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Abstract

In this paper, we formulate and solve a randomized optimal consensus problem for multi-

agent systems with stochastically time-varying interconnection topology. The considered

multi-agent system with a simple randomized iterating rule achieves an almost sure consen-

sus meanwhile solving the optimization problem minz∈Rd

∑n
i=1 fi(z), in which the optimal

solution set of objective function fi can only be observed by agent i itself. At each time step,

simply determined by a Bernoulli trial, each agent independently and randomly chooses ei-

ther taking an average among its neighbor set, or projecting onto the optimal solution set

of its own optimization component. Both directed and bidirectional communication graphs

are studied. Connectivity conditions are proposed to guarantee an optimal consensus al-

most surely with proper convexity and intersection assumptions. The convergence analysis

is carried out using convex analysis. We compare the randomized algorithm with the de-

terministic one via a numerical example. The results illustrate that a group of autonomous

agents can reach an optimal opinion by each node simply making a randomized trade-off

between following its neighbors or sticking to its own opinion at each time step.

Keywords: Multi-agent systems, Optimal consensus, Set convergence, Distributed opti-

mization, Randomized algorithms

1 Introduction

In recent years, there have been considerable research efforts on multi-agent dynamics in ap-

plication areas such as engineering, natural science, and social science. Cooperative control of
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multi-agent systems is an active research topic, where collective tasks are enabled by the recent

developments of distributed control protocols via interconnected communication [6, 7, 8, 9, 10,

11, 12, 13, 15, 16, 20]. However, fundamental difficulties remain in the search of suitable tools to

describe and design the dynamical behavior of these systems and thus to provide insights in their

basic principles. Unlike what is often the case in classical control design, multi-agent control

systems aim at fully exploiting, rather than attenuating, the interconnection between subsys-

tems. The distributed nature of the information processing and control requires completely new

approaches to analysis and synthesis.

Consensus is a central problem in the study of multi-agent systems, which usually requires

that all the agents achieve the same state, e.g., a certain relative position or velocity. Efforts

have been devoted to characterize the fundamental link between agent dynamics and group

coordination, in which the connectivity of the multi-agent network plays a key role. Switching

topologies in different cases, and the “joint connection” or similar concepts are important in the

analysis of stability and convergence. Uniform joint-connection, i.e., the joint graph is connected

during all intervals which are longer than a constant, has been employed for various consensus

problems [6, 7, 22, 17]. On the other hand, [t,∞)-joint connectedness, i.e., the joint graph is

connected in time intervals [t,∞), is the most general form to secure the global coordination,

which is also proved to be necessary in many situations [8, 18]. Moreover, consensus seeking

over randomly varying networks has been proposed in the literature [24, 25, 26, 27, 28], in which

the communication graph is usually modeled a sequence of i.i.d. random variables over time.

Minimizing a sum of functions,
∑n

i=1 fi(z), using distributed algorithms, where each com-

ponent function fi is known only to a particular agent i, has attracted much attention in recent

years, due to its wide application in multi-agent systems and resource allocation in wireless

networks [29, 32, 30, 31, 34, 35]. A class of subgradient-based incremental algorithms when

some estimate of the optimal solution can be passed over the network via deterministic or ran-

domized iteration, were studied in [29, 32, 42]. Then in [34] a non-gradient-based algorithm

was proposed, where each node starts at its own optimal solution and updates using a pairwise

equalizing protocol. The local information transmitted over the neighborhood is usually limited

to a convex combination of its neighbors [6, 7, 8]. Combing the ideas of consensus algorithms

and subgradient methods has resulted in a number of significant results. A subgradient method

in combination with consensus steps was given for solving coupled optimization problems with

fixed undirected topology in [31]. An important contribution on multi-agent optimization is
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[40], in which the presented decentralized algorithm was based on simply summing an averaging

(consensus) part and a subgradient part, and convergence bounds for a distributed multi-agent

computation model with time-varying communication graphs with various connectivity assump-

tions were shown. A constrained optimization problem was studied in [41], where each agent is

assumed to always lie in a particular convex set, and consensus and optimization were shown to

be guaranteed together by each agent taking projection onto its own set at each step. Augmented

lagrangian algorithms with directed gossip communication to solve the constrained optimization

problem in [33]. Then a convex-projection-based distributed control was presented for multi-

agent systems with continuous-time dynamics to solve this optimization problem asymptotically

[36].

In this paper, we present a randomized multi-agent optimization algorithm. Different from

the existing results, we focus on the randomization of individual decision-making of each node.

We assume that each optimal solution set of fi, is a closed convex set, and can be observed only

by node i. Assuming that the intersection of all the solution sets is nonempty, the optimal solu-

tion set of the group objective becomes this intersection se. Then the optimization problem is

equivalent to a distributed intersection computation problem. Computing convex sets’ intersec-

tion is actually a classical problem. Alternating projection algorithm was a standard centralized

solution, which was discussed in [37, 38, 39, 41]. Then the projected consensus algorithm was

presented in [41].

We propose a randomized algorithm as follows. At each time step, there are two options

for each agent: a standard averaging (consensus) part as a convex combination of its neighbors’

state, and a projection part as the convex projection of its current state onto its own optimal

solution set. In the algorithm, each agent independently makes a decision via a simple Bernoulli

trial, i.e., chooses the averaging part with probability p, and the projection part with probability

1 − p. This algorithm is a randomized version of the projected consensus algorithm in [41].

Viewing the state of each agent as its “opinion”, one can interpret the randomized algorithm

considered in this paper as a model of spread of information in social networks [28]. In this case,

the averaging part of the iteration corresponds to an agent updating its opinion based on its

neighbors’ information, while the projection part corresponds to an agent updating its opinion

based only on its own belief of what is the best move. The authors of [28] draw interesting

conclusions from a model similar to ours on how misinformation can spread in a social network.

