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Convergence Time Analysis of Quantized

Gossip Consensus on Digraphs

Kai Cai and Hideaki Ishii

Abstract

We have recently proposed quantized gossip algorithmshvbidve the consensus and averaging
problems on directed graphs with the least restrictive eotivity requirements. In this paper we study
the convergence time of these algorithms. To this end, westiyate the shrinking time of the smallest
interval that contains all states for the consensus alguoriand the decay time of a suitable Lyapunov
function for the averaging algorithm. The investigationds us to characterizing the convergence time
by the hitting time in certain special Markov chains. We difgpthe structures of state transition by
considering the special case of complete graphs, wherey edge can be activated with an equal

probability, and derive polynomial upper bounds on congang time.

. INTRODUCTION

Inspired by aggregate behavior of animal groups and motamrdination of distributed robotic net-
works, theconsensuproblem has been extensively studied in the recent litexabfi systems control
(e.g., [1]-[3]). The objective of consensus is to have a paifmn of nodes, each possessing an initial
state, agree eventually @mmecommon value through only local information exchange. Tin@blem is
also intimately related to oscillator synchronization, [#lad balancing [5], and leader election [6]. The
averagingproblem is of a special form, with the goal to decentrally pome theaverageof all initial
states at every node.

We have recently proposed in [7], [8] randomized gossip ritlyms which solve the consensus and

averaging problems on directed graphs (or digraphs), uadprantization constraint that each node has
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an integer-valued state. In particular, our derived cotiviec condition ensuring average consensus is
weaker than those in the literature [2], in the sense thabéschot postulate balanced topologies. Here
the main difficulty is that the state sum of nodes cannot begmed during algorithm iterations. This
scenario was previously considered in [9], [10], where agirg is guaranteed in expectation but there
is in general an error in mean square and with probability. &yecontrast, we overcome this difficulty
by augmenting the so-called “surplus” variables for indinal nodes so as to maintain local records of
state updates, thereby ensuring average consensus almelgt s

In this paper and its conference precursor [11], we invastighe performance of our proposed
algorithms by providing upper bounds on theean convergence tim@he state transition structures
resulting from these algorithms turn out to be rather cooapdid. Hence in our analysis on convergence
time, we focus on the special case of complete graphs. Thigsimas still challenging, but we will
also discuss that the general approach can be useful for gthpgh topologies. First, for the consensus
algorithm, we find that the mean convergence tim&is?). To derive this bound, we view reaching
consensus as the smallest interval containing all statésksty its length to zero. This perspective leads
us to characterizing convergence time by thiting time in a certain Markov chain, which yields the
polynomial bound. Second, we obtain that the mean conveegéime of the averaging algorithm is
O(n?). As the original algorithm in [7], [8] is found to induce cofeg state transition structures, we
have suitably revised it to manage the complexity. For thelifieml algorithm, a Lyapunov function is
proposed which measures the distance from average comsséffsuthen bound convergence time by
way of bounding the number of iterations required to de@ehs Lyapunov function; the latter is again
characterized by the hitting time in a special Markov chain.

Our work is related to [12]-[15], which deal also with the gergence time of gossip averaging
algorithms with quantized states. In [12], a Lyapunov applois adopted and polynomial bounds on
convergence time are obtained for fully connected and tinetworks. The work [13] generalizes these
bounds to arbitrarily connected networks (fixed or switghjrutilizing the results on the meeting time of
two random walks on graphs. Also, bounds for arbitrarily mected networks are provided in [14], [15];
these bounds are, however, in terms of graph topology raltaer the number of nodes. In these cited
references, a common feature is that the graphs are ureticd8y contrast, our algorithm in [7], [8] is
designed forarbitrary strongly connectedigraphs, and we are interested in studying the correspgndi
convergence time.

To bound the convergence time, a frequently employed appris to bound the decay time of

some suitable Lyapunov functions [12], [16]. In particul@6] derives tight polynomial bounds on the



convergence time of synchronized averaging algorithmt) wither real or quantized states. In addition,
[17] investigates a variety of quantization effects on agarg algorithms, and demonstrate favorable
convergence properties by simulations. Our work adoptsLirsunov method, as in [12], [16]; the
common function used in these papers turns out, howevetonio¢ a valid Lyapunov function for our
averaging algorithm. This is due again to that the state so@s dot remain invariant, and the augmented
surplus evolution must also be taken into account. Accaortiirthese features, we establish an appropriate
Lyapunov function, and prove that bounding its decay time loa reduced to finding the hitting time in

a certain Markov chain.

A. Setup and Organization

Consider a digrapty = (V, £), whereV = {1, ...,n} is the node set, anfl C V x V' the edge set. Each
directed edg€j,i) in &£, pointing fromj to i, denotes that agent communicates to agerit(namely,
the information flow is fromj to ). Selfloop edges are not allowed, i.éi,i) ¢ £. Communication
among the nodes is by means gidssip At each time instant, exactly one ed@gi) € £ is activated
independently from all earlier instants and with a timeairant positive probabilityp;; € (0,1) such
that " ee pji = 1.

To model the quantization effect in information flow, we assuthat at timek € Z, (nonnegative
integers), each node has an integer-valued state) € Z, i € V; the aggregate state is denoted by

z(k) = [z1(k) -z, (k)]T € Z" Let
X:={x:m<ax; <M, i€V} (1)

for some (finite) constants:, M. Suppose throughout the paper that the initial state sisfd) € X.
Also, let1 = [1---1]T be the vector of all ones.
For the convergence time analysis, we will impose the fabhgawo assumptions on the graph topology

and the probability distribution of activating edges. Let denote the cardinality of a set.

Assumptiorl. The digraphG is complete(i.e., every node is connected to every other node by a diect

edge). It follows that there an€| = n(n — 1) edges.

Assumption2. The probability distribution on edge activation imiformy namely, each edge can be

activated with the same probabiligy:= 1/|£|.

The rest of this paper is organized as follows. In Sectionmi, formulate and solve the problem

of convergence time analysis for the consensus algorithmenTin Sections 1ll and IV, we derive an



upper bound for the convergence time of the averaging dlgoriFurther, we compare convergence rates

through a numerical example in Section V, and finally we stateconclusions in Section VI.

II. CONVERGENCETIME OF QUANTIZED CONSENSUSALGORITHM
A. Problem Formulation

First we recall the quantized consensQ@C] algorithm from [7]. Suppose that the edggi) € € is
randomly activated at timé. Along the edge nodg sends to: its state informationy;(k), but does
not perform any update, i.ex,;(k + 1) = z;(k). On the other hand, nodereceives;’s statex;(k) and
updates its own as follows:

(RY) If ;(k) = z(k), thenz;(k + 1) = z;(k);

(R2) if z;(k) < x;(k), thenz;(k + 1) € (zi(k),z;(k)];

(R3) if zi(k) > x(k), thenz;(k + 1) € [z;(k), z;(k)).

Let the subse® of Z™ be the set of general consensus states:
C:={r:x1=-=uw,}. 2

We say that the nodes achieve general consensus almost gucelevery initial statex(0), there exist
T < oo andz* € ¥ such thatz(k) = «* for all £ > T with probability one. UndeQC algorithm, a
necessary and sufficient graphical condition that ensunessa sure general consensus is that the digraph
G contains aglobally reachable nodéi.e., a node that is connected to every other node via atditec
path) [7]. Clearly ifG is complete, then every node is globally reachable.

The convergence time d@C algorithm is the random variabl&,. defined byT,. := inf{k > 0 :
z(k) € €}. The mean convergence time (with respect to the probabilitlyibution on edge activation),

starting from a state, € X, is then given by
Eye(0) = E [Tge|z(0) = o] - ®3)

Problem1. Let Assumptions 1 and 2 hold. Find an upper bound of the meawmetgence time<,.(z)

of QC algorithm with respect to all possible initial stategc X.

