qξ (1, t) = u(t)+ ψ(t), (4)

where u(t) ∈ R is a modifiable source term (boundary control
input) and ψ(t) ∈ R represents an uncertain sufficiently
smooth disturbance. The class of initial functions and admissible
disturbances is specified by the following assumption.

Assumption 1. The initial function Q 0(ξ) in the ICs (3) is
compatible to the next perturbed BC’s

Q 0
ξ (0) = 0, Q 0

ξ (1) = ψ(0), (5)

whereas the disturbanceψ(t) is twice continuously differentiable,
and there exists an a priori known constantM > 0 such that

|ψt(t)| ≤ M, ∀t ≥ 0. (6)

It is worth noting that BC (4) at the boundary ξ = 1 considered
along with (5) implies that u(0) = 0. With the assumption
above, the stability of the considered heat process is studied in an
appropriate Sobolev space being specified to H2(0, 1). By virtue of
this, the domain D(A) of the infinitesimal operator A =

∂2

∂ξ2
in the

boundary value problem (2)–(4) is confined to the Sobolev space
H4(0, 1) and the corresponding boundary conditions (4).

The control objective is to steer the H2-norm ∥x(·, t)∥2 of the
deviation

x(ξ , t) = Q (ξ , t)− Q r (7)

of the scalar field Q (ξ , t) from an a priori given time-independent
and spatially-invariant reference Q r to zero, despite the presence
of an uncertain boundary disturbanceψ(t), arbitrarily shaped and
possibly unbounded in magnitude. Boundary sensing at ξ = 1 of
the deviation x(ξ , t) and of its time derivative xt(ξ , t) is assumed
to be the only available information on the state of the system. The
deviation variable x(ξ , t) is governed by the heat equation

xt(ξ , t) = θxξξ (ξ , t) (8)

subject to the same Neumann-type BC’s

xξ (0, t) = 0, xξ (1, t) = u(t)+ ψ(t), (9)

and IC’s

x(ξ , 0) = x0(ξ), x0(ξ) = Q 0(ξ)− Q r . (10)

It should be noted that according to Curtain and Zwart (1995,
Theorem 3.3.3), the unforced system (8)–(10) with u(t) ≡ 0 and
under Assumption 1 possesses a unique classical solution that by
definition (see Curtain & Zwart, 1995, Definition 3.2.9) meets the
boundary-value problem point-wise.
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3. Stabilizing synthesis

To achieve the control goal, the system state is augmented
through a dynamic input extension by inserting an integrator at
the plant input. The control derivative ut(t) is then regarded as a
fictitious control variable to be generated by a suitable feedback
mechanism.

The following dynamic controller

u̇(t) = −λ1sign x(1, t)− λ2sign xt(1, t)− W1x(1, t)
−W2xt(1, t), u(0) = 0, (11)

is currently under study, where, according to (5), the initial value
u(0) is set to zero to verify the compatibility3 x0ξ (1) = u(0)+ψ(0)
to the BC’s (9). In the above relation,λ1, λ2,W1 andW2 are constant
parameters subject to the inequalities

λ2 > M, λ1 > λ2 + M, W1 > 0, W2 > 0, (12)

and sign · stands for the multi-valued function sign z : R →

[−1, 1] such that

sign z ∈

 1 z > 0
[−1, 1] z = 0

−1 z < 0.
(13)

The proposed boundary dynamic controller (11) is composed
of the so-called twisting controller (Levant, 1993), governed by
the first two commuting terms, and the linear part, being a PD
controller. Itmakes explicit use ofQ (1, t) andQt(1, t) for feedback.
Despite the state derivative is normally not permitted to use in the
synthesis (as it generally induces algebraic loops) its use becomes
acceptable when a dynamic input extension is performed, similar
to that of the present paper where the input signal passes through
an integrator and, by virtue of this, the system state is augmented
by Qt being viewed as a component of the augmented state
vector (Q ,Qt). As a consequence, our stability result (Theorem 1),
formulated below, not only ensures the asymptotic stability of
x(ξ , t) in H2-norm but due to (8) it also ensures asymptotic
stability of xt(·, t) in L2-norm.