In our model, the communication graph is assumed to be a general random digraph pro-
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cess independent with the agents’ decision making process. Instead of assuming that the com-

munication graph is modeled by a sequence of i.i.d. random variables over time, we just re-

quire the connectivity-independence condition, which is essentially different with existing works

[25, 27, 26]. Borrowing the ideas on uniform joint-connection [6, 7, 22] and [t,∞)-joint connect-

edness [8, 18], we introduce connectivity conditions of stochastically uniformly (jointly) strongly

connected (SUSC) and stochastically infinitely (jointly) connected (SIC) graphs, respectively.

The results show that the considered multi-agent network can almost surely achieve a global

optimal consensus, i.e., a global consensus within the optimal solution set of
∑n

i=1 fi(z), when

the communication graph is SUSC with general directed graphs, or SIC with bidirectional in-

formation exchange. Convergence is derived with the help of convex analysis and probabilistic

analysis.

The paper is organized as follows. In Section 2, some preliminary concepts are introduced.

In Section 3, we formulate the considered multi-agent optimization model and present the op-

timization algorithm. We also establish some basic assumptions and lemmas in this section.

Then the main result and convergence analysis are shown for directed and bidirectional graphs,

respectively in Sections 4 and 5. In Section 6 we study a numerical example. Finally, concluding

remarks are given in Section 7.

2 Preliminaries

Here we introduce some mathematical notations and tools on graph theory [5], convex analysis

[2, 3] and Bernoulli trials [4].

2.1 Directed Graphs

A directed graph (digraph) G = (V, E) consists of a finite set V = {1, . . . , n} of nodes and an

arc set E . An element e = (i, j) ∈ E , which is an ordered pair of nodes i, j ∈ V, is called an

arc leaving from node i and entering node j. If the ej ’s are pairwise distinct in an alternating

sequence v0e1v1e2v2 . . . envn of nodes vi and arcs ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , n, the

sequence is called a (directed) path. A path from i to j is denoted i→ j. G is said to be strongly

connected if it contains paths i→ j and j → i for every pair of nodes i and j.

A weighted digraph G is a digraph with weights assigned for its arcs. A weighted digraph G

is called to be bidirectional if for any two nodes i and j, (i, j) ∈ E if and only if (j, i) ∈ E , but
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the weights of (i, j) and (j, i) may be different. A bidirectional digraph is strongly connected if

and only if it is connected as an undirected graph (ignoring the directions of the arcs).

The adjacency matrix, A, of digraph G is the n× n matrix whose ij-entry, Aij , is 1 if there

is an arc from i to j, and 0 otherwise. Additionally, if G1 = (V, E1) and G2 = (V, E2) have the

same node set, the union of the two digraphs is defined as G1 ∪ G2 = (V, E1 ∪ E2).

2.2 Convex Analysis

A set K ⊂ Rd (d > 0) is said to be convex if (1−λ)x+λy ∈ K whenever x, y ∈ K and 0 ≤ λ ≤ 1.

For any set S ⊂ Rd, the intersection of all convex sets containing S is called the convex hull of

S, and is denoted by co(S).

Let K be a closed convex set in Rd and denote |x|K , infy∈K |x−y| as the distance between

x ∈ Rd and K, where | · | denotes the Euclidean norm. Then we can associate to any x ∈ Rd

a unique element PK(x) ∈ K satisfying |x − PK(x)| = |x|K , where the map PK is called the

projector onto K with

〈PK(x)− x, PK(x)− y〉 ≤ 0, ∀y ∈ K. (1)

Moreover, we have the following non-expansiveness property for PK :

|PK(x)− PK(y)| ≤ |x− y|, x, y ∈ Rd. (2)

A function f : Rd → R is said to be convex if it satisfies

f(αv + (1− α)w) ≤ αf(v) + (1− α)f(w), (3)

for all v, w ∈ Rd and 0 ≤ α ≤ 1. The following lemma holds (Example 3.16, pp. 88, [2]).

Lemma 2.1 Let K be a convex set in Rd. Then |x|K is a convex function.

The next lemma can be found in [1].

Lemma 2.2 Let K be a subset of Rd. The convex hull co(K) of K is the set of elements of the

form

x =

d+1∑
i=1

λixi,

where λi ≥ 0, i = 1, . . . , d+ 1 with
∑d+1

i=1 λi = 1 and xi ∈ K.

Additionally, for every two vectors 0 6= v1, v2 ∈ Rd, we define their angle as φ(v1, v2) ∈ [0, π]

with cosφ = 〈v1, v2〉/|v1| · |v2|.
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2.3 Bernoulli Trials

A Bernoulli trial is a binary random variable which only takes two values 0 and 1. Let

Y1, Y2, Y3, . . . be a sequence of independent Bernoulli trials such that for each k = 1, 2, . . . ,

the probability that Yk = 1 is pk ∈ [0, 1]. Here pk is called the success probability for Yk.

Then the next lemma holds. The proof is obvious, and therefore omitted.

Lemma 2.3 Let Yk, k = 1, 2, . . . , be a sequence of independent Bernoulli trials, where the suc-

cess probability of Yk is pk ∈ [0, 1]. Suppose there exists a constant p∗ > 0 such that pk > p∗ for

all k. Then we have P
(
Yk = 1 for infinitely many k ≥ 1

)
= 1.

3 Problem Formulation

In this section, we formulate the considered optimal consensus problem. We propose a multi-

agent optimization model, and then introduce a neighbor-based randomized optimization algo-

rithm. We also introduce key assumptions and establish two basic lemmas on the algorithm

used in the subsequent analysis.

3.1 Multi-agent Model

Consider a multi-agent system with agent set V = {1, 2, . . . , n}. The objective of the network is

to reach a consensus, and meanwhile to cooperatively solve the following optimization problem

min
z∈Rd

n∑
i=1

fi(z) (4)

where fi : Rd → R represents the cost function of agent i, observed by agent i only, and z is a

decision vector.

