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Abstract

We follow a polynomial approach to analyse strong stability of linear difference
equations with rationally independent delays. Upon application of the Hermite
stability criterion on the discrete-time homogeneous characteristic polynomial, as-
sessing strong stability amounts to deciding positive definiteness of a multivariate
trigonometric polynomial matrix. This latter problem is addressed with a converg-
ing hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate
that certificates of strong stability can be obtained at a reasonable computational
cost for state dimension and number of delays not exceeding 4 or 5.

Keywords: strong stability, spectral radius, trigonometric polynomials, LMI.

1 Introduction

In general, spectrum-based analysis of time-delay systems can be handled in the same way
it is done for delay-free systems. Although the spectrum is infinite, stability is determined
by the rightmost eigenvalues, more precisely by the sign of the spectral abscissa, the
maximum real part of the eigenvalues. For retarded systems, the spectral abscissa is
nonsmooth but continuous in all parameters of the system, including time delays, see [24].
However, it results from [12, 2, 7, 8], that, in general, it is not the case for neutral systems
and kernel operators - the so-called associated difference equation, see also [17, 18, 19].
It is well-known that the spectral abscissa of the difference equation is not continuous in
delays. Thus, arbitrarily small changes in the delay values can destroy stability. Moreover,
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University in Prague, Technická 4, CZ-16626 Prague, Czech Republic, henrion@laas.fr

3Center for Applied Cybernetics, Department of Instrumentation and Control Engineering, Faculty
of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 166 07 Praha 6, Czech
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it can even happen that the number of unstable roots increases stepwise from zero to
infinity. In order to handle this hypersensitivity of the stability of the difference equation
with respect to delay values, the concept of strong stability was introduced by [8]. Let
us remark that the strong stability concept has recently been generalized by [20] towar d
difference equations with dependencies in the delays.

As stability of its kernel operator is a necessary condition for stability of a neutral system,
all the hypersensitivity stability issues are carried over to the stability of neutral systems.
Thus the strong stability test should always be performed to guarantee practical stability
of neutral systems. However, as will be shown later in the text, the strong stability test is
rather complex. So far, a coarse numerical implementation of the test without guarantee
or certificate has been used as a rule, see e.g. [18, 25]. Even though this brute force based
approach works in most cases, it might fail due to approximation errors in the numerical
scheme. As the main result of this paper we propose a more rigorous strong stability test
that is based on a polynomial approach, relying on the numerical solution of a hierarchy
of linear matrix inequalities (LMIs).

In the field of time-delay systems, LMIs are usually used as stability determining criteria
resulting from the Lyapunov time-domain approach, see e.g. [21] or [16], among many
others.

1.1 Problem statement

We consider a neutral system of the following form

d

dt

(

x(t) +

m
∑

k=1

Hkx(t− τk)

)

= A0 x(t) +

p
∑

j=1

Ajx(t− ϑj) (1)

where x ∈ Rn is the state, τk > 0, k = 1, . . .m and ϑj > 0, j = 1, . . . p are the time delays.
It is well-known, see [7], that a necessary condition for stability of neutral system (1) is
stability of the associated difference equation

x(t) +

m
∑

k=1

Hkx(t− τk) = 0. (2)

Moreover, strong stability of equation (2) is required, i.e. stability independent of the
values of the delays, [2, 7]. In [8] (Theorem 2.2 and Corollary 2.2), a condition for strong
stability condition is stated as follows:

Proposition 1 Delay difference equation (2) is strongly stable if and only if

γ0 := max
θ∈[0, 2π]m

rσ

(

m
∑

k=1

Hke
−iθk

)

< 1, (3)
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where rσ denotes the spectral radius, i.e. the maximum modulus of the eigenvalues. Fur-
thermore, if γ0 > 1 then equation (2) is exponentially unstable for rationally independent1

delays.

Notice that the quantity γ0 does not depend on the value of the delays, i.e. exponential
stability locally in the delays is equivalent with exponential stability globally in the delays
[8].