Since the dynamic control input is governed by the ordinary
differential equation (11) with discontinuous (multi-valued) right-
hand side, the precise meaning of the solutions of the distributed
parameter system (8)–(11), driven by the discontinuous dynamic
controller (11), is then specified in the sense of Filippov (1988).
Extension of the Filippov concept towards the infinite-dimensional
setting may be found in Levaggi (2002) and Orlov (2009). As in the
finite-dimensional case, amotion along thediscontinuitymanifold,
if any, is referred to as a sliding mode.

It is well-known from the finite-dimensional theory (Orlov,
2005) that the combined twisting-PD algorithm (11) generates a
sliding mode on the discontinuity manifolds intersection x(1, t) =

xt(1, t) = 0 only. Thus, beyond this intersection, state trajectories
always cross the discontinuitymanifolds x(1, t) = 0 and xt(1, t) =

0, and therefore, they constitute Caratheodory solutions, i.e., the
state equations are verified for almost all time instants everywhere
except the discontinuity manifolds intersection where the closed-
loop system stays in equilibrium to be viewed in the sense of
Filippov.

Because of space limitations the present paper focuses on the
stabilizing synthesis whereas the rigorous demonstration of the
well-posedness of the closed-loop system (8)–(10), (11) remains
an open problem which is beyond the scope of the paper. The
well-posedness of the system in question under the assumptions,

3 See, e.g., Vazquez and Krstic (2007) for the need of certain compatibility
conditions in the dynamic boundary control synthesis.
imposed on the IC’s and BC’s, is actually verified in accordance
with (Curtain & Zwart, 1995, Theorem 3.3.3) by taking into account
that the control input u(t), governed by the combined twisting
algorithm (11), is twice piece-wise continuously differentiable
along the state trajectories.

Thus, in the remainder, we simply assume the following.

Assumption 2. The closed-loop system (8)–(11) possesses a
unique Filippov solution x(·, t) ∈ H4(0, 1) and its time derivative
xt(·, t) = z(·, t) ∈ H2(0, 1) verifies the following auxiliary
boundary-value problem

zt(ξ , t) = θzξξ (ξ , t), (14)

zξ (0, t) = 0, zξ (1, t) = u̇(t)+ ψ̇(t), (15)

z(ξ , 0) = z0(ξ), (16)

where

z0(ξ) = θx0ξξ (ξ) ∈ H2(0, 1). (17)

Notice that the auxiliary problem (14)–(16) is formally obtained
by differentiating (8)–(10) in the time variable whereas the IC (17)
is straightforwardly derived from (8), (10).

It should be noted that even the existence of classical solutions
of the unforced auxiliary boundary-value problem (14)–(16) is
no longer guaranteed because Curtain and Zwart (1995, Theorem
3.3.3) proves to be inapplicable to the system in question,
perturbed with a function ψ̇ of class C1, and which in addition
does not necessarily verify the resulting compatibility condition
x0ξξ (1) = ψ̇(0). Moreover, the closed-loop version x0ξξ (1) =

u̇(0) + ψ̇(0) of the compatibility condition becomes exotic
under the control algorithm (11) according to which u̇(0) =

−λ1sign x(1, 0)− λ2sign xt(1, 0)−W1x(1, 0)−W2xt(1, 0). Thus,
it seems unacceptable to invoke such a compatibility condition in
the closed-loop setting, which is why the meaning of the auxiliary
boundary-value problem (14)–(16), (11), is subsequently viewed
in the mild sense (see, e.g., Curtain & Zwart, 1995 for details).

Let us recall (Butkovskiy, 1982) that the mild solutions of (14)–
(16), (11) coincide with the corresponding weak solutions of the
so-called standardizing PDE in distributions

zt(ξ , t) = θzξξ (ξ , t)+ θ [u̇(t)+ ψ̇(t)]δ(ξ − 1), (18)

subject to the homogeneous BCs

zξ (0, t) = 0, zξ (1, t) = 0, (19)

and to the same ICs (16).
Since the right-hand side of (18) contains the Dirac distribution

δ(ξ − 1), the meaning of (18) is defined indirectly according to the
following (see Pazy, 1992, p. 258).