We now present the main result of this section: an upper boifitidte mean convergence tinde,. ()
for all possible initial states, € X.
Theoreml. Let Assumptions 1 and 2 hold. Then
max Eue(xg) < n(n —1)(M —m) = O(n?).
To€

To derive this bound, we first provide preliminaries on thitirig time in finite Markov chains.



B. Preliminaries on Hitting Time

Let { X} }x>0 be a Markov chain with a finite state spag@nd a transition probability matrik = (P;;)
(e.g., [18]). The entry’;; denotes the one-step transition probability from siate statej. In particular,
the diagonal entryP; denotes theselflooptransition probability. A staté € S is said to beabsorbingif
P;; = 1. For a given{ X }1>0, the hitting time of a subse? of S is the random variablél; ({ X} }r>0)
defined by

Hr ({Xi}g>0) =inf{l >0: X; € T}.
The mean time (with respect to the probability distributepecified byP) taken for the chain, starting
from a statei € S, to hit 7 is given by

E;:=E[Hr ({Xi}rz0) [Xo =] = > 1 P[Hr ({Xy}izo) = UIXo = ], (4)
=0

whereE[-|-] andP[-|-] denote the conditional expectation and conditional prdihalperators, respec-

tively. Here is an important fact on mean hitting times [1&e®rem 1.3.5].
Lemmal. The vector of mean hitting time;);cs of a subset satisfies the system of linear equations

E; =0 forieT,

{ Ei =% 47 PyE;+1 fori¢T.
Using Lemma 1, we derive a closed-form expression of the nidtting time for a specific Markov
chain; this chain will be shown to characterize the statesitin structure unde®C algorithm. For the

proof of this result, see Appendix.

Lemma2. Consider the Markov chain in Fig. 1 with transition probdigis
p2tr:+q. =1, p.=q. (ZZI,...,TL—I), ro =1, rn = 1.

Then the mean hitting time of the stdleor n starting from state: is

z—1 . n—1 .
z 1 z n—3j
E:(l——)g ——|——E (z=1,..,n—1).

C. Analysis of Convergence Time

We now proceed as follows. For an arbitrarfk) define the minimum and maximum states by

m(k) := minz;(k), M(k) := maxz;(k). (5)
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Fig. 1. Markov chain I: state8 andn are absorbing. Herey, ..., r, are selfloop transition probabilities.

We view the stater(k) converging to% as the intervalm(k), M (k)] shrinking to length0. Let the
random variabléﬁ}c be the time when one interval shrinkage occurs; then theesponding mean time,
starting from a state;, is E,.(z) := E [T,.|z € X]. Since one shrinkage decreases the interval length

c

by at leastl, there can be at most/ — m shrinkages forrg € X. It then follows that

1
max Fye(wo) < max B (x) - (M —m). (6)

Consider a subset; of X' defined by
Xp={z:xy==z,=1&2,41=-=2,=0, z€[1,n—1]}. )

Thus the interval has length for all € A). It is not difficult to see thatmax,,cx, Eqc(zo) =

maxzex E..(z). The following lemma states an upper boundiyf.(zo) for zo € X;.
Lemma3. Let Assumptions 1 and 2 hold. Thenax,,cx, Eq(r0) < n(n — 1) = O(n?).

Proof. By Assumptions 1 and 2, every directed edg&inan be activated with the uniform probability
p = 1/(n(n — 1)). Starting from an arbitrary state in the s&t, the transition structure und€)C
algorithm is the Markov chain displayed in Fig. 1; in the di&y,

state0 : the vector0 = [0---0]7 of all zeros,

staten : the vectorl = [1---1]” of all ones, (8)

z

statez : the vector[1---1 0---0]7 in Ay,
and the transition probabilities apg = ¢, = z(n—2)p, z € [1,n—1]. To see this, consider the transition
from statez to statez + 1; this occurs when an edgg,) is activated, withz; = 1 andz; = 0,
so that(R2) of QC algorithm applies. Since there atén — z) such edges, the transition probability
p. = z(n—z)p. Likewise, one may derive that the transition from state statez — 1 is with probability
q. = z(n — z)p, which occurs wheifR3) of QC algorithm applies. Now observe in Fig. 1 that the states

0,n € ¢ andl,...,n — 1 € &3; hencemax ¢y ,,—1) B, = maxg,ex, Eqc(x0), whereE, is from (4).



It is left to invoke the formula ofF, in Lemma 2 for the obtained transition probabilities, whjdblds

5 z—1 1 Zn—ll
E.=(1-—= — 4= —
== n)z(n—i)p+n2jp

=1 1=z

z z—1 Zn—z

<(l--— —
= n)(n—z+1)p n zp
n-—=z 1 1

=~ <= —1).
——T p<p n(n —1)
ThusE, < n(n— 1) for all z € [1,n — 1]. Thereforemax,,cx, Eqe(0) < n(n — 1) = O(n?). |

Finally, our main result (Theorem 1) on upper boundifig.(zo) for zo € X follows immediately

from Lemma 3 and (6).

Remarkl. We discuss the idea of how this result for complete graph$itiig extended to handle more
general topologies. We still view reaching consensus asnteeval [m(k), M (k)] shrinking to length

0; thereby the inequality (6) holds. We then again considerghbsetY; given in (7), and as long as
the digraph is strongly connected (i.e., every node is cowgeto every other node) one can verify
that the state transition structure und@€ algorithm is still the one in Fig. 1. The associated transiti
probabilities, however, depend crucially on topologi@sotder to apply again Lemma 2 to derive bounds,
it would be important to establish the relation betweendition probabilities and graph topologies; this

will be targeted in our future work.

1. QUANTIZED AVERAGING ALGORITHM AND ITS LYAPUNOV FUNCTION

In this and next sections, we address the convergence tialgséfor the quantized averaginQA)
algorithm, which is a modification of the one in [7], [8]. Weadtby presenting the modified algorithm,
and formulate the corresponding time analysis problem. Neéa {propose a Lyapunov function, which
turns out to be a suitable measure for the average consemsudmr Section IV, we will derive an upper
bound on the mean convergence time by means of bounding ttey diene of the proposed Lyapunov

function.

A. Problem Formulation

First we presenQA algorithm. As in [7], [8], since the state sum cannot be pnes at each time
instant, we associate each node V with an additionalsurplusvariable,s;(k) € Z, to locally record
the changes of;(k). The aggregate surplus is denoteddf¥) = [s1(k) - - - s,(k)]7 € Z", whose initial
value is set to be(0) = [0---0]”. Now suppose that the eddg i) € £ is activated at time:. There

are two stages: (I) Along the edge, nofleends tai its statex;(k) and surpluss;(k). Nodej does not



(k)
(zi(k),s:(k)) |node 7‘—m (2;(k),0)
e
Fig. 2. Stage (I): Nodg sends tai its state and surplus through the edgei).

() (k) si(k) (2;(k), 0)
() (wk), sik) (2j(k), (k)
S] v

Fig. 3. Stage (Il): Either (i) node updates its state and surplus, or (i) it sendsk) back to nodej through edge(s, j).

update its state, but sets its surplus toObafter transmission (see Fig. 2). (II) Based on the infororati
received, node determines either to update its state and surplus, or tols&cidto; the surpluss;(k) by
activating the opposite edde j) (see Fig. 3). Notice that the latter operation in (l) regaibidirectional
communication between two nodes at a single time instaig;ishpossible in complete digraphs (our
assumption), but not in general strongly connected diggaph
Formally, QA algorithm is described as follows.
(RY) If z;(k) = z;(k), then there are two cases:
(i) If s;(k) >0 & s;(k) >0, then
xi(k+ 1) =x(k), si(k+1)=s;k);
zj(k+1) =z;(k), sj(k+1)=s;(k).
(ii) Otherwise (i.e., either surplus equals zero),
ac,(k:—kl) :.Z'Z(k), Sz(k—i‘l) :Sz(k)+8j(/€) € {0,1},
:L'j(k‘—Fl) ::L'j(k?), Sj(k?-i—l) =0.
(R2) If ;(k) < z;(k), then there are two cases:
(i) If s;(k) + sj(k) >0, then
I'Z(k‘ + 1) = .Z'Z(k) + 1, Sz(k + 1) = Sl(k) + Sj(k‘) —1€ {0, 1},

zj(k+1) =xz;(k), sj(k+1)=0.