Let us remark that by homogeneity, the expression of γ0 can be simplified to

γ0 = max
θ∈[0, 2π]m−1

rσ

(

m−1
∑

k=1

Hke
−iθk +Hm

)

. (4)

We conclude the section with some properties of the quantity γ0, see [19, 18], for more
details.

Properties

1. Stability of difference equation (2) with rationally independent delays implies strong
stability, and vice versa

2. In the case of one delay (m = 1),

γ0 = rσ(H1).

3. In the case of a scalar equation (n = 1),

γ0 =

m
∑

k=1

|Hk|.

4. A sufficient, but as a rule conservative, condition for strong stability is given by

m
∑

k=1

‖Hk‖ < 1

where ‖.‖ denotes the matrix Euclidean norm, i.e. the maximum singular value.

1.2 Computational issues

The problem of solving (3) can be formulated as an optimization task with the objective
to find the global maximum of spectral radius over θ ∈ [0, 2π]m. However, in general the
objective function rσ(θ) is nonconvex, i.e. it can have multiple local maxima. Besides, the
function can be nonsmooth (e.g. at the points where the spectral radius is determined by

1The m numbers τ = (τ1, . . . , τm) are rationally independent if and only if
∑m

k=1
nkτk = 0, nk ∈ Z

implies nk = 0, ∀k = 1, . . . ,m. For instance, two delays τ1 and τ2 are rationally independent if their
ratio is an irrational number.
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more than either one single eigenvalue or a couple of complex conjugate eigenvalues). The
fact that the function is nonsmooth precludes the use of standard optimization procedures.
Instead, nonsmooth optimization methods can be used, such as gradient sampling, see
[4, 22]. However, even though these methods can handle the problem of nonsmoothness,
they converge to local extrema as a rule. As suboptimal solutions are not sufficient (the
global maximum of the spectral radius is needed) a brute force method has been used
to solve the task so far, see [18, 20, 25]. In the first step, each dimension of [0, 2π]m

is discretized to N points. Then evaluation of (3) consists in solving Nm times n × n
eigenvalue problems. Hence, the overall cost of one evaluation of γ0 is O (Nmn3), see
[25]. If the simplified expression (4), the computational costs reduces to O (Nm−1n3).
Obviously, the complexity of the computation grows considerably with the number of
delays in the difference equation. Moreover, the risk of missing global extrema due to
sparse or inappropriate gridding cannot be avoided.

2 Strong stability and Hermite’s condition

Consider the characteristic polynomial

p(z) = det(z0In +

m
∑

k=1

zkHk), (5)

which is homogeneous of degree n in m+ 1 variables zk, k = 0, 1, . . . , m.

Based on (3), considering zk = ejθk , θk ∈ [0, 2π], k = 1, .., m, the difference equation (2) is
strongly stable if and only if the univariate polynomial

z0 → p(z)

is discrete-time stable,i.e. it has all its roots in the open unit disk.

In order to deal with stability of this polynomial, we use a stability criterion based on the
Hermite matrix. It is a Hermitian matrix of dimension n whose entries are quadratic in
the coefficients of the polynomial. The Hermite matrix z1, . . . , zm → H(z) is therefore a
trigonometric polynomial matrix in m variables z1, . . . , zm.

Derived by the French mathematician Charles Hermite in 1854, the Hermite matrix cri-
terion is a symmetric version of the Routh-Hurwitz criterion for assessing stability of a
polynomial. It says that a polynomial p(z) = p0 + p1z + · · ·+ pnz

n has all its roots in the
open upper half of the complex plane if and only if its Hermite matrix H(p) is positive
definite. Note that H(p) is n-by-n, Hermitian and quadratic in coefficients pk, so that the
above necessary and sufficient stability condition is a quadratic matrix inequality (QMI)
in coefficient vector p = [p0 p1 · · · pn].
The standard construction of the Hermite matrix goes through the notion of Bézoutian,
a particular form of the resultant. A bivariate polynomial is constructed, from which a
quadratic term is factored out, yielding a quadratic form shaped by the Hermite matrix.
The construction is explained e.g. in [9] and references therein. See especially [15] which
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explains that a discrete-time Hermite matrix, sometimes called Schur-Cohn or Schur-
Fujiwara matrix, can be obtained similarly. The discrete-time Hermite matrix is also
quadratic in the pk, and it is positive definite if and only if polynomial p(z) has all its
roots in the open unit disk.