Definition 1. A continuous function z(·, t) ∈ L2(0, 1), satisfying
the BC’s (19), is said to be a weak solution of the boundary value
problem (18)–(19) on [0, τ ) if for every ϕ(ξ) ∈ C2(0, 1) such that
ϕξ (0) = ϕξ (1) = 0, the function

 1
0 z(ξ , t)ϕ(ξ)dξ is absolutely

continuous on [0, τ ) and relation

d
dt

 1

0
z(ξ , t)ϕ(ξ)dξ = θ

 1

0
z(ξ , t)ϕξξ (ξ)dξ

+ θ [u̇(t)+ ψ̇(t)]ϕ(1) (20)

holds for almost all t ∈ [0, τ ).

In (20), the Dirac function definition
 1
0 ϕ(ξ)δ(ξ−1)dξ = ϕ(1)

and the property
 1
0 zξξ (ξ , t)ϕ(ξ)dξ =

 1
0 z(ξ , t)ϕξξ (ξ)dξ of the

Sobolev derivative zξξ (ξ , t) under BC’s (19) have been taken into
account.
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4. Main result

We are now in a position to state our main result.

Theorem 1. Consider the perturbed heat process (2)–(4) with As-
sumptions 1 and 2 above and with the dynamic control strat-
egy (11)–(12) applied. Then the solutions x(·, t) of the resulting error
boundary-value problem (8)–(11) are globally asymptotically stable
in the space H2(0, 1).

The proof of the main result is preceded by few technical
lemmas that will be instrumental in our further derivation.

4.1. Instrumental lemmas

Lemma 1. Let y(ξ) ∈ H1(0, 1). Then, the following inequality holds:

∥y(·)∥2
0 ≤ 2(y2(i)+ ∥yξ (·)∥2

0), i = 0, 1. (21)

Proof of Lemma 1. Given y(ξ) ∈ H1(0, 1), it is absolutely
continuous and therefore,

y(ξ) = y(0)+

 ξ

0
yξ (η)dη, ∀ ξ ∈ [0, 1]. (22)

Now squaring both sides of (22) and applying the well-known
inequality 2ab < a2 + b2 yield (21) with i = 0. The proof of
(21) with i = 1 becomes identical under the change of coordinate
ζ = 1 − ξ . Lemma 1 is proved. �

Lemma 2. The functional

Ṽ (x, xt) = λ1θ |x(1, t)| +
1
2
θW1x2(1, t)+

1
2
∥xt(·, t)∥2

0, (23)

being computed on the solutions x(·, t) of the boundary-value
problem (8)–(11), is equivalent to the H2-norm of these solutions in
the sense that

α

∥x(·, t)∥2

2 + ∥xt(·, t)∥2
0


≤ Ṽ (x, xt) ≤ β


∥x(·, t)∥2 + ∥x(·, t)∥2

2 + ∥xt(·, t)∥2
0


(24)

for an arbitrary solution x(·, t) of (8)–(11), for all t ≥ 0, and for
some positive constants α, β .

Proof of Lemma 2. Successively applying relation (21) first with
i = 1 to a solution x(ξ , t) of (8)–(11) and then, with i = 0, to its
spatial derivative xξ (ξ , t) yields

∥x(·, t)∥2
0 ≤ 2(x2(1, t)+ ∥xξ (·, t)∥2

0), (25)

∥xξ (·, t)∥2
0 ≤ 2(x2ξ (0, t)+ ∥xξξ (·, t)∥2

0). (26)

Coupled to the BC (9) at ξ = 0, relation (26) takes the form

∥xξ (·, t)∥2
0 ≤ 2∥xξξ (·, t)∥2

0, (27)

and by taking into account (25), it follows that

∥x(·, t)∥2
0 ≤ 2(x2(1, t)+ 2∥xξξ (·, t)∥2

0). (28)

Applying (27), (28) to the norm definition

∥x(·, t)∥2
2 = ∥x(·, t)∥2

0 + ∥xξ (·, t)∥2
0 + ∥xξξ (·, t)∥2

0, (29)

and utilizing relation ∥xt(·, t)∥0 = θ∥xξξ (·, t)∥0, which is
guaranteed by (8), one arrives at

∥x(·, t)∥2
2 ≤ 2x2(1, t)+ 7∥xξξ (·, t)∥2

0

= 2x2(1, t)+
7
θ2

∥xt(·, t)∥2
0. (30)
Combining (23) and (30), the validity of the first inequality of (24)
is then concluded for all t ≥ 0 and for some positive α.