Time is slotted, and the dynamics of the network is in discrete time. Each agent i starts with

an arbitrary initial position, denoted xi(0) ∈ Rd, and updates its state xi(k) for k = 0, 1, 2, . . . ,

based on the information received from its neighbors and the information observed from its

optimization component fi.

3.1.1 Communication Graph

We suppose the communication graph over the multi-agent network is a stochastic digraph

process Gk = (V, Ek), k = 0, 1, . . . . To be precise, the ij-entry Aij(k) of the adjacency matrix,
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A(k) of Gk, is a general {0, 1}-state stochastic process. We assume there is no self-looped arc in

the communication graphs, i.e., Aii(k) = 0 for all i and k. We use the following assumption on

the independence of Gk.

A1 (Connectivity Independence) Events Ck = {Gk is connected (in certain sense)}, k = 0, 1, . . . ,

are independent.

Remark 3.1 Connectivity independence means that a sequence of random variables $(k), which

are defined by that $(k) = 1 if Gk is connected (in certain sense) and $(k) = 0 otherwise,

are independent. Note that, different with existing works [25, 27, 26], we do not impose the

assumption that $(k), k = 0, . . . , are identically distributed.

At time k, node j is said to be a neighbor of i if there is an arc (j, i) ∈ Ek. Particularly, we

assume that each node is always a neighbor of itself. Let Ni(k) represent the set of agent i’s

neighbors at time k.

Denote the joint graph of Gk in time interval [k1, k2] as G([k1, k2]) = (V,∪t∈[k1,k2]E(t)), where

0 ≤ k1 ≤ k2 ≤ +∞. Then we have the following definition.

Definition 3.1 (i) Gk is said to be stochastically uniformly (jointly) strongly connected (SUSC)

if there exist two constants B ≥ 1 and 0 < q < 1 such that for any k ≥ 0,

P
(
G
(
[k, k +B − 1]

)
is strongly connected

)
≥ q.

(ii) Assume that Gk is bidirectional for all k ≥ 0. Then Gk is said to be stochastically

infinitely (jointly) connected (SIC) if there exist a (deterministic) sequence 0 = k∗0 < · · · < k∗τ <

k∗τ+1 < . . . and a constant 0 < q < 1 such that for all τ = 0, 1, . . . ,

P
(
G
(
[k∗τ , k

∗
τ+1)

)
is connected

)
≥ q.

3.1.2 Neighboring Information

The local information that each agent uses to update its state consists of two parts: the averaging

and the projection parts. The averaging part is defined as

ei(k) =
∑

j∈Ni(k)

aij(k)xj(k),

where aij(k) > 0, i, j = 1, . . . , n are the arc weights. The weights fulfill the following assumption:

A2 (Arc Weights) (i)
∑

j∈Ni(k)
aij(k) = 1 for all i and k.
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(ii) There exists a constant η > 0 such that η ≤ aij(k) for all i, j and k.

The projection part is defined as

gi(k) = PXi(xi(k)),

where Xi
.
= {v |fi(v) = minz∈Rd fi(z)} is the optimal solution set of each objective function

fi, i = 1, . . . , n. We use the following assumptions.

A3 (Convex Solution Set) Xi, i = 1, . . . , n, are closed convex sets.

A4 (Nonempty Intersection) X0
.
=

n⋂
i=1

Xi is nonempty.

In the rest of the paper, A1–A4 are our standing assumptions.

Remark 3.2 The average ei(k) has been widely used in consensus algorithms, e.g., [6, 7, 8].

Assumption A2(i) indicates that ei(k) is always within the convex hull of node i’s neighbors,

i.e., co{xj(k), j ∈ Ni(k)}, and, moreover, A2(ii) ensures that ei(k) is in the relative interior of

co{xj(k), j ∈ Ni(k)} [22].

Remark 3.3 As Xi can be observed by node i, PXi(xi(k)) can be easily obtained. Note that, for

a convex set K ⊆ Rd, we have that ∇|z|2K = 2(PK(z)− z) [1]. Therefore, for instance, in order

to compute PXi(xi(k)), node i may first establish a local coordinate system, and then construct

a function h(z) = |z|2Xi/2 to compute ∇h(xi(k)) within this coordinate system. Then we know

PXi(xi(k)) = xi(k) +∇h(xi(k)).

3.1.3 Randomized Algorithm

We are now ready to introduce the randomized optimization algorithm. At each time step, each

agent independently and randomly either takes an average among its time-varying neighbor set,

or projects onto the optimal solution set of its own objective function:

xi(k + 1) =


∑

j∈Ni(k) aij(k)xj(k), with probability p

PXi(xi(k)), with probability 1− p
(5)

where 0 < p < 1 is a given constant.

Remark 3.4 One motivation for the study of algorithm (5) follows from the literature on opin-

ion dynamics in social networks, where each agent makes a choice randomly between sticking to

its own observation and following its neighbors’ opinion [28]. An interesting question is whether
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Figure 1: The goal of the multi-agent network is to achieve a consensus in the optimal solution

set X0.

the social network reaches a common opinion or not, and if the answer is yes, whether the

network could reach an optimal common opinion.

On the other hand, from an engineering viewpoint, different from most existing works [36,

41, 32], the randomized algorithm (5) gives freedom to the nodes to choose to compute (projec-

tion), or communicate (averaging) independently with others at each time k. This provides an

important tradeoff between control, computation and communication as in algorithm (5), each

node is not synchronously required to both compute and communicate in each time step.

Remark 3.5 The constrained consensus algorithm studied in [41], can be viewed as a determin-

istic case of (5), in which each node alternate between averaging and projection in the iterations.

With assumptions A3 and A4, X0 becomes the global optimal solution set of
∑n

i=1 fi(z).