(ii) Otherwise (i.e.s;(k) + s;(k) = 0),
wi(k+1) = zi(k), si(k+1) = s;(k) + 5;(k) = 0;
zi(k+1) =a;(k), s;(k+1)=0.
(R3) If 2;(k) > z;(k), then there are two cases:
(i) If s:(k) + s;(k) = 0, then
wilk+1) = 2i(k) = 1, si(k+1) = si(k) + s;(k) +1=1;
vi(k+1)=a;(k),  sj(k+1)=0.
(ii) Otherwise (i.e.s;(k) + s;(k) > 0),
zi(k+1) = mi(k),  si(k+1) = s;(k);
zi(k+1) =a;(k), s;(k+1) = s;(k).
In the algorithm, observe that ({R1)(i) and (R3)(ii) are where node sendss; (k) back to nodej

in stage (1), which requires bidirectional communicatié®) only (R3)(i) ‘generates’ one surplus, and

only (R2)(i) ‘consumes’ one surplus; (3) the quantity + s)” 1 stays invariant, i.e., for everg > 0,
(x(k+1)+s(k+1)T1 = (x(k) + s(k))T1=2(0)T1. (9)

Distinct from the algorithm in [7], [8], thiQA algorithm does not involve the threshold constant and
the local extrema variables, thus reducing individual cotafion effort. Also each surplus variable is
indeed binary-valued, and therefore requires merely ont®bboth storage and transmission. A further
difference between the two algorithms lies in the use of lsgrpariables: The algorithm in [7], [8]
allows surpluses to pile up, which is indeed required to eahaverage consensus for arbitrary strongly
connected digraphs. By contrast, @A algorithm here prevents surpluses from piling up, and médaw
simplifies the transition structure. In addition, unlikes thlgorithm in [12] which assumes bidirectional
communication for all time, the design of surplus update® mearks a feature of oUA algorithm.

Now let the subset? of Z" x Z™ be the set of average consensus states:
o = {(x,s): x; = |x(0)T1/n] or [z(0)T1/n], i € V}. (10)

We say that the nodes achieve average consensus almost isdoel every initial condition (z(0),0),
there existl’ < oo and (z*,s*) € o such that(z(k),s(k)) = («*,s*) for all & > T" with probability

one. Here is the convergence result@A algorithm for complete digraphs.
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Proposition1. Let Assumption 1 hold. Then, und€A algorithm, the nodes achieve average consensus

almost surely.

This convergence result may be justified by a similar argurasmgiven in [7], [8]; some care, however,
has to be taken for the operations on surplus variables, iagepaout above. For completeness, the proof
is provided in the Appendix. In addition, we note that thevagence can also be implied by the time
analysis using Lyapunov approach in Section IV below.

The convergence time oA algorithm is the random variablé;, defined byT;, := inf{k >
0 : (z(k),s(k)) € &}. The mean time taken for this convergence (according agathdgorobability

distribution on edge activation), starting frofm,, 0) with =y € &, is then given by

Eqa(w0) := E [T4a[(2(0),0) = (z0,0)] . (11)
Problem2. Let Assumptions 1 and 2 hold. Find an upper bound of the meawetgence time~,, (zo)
of QA algorithm with respect to all possible initial stategc X'.

Our main result is the following upper bound &f,,(x¢) with respect to all possible initial states

xo € X.
Theorem2. Let Assumptions 1 and 2 hold. Then

3(M —m)
max Eya(z0) < n*(n — l)f

R(R-1)

J S A— 7'L3

+n(n—1)
whereR € [0,n — 1] is an integer, as in (12) below.

We note that the order of this polynomial bound is the saméaisih [12] for undirected, complete
graphs. To derive this bound, we will first propose a valid fuyaov function forQA algorithm. Then

we will upper bound the mean convergence time by way of uppanding the mean decay time of the

Lyapunov function.

B. Lyapunov Function
We start by introducing two variables, called positive $uspS; and negative surplu§_; they are
global variables, but are needed only for the convergemese &inalysis. Write the initial state sum

z(0)"1=nL + R, (12)

where L := |2(0)71/n| is one of the possible values for average consensus()and? < n. Observe
that when a surplus is generated/consumed, the corresgpstiite moves one-step either closer to or

farther from the valud.. Positive and negative surplus variables are used to fgeghtse two directions.
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Concretely, when a surplus is generated, we increéasdresp. S_) if the corresponding state moves
towards (resp. away from). On the other hand, when a surplus is consumed, we distimg¢jugsfollowing
two situations: In one case where the state moves closér e decreasé _ if it is nonzero, andS,
otherwise; in the other case where the state moves away frowe decrease only.. .
We now formalize the updating rules of, and S_. Let D(k) := Y " | |z;(k) — L| be the sum of
average consensus errors, and suppose that the(¢dge £ is activated at time.
(S1) If (R3)(i) generates one surplus, then there are two cases:
@) f D(k+1)=D(k)—1 (i.e., z;(k) > L), then
Si(k+1)=54(k)+ 1.
(i) If D(k+1) = D(k)+1 (i.e., z;(k) < L), then
S_(k+1)=5S_(k)+ 1
(S2) If (R2)(i) consumes one surplus, then there are also two cases:
() If D(k+1)=D(k)+1 (i.e.,z;(k) > L), then
Si(k+1)=S5:(k)— 1.
(i) f D(k+1)=D(k)—1 (i.e., z;(k) < L), then
S_(k)=0= Sy(k+1)=5:(k) -1,
S_(k)>0=S_(k+1)=5_(k) — 1.
(S3) Otherwise
Si(k+1) =54 (k);
S_(k+1)=5_(k).
The casgS3) above includegR1), (R2)(ii), and (R3)(ii) of QA algorithm; note that, in these cases,
there is no state update. Since initially there is no surpiube system (i.e.s(0) = 0), we setS, (0) =
S_(0) = 0. Also, one may readily see that, (k) + S_(k) = s(k)T'1, which relates the global surpluses

to the local ones.

We are ready to define the Lyapunov functigifk), k£ > 0, which is given by

V (k) == D(k) + Si(k) — S_(k). (13)
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It is not difficult to see from(S1)-(S3) thatV (k) is non-increasing. Indeedl;(k) stays put except for only
one case {S2)(ii) and negative surpluS_(k) = 0 — where it decreases iy i.e.,V(k+1) = V(k)—2.
Notice that after this decremerfi,.(k +1) > 0 andS_(k +1) =0.

Remark2. We emphasize that the validity df (k) as a Lyapunov function is not restricted only to
undirected graphs, since the updating ru{88) and (S3) do not involve (R1)(i) and (R3)(ii) where

bidirectional communication is required. Indeéd(k) is a suitable Lyapunov function for the original
QA algorithm in [7], [8], which can achieve average consensuarbitrary strongly connected digraphs.
This is one contribution of our work, which might also proid preliminary to attack convergence time

on more general topologies.
In the following lemma, we collect several useful impliceits from the definition of functio (k).

Lemma4.
(1) A lower bound ofV (k) is R, i.e.,V (k) > R for all k.
(2) If V(k) = R, thenS_(k) =0, Sy (k) >0, and(Vi € [1,n]) z;(k) > L.
(3) If D(k) =0, thenS_(k) =0 andV (k) = S+ (k) = R.
(4) SupposeR? = 0. ThenD(k) = 0 if and only if V(k) = 0, and in both caseS_(k) = S (k) = 0.