To reproduce the second inequality of (24), let us note that by
virtue of the BC (9) at ξ = 0, the following chain of inequalities

x2ξ (ξ , t) =

 ξ

0
xζ ζ (ζ , t)dζ

2

≤

 ξ

0
x2ζ ζ (ζ , t)dζ

≤ ∥xξξ (·, t)∥2
0 (31)

holds for all ξ ∈ [0, 1] and all t ≥ 0. In turn, employing (31), one
obtains

x2(1, t) =

 1

0
[x(1, t)− x(ζ , t)+ x(ζ , t)]2dζ

≤
1
2

 1

0
[x(1, t)− x(ζ , t)]2dζ +

 1

0
x2(ζ , t)dζ


≤

1
2

 1

0
max
ζ∈[0,1]

x2ζ (ζ , t)dζ + ∥x(·, t)∥2
0


≤

1
2


∥xξξ (·, t)∥2

0 + ∥x(·, t)∥2
0


≤

1
2
∥x(·, t)∥2

2. (32)

To complete the proof it remains to note that the second inequality
of (24) is guaranteed by (32). Lemma 2 is proved. �

Lemma 3. Let a set

D Ṽ
R =


(p(ξ), h(ξ)) ∈ H2(0, 1)× L2(0, 1) : Ṽ (p, h) ≤ R


(33)

be determined by means of functional (23) and be specified with some
positive R. Then the following conditions

p(1)
 1

0
h(η) dη ≥ −

1
2


R
λ1θ

|p(1)| + ∥h∥2
0


, (34)

∥h∥2
0 ≤ 2R, ∥h∥0 ≤

√
2R, ∥h∥2

0 ≤
√
2R∥h∥0, (35)

hold for an arbitrary (p(ξ), h(ξ)) ∈ D Ṽ
R .

Proof of Lemma 3. The following implications hold:

Ṽ (p, h) = θλ1|p(1)| +
1
2
θW1p2(1)+

1
2
∥h∥2

0 ≤ R

⇒ θλ1|p(1)| ≤ R ⇒ |p(1)| ≤
R
λ1θ

. (36)

Furthermore, applying the well-known inequality ab ≥ −
1
2 (a

2
+

b2) yields 1

0
p(1)h(ξ) dξ ≥ −

1
2


p2(1)+ ∥h∥2

0


= −

1
2


|p(1)| |p(1)| + ∥h∥2

0


. (37)

Being coupled together, (35) and (37) immediately result in
(34). In turn, the relations (35) follow from the trivial chain of
implications:

Ṽ (p, h) = θλ1|p(1)| +
1
2
θW1p2(1)+

1
2
∥h∥2

0 ≤ R

⇒
1
2
∥h∥2

0 ≤ R ⇒ ∥h∥0 ≤
√
2R

⇒ ∥h∥2
0 ≤

√
2R∥h∥0. (38)

Lemma 3 is thus proved. �
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4.2. Proof of Theorem 1

By Lemma 2, functional (23) is positive definite on the solutions
x(·, t) of the boundary-value problem (8)–(11) and its time
derivative is given by

˙̃V (t) = λ1θxt(1, t)sign(x(1, t))+ W1θx(1, t)xt(1, t)

+

 1

0
xt(η, t)xtt(η, t)dη. (39)

Since xt(·, t) = z(·, t) constitutes amild solution of (11), (14)–(17)
and verifies the boundary value problem (18)–(19) in distributions,
(39) is further evaluated as

˙̃V (t) = λ1θz(1, t)sign(x(1, t))+ W1θx(1, t)z(1, t)

+ θ

 1

0
z(η, t)zξξ (η, t)dη

+ θ [u̇(t)+ ψ̇(t)]
 1

0
z(η, t)δ(η − 1)dη

= λ1θz(1, t)sign(x(1, t))+ W1θx(1, t)z(1, t)

+ θ

 1

0
z(η, t)zξξ (η, t)dη + θ [u̇(t)+ ψ̇(t)]z(1, t). (40)

The integral term in the right hand side of (40), being integrated
by parts under the homogeneous BC’s (19), yields

θ

 1

0
zzξξdη = θ


z(1, t)zξ (1, t)− z(0, t)zξ (0, t)


− θ

 1

0
z2ξ (η, t)dη = −θ∥zξ (·, t)∥2

0. (41)