Zdeněk Hurák pointed out that there is a much simpler construction of the Hermite matrix
in the discrete-time case. The construction can be traced back to Issai Schur [23], and it
is explained in [1]. Entrywise formulas are also described in [3, Theorem 3.13]. Let

S1(p) =











pn pn−1 pn−2

0 pn pn−1

0 0 pn
. . .











S2(p) =











p0 p1 p2
0 p0 p2
0 0 p0

. . .











be n-by-n upper-right triangular Toeplitz matrices. Then

H(p) = ST
1 (p)S1(p)− ST

2 (p)S2(p).

Strong stability of the difference equation is hence equivalent to positive definiteness of
the Hermite matrix of the univariate characteristic polynomial, which is a multivariate
trigonometric polynomial matrix in z1, . . . , zm. We express this constraint as

H(z1, . . . , zm) ≻ 0. (6)

3 Positivity of trigonometric polynomials

As shown in the previous section, the key ingredient in our approach to strong stability
of difference equation is assessing positivity of multivariate trigonometric polynomials.
This topic has been subject to recent studies, and the recent monograph [5] is a good
introduction focusing on signal processing applications.

In this section we start with a scalar multivariate trigonometric polynomial, formulate
its positivity test as a minimization problem, describe an LMI hierarchy yielding an
asymptotically converging monotonically increasing sequence of lower bounds. We also
describe a hierarchy of eigenvalue problems (linear algebra, much simpler computationally
that LMI methods) to generate a hierarchy of upper bounds.

Then we extend these results to matrix polynomials, and describe the hierarchy of LMI
problems that must be solved to guarantee positivity of a trigonometric matrix polynomial
at the price of solving a hierarchy of convex problems, the decision variables being entries
of a Gram matrix yielding a sum-of-squares decomposition for the matrix polynomial.

3.1 Minimising trigonometric polynomials

A trigonometric polynomial has the form h(z) =
∑

α hαz
α where integer vector α ∈ N

n

is a multi-index such that zα =
∏n

i=1 z
αi

i , complex vector z ∈ Cn contains indeterminates
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such that zi = ejθi for some θ ∈ [0, 2π]n, and complex numbers hα ∈ C are coefficients.
We use the notation z ∈ Tn to capture the constraint that each variable zk ∈ C belongs
to the unit disk T.

We consider real trigonometric polynomials such that h(z) = h(z)∗ where the star denotes
complex conjugation. These are such that

∑

α hαz
α =

∑

α h
∗
αz

−α and hence hα = h∗
−α.

Since h(z) maps Tn onto R, we are interested in solving the problem

hmin = min
z∈Tn

h(z).

3.2 Hierarchy of lower bounds via SDP

In this section we construct a monotonically decreasing sequence of lower bounds on hmin

that converges asymptotically. Each bound can be computed by solving an LMI, a convex
semidefinite programming (SDP) problem.

First note that by definition

hmin = min
µ

∫

Tn

h(z)dµ(z) (7)

where the minimisation is over all probability measures defined on the sigma-algebra of
the multidisk T

n, see Chapter 5 in [14].

Let us express polynomial h(z) as a Hermitian quadratic form

h(z) = b∗k(z)Xkbk(z) (8)

where bk(z) is a vector basis of trigonometric polynomials of degree up to k, e.g. con-
taining monomials zα, α ≥ 0, maxi=1,...,m αi ≤ k. Matrix Xk is called the Gram matrix
of polynomial h(z) in basis bk(z). Then a result of functional analysis by M. Putinar,
transposed to trigonometric polynomials [5, Theorems 3.5 and 4.11], states that h(z) > 0
if and only if there exists a finite integer d and a positive semidefinite Hermitian matrix
Xd � 0 such that (8) holds for k = d.