Let
{
x(k;x0) = (xT1 (k;x0), . . . , xTn (k;x0))T

}∞
k=0

be the stochastic sequence generated by (5)

with initial condition x0 = (xT1 (0), . . . , xTn (0))T ∈ Rnd. We will identify x(k;x0) with x(k) where

there is no possible confusion. The considered optimal consensus problem is defined as follows.

See Figure 1 for an illustration.

Definition 3.2 (i) A global optimal set aggregation is achieved almost surely (a.s.) for algo-

rithm (5) if for all x0 ∈ Rnd,

P
(

lim
k→+∞

|xi(k)|X0 = 0, i = 1, . . . , n
)

= 1. (6)
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(ii) A global consensus is achieved almost surely (a.s.) for algorithm (5) if for all x0 ∈ Rnd,

P
(

lim
k→+∞

|xi(k)− xj(k)| = 0, i, j = 1, . . . , n
)

= 1. (7)

(iii) A global optimal consensus is achieved almost surely (a.s.) for algorithm (5) if both (6)

and (7) hold.

3.2 Basic Properties

In this subsection, we establish two key lemmas on the algorithm (5).

Lemma 3.1 Let K be a closed convex set in Rd, and K0 ⊆ K be a convex subset of K. Then

for any y ∈ Rd, we have

|PK(y)|2K0
+ |y|2K ≤ |y|2K0

.

Proof. According to (1), we know that

〈PK(y)− y, PK(y)− PK0(y)〉 ≤ 0.

Therefore, we obtain

〈PK(y)− y, y − PK0(y)〉 = 〈PK(y)− y, y − PK(y) + PK(y)− PK0(y)〉 ≤ −|y|2K .

Then,

|PK(y)|2K0
= |PK(y)− PK0(PK(y))|2

≤ |PK(y)− PK0(y)|2

= |PK(y)− y + y − PK0(y)|2

= |y|2K + |y|2K0
+ 2〈PK(y)− y, y − PK0(y)〉

≤ |y|2K0
− |y|2K .

The desired conclusion follows. �

Lemma 3.2 Let {x(k) = (xT1 (k), . . . , xTn (k))T }∞k=0 be a stochastic sequence defined by (5). Then

for all k ≥ 0 and along every possible sample path, we have

max
i=1,...,n

|xi(k + 1)|X0 ≤ max
i=1,...,n

|xi(k)|X0 .
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Proof. Take l ∈ V. If node l takes averaging at time k, we have

|xl(k + 1)|X0 = |PXl(xl(k))|X0 = |PXl(xl(k))− PX0(PXl(xl(k)))|

≤ |PXl(xl(k))− PX0(xl(k))|

≤ |xl(k)− PX0(xl(k))|

≤ max
i=1,...,n

|xi(k)|X0 . (8)

On the other hand, if node l takes projection at time k, according to Lemma 2.1, we have

|xl(k + 1)|X0 =
∣∣∣ ∑
j∈Nl(k)

alj(k)xj(k)
∣∣∣
X0

≤
∑

j∈Nl(k)

alj(k)|xj(k)|X0

≤ max
i=1,...,n

|xi(k)|X0 . (9)

Hence, the conclusion holds. �

Based on Lemma 3.2, we know that the following limit exists:

ξ
.
= lim

k→∞
max
i=1,...,n

|xi(k)|X0 .

It is immediate that the global optimal set aggregation is achieved almost surely if and only if

P{ξ = 0} = 1.

Algorithm (5) is nonlinear and stochastic, and therefore quite challenging to analyze. As will

be shown in the following, the communication graph plays an essential role on the convergence

of the algorithm. In particular, directed and bidirectional graphs lead to different conditions for

consensus. Hence, in the following two sections, we consider these two cases separately.

4 Directed Graphs

In this section, we give a connectivity condition guaranteeing an almost surely global optimal

consensus for directed communication graphs.

The main result is stated as follows.

Theorem 4.1 Algorithm (5) achieves a global optimal consensus a.s. if Gk is SUSC.

In order to prove Theorem 4.1, on one hand, we have to prove that all the agents converge

to the global optimal solution set, i.e., X0; and on the other hand that consensus is achieved.

The proof divided into these two parts is given in the following two subsections.
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4.1 Set Convergence

In this subsection, we present the optimal set aggregation analysis of (5). Define

δi
.
= lim sup

k→∞
|xi(k)|Xi , i = 1, . . . , n.

Let A = {ξ > 0} and M = {∃i0 s.t. δi0 > 0} be two events, indicating that convergence to

X0 for all the agents fails and convergence to Xi0 fails for some node i0, respectively. The next

lemma shows the relation between the two events.

Lemma 4.1 P
(
A ∩M

)
= 0 if Gk is SUSC.

Proof. Let {xω(k)}∞k=0 be a sample sequence. Take an arbitrary node i0 ∈ V. Then there exists

a time sequence k1(ω) < · · · < km(ω) < . . . with limm→∞ km(ω) =∞ such that

|xωi0(km(ω))|Xi0 ≥
1

2
δi0(ω) ≥ 0. (10)

Moreover, according to Lemma 3.2, ∀` = 1, 2, . . . , ∃T (`, ω) > 0 such that

k ≥ T ⇒ 0 ≤ |xωi (k)|X0 ≤ ξ(ω) +
1

`
, i = 1, . . . , n. (11)

In the following, km(ω) and T (`, ω) will be denoted as km and T to simplify the notations. Note

that they are both random variables. We divide the rest of the proof into three steps.

Step 1. Suppose m is sufficiently large so that km ≥ T . We give an upper bound to node i0 in

this step.

Since node i0 projects onto Xi with probability 1− p, Lemma 3.1 implies

P
(
|xi0(km + 1)|X0 ≤

√
(ξ +

1

`
)2 − 1

4
δ2i0

)
≥ 1− p. (12)

At time km + 2, either one of two cases can happen in the update.