By substituting the closed-loop controller (11) into the last term of
(40) one obtains

θz(1, t)[u̇(t)+ ψ̇(t)]
= θz(1, t)u̇(t)+ θz(1, t)ψ̇(t)
= θλ1 z(1, t)sign x(1, t)− θλ2z(1, t)sign z(1, t)

− θW1z(1, t)x(1, t)− θW2z2(1, t)+ θz(1, t)ψ̇(t),

and the next simplification

˙̃V (t) = −λ2θ |z(1, t)| − θW2z2(1, t)− θ∥zξ (·, t)∥2
0

+ θz(1, t)ψ̇(t) (42)

of the timederivative (40) is then obtained. Due to the upper bound
(6) on the time derivative of the boundary disturbance, one obtains

|θz(1, t)ψ̇(t)| ≤ θM|z(1, t)|, (43)

and, by (43), relation (42) is further manipulated to

˙̃V (t) ≤ −θ(λ2 − M)|z(1, t)| − θW2z2(1, t)

− θ∥zξ (·, t)∥2
0. (44)

Due to (12) and (44), the Lyapunov functional Ṽ (t), being
computed along the solutions of the closed-loop system, is a non-
increasing function of time, hence the domain D Ṽ

R , given in (33)
and specified with p = x and h = xt and an arbitrary R ≥ Ṽ (0), is
invariant for the x(·, t) trajectories. Thus, the subsequent analysis
will take into account that those solutions stay in the domain D Ṽ

R
forever.
Now consider the ‘‘augmented’’ functional

ṼR(t) = Ṽ (t)+
1
2
κRθW2x2(1, t)+ κR

 1

0
x(1, t)xt(ξ , t) dξ

= λ1θ |x(1, t)| +
1
2
θW1x2(1, t)+

1
2
∥xt(·, t)∥2

0

+
1
2
κRθW2x2(1, t)+ κR

 1

0
x(1, t)xt(ξ , t) dξ (45)

where κR is a sufficiently small positive constant to subsequently
be specified. Note that the integral term in the right-hand side of
(45) is sign-indefinite, and therefore, the positive-definiteness of
the Lyapunov functional (45) has to be analyzed.

By Lemma 3 specified with p = x and h = xt , in the
corresponding domain D Ṽ

R function ṼR can be lower estimated as

ṼR(x, xt)

≥ λ1θ |x(1, t)| +
1
2
θ(W1 + κRW2)x2(1, t)

+
1
2
∥xt(·, t)∥2

0 −
κR

2


R
λ1θ

|x(1, t)| + ∥xt(·, t)∥2
0


=


λ1θ −

κRR
2λ1θ


|x(1, t)|

+
1
2
θ(W1 + κRW2)x2(1, t)+

1
2
(1 − κR)∥xt(·, t)∥2

0. (46)

Let us specify κR > 0 such that

κR < min

2λ21θ

2

R
, 1

. (47)

Then, it follows from (46), (47) that the augmented functional (45)
is lower estimated by functional (23) as

ṼR(x, xt) ≥ µṼ (x, xt) (48)

µ = min

1 −

κRR
2λ21θ2

,
W1 + κRW2

W1
, (1 − κR)


. (49)

It means that along with (23), the functional ṼR is positive definite
on the solutions x(·, t) of the boundary-value problem (8)–(11)
within the invariant set D Ṽ

R of Lemma 3 specified with p = x and
h = xt . Let us now evaluate the time derivative of ṼR(t):

˙̃V R =
˙̃V + κRθW2x(1, t)xt(1, t)+ κR

d
dt

 1

0
x(1, t)xt(ξ , t)dξ

=
˙̃V + κRθW2x(1, t)z(1, t)+ κR

 1

0
z(1, t)z(ξ , t)dξ

+ κR

 1

0
x(1, t)zt(ξ , t)dξ (50)

where z(·, t) = xt(·, t) as before. The magnitude of the first
integral term in the right hand side of (50) is upper-estimated byκR  1

0
z(1, t)z(ξ , t)dξ

 ≤ κR|z(1, t)|
 1

0
|z(ξ , t)|dξ . (51)

If applied to the spatial domain of the unit length, the Cauchy–
Schwartz inequality ensures that 1