As soon as k is fixed, finding a matrix Xk � 0 satisfying (8) can be cast into an SDP
feasibility problem which amounts to expressing polynomial h(z) as a sum-of-squares
(SOS) of trigonometric polynomials of degree k.

Now defining

hk = sup h
s.t. h(z)− h = b∗k(z)Xkbk(z) for someXk � 0

it follows that hk ≤ hk+1 and we expect that limk→∞ hk = hmin, even though a rigorous
proof of convergence is out of the scope of this paper.

3.3 Hierarchy of upper bounds via EVP

In this section we show that we can construct a monotonically increasing sequence of
upper bounds on hmin that converges asymptotically. Each bound can be computed by
solving an eigenvalue problem (EVP)

6



In problem (7) let us consider that measure µ is absolutely continuous w.r.t. measure
ν, the probability measure supported uniformly on the multidisk. Let us further restrict
the class of measures by considering that there exists a trigonometric polynomial qk(z) =
∑

0≤α≤k qkαz
α = q∗

kbk(z) of total degree k such that µk(dz) = q∗k(dz)qk(dz)ν(dz), with

limk→∞ µk = µ since T
n is compact. Let yα =

∫

Tn z
αdν(z) denote the moment of order α

of ν. Finally, let us define

hk = min
µk

∫

Tn

h(z)dµk(z)

as an optimisation problem over this restricted class of measures.

With these notations
∫

h(z)dµk(z) =

∫

h(z)q∗k(z)qk(z)dν(z) =

=

∫

h(z)q∗
kbk(z)b

∗
k(z)qkdν(z)

is the same as

q∗
k

(
∫

h(z)bk(z)b
∗
k(z)dν(z)

)

qk = q∗
kMk(h y)qk

where Mk(h y) is called the localising matrix of order k of measure ν w.r.t. polynomial
h, see [14]. Its rows and columns are indexed by multi-indices β and γ respectively, and
its entry (β, γ) is equal to

∑

α hαyα−β+γ. Therefore matrix Mk(hy) can be obtained from
the moments of ν, and hence it is given. It is positive definite.

If h(z) = 1, matrix Mk(y) is called the moment matrix of order k of measure ν. Its entry
(β, γ) is equal to y−β+γ, and hence matrix Mk(y) is given as well. Since µk is a probability
measure

∫

dµk =

∫

q∗kqkdνk = q∗
kMk(y)qk = 1

and hence
hk = minqk

q∗
kMk(h y)qk

s.t. q∗
kMk(y)qk = 1.

It follows that hk ≤ hk+1 and limk 7→∞ hk = hmin even though I am not totally confident
that this latter result is correct.

Finally, given positive definite Hermitian matrices A andB, optimisation problem minv v
∗Av

s.t. v∗Bv = 1 can be solved via linear algebra. Indeed, let z denote an eigenvalue of
the pencil zB − A, and let v̄ denote the corresponding unit eigenvector. Then vector
v = (v̄∗Bv̄)−

1

2 v̄ is such that v∗Bv = 1 and v∗Av = z. Minimising this quantity then
amounts to finding the minimum eigenvalue of pencil zB − A.

3.4 Polynomial matrices

The above results on scalar polynomials can be extended directly to polynomial matrices
by considering a matrix basis instead of a vector basis to build the Hermitian matrix
representation (8).
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In the context of our strong stability analysis problem, the core idea is then to replace the
(typically difficult) Hermite matrix positivity condition (6) with a hierarchy of tractable
SDP problems. We write

hk = sup h
s.t. H(z)− h = (bk(z)⊗ In)

∗Xk(bk(z)⊗ In)
Xk � 0

(9)

as an LMI relaxation of order k of positivity condition (6).

If hk > 0 for some k, then it implies that (6) is satisfied.

If hk ≤ 0 for some k, then we cannot conclude directly, but we can try to extract from
the dual (moment) SDP problem a certificate that indeed matrix H(z) cannot be positive
definite, see [11] even though the trigonometric polynomial matrix case is not developed
in this reference. If we cannot extract useful information from the dual problem, we have
to increase the value of k and solve the next LMI in the hierarchy.