Proof. We prove these statements in this order: (2), (1), (3), ahd (4
(2) Let V(k) = R. Then there must existy < k such thatV(kp — 1) = R+ 2 and V(ky) =
R. Also we haveS, (ko) > 0 and S_(kg) = 0. Now assumer;(ky) < L. It follows from (9) that
z1(ko) + D1y xi(ko) + s(ko)T1 = nL + R. Rearranging the terms and byko)71 = S, (ko) + S—(ko),
we obtain}"" , z;i(ko) — (n — 1)L = (L — x1(ko)) + R — S4 (ko). Thus
V(ko) = (L —a1(ko)) + Y _ wi(ko) + Sy (ko) — S—(ko)
=2

= 2(L — 1’1(1{70)) + R > R.

This contradictsV (ko) = R, and hencer;(ky) > L for all i. The latter holds also for timé because
the minimum states are non-decreasingQ#¥ algorithm. Finally, according to the updating rules$f
and S_, one may easily see th&t (k) =0 and S;(k) > 0.

(1) WhenV (k) = R, every stater;(k) > L and consequentlyS3)(ii) cannot occur. AsV (k) is
non-increasing, it is lower bounded 1.

(3) Let D(k) = 0. Thenxz(k)T'1 = nL, and thusSy (k) + S_(k) = s(k)'1 = R. It follows that
V(k) = S1(k) —S_(k) < R. But V(k) > R, so that necessarily (k) = Sy (k) — S_(k) = R, which
also implies thatS_ (k) = 0 and Sy (k) = R.
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(4) AssumeR = 0. (Only if) The conclusion follows immediately from (3). ILet V(k) = 0. Then
there must exisk, < k such thatV (kg — 1) = 2 and V(ky) = 0. Also we haveS,(ky) > 0 and
S_(ko) = 0. HenceD (ko) + S+ (ko) = 0, which results inD(ky) = S+ (ko) = 0. As average consensus

is achieved akg, no further state or surplus update occurs. So the concldsiotime & follows. W
Next, we find an upper bound for the functidfi(k).

Proposition2. Let z(0) € X in (1). Then for everyk > 0,

(M —m)n
Vik) < ——5—

Proof. Since the functionV (k) is non-increasing, it suffices to find an upper bound ¥o(0) =

+ R.

> i |xi(0) — L|. Consider the functio’’(0) — R; it is convex inz(0), and X" is a convex set. Hence,
one of the extreme points of is a maximizer. Fixr € [1,n], and letz(0) € X be such that:; (0) =

-+ =2,(0) =mandx,1(0) = --- = 2,(0) = M. ThenV(0)— R=r(L—m)+ (n—r)(M —L)— R.
Also we havel = (17z(0) — R)/n = (rm+ (n—7)M — R)/n. Substituting this into the above equation

and rearranging the terms, we derive

V(0)-R= —Mrz + <2(M —m) — 2§> r
n n

_2(M —m) 1 R \* 1 R
———;—1‘Q‘§W‘M_m0*@W‘M_m>

2(M —m) 1 R 2 . . 1 R
< - : Z(n o m) ( equality holds iffr = 5(n — 775-) )
_ 1(n(M —m)-R)’
2 n(M-—m)

1(n(M — m))® (M —m)n . e

3w —m) 5 ( equality holds iffR =0 ).

ThusV (k) — R is upper bounded byM —m)n/2, which is achievable if and only iR = 0 andr = n/2.

IV. CONVERGENCETIME ANALYSIS OF QA ALGORITHM

We turn now to analyzing the mean convergence tim&#af algorithm, by way of upper bounding
the mean decay time of the Lyapunov functibit-) in (13). This Lyapunov approach is also adopted
in [12], [16]; the common function used &'(k) = > (z;(k) — z(0)T1/n)%. It can be verified that
V'(k) is, however, not a valid Lyapunov function with respect to QA algorithm. This is due to that
the state sum is not preserved in each iteration and theusuepblution must also be taken into account,

as in our functionV (k).
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Fig. 4. Markov chain II; state: is absorhing.

Fig. 5. Markov chain lll: state: is absorbing.

A. Preliminaries on Hitting Time

As in Subsection II-B, we provide preliminaries on the higtitime in finite Markov chains, specific
to the analysis oQA algorithm. For the proofs see Appendix.

Lemma5. Consider the Markov chain in Fig. 4 with transition probdigis

p1+r =1, prtr.+qg.=1(z=2,..,n—1), rp = 1.

Then the mean hitting times of the statestarting from statd and:z are respectively

n1l/1 1 ! L 1 i 1
S |(M2) v (T L) o] o i
1= | \i=2 bi b1 =2 \i=jt1 Dbi Dj | D1
n-1{ /1 ! 1 i
; 1 ; 1
EZ:Z < &>——|— gi). = (z=2,....,n—1).
= | \im2 i) Progo i b)) Pi
Lemma6. Consider the Markov chain in Fig. 5 with transition probdigis
p+r+di =1, po+r.tq.+d,=1(2=2,...,n—2),

Tn—1 + qn—1+ dn—l = 17

Pn1t T+ tdi1=1, =1

Here: and- denote the states of the lower and upper rows, respectiliegn for statesr — 1 andn — 1,
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Fig. 6. Decay of functionV/ (k) in caseR = 0

their mean hitting times of the absorbing statare

n_l(]i 9 n—1 n—1 4 9
EmZ(HE.)'p—IJf; H}; o

i=2 i=j+1

E, 1< <1 + pn—1> Em
- dn—l

In the rest of this section, the proof of Theorem 2 is given.Wilkneed the following notation. Define
the random variabl€y, := inf{k > 0: V (k) = R}, thusTy is the time wherV/(-) decreases t&. The

mean decay time, starting fro(m, 0), is then given by
By (zo) := E [Ty[(2(0),0) = (20,0)] . (14)

Now recall R from equation (12); we proceed with two cases in this ordere- 0 and R > 0. When
R = 0 the mean convergence tinie,,(zo) is found to satisfyE,,(zo) = Ev(zo), whereas whetR > 0
we haveE,,(z9) > Ev(z¢) in general and the corresponding analysis turns out to bedbas the

former case.

B. Proof for the case? = 0

In this case, the mean convergence tifig (z) is characterized by the mean time that the function
V (k) decays tdD; that is, Eq,(z9) = Ev (o) in (14). This is because by Lemma 4 (4)(k) = 0 if and
only if D(k) = 0, and the latter impliegz(k), s(k)) € /. As each decrement reduc®gk) by 2, the
initial value V(0) is necessarily even, and there need in tdté))/2 decrements.

To upper boundEy (x), we view the decay oV (k) as the descent devel setsin the (n + 2)-

dimensional space of the triples:= (z, S+, S_) (see Fig. 7). In this space, the average consensus state
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(n 4 2)-dimension (x, S, S-)

Fig. 7. Decay ofV (k) viewed as level set descent in tlie + 2) dimensions of(z, Sy, S_). Descending is possible only

from the shaded area and through the dotted curves.

is simply the point(L1,0,0). Define the level sets
Up={u:V=> |z~ LI+ S84 —S_=2-1}, 1=1,.,V(0)/2.
i=1
Thus whenu(k) € U;, we interpret that(z(k), s(k)) is I-step away froms/ (i.e., V (k) requiresi
decrements to readh). Also, it is important to note that on every level $ét the triple evolution may

start, and may descend to the next level, only from a stribseti/ defined by
U ={uclh:S_=0& S, >0}

To see this, first recall that the decrementldf) (i.e., level set descent) requirés = 0 and Sy > 0.
Moreover, for the outmost levély () », the initial triple is of the form(zo, 0, 0); and for each subsequent
level, the triple evolution starts right after descendiranf the preceding level, where we hase = 0
and S, > 0.