0
|z(ξ , t)|dξ ≤ ∥z(·, t)∥0. (52)
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Thus, by utilizing the second inequality of (35) specifiedwith h = z
it follows from (51) and (52) thatκR  1

0
z(1, t)z(ξ , t)dξ

 ≤ κR|z(1, t)|∥z(·, t)∥0

≤
√
2RκR|z(1, t)|. (53)

By straightforward integration along the weak solutions of the
closed-loop system (18)–(19), driven by (11), the last integral term
in (50) can further be manipulated to

κRx(1, t)
 1

0
zt(ξ , t)dξ

= κRx(1, t)
 1

0
{θzξξ (ξ , t)+ θ [u̇(t)+ ψ̇(t)]δ(x − 1)}dξ

= κRθx(1, t)[zξ (1, t)− zξ (0, t)]

+ κRθx(1, t)[u̇(t)+ ψ̇(t)] = −κRθλ1|x(1, t)|
− κRθλ2x(1, t)sign z(1, t)− κRθW1x2(1, t)

− κRθW2x(1, t)z(1, t)+ κRθx(1, t)ψ̇(t). (54)

By virtue of Assumption 1, the following estimates

|κRθλ2x(1, t)sign z(1, t)| ≤ κRθλ2|x(1, t)| (55)κRθx(1, t)ψ̇(t) ≤ κRθM|x(1, t)| (56)

hold for the corresponding terms in (54). Employing (44) and
(51)–(56), the time derivative (50) is finally manipulated to

˙̃V R(t) ≤ −θ


λ2 − M −

κR
√
2R
θ


|z(1, t)| − θW2z2(1, t)

− θ∥zξ (·, t)∥2
0 − κRθ [(λ1 − λ2)− M]|x(1, t)|

− κRθW1x2(1, t). (57)

It is clear that all the terms appearing in the right-hand side of (57)
are nonpositive provided that the tuning condition (12), imposed
on the controller parameters, hold and, in place of (47), the next
more restrictive condition on the coefficient κR is additionally
satisfied:

κR < min

2λ21θ

2

R
, 1,

θ(λ2 − M)
√
2R


. (58)

By Lemma 1, the following inequality

z2(1, t)+ ∥zξ (·, t)∥2
0 ≥

1
2
∥z(·, t)∥2

0 (59)

holds. In light of the above, the next estimate

− θW2z2(1, t)− θ∥zξ (·, t)∥2
0 ≤ −θγ1∥z(·, t)∥2

0 (60)

is obtained with γ1 =
1
2 min{W2, 1}. Relation (57) can then be

manipulated to

˙̃V R(t) ≤ −θ


λ2 − M −

κR
√
2R
θ


|z(1, t)| − θγ1∥z(·, t)∥2

0

− κRθ [(λ1 − λ2)− M]|x(1, t)| − κRθW1x2(1, t)

≤ −γ2(|x(1, t)| + x2(1, t)+ ∥z(·, t)∥2
0) (61)

where γ2 = θ min{κR[(λ1 − λ2)− M], κRW1, γ1}.
On the other hand, (46), represented in terms of z = xt , is

readily estimated as

ṼR(t) ≥ γ3(|x(1, t)| + x2(1, t)+ ∥z(·, t)∥2
0), (62)
where

γ3 = min

λ1θ −

κRR
2λ1θ


,
1
2
θ(W1 + κRW2),

1
2
(1 − κR)


.

Relations (61) and (62), coupled together, result in

˙̃V R(t) ≤ −
γ2

γ3
ṼR(t), (63)

that establishes the exponential decay of ṼR(t), initialized within
the invariant set D Ṽ

R in (33).
To complete the proof it remains to note that due to the upper

estimate (48) of the functional Ṽ (t) by the functional ṼR(t), it
follows that while being computed on the solutions x(·, t) of the
closed-loop system (8)–(11), which are initialized within (33), the
functional Ṽ (t) exponentially decays, too. By applying Lemma 2,
the local asymptotic stability of (8)–(11) is then established in
H2(0, 1) for the initial set (33). Since (33) can be specified with
an arbitrarily large R > 0, thus capturing an arbitrarily large
initial domain, whereas the tuning conditions (13) do not depend
on R, the global asymptotic stability in the H2(0, 1)-space is then
concluded. Theorem 1 is thus proved. �

5. Simulations

Consider the perturbed heat equation (2) with diffusivity θ =

10 and homogeneous Neumann-type BC’s as in (4). In the TEST 1,
the disturbance ψ(t) is set to

ψ(t) = t + sin(π t). (64)

The magnitude of the disturbance time derivative ψt can be
upper-estimated as M = 1 + π , as required by (6). The constant
reference value Q r

= 30 has been considered, whereas the initial
conditions have been set to Q 0(ξ) = 10 + 5 cos(4πξ).