• If node i0 chooses the projection option at time km + 1, we have

|xi0(km + 2)|X0 = |xi0(km + 1)|X0 ≤
√

(ξ +
1

`
)2 − 1

4
δ2i0 . (13)

• If node i0 chooses the averaging option at time km + 1, with (11), we can obtain from the
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weights rule and Lemma 2.1 that

|xi0(km + 2)|X0 =
∣∣∣ ∑
j∈Ni0 (km+1)

ai0j(km + 1)xj(km + 1)
∣∣∣
X0

≤ ai0i0(km + 1)|xi0(km + 1)|X0 + (1− ai0i0(km + 1))(ξ +
1

`
)

≤ ai0i0(km + 1)

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− ai0i0(km + 1))(ξ +

1

`
)

≤ η
√

(ξ +
1

`
)2 − 1

4
δ2i0 + (1− η)(ξ +

1

`
). (14)

Both (13) and (14) lead to

P
(
|xi0(km + 2)|X0 ≤ η

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− η)(ξ +

1

`
)
)
≥ 1− p. (15)

Continuing similar analysis, we further obtain

P
(
|xi0(km + τ)|X0 ≤ ητ−1

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− ητ−1)(ξ +

1

`
), τ = 1, 2, . . .

)
≥ 1− p. (16)

Step 2. In this step, we continue to bound another node. Since Gk is SUSC, we have

P
(
G
(
[km + 1, km +B]

)
is strongly connected

)
≥ q.

which implies

P
(
∃ k̂1 ∈ [km + 1, km +B] and i1 ∈ V, i1 6= i0 s.t. (i0, i1) ∈ Ek̂1

)
≥ q.

Let k̂1 = km + % with 1 ≤ % ≤ B. Noting the fact that∣∣∣ ∑
j∈Ni1 (km+%)

xj(km + %)
∣∣∣
X0

≤ ai1i0(km + %)|xi0(km + %)|X0 +
(
1− ai1i0(km + %)

)
(ξ +

1

`
)

and based on (16), we have

P
(
|xi1(km + %+ 1)|X0 ≤ η%

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− η%)(ξ +

1

`
)
∣∣F0

)
≥ P

(
i1 chooses averaging at time km + %

)
= p, (17)

where F0 =
{
i0 chooses projection at time km

}
. Therefore, with (16) and (17), we obtain

P
(
∃i1 6= i0 s.t. |xil(km +B + τ)|X0 ≤ ηB+τ−1

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− ηB+τ−1)(ξ +

1

`
),

l = 0, 1; τ = 1, 2, . . .
)
≥ (1− p)pq.
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Step 3. Repeating the analysis on time interval [km + B + 1, km + 2B], there exists a node

i2 6∈ {i0, i1} such that there is an arc leaving from {i0, i1} entering i2 in G([km+B+1, km+2B])

with probability at least q. The estimate of |xi2(km + 2B + τ)|X0 is therefore can be similarly

obtained.

The upper analysis process can be carried out continuingly on intervals [km + 2B + 1, km +

3B], . . . , [km+(n−2)B+1, km+(n−1)B], and i3, . . . , in−1 can be found until V = {i0, i1, . . . , in−1}.

Then one can obtain that for any i ∈ V,

P
(
|xi(km + (n− 1)B + 1)|X0 ≤ η(n−1)B

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

`
), i ∈ V

)
= P

(
max
i=1,...,n

|xi(km + (n− 1)B + 1)|X0 ≤ η(n−1)B
√

(ξ +
1

`
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

`
)
)

≥ (1− p)pn−1qn−1. (18)

Moreover, we see from the previous analysis that the events

Zm
.
=
{

max
i=1,...,n

|xi(km + (n− 1)B + 1)|X0 ≤ η(n−1)B
√

(ξ +
1

`
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

`
)
}

are fully determined by the communication graph process and the node-decision process for all

m with km ≥ T . Therefore, they can be viewed as a sequence of independent Bernoulli trials.

Then based on Lemma 2.3, we see that with probability one, there is an infinite subsequence

{k̃j , j = 1, 2, . . . } from {km + (n− 1)B + 1, km ≥ T} satisfying

max
i=1,...,n

|xi(k̃j)|X0 ≤ η(n−1)B
√

(ξ +
1

`
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

`
).

This implies

P
(
R`
)

= 1 (19)

for all ` = 1, 2, . . . , whereR` =
{
ξ ≤ η(n−1)B

√
(ξ + 1

` )
2 − 1

4δ
2
i0

+(1−η(n−1)B)(ξ+ 1
` )
}

. As a result,

we obtain P
(
R∗
)

= 1, where R∗ = lim`→∞R` =
{
ξ ≤ η(n−1)B

√
ξ2 − 1

4δ
2
i0

+ (1− η(n−1)B)ξ
}

.

Finally, it is not hard to see that A ∩ M ⊆ Rc∗ because 0 < η(n−1)B < 1. The desired

conclusion follows straightforwardly. �

Take a node α0 ∈ V. Then define

zα0(k)
.
= max

i=1,...,n
|xi(k)|Xα0 .

We also need the following fact to prove the optimal set convergence.

14



Lemma 4.2 Along every possible sample path of algorithm (5) and for all k, we have

zα0(k + 1) ≤ zα0(k) + max
i=1,...,n

|xi(k)|Xi .

Proof. For any node l = 1, . . . , n, if l chooses the averaging part at time k, we know that

|xl(k + 1)|Xα0 =
∣∣∣ ∑
j∈Nl(k)

alj(k)xj(k)
∣∣∣
Xα0

≤ max
i=1,...,n

|xl(k)|Xα0 = zα0(k). (20)

Moreover, if l chooses the projection part at time k, we have

|xl(k + 1)− xl(k)| = |xl(k)|Xl ,

which yields

|xl(k + 1)|Xα0 ≤ |xl(k)|Xα0 + |xl(k)|Xl ≤ zα0(k) + max
i=1,...,n

|xi(k)|Xi (21)

according to the non-expansiveness property (2). Then the conclusion holds with (20) and (21).