Now let the random variablé; be the time ofone decremenf V'(-). The corresponding mean time,
starting from a triplew € U, is then given byE! (u) := E [Ti|u € U], 1 € [1,V(0)/2]. Since the
initial value V'(0) is upper bounded byM — m)n/2 (Proposition 2), the functioW'(-) requires at most

(M — m)n/4 decrements to readh Hence, an upper bound of its mean decay time is the following

max Fy(xg) < max El(u) - M

15
ToEX 0 = eV (0)/2 et 4 e

Here is a key result.
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Fig. 8. One step away: fro®; to (1,0,0).

Proposition3. Let Assumptions 1 and 2 hold. Then

El <6 —1) = O 2 )
zeu,v{&%,uw 1(u) n(n —1) (n?)

To prove Proposition 3, it suffices to establish

maxEl( ) < 6n(n—1) = 0(n?), (16)
uely

for everyl € [1,V(0)/2]. In the sequel we will provide the proof for the cdse 1 (i.e., one step away
from average consensus), which contains the essentiabfdmar argument. Specifically, we first exhaust
the possible triple evolution und€pA algorithm, second derive the evolution structure and ttiams
probabilities, and third calculate the corresponding misiing time. The analysis of the cage> 2

follows in a similar fashion but is more involved; we refer Appendix for the proof.

Proof for the casé = 1: Without loss of generality lef. = 1. We investigate the triple evolution from
the level set/;, starting inl/?, to the average consensus stéte0, 0). By Assumptions 1 and 2, every

directed edge irg can be activated with the uniform probability= 1/(n(n — 1)). Consider the triple
n—2

~N
([2 1---1 0]%, 0, 0) € UY; we show that eitheS_ or S, can be generated. Case 1: an edge)

is activated, withz; = 0 andz; = 1. In this case(R3)(i) of QA algorithm applies, and the resulting
n—3

triple is ([2 1---1 0 0]T, 0, 1) € Uy — UY. There aren — 2 such edges; so the probability of this
transition is(n — 2)p. In fact, such transitions can continue until all the onesobee zeros, generating

in total S_ = n — 2. Case 2: an edggj, i) is act|vated Wlthx] =0 or 1 andx; = 2. Again (R3)(i)

of QA algorithm applies, the resulting triple belmé -1 07, 1, 0) € Y. This transition is with

probability (n — 1)p, since there are — 1 such edges.
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n—1

Now starting from the triplg[1 1--- 1 0]7, 1, 0), on one hand, we can have a similar process, as from
n—2
—~

([21---1 0)7, 0, 0) described above, generating in tofal = n — 2. On the other hand, observe that
there is only one edggj, ) such thatr; = 1, s; = 1, andx; = 0, s; = 0. If this edge is activated (with
probability p), then (R2)(i) of QA algorithm applies, and the resulting triple is the averagesensus
state(1,0,0).

Based on the above descriptions, we derive that the transstructure fromi/; to (1,0,0) underQA
algorithm is the one displayed in Fig.'8In this diagram, the state is the average consensus state

(1,0,0), and the other states belongiif, listed below:

n—1:(211---110", 0, 0) n—1: (111---110"%,1,0)
n—=2:(211---100%,0, 1) n—2:(111---100%,1,1)
2: (210 ---000]%, 0, n—3) 2: (110---000]%, 1, n—3)
1: (200 ---000]", 0, n—2) T: (100 ---000%, 1, n—-2)

Note that negative surplus is zer§_( = 0) only in the states: — 1 andn — 1; hence these two triples

are inU). Also, one may verify that the transition probabilities asefollows:
p1=(n-2)p, di=p; pp-1=p, @-1=0—-2)p, dp1=(n—1)p;
p.=Mm—-1—2)zp, q.=(z—-1)p, d.=2z2p (2=2,...,n—2).
To upper bound?; (u) for u € UY, in Fig. 8 we add transitions from the statéo z with the probabilityd.,,
z € [1,n—1], thereby increasing the probabilities of moving away fréwa average consensus statf his
modification leads us to the same structure displayed in33ithus, we havenax, ;o Fi(u) < En 1,
where £, is given in (4).
It is left to calculateE,,_, with respect to the obtained transition probabilities. fag we invoke the

formulas in Lemma 6. First,

1 n-2 2n-3) (n—-43 (n—32 (n-3)"

nl:[lqi_n—Q n—3 n—4 2 1 1
LS Di

1The transition structure in Fig. 8 is obtained with a minordification from the original. For those triples i — 4, we
treat the following transitions from left to right as selffm For some nodésuch thate; = 0 ands; = 0, its statex; increases
by consuming one negative surplus (un&&(i) of QA algorithm). By treating such transitions as selfloops, @ahé/ probability
of moving towards the average consensus state is reducetican be verified that the mean hitting time derived from this

structure is an upper bound of that from the original. We msikeh modifications in our analysis henceforth.
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Similarly,

n—1 n—1
H g 2 g 3 n—2qn—1 In-1
— = , — = y i, —————— =n—3, =n—2
o Di (’I’L - 4)' i—d p (’I’L - 5)' Pn—2Pn—1 Pn—-1
We then have
n—1 q n—1 n—1 q 9
(] (]
me- (I12) 245 (T 2) 2
= Pi) P1 S S P Dj
1 2 2 2 + o 2) 2 +
= n —_— p—
=3 (n—2p (-2 (n—3)2p (n—2)p

Finally, £,_1 < (1+ (pn-1/dn-1)) Bz=1 = (1 + (p/((n — 1)p))) - 6n(n— 1) < 6n(n— 1) = O(n?). W
Therefore, it follows from Proposition 3 and equation (18&att the upper bound of,,(x) in

Theorem 2 holds for the cade = 0.

C. Proof for the cas&k € [1,n — 1]

When R # 0, we haveE,,(x¢) > Ev(zo) in general. This is becausé(k) = R does not generally
imply (z(k),s(k)) € </, and even afteV (k) reaches its lower boun& (Lemma 4 (1) and (2)), the
pair (z(k), s(k)) may require extra time to reacl. Define the level selp := {u : V = Y"1 | |z; —
L| + Sy — S- = R}, then the mean convergence time starting from a triple Uy is given by
Eqo(u) = E[Ty|u € Ug]. Also recall from (14) thatEy (zo), with zp € X in (1), denotes the mean
decay time ofV' (k) to the lower boundR. From these we obtain the mean convergence tim&Af

algorithm

E < E E,.(u). 17
max qa(wo)_g;g}( v($0)+gé%{>; qa(t) (17)

To€
In the sequel, we find upper bounds By (z¢) and E,,(ur), respectively. First, as in the cage= 0,
we have

max By (z9) < n?(n — 1)M = 0(n?). (18)
To€EX 2

This is due to the following reason. The functiéf(k) decays from its initial valud’(0) to R, and
each decrement reduc&Sk) by 2. It follows thatV'(0) — R is necessarily even and there need in total
(V(0) — R)/2 decrements. Fak € [1, (V(0) — R)/2] recall thatE! (u) denotes the mean time spent for

one decrement of (k), starting from a tripleu € ¢4 . Following Proposition 3, one may similarly derive
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M(k)

L+R —
L+R-1 —_—

L+2 —
L+1 ‘

Fig. 9. Decrement of maximum state where Ur

thatmaxe (1, (v (0)-R) /2], ueus? El(u) < 6n(n—1). Moreover,V(0) — R < (M —m)n/2 by Proposition 2;
thus V' (k) requires at mos{M — m)n/4 decrements to reackk. Therefore,max,,cx Ev(zo) <
maxe(1 (v (0)-r)/2weuy Bi(w) - (M —m)n/4 <n?(n —1)3(M —m)/2 = O(n?).