For solving the closed-loop PDE, a standard finite-difference
approximation method is used by discretizing the spatial solution
domain ξ ∈ [0, 1] into a finite number of N uniformly spaced
solution nodes ξi = ih, h = 1/(N + 1), i = 1, 2, . . . ,N . The
value N = 30 has been used. The resulting 30-th order discretized
system is solved by fixed-step Euler method with step Ts = 10−4.

Controller (11) has been implemented with the parameters
λ1 = 10, λ2 = 5, W1 = W2 = 5 which are selected in accordance
with (12). The upper plot of Fig. 1 depicts the spatiotemporal
profile of the solution Q (ξ , t). The attainment of the prescribed
constant reference confirms the expected convergence properties.
The lower plot of Fig. 1 shows that the quantity xξ (1, t) =

u(t)+ψ(t) escapes to zero, i.e., the control input u(t) approaches
the sign-reversed disturbance −ψ(t) as t → ∞. Actually, this
property is theoretically verified by coupling Theorem 1 to the
Agmon’s inequality as the latter ensures the spatially point-wise
decaying of xξ (ξ , t) to zero provided that limt→∞ ∥x(·, t)∥2 = 0.

Fig. 2 reports the time evolution of the H2 norm ∥x(·, t)∥2 of
the regulation error in the TEST 1, which asymptotically vanishes
according to the Theorem 1.

In TEST 2, a different disturbance profile is considered of the
form ψ(t) = t + sin(π t) + ψR(t), with ψR(t) being selected as a
bounded uniformly distributed random signal with the maximal
magnitude value 3. The random component is switched off at
t ≥ 7 to better appreciate its effects on the accuracy of the
control system. In TEST 3, a chirp disturbance signal of the form
ψ(t) = t + sin(2π f (t)t) is adopted, with the time varying
frequency f (t) = 0.1 + 4.99t yielding a linear-in-time increase
of the frequency from the initial value of 0.1 Hz (at the initial
time t = 0) up to the value of 50 Hz at the final simulation time
t = 10. The random and chirp entries of the disturbance were not
considered in the evaluation of the bounding constant M in (6),
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Fig. 1. TEST 1. Upper plot: the solution Q (ξ , t). Lower plot: the control input u(t)
(solid line) and the disturbance signal −ψ(t) (dashed line).

Fig. 2. TEST 1. The H2 error norm ∥x(·, t)∥2 .

and for the sake of comparison the same controller gains of TEST 1
were used in all tests. The steady-state temporal evolutions of the
temperature error H2-norm ∥x(·, t)∥2 in the three tests are shown
in the Fig. 3. Satisfactory steady state accuracy of the closed-loop
system is concluded from Fig. 3 even in the cases of random and
chirp external disturbances.

6. Conclusions

Using a dynamic version of a second-order sliding mode
control algorithm, the problem of the boundary global asymptotic
stabilization of an uncertain heat process is solved in the
presence of a persistent smooth disturbance, which is generally
speaking unbounded and of an arbitrary shape. The proposed
control law requires boundary sensing and is synthesized by
Fig. 3. Steady-state H2 error norm ∥x(·, t)∥2 in TEST 1 (upper plot), TEST 2 (central
plot) and TEST 3 (lower plot).

passing a certain discontinuous signal through an integrator. The
resulting control signal is therefore continuous, and the chattering
phenomenon is thus attenuated. Along with this, the proposed
infinite-dimensional treatment retains robustness features against
non-vanishing matched disturbances similar to those possessed
by its finite-dimensional counterpart. Finite-time convergence of
the proposed algorithm, which would be the case if confined to a
finite dimensional treatment, cannot be proved using the proposed
Lyapunov functional, and it remains among other actual problems
to be tackled in the future within the present framework.
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