�

We are now in a place to present the optimal set convergence part of Theorem 4.1, as stated

in the following conclusion.

Proposition 4.1 Algorithm (5) achieves a global optimal set aggregation a.s. if Gk is SUSC.

Proof. Note that, we have

P
(
A
)

= P
(
A ∩M

)
+ P

(
A ∩Mc

)
≤ P

(
A ∩M

)
+ P

(
A|Mc

)
.

Since the conclusion is equivalent to P
(
A
)

= 0, with Lemma 4.1, we only need to prove

P
(
A|Mc

)
= 0.

Let {xω(k)}∞k=0 be a sample sequence in Mc. Then ∀` = 1, 2, . . . , ∃T1(`, ω) > 0 such that

k ≥ T1 ⇒ |xωi (k)|Xi ≤
1

`
, i = 1, . . . , n. (22)

Take an arbitrary node α0 ∈ V. Based on Lemma 4.2, we also have that for any {xω(k)}∞k=0 ∈

Mc and s ≥ T1,

zωα0
(s+ τ) ≤ zωα0

(s) +
τ

`
, τ = 0, 1, . . . . (23)

We divide the rest part of the proof into three steps.

Step 1. Denote k1 = T1. Since Gk is SUSC, we have

P
(

there exist k̂1 ∈ [k1, k1 +B − 1] and α1 ∈ V s.t. (α0, α1) ∈ Gk̂1
)
≥ q.

15



Let k̂1 = k1 + %, 0 ≤ % ≤ B − 1. Then we obtain from the definition of (5) that

P
(
|xα1(k1 + %+ 1)|Xα0 ≤ aα1α0(k1 + %)|xα0(k1 + %)|Xα0 + (1− aα1α0)zα0(k1 + %)

)
≥ pq. (24)

Thus, based on the weights rule A1 and (22), (24) leads to

P
(
|xα1(k1 + %+ 1)|Xα0 ≤ η ·

1

`
+ (1− η)(zα0(k1) + % · 1

`
)
∣∣Mc

)
≥ pq. (25)

Next, there will be two cases.

• If node α1 chooses the projection option at time k1 + %+ 1, we have

|xα1(k1 + %+ 2)|Xα0 ≤ |xα1(k1 + %+ 1)|Xα0 +
1

`

≤ η · 1

`
+ (1− η)(zα0(k1) + % · 1

`
) +

1

`
. (26)

• If node α1 chooses the averaging option at time k1 + %+ 1, we have

|xα1(k1 + %+ 2)|Xα0 ≤ η|xα1(k1 + %+ 1)|Xα0 + (1− η)zα0(k1 + %+ 1)

≤ η[η · 1

`
+ (1− η)(zα0(k1) + % · 1

`
)] + (1− η)(zα0(k1) + (%+ 1) · 1

`
)

≤ η2 · 1

`
+ (1− η2)(zα0(k1) + (%+ 1) · 1

`
). (27)

With (26) and (27), we obtain

P
(
|xα1(k1 + %+ 2)|Xα0 ≤ η

2 · 1

`
+ (1− η2)(zα0(k1) + (%+ 1) · 1

`
) +

1

`

∣∣Mc
)
≥ pq. (28)

Then similar analysis yields that

P
(
|xα1(k1+%+τ)|Xα0 ≤

ητ

`
+(1−ητ )

(
zα0(k1)+

%+ τ − 1

`

)
+

τ−1∑
l=1

ηl−1 · 1
`
, τ = 1, 2, . . .

∣∣Mc
)
≥ pq.

Furthermore, since 0 ≤ % ≤ B − 1 and based on (22), it turns out that

P
(
|xαl(k1 +B + τ̂)|Xα0 ≤

ηB+τ̂

`
+ (1− ηB+τ̂ )

(
zα0(k1) +

B + τ̂ − 1

`

)
+

1

1− η
· 1

`
,

τ̂ = 0, 1, . . . ; l = 0, 1
∣∣Mc

)
≥ pq.

Step 2. We continue the analysis on time interval [k1 + B, k1 + 2B − 1]. There exists a node

α2 6∈ {α0, α1} such that there is an arc leaving from {α0, α1} entering α2 in G([k1+B, km+2B−1])

with probability q. Similarly we can obtain that for any τ̂ = 0, 1, . . . ,

P
(
|xαl(k1 + 2B + τ̂)|Xα0 ≤ η

2B+τ̂ · 1

`
+ (1− η2B+τ̂ )(zα0(k1) + (2B + τ̂ − 1) · 1

`
) +

2

1− η
· 1

`
,

l = 0, 1, 2|Mc
)
≥ p2q2.
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We repeat the upper process on time intervals [k1 +2B, k1 +3B−1], . . . , [km+(n−2)B, k1 +

(n−1)B−1], and α3, . . . , αn−1 can be found until V = {α0, α1, . . . , αn−1}. Then one can obtain

that

P
(
|xi(k1 + (n− 1)B|Xα0 ≤ (1− η(n−1)B)zα0(k1) + L · 1

`
, i = 1, . . . , n

∣∣Mc
)
≥ pn−1qn−1,

where L = η(n−1)B + (n− 1)[B + 1
1−η ]. Denote k2 = k1 + (n− 1)B. Then we have

P
(
zα0(k2) ≤ θ0zα0(k1) + L · 1

`

∣∣Mc
)
≥ p̂,

where 0 < θ0 = 1− η(n−1)B < 1 and 0 < p̂ = pn−1qn−1 < 1.

Step 3. Let km = k1 + (m− 1)(n− 1)B,m = 3, 4, . . . . Based on similar analysis, we see that

P
(
zα0(km+1) ≤ θ0zα0(km) + L · 1

`

∣∣Mc
)
≥ p̂, m = 3, 4, . . . .