4 Complexity

Let M denote the size of the Gram matrix Xk in SDP problem (9). If we use an interior-
point method, the worst-case complexity of one Newton iteration for an SDP problem
in a cone of that size is O(M6). Experiments reveals that the practical complexity is
approximately O(M4).

The number of monomials of m variables of degree k in basis bk(z) is equal to (k + 1)m.
Polynomial p(z) has m variables and degree n so degree k in (8) should be such that
2k ≥ n. Note that we can have 2k > n since higher-degree terms may cancel in the right
handside of equation (8).

If we choose k = n/2 or k = (n+1)/2 depending on whether n is even or not, in terms of
complexity M = O(nm+1). The overall complexity of our SDP approach to strong stability
analysis therefore grows exponentially in the number of delays m, and polynomially in
the number of states n. However the exponent of this polynomial growth is quite large.
In comparison, the gridding approach mentioned at the beginning of the paper has a
complexity which also grows exponentially in the number of delays, but the dependence
on the number of states is only cubic. However, contrary to the SDP approach, the
gridding approach does not provide guarantees.

5 Examples

Preliminary numerical examples indicate that the EVP approach of paragraph 3.3 yields
a sequence of bounds which converges slowly (sublinearly). This is why in this section we
focus exclusively on the SDP approach of paragraph 3.2.

We implemented a collection of Matlab functions to manipulate trigonometric polynomi-
als, Hermite matrices, and formulate SDP problems corresponding to positivity checks.
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The functions are available for download2 and they provide the following functionalities:

• sampledet.m - given a collection of matrices Hk, k = 0, . . . , m, this function com-
putes the coefficients of the multivariate polynomial p(z) = det(H0 +H1z1 + · · ·+
Hmzm); it proceeds by sampling and interpolation, as described in [10]

• trigoherm.m - computes the Hermite matrix of a homogenized multivariate poly-
nomial; it uses the formula of [3, Theorem 3.13] adapted to complex coefficients

• trigohermgram.m - computes the SDP problem corresponding to the positivity test
for a given Hermitian multivariate polynomial matrix; the SDP problem is given in
SeDuMi’s input format

min cTx max bTy
s.t. Ax = b s.t. z = c− ATy

x ∈ K z ∈ K

where x ∈ RN , y ∈ RM , and K is the cone of positive semidefinite matrices of size
S =

√
N .

Some instrumental functions are also provided, namely genmon.m which generates powers
of monomials and locmon.m which locates a monomial in a Gram matrix. Besides, the
function bfssde.m is available to evaluate (3) by brute force, as explained in subsection
1.2

5.1 Three states, two delays

We adopt the illustrative example from [18] with n = 3, m = 2, where

H1 =





0 0.2 −0.4
−0.5 0.3 0
0.2 0.7 0



 , H2 =





−0.3 −0.1 0
0 0.2 0

0.1 0 0.4





for which bfssde.m (with N = 360) provides γ0 = 0.7507 in less then 0.1 seconds under
Matlab 7.7 on our Linux PC equipped with Intel Xeon 2.67GHz CPU with 8GB RAM.
On Fig. 1 shows the spectral radius as a function of θ1.

The following Matlab script assesses stability of the corresponding difference equation by
first building the determinantal polynomial, then the corresponding Hermite matrix, then
the SDP problem, and eventually by solving the SDP problem with SeDuMi, a primal-dual
interior-point solver:

H1=[0 0.2 -0.4;-0.5 0.3 0;0.2 0.7 0];

H2=[-0.3 -0.1 0;0 0.2 0;0.1 0 0.4];

p=sampledet({eye(3),H1,H2}); % evaluate determinant

p=p(:,abs(p(1,:))>1e-8); % remove small coefficients

H=trigoherm(p); % compute Hermite matrix

[A,b,c,K]=trigohermgram(H); % build SDP problem

[x,y,info]=sedumi(A,b,c,K); % solve SDP problem

2 homepages.laas.fr/henrion/software/trigopoly.tar.gz
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Figure 1: Spectral radius rσ(θ1) for the example in Subsection 5.1

The resulting SDP problem has size N = 2304, M = 225 and a positive semidefinite
Gram matrix of size S = 48 is found after less than 0.1 seconds with SeDuMi 1.3.