Next, we find an upper bound fanax,c;, E4(u). By Lemma 4 (2) we havevi € V) z; > L; so
the maximum staté// (k) in (5) satisfiesM (k) € [L, L + R]. If R =1, then in fact(z(k), s(k)) € <7;
thus in this cas&,,(ur) = 0, and we have from (17) and (18) thatx,,cx Eyq(z0) = O(n?). Itis left
to considerR € [2,n — 1]. SinceM (k) = L or L + 1 implies (z(k), s(k)) € </, the mean convergence
time E,,(u) can be characterized by the mean time thatk) decays toL + 1. The decay ofM (k) is
displayed in Fig. 9; observe that (k) requires at mosRz — 1 decrements to reach + 1. Let £y, (u)
denote the mean time taken for one decrement/gk), starting from a triplew € Ur. Then an upper

bound forE,(u) is as follows:

max Eq(u) < max By (u) - (R —1). (19)

Proposition4. Let Assumptions 1 and 2 hold. Then

max Epr(u) <n(n—1) i = 0(n?).

u€ln n— (R/2)
To prove Proposition 4, we first find the subset in which oneagieaf M (k) takes the longest time,
second derive the transition structure and probabilitiedenQA algorithm, and third compute the mean
hitting time.
Proof of Proposition 4We consider the following two cases whéhis even and odd, respectively.
1) R is even. Letl/, be a subset of/r given byl := {u = (x,5,5_) : z € X, Sy = S_ =0},
where

Xe::{$i$1:“‘:$E:L+2v $£+1:“‘:$n:L}'
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For a state inX., one decrement of its maximum valde+ 2 occurs only when all the?/2 state
components having that value decrease; thus it is not hasdeémax,c;s, Far(u) = maxyery, Enr(u).
Now pick an arbitrary tripleu in U.; we investigate its evolution und€)A algorithm. If an edge

(7,1) is activated, Wltl’w = L andz; = L + 2, then(R3)(i) of QA algorithm applies, and the resulting
(R/2)-

triple is (m L+1L ---L)7 1, 0). Namely, one maximum state decreases. Also observe
that there ar¢ R/2) (n — (R/2)) such edges; so the probability of this transitio{#&/2) (n — (R/2)) p,
wherep = 1/(n(n — 1)) by Assumptions 1 and 2. Indeed, this process can contintukalinthe R/2
maximum states decrease to the value- 1, and we derive that the corresponding transition structure

underQA algorithm is the one displayed in Fig. 4 with the lengtk= (R/2) + 1. In the diagram,

R/2
statel : (L+2L+2--- L+2L+2 L --- LT, 0, 0)
state2 : (L+2L+2--- L+2L+1L --- L] 1, 0)
stateR/2 : (L+2L+1L+1 - L+1L --- LT, (R/2)—1, 0)
| state(R/2)+1: (L+1L+1L+1--- L+1L - L', R/2, 0)

and the transition probabilities amg = (R/2) (n — (R/2))p, p- = ((R/2) — z+ 1)(n — (R/2))p,
¢. = (z—1)((R/2) — z+1)p, z € [2, R/2]. Observe that the statiec U and the statéR/2) + 1 € A;
somaxyey, Ey(u) = Ep, whereE; is from (4).

It remains to invoke the formulas in Lemma 5 to calcul&te First,
R/2

quz (R/2)-1 ((R/2)-2)2  2A(R2-2)  (R/2)-1
p n—(R)2) 20— &2) (B2 -2n—(R2) (B2 - n—(R/2)

~ ((R/2)-1)! (R/2) —1 (R/2)-1 .
= - R S <n = (R/2)> <1

the last inequality is due t® < n. Similarly wa qi/p; <1 fori=3,...,R/2. Then we obtain

l l
qi 1 1 1 1 1
(1117) o) ( 1] pz) b - (B2)p <<R/2>+<R/2>—1+”'+<R/2>—z+1>'

J=2 \i=j+1
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Hence,

eoE|(0) x5 )

= i=j+1

< ! ( L, 1 +---+1+1>+ ! ( L, 1 +---+1>
(n— (®/2)p \R2 " (R]2) -1 2 (n—(R/2)p \RJ2 ' (R/2)—1 2

- 1 < . > . 1 1
(n—(R/2)p \R/2  (R/2)-1) (n—(R/2)p R/2
= 1 = R -n(n—1).
(n—(R/2))p  (n—(R/2))
Therefore,max,cy,, Ex(u) = E1 < n(n— 1)R/(n — (R/2)) = O(n?).

2) R is odd. Leti, be a subset of(r given bylf, := {u = (z,54,5_) 1z € &,, Sy = S_ =0},

where
Xo={x:z1=--=2xr1=L+2, vra =L+1, ;UMH:---::U”:L}.

For the same reason in the preceding case, one can verifynthatc;,,. Fy(u) = maxyey, Ey(u).
Also it turns out that the transition structure, togethethvihe associated transition probabilities, starting
from U, is analogous to that starting frob,. Thus by a similar derivation given above, we can conclude
again thatmax,cy, Ey(u) < n(n— 1)R/(n — (R/2)) = O(n?). [

Finally, it follows from equations (17)-(19) and Propoaiti 4 that an upper bound of the mean
convergence timeZ,, (7o) of QA algorithm is E 4 (z9) < n?(n — 1)3(M — m)/2 + n(n — 1)R(R —
1)/(n — (R/2)) = O(n?) for the caseR > 0. This completes the proof of Theorem 2.

Remark3. We have derived an upper bound for the convergence tim@Afalgorithm on complete
graphs, by proposing a suitable Lyapunov function for tlgmddhm and characterizing a Markov chain
for the state-surplus transition structure. To extend tb&ilt to more general topologies, the Lyapunov
function is still valid (see Remark 2) which in turn validaieequalities (15) and (17). Thus it is crucial to
establish the relation between graph topologies and timsitian structure with associated probabilities,
as done in the proofs of Propositions 3 and 4 for completehgrapstablishing such a relation for general

topologies currently appears to be difficult, but will be Expd in our future work.

V. NUMERICAL EXAMPLE

We have proved polynomial upper bounds on the convergenue of QC and QA algorithms for
complete digraphs. Now we compare these theoretic bourtdswimerical simulations, so as to illustrate

the tightness of our derived results. For this purpose, wesider the following initial states(0) which
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ln/2]
correspond to the worst case convergence time:@®ralgorithm, we choose(0) = [1---1 0---0]7

n—2

(cf. proof of Lemma 3); foIQA algorithm, we choose(0) = [2 TAT 0]” (cf. proof of Proposition 3).
The simulation results are displayed in Fig. 10, each plotue being the mean convergence time of
100 runs of the corresponding algorithms.

It is observed that the convergence rat€af algorithm is approximately quadratic, which demonstrates
that the derived theoretic bound is relatively tight. Ondkiger hand, the convergence ratgd# algorithm

appears to be at most quadratic, if not linear. This ind#ibat the cubic theoretic bound may not be
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tight, though it is in the same order as the one in [12] alsocfumplete graphs. Thus, deriving tighter
bounds for the convergence time QA algorithm awaits future effort.

Furthermore, we compare the convergence rate@©f QA, and the originalQA algorithm in [7].
The results are shown in Fig. 11, each plotted value beingnis@n convergence time 60 runs of the
corresponding algorithms, with the initial states choseifioumnly at random from the intervdl-5, 5].

First it is observed that the convergence rate®Q@f and QA algorithms (dotted and dashed curves)
are indeed analogous under the same initial conditions Wis see that th@A algorithm in this paper
is considerably faster than that in [7]. This improvemenindastrates that by occasionally requiring
bidirectional communication, the modifications we have enéar QA algorithm effectively accelerate
convergence. This observation, on the other hand, indicdu®t there needs extra effort to bound the
convergence time of the origin@A algorithm in [7], which is for average consensus on gendgabghs.

This will be targeted in our future work.