Then we can define a random variable χ independently with zα0(km),m = 1, . . . , such that

χ =

 1, with probability 1− p̂

θ0, with probability p̂
(29)

As a result, with (23) and (29), we conclude that for any m = 1, 2, . . . ,

P
(
zα0(km+1) ≤ χ · zα0(km) + L · 1

`

∣∣Mc
)

= 1,

which implies

E
(
zα0(km+1)

∣∣Mc
)
≤
(
1− (1− θ0)p̂

)
E
(
zα0(km)

∣∣Mc
)

+ L · 1

`
.

Therefore, we can further obtain

lim sup
m→∞

E
(
zα0(km)

∣∣Mc
)
≤ L

(1− θ0)p̂
· 1

`
. (30)

Since ` can be any positive integer in (30) and zα0(km) is nonnegative for any m, we have

lim
m→∞

E
(
zα0(km)

∣∣Mc
)

= 0. (31)

Based on Fatou’s lemma, we know

0 ≤ E
(

lim
m→∞

zα0(km)|Mc
)
≤ lim

m→∞
E
(
zα0(km)

∣∣Mc
)

= 0, (32)

which yields

P
(

lim
m→∞

zα0(km) = 0|Mc
)

= 1. (33)

Finally, because α0 is chosen arbitrarily over the network in (33), we see that

P
(
A|Mc

)
= 0. (34)

The proof is completed. �
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4.2 Consensus Analysis

In this subsection, we present the consensus analysis of the proof of Theorem 4.1. Let xi,[](k)

represent the ’th coordinate of xi(k). Denote

h(k) = min
i=1,...,n

xi,[](k), H(k) = max
i=1,...,n

xi,[](k).

The consensus proof will be built on the estimates of S(k) = H(k)− h(k), which is summa-

rized in the following conclusion.

Proposition 4.2 Algorithm (5) achieves a global consensus if Gk is SUSC.

Proof. Since P
(
Mc
)
≥ P

(
Ac
)

= 1 when Gk is SUSC, we only need to prove

P
(

lim
k→∞

S(k) = 0
∣∣Mc

)
= 1.

Let {xω(k)}∞k=0 be a sample sequence in Mc. Then ∀` = 1, 2, . . . , ∃T1(`, ω) > 0 such that

k ≥ T1 ⇒ |xωi (k)|Xi ≤
1

`
, i = 1, . . . , n. (35)

Moreover, based on similar analysis as in the proof of Lemma 4.2, we see that

h(k + s) ≥ h(k)− s · 1

`
; H(k + s) ≤ H(k) + s · 1

`
(36)

for all k ≥ T1 and s ≥ 0.

Denote k1 = T1. Take ν0 ∈ V with xν0,[](k1) = h(k1). Then we can obtain from the definition

of (5) that

xν0,[](k1 + 1) ≤

 xν0,[](k1) + 1
` , if projection happens

aν0ν0(k1)xν0,[](k1) + (1− aν1ν0(k1))H(k1), if averaging happens
(37)

which leads to that almost surely we have

xν0,[](k1 + 1) ≤ ηh(k1) + (1− η)H(k1) +
1

`
.

Continuing the estimates we know that a.s. for any τ = 0, 1, . . . ,

xν0,[](k1 + τ) ≤ ητh(k1) + (1− ητ )H(k1) +
τ(τ + 1)

2
· 1

`
. (38)

Furthermore, since Gk is SUSC, we have

P
(
∃k̂1 ∈ [k1, k1 +B − 1] and ∃ν1 ∈ V s.t. (ν0, ν1) ∈ Gk̂1

)
≥ q.
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Let k̂1 = k1 + %, 0 ≤ % ≤ B − 1. Similarly with (24), we see from (38) that

P
(
xν1,[](k1 + %+ 1) ≤ η%+1h(k1) + (1− η%+1)H(k1) + η · %(%+ 1)

2
· 1

`

∣∣Mc
)
≥ pq. (39)

Similar analysis will lead to

P
(
xν1,[](k1+%+τ̂) ≤ η%+τ̂h(k1)+(1−η%+τ̂ )H(k1)+

(%+ τ̂)(%+ τ̂ + 1)

2
·1
`
, τ̂ = 1, 2, . . .

∣∣Mc
)
≥ pq,

(40)

which yields

P
(
xν1,[](k1+B+τ) ≤ ηB+τh(k1)+(1−ηB+τ )H(k1)+

(B + τ)(B + τ + 1)

2
·1
`
, τ = 0, 1, . . .

∣∣Mc
)
≥ pq.

We can continue the upper process on time intervals [k1 + 2B, k1 + 3B − 1], . . . , [k1 + (n −

2)B, k1 + (n− 1)B − 1], and ν2, . . . , νn−1 can be found until

P
(
xνl,[](k1 + (n− 1)B) ≤ η(n−1)Bh(k1) + (1− η(n−1)B)H(k1) +

(n− 1)B((n− 1)B + 1)

2
· 1

`
,

l = 0, 1, . . . , n− 1
∣∣Mc

)
≥ pn−1qn−1.

Therefore, denoting k2 = k1 + (n− 1)B, we have

P
(
H(k2) ≤ η(n−1)Bh(k1) + (1− η(n−1)B)H(k1) +

(n− 1)B((n− 1)B + 1)

2
· 1
`

∣∣Mc
)
≥ pn−1qn−1.

Furthermore, with (36), we can further obtain

P
(
S(k2) ≤ (1− η(n−1)B)S(k1) + L0 ·

1

`

∣∣Mc
)
≥ pn−1qn−1,

where L0 = (n−1)B[(n−1)B+3]
2 .

Then we know P{limk→∞ S(k) = 0|Mc} = 1 by similar analysis as the proof of Proposition

4.1. The proof is completed. �

Theorem 4.1 immediately follows from Propositions 4.1 and 4.2.