We can also specify the strong stability radius γ0 as a second input argument to func-
tion trigoherm. Internally, the polynomial is scaled appropriately and positivity of the
Hermite matrix is assessed:

H=trigoherm(p,0.750);

[A,b,c,K]=trigohermgram(H);

[x,y,info]=sedumi(A,b,c,K);

With the above sequence the SDP problem is found feasible. Changing the first instruction
to

H=trigoherm(p,0.751);

makes the resulting SDP problem infeasible, and this is certified by SeDuMi which returns
a dual Farkas vector. As discussed at the end of paragraph 3.4, further analysis is required
to conclude that indeed the Hermite matrix cannot be positive definite. We leave a
comprehensive treatment of this case for further work.

5.2 Four states, three delays

We consider a system with n = 4, m = 3, where

H1=[-0.15 0 0.32 0;0 -0.07 0 0.05;

0.08 0 0.04 0;0.2 0.03 0 -0.13];
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Figure 2: Spectral radius rσ(θ1, θ2) for the example in Subsection 5.2

H2=[-0.02 0.12 0 0.25;0 -0.05 0.04 0;

0 0.23 0 -0.3;0.19 0 0.28 -0.09];

H3=[0 0 -0.03 0.14;0.01 -0.04 0 0;

0 0 0.09 0.26; 0.05 -0.27 -0.06 0];

for which bfssde.m (with N = 360) provides γ0 = 0.6028 in 4.5 seconds, see Fig. 2 with
the distribution of the spectral radius with respect to values of θ1 and θ2.

The resulting SDP problem has size N = 250000, M = 5840 and a positive semidefinite
Gram matrix of size S = 500 is found after approximately 6 minutes of CPU time,
certifying that the spectral radius is less than one.

5.3 Four states, four delays

We conclude with an example with n = 4, m = 4 and the matrices

H1=[0.1 0 0 -0.2;pi/5 -0.1 0 -0.3;

0 0 0.03 2;0 -exp(-1) 0 0.23]

H2=[0 0 0 0.0456;0 -0.33 0.11 0;
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0 1 0.2 0;0 -exp(-3) 0.176 0.73]

H3=[0.1 0.65 0 0.42;0.087 -pi/8 -0.1 0;

0 -0.063 0 0.72;0.076 0.1 0 -0.23]

H4=[-0.678 0 0 -0.4;-0.0983 0 0 0;

0 0.0763 0 0.2;-exp(-5) 0 0.36 0]

for which bfssde.m (with N = 360) provides γ0 = 1.7649 in more than 30 minutes.

The resulting SDP problem has size N = 6250000, M = 52496 and a positive semidefinite
Gram matrix of size S = 2500. This problem cannot not be solved on our computer,
SeDuMi issues an out of memory error message. In this case, we may to try to exploit
the problem structure (sparsity) to generate a smaller SDP problem, but this is out of
the scope of this paper.

6 Conclusions

In the context of neutral time-delay systems, strong stability of difference equations is
generally assessed numerically with a brute force gridding approach. A parallel can be
draw with the µ-analysis approach to robustness of linear systems, see e.g. [26] where
brute force gridding can yield misleading results and should be replaced, if possible, with
more rigorous certificates of robustness.

In this paper, using the Hermite stability criterion for discrete-time polynomials the prob-
lem of assessing strong stability is reformulated as the problem of deciding positive def-
initeness of a trigonometric matrix polynomial of size equal to the state dimension and
number of variables equal to the number of delays. This decision problem is hard, but
it can be approached through a converging hierarchy of tractable semidefinite program-
ming (SDP) or linear matrix inequality (LMI) relaxations. Numerical experiments reveal
that the approach is limited to small state dimension and a small number of delays, as
expected.
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