VI. CONCLUSIONS

In this paper, we have studied convergence time of the qgexhtgjossip algorithms in [7], [8] which
solve the consensus and averaging problems on digraphsifiSalty, we have derived upper bounds
— polynomials in the numbet. of nodes — on the mean convergence time of these algorithmthdo
special case of complete digraphs where the problem bectwawtable. For the consensus algorithm, the
mean convergence time ($(n?); this is obtained by bounding the shrinking time of the sestlinterval
containing all states, which results in the special trémsistructure in Fig. 1. For the averaging algorithm,
a valid Lyapunov function is proposed and its decay time stigated; this leads us to characterizing
the convergence time by the hitting time in the Markov chamg&igs. 4 and 5, from which we derive
O(n3) time complexity.

For future work, it would be of ample interest to analyze agence time of our gossip algorithms
on more general graph topologies, similar to the work of [IB§]. A primary difficulty could lie in the
potentially greater complexity of the state and surplusdition structure, resulting from the topological
constraints. An alternative might be to explore the retati@tween the bounds for convergence time and

the spectral properties of the Laplacian matrix associtieal given topology, as was done in [15].
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APPENDIX

Proof of Lemma 2The proof is a direct calculation. By Lemma 1 the mean hittiinges of state)

or n satisfy the following linear equations

Ey =0, (20)
E,=p.FE. 1 +1.E, +q¢E, 1+1, z=1,.,n—1, (21)
B, = 0. (22)

Sincep, = ¢, it follows from (21) thatp.(E.+1—E,)—p.(E.—E,_1)+1=0.LetF,;, .= E, 1 —E..
Then
1

Fz+1 - FZ - .
Pz

This is a non-homogeneous first-order linear differenceatiqn, whose solution is of the general form

z
1
FZ+1 == Fl - E —_—.
im1 Pi
To obtain the initial condition¥;, consider

Fn—l-Fn_l—l-‘”—i-Fl:(En—En_l)—l-(En_l—En_2)+"'+(E1—E0):O,

n—1 J

Fn+Fn_1+---+F1=nF1—ZZi-

=1 =1 P

From the above we havg| = (1/n) Y20~} 37| 1/p;. Finally,

E.=E,—-FEy=F.+F, 1+ - +F+F

Proof of Lemma 5By Lemma 1 the mean hitting times of statesatisfy the following linear equations
E, =0, (23)
Ey=piEs+rmE + 1, (24)

E,=p.E+rE+¢E. 1+1, z=2.,n-1 (25)
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Rearrange the terms in (25) to obtainF.+1 — E.) —q.(E, —E,_1)+1=0.LetF. ., == FE,. .1 — E..
Then
1

q
Fz+1 - _ZFz__a
Y2 Pz

whose initial condition isF, = Fy — E; = —1/p; by (24). This is a non-homogeneous first-order linear

difference equation with variable coefficients, whose sotuis of the general form

ra= (%) b (112) (1)

j=2 \i=j+1
Since
Fn+Fn—1+"'+Fz+1 — (En_En—1)+(En—1 _En—2)+"'+(Ez+1 _Ez)
= En - Ez = _E27
we derive
n—1 l 0 1 l l 0 1
= | \iz2Pi) P1 S \iZjaPi) P
Finally,

E1:E2+i:n§_:l (ﬁﬂ>-i+§l: IT%) L]+=
4 oPi) P17 4 pi by n

[

Proof of Lemma 6lt follows from Lemma 1 that the mean hitting times of stateatisfy the following

linear equations

ET = p1E§ + TIET + dlEl + 1,

(26)
El = plEz + TlEl + dlET + 1;
E=pF=+nkE+q¢E—~+d.FE, +1,
PRI T AR T T T e Ry (:=2,.,n—2) 27)
E, = pZEﬂ +nrkE;, + quﬂ +d,Fz+1;
Em = pn_1F, + TmEm + qn_lEm + dn_lEﬂ + 1, (28)

En1 = rn1Bn1 +qn-1En—2 +dp1 By + 1

E, =0. (29)
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Rearrange the terms in (27) as
pe(Brgg — B2) — @2(Ez — E7) — d.((Bz — E)) +1 =0,
pZ(E@ —E,) —q.(E; — Eﬂ) +d.((Bz— E;)) +1=0.

Let Fio := Fzqy — F5, F.41 := E.11 — E., and add these two equations; we obtain
2
Fm+Fq= Fz+ F;) — —,
241 z+l = D, ( ) D,

whose initial condition isF5 4+ F, = —2/p; by (26). This is again a non-homogeneous first-order linear
difference equation with variable coefficients, whose sotuis
= 2 - o ( 2 )
Fs+F. = = (——)+ =1-{-—).
T (izzpz) - Z:: H pi pj

Now rearrange the terms in (28)

Pn-1(En — Ei=g) — @n-1(Epg — Bp=g) — dn1((Bf=g — En-1)) + 1 =0,

_Qn—l(En_—l —F,_ 2) + dn 1(( =T Eﬁ)) +1=0.
Adding these two equations and applying (29), we derive

q 9 n—1 - n—1 4 9
Bog =2 (Fp+ Foa) + :<H ) Z I
i - Di bj

Pn—1 Pn—1 i=2 i=j+1

It is left to obtain the upper bound fdr,, ;. For this we start by rearranging the terms in (26) as follows
(p1+d1) By — diEy = p1E5 + 1,
(p1 + dl)El —di1Ey =p1Ey + 1.

Subtracting the first equation from the second, we havet 2d;)(E1 — E7) = pi1(E2 — E5). Hence

b1
FL—-—FEF=—""(F,— E5 FEy — E5.
1 T p1—|—2d1(2 5) < E2 2

Similarly, from (27) we obtain a chain of inequalities

Ez—E§<E§—E§<"' <En__2—Em<EE—Em.
Finally, rearrange the terms in (28) as
(pn—l + gn—1 + dn—l)E— - dn 1En 1= Pn— 1E + Gn— 1E ) + 1
(Qn 1+ dn l)nl dp— lE —1 = Q4n— lEn 2+ 1.
Subtracting the first equation from the second and apply29y, (ve deduce
(qn—1+2dn—1)(Epn-1 — Ei=x) — pn1bg = qn-1(En—2 — E=) < qn-1(En—1 — Br=).

Rearranging these terms we halig 1 < (14 (pn—1/dn-1)) B |
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Fig. 12. Idea of induction step

Proof of Proposition 1Based on [12, Theorem 2], it suffices to establish the folhgthree conditions:

(C1) The evolution of(z(k), s(k)), k > 0, is a Markov chain with a finite state space;
(C2) the setw defined in (10) is an invariant set und@A algorithm;
(C3) for every(z(0),0) ¢ < there is a finite timek, such that Pi(z(K,), s(K,)) € < | (2(0),0)] > 0.

For an arbitrary state(k), observe inQA algorithm that the minimumn (k) is non-decreasing and
the maximumM/ (k) non-increasing, wherew(k), M (k) are defined in (5). Thus the conditio€1)
and(C2) easily follow. It remains to establisfC3) when the digraply is complete (Assumption 1), for
which we proceed by induction on the numbe(> 1) of nodes. LetF'(k) := M (k) — m(k). Assume
((0),0) ¢ o; thenF(0) > 2.

(i) Base casen = 2. Label the two nodes such that(0) = m(0) andz2(0) = M (0). AsG is complete,
there are two edges$],2) and(2, 1), each of which has a positive probability to be activatednsiaer
the sequence of alternate activatidn;2), (2,1),(1,2),(2,1)---. Then in QA algorithm, (R3)(i) and
(R2)(i) will alternately apply, thereby shrinking the interviah(k), M (k)]. It is easy to see that there
exist a finite timek, and a positive probability such that (K,) = z2(K,) = |[(x1(0)+2x2(0))/2] (thus
(x(K,),s(K,)) € &), and at most one node holds a surplus. Also in this prodeS#;) decreases by
at least one aneh (k) increases by at least one.

(i) Induction step: letr € [2,n — 1]. Suppose that for a network efnodes, there exist a finite time
K, and a positive probability such that (K,) = -+ = z,(K,) = [(1/r)>.;_; zi(0)], and at most
r — 1 nodes each holds one surplus. Also suppose that in this ggatE k) decreases by at least one

andm(k) increases by at least one.
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Now consider the case with+1 nodes. Label them such that(0) = z;(0) < --- < z,41(0) = M(0).

In the sequel, we describe a sequence of activating edgash whuses the intervain(k), M (k)] to
shrink, the process being displayed in Fig. 12. The exigteridhe selected edges follows from that

is complete; and since each edge has a positive probalilibetactivated, the sequence of activation
also has a positive probability.

First, consider the nodes. .., r + 1. We distinguish three cases as follows.

Case 1x,41(0) — 22(0) > 2. Then applying the hypothesis, we obtain that in a finite tiyeand with
a positive probabilityo(Ky) = -+ = z,41 (K1) = [(1/r) 32075 24(0) .

Case 2:x,41(0) — 22(0) = 1. For each nodé (> 2) such thatz;(0) — z2(0) = 1, activate the edge
(2,4); then (R3)(i) of QA algorithm applies, thereby resulting againan(K;) = -+ = x,41(K1) =
[(1/r) 215 :(0)).

In both cases above, the maximum state decreaséd @ds;) < M (0); henceF(K;) < F(0). In
addition, there are at most— 1 nodes each having one surplus. Activate (one at a time, irrlzitvaay
order) the edges connecting those nodes with a surplus tmdde 1. Thus (R2)(i) applies, and the
surpluses are consumed to increasék), which in turn caused’(k) to decrease. At time at most
K| := K; +r — 1, all the surpluses in the system can be consumed.

Case 3:x,41(0) — 22(0) = 0. For this special case, we proceed directly to the next step.

Second, consider the nodés...,r. When F(K{) > 2 (or Case 3 above), applying the hypothe-
sis we derive that in a finite timé{, and with a positive probabilityz,(Ks3) = - - = z,.(K2) =
|(1/r) >, zi(K1)]. Since the minimum state (k) increases by at least one, we haVigs,) < F(K7).
Also, at mostr — 1 nodes each has one surplus. Select (one at a time, in anaayhitrder) the edges
connecting the node+ 1 to those with a surplus; theiR2)(i) applies, and the surpluses are consumed.
Note that, however, her& (k) stays put. At time at mosk’, := K + r — 1, all the surpluses in the
system can be consumed.Af(K7%) > 2, we apply the hypothesis again for the no@es.,r + 1, as is
done in the first step above.

Thus we can repeat these two steps, in an alternate faslidhasF'(k) decreases untik'(K)) = 1
for some finite timeK,. There are two possibilities: () (K) = m(K)), othersm(K/)+1, and at most
r—1 nodes each has one surplus; andi(2), (K) = M(K]), othersM (K!)—1, and at most —1 nodes
each has one surplus. Analogous to the edge activation dmne aone can show in both scenarios that
there exist a finite timd{, > K/ and a positive probability such th#t(K,) = 0, and at most- nodes
each has one surplus. Therefore necessarilfi,) = --- = z,41(K,) = [(1/(r +1)) S04 2:(0)].

Finally, it is evident that in this averaging procedg(k) decreases by at least one andk) increases
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by at least one. This finishes the induction step. |

Proof of Proposition 3We have given in Section IV-B the proof for the case 1, one step away
from average consensus. It remains to establish (16) falyeve [2,V(0)/2]. Before proceeding, we

introduce the following notation for an economical repreagon of the transition structure in Fig. 8:

(11 ---110]7, 1, 0)

(211 ---110]7, 0, 0)

Here([111 ---110]7, 1, 0) represents the upper row of states..,n — 1,and([211 ---110]7, 0, 0)
represents the lower row of states..,n — 1. Itis well to note that the state (i.e., the average consensus
state(1, 0, 0)) is not involved. Observe that only the triplesifl are used, and only the triple with positive
surplusSy > 0 has a transition probability to the average consensus. 8igewill use this notation to
display the transition structures in the subsequent aisalys

(i) Two steps away: fronits to ;. The corresponding transition structure is displayed ig. Ai3;
there are four triples, representing four rows similar @ #bove. These rows can be arranged into three
blocks B1, Bs, and B3 as shown. Notice that the displayed triples are all/fh and only those triples
with positive surplusS; > 0 have a transition probability t&r;. One can readily see that starting from
the triple (3 1 1---11 —1]7,0,0), the mean hitting time off; is the longest; thus we need to analyze
the whole structure.

In the sequel, the structure will be simplified in two stepsst-treat the transition t#3 as a selfloop at
the triple([2 1 1---1 1 —1]7,1,0) in By. This modification increases the mean hitting time startiog
B;. To see this, note that the triple B has more positive surplus, , which results in higher probabilities
of moving towardg/; . It then follows that selflooping i, takes longer time to hit; than transiting to
Bs. Second, combing3 11---11 —1]7,0,0) in By and([221---11 —1]7,0,0) in By. This amounts
to combining the corresponding two rows of triples. It canuegified that the associated transition
probabilities in these two rows are the same, except forethoeving to([2 1 1---1 1 — 1]7,1,0).
Since the latter means moving towadds, taking the smaller transition probabilities from the twaws
will increases the mean hitting time.

After the above modifications, the transition structureispdified to the one displayed in Fig. 5, with
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B B> B;

Fig. 13. Two steps away: froms to U .

Fig. 14. Three steps away: frobf; to Us.

the following transition probabilities:

pr=Mm-=2)p, di=p; Pn1=D, Gu-1=0M—2)p, dp_1=(n—2)p;
Pz = (’I’L—l—Z)Zp, qz :(Z—l)p, dz :(Z—l)p (’Z:27"'7n_2)'

Hence, we havenax, ;o El(u) < E,—1, whereE,,_, is given in (4). Invoke the formulas in Lemma 6,
and perform an analogous calculation as before; we therinothtat max, ¢y E7 (u) = O(n?).

(i) Three steps away: fron¥s to Us. The corresponding transition structure is displayed o B#4;
we now have four blocks. Since starting from the tripl¢ 1 1---1 1 —2]7,0,0) the mean hitting time
of U, is the longest, we need to analyze again the whole structure.

We take three steps to simplify the structure. First, trésat transition toB, as a selfloop at the
triple (2 11---11 —2]7,2,0) in Bs. This is the same as that in (ii), and hence increases the mean
hitting time starting from3;. Second, treat the transitions to bloBk as selfloops at the corresponding
triples in B,. This modification also increases the mean hitting time. 8@ this, compare the structure
of By and its counterpart B3 (i.e., the lower two triples alone). One may verify that tloenfier has
longer rows of triples and higher probabilities of movingagwirom U4,. Hence, the mean time taken
to hit Uy in the structure of3, is longer than that in its counterpart ;. Further, the top triple

(211---11 —2/7,2,0) in B3, with more positive surplus’,, makes the mean hitting time even
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shorter. Therefore, selflooping B, increases the mean time to la, compared to transiting tés.
Lastly, combing([4 1 1---11 —2]7,0,0) in By and([321---11 —2]7,0,0) in By, as is done in (ii).

The above simplifications lead us again to the structurelaisp in Fig. 5, with exactly the same
transition probabilities as (ii). We thus obtaimax,cy0 E3(u) < En—1 = O(n?).

(iii) Generall (> 3) steps away: fronl/; to U;_,. The corresponding transition structure consists
of [ + 1 blocks. Apply an analogous procedure to simplify this duies it can be found by a similar
argument that transiting to further blocks will accelerhitting ¢/;,_;. Consequently, the structure with
[+ 1 blocks can also be reduced to the one in Fig. 5, the probabilif which are those in (ii). Therefore,

max,eyo El(u) < Eyoy = O(n?). [