5 Bidirectional Graphs

In this section, we discuss the randomized optimal consensus problem under more restrictive

communication assumptions, that is, bidirectional communications. To get the main result, we

also need the following assumption in addition to the standing assumptions A1–A4.

A5 (Compactness) X0 is compact.

Then we propose the main result on optimal consensus for the bidirectional case. It turns

out that with bidirectional communications, the connectivity condition to ensure an optimal

consensus is weaker.
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Theorem 5.1 Suppose Gk is bidirectional for all k ≥ 0 and A5 holds. Algorithm (5) achieves

a global optimal consensus almost surely if Gk is SIC.

Remark 5.1 The essential difference between SUSC and SIC graphs is that SIC graphs do not

impose an upper bound for the length of intervals where the joint graphs are taken. Therefore,

the analysis on directed graphs cannot be used in this bidirectional case.

In the following two subsections, we will focus on the optimal solution set convergence and

the consensus analysis, respectively, by which we will reach a complete proof for Theorem 5.1.

5.1 Set Convergence

In this subsection, we discuss the convergence to the optimal solution set. First we give the

following lemma.

Lemma 5.1 Assume that Gk is bidirectional for all k ≥ 0. Then P
(
A ∩M

)
= 0 if Gk is SIC.

Proof. The proof follows the same line as the proof of Lemma 4.1. Let km and T are defined

the same way as the proof of Lemma 4.1. Suppose km ≥ T . Based on the definition of (5), we

know from Lemma 3.1 that

P
(
|xi0(km + 1)|X0 ≤

√
(ξ +

1

`
)2 − 1

4
δ2i0

)
≥ 1− p. (41)

Next, we define

k̂1
.
= inf

k≥km+1

{
∃j ∈ V s.t. (i0, j) ∈ Ek

}
; V1

.
=
{
j ∈ V : (i0, j) ∈ Ek̂1

}
.

Based on the definition of SIC graphs, we have for all τ = 0, 1, . . . ,

P
(
∃j ∈ V, k ∈ [k∗τ , k

∗
τ+1) s.t. (i0, j) ∈ Ek

)
≥ P

(
G
(
[k∗τ , k

∗
τ+1)

)
is connected

)
≥ q. (42)

Thus, Lemma 2.3 implies that the probability of k̂1 being finite is one.

Applying Lemma 3.1 on node i0, we have

|xi0(s)|X0 ≤ |xi0(km + 1)|X0 , km + 1 ≤ s ≤ k̂1. (43)

As a result, we have

P
(
|xi(k̂1 + 1)|X0 ≤ η

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− η)(ξ +

1

`
), i ∈ V1

)
≥ p|V1|(1− p). (44)
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We can repeat the upper process, V2, . . . ,Vd0 can be defined iteratively for some constant

1 ≤ d0 ≤ n− 1 until V \ {i0} =
⋃d0
j=1 Vj . Denoting ςm = k̂d0 + 1 associated with Vd0 , we have

P
(
|xi(ςm)|X0 ≤ ηd0

√
(ξ +

1

`
)2 − 1

4
δ2i0 + (1− ηd0)(ξ +

1

`
), i ∈ V

)
= P

(
max
i=1,...,n

|xi(ςm)|X0 ≤ ηd0
√

(ξ +
1

`
)2 − 1

4
δ2i0 + (1− ηd0)(ξ +

1

`
)
)

≥ pn−1(1− p). (45)

This will also lead to

P
(
R̄∗
)

= 1, (46)

where R̄∗ =
{
ξ ≤ ηn−1

√
ξ2 − 1

4δ
2
i0

+ (1 − ηn−1)ξ
}

. Noting the fact that A ∩M ⊆ R̄c∗, the

conclusion holds. �

Next, we define

yi = lim inf
k→∞

|xi(k)|X0 , i = 1, . . . , n

and denote D =
{
∃i0 s.t. yi0 < ξ

}
. We give another lemma in the following.

Lemma 5.2 Assume that Gk is bidirectional for all k ≥ 0. Then P
(
A ∩D

)
= 0 if Gk is SIC.

Proof. The proof will follow the same idea as the proof of Lemma 5.1. Let {xω(k)}∞k=0 be a sample

sequence. There exists a time sequence k1(ω) < · · · < km(ω) < . . . with limm→∞ km(ω) = ∞

such that

|xωi0(km(ω))|X0 ≤
1

2
(yi0(ω) + ξ(ω)). (47)

Moreover, ∀` = 1, 2, . . . , ∃T (`, ω) > 0 such that

k ≥ T ⇒ 0 ≤ |xωi (k)|X0 ≤ ξ(ω) +
1

`
, i = 1, . . . , n. (48)

Let k̂1 and V1 follow the definition in the proof of Lemma 5.1, by the same argument as we

obtain (44), we have

P
(
|xi(k̂1 + 1)|X0 ≤

η

2
yi0 + (1− η

2
)(ξ +

1

`
), i ∈ V1

)
≥ p|V1|. (49)

Continuing the upper process, we will also reach

P
(

max
i=1,...,n

|xi(ςm)|X0 ≤
ηd0

2
· yi0 + (1− ηd0

2
)(ξ +

1

`
)
)
≥ pn−1, (50)

where 1 ≤ d0 ≤ n− 1 and ςm still denotes k̂d0 + 1. Introducing

W =
{
ξ ≤ ηd0

2
· yi0 + (1− ηd0

2
) · ξ

}
,
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we can similarly obtain P
(
W
)

= 1 according to (50). The fact that A ∩ D ⊆ Wc implies the

desired conclusion immediately. �

Note that, if A5 holds, according to Lemma 3.2, for any initial condition x0, we have

xi(k) ∈ X∗0 , i = 1, . . . , n; k = 0, 1, . . . ,

where X∗0
.
= {v : |v|X0 ≤ d∗} with d∗ = maxi=1,...,n |xi(0)|X0 . Then X∗0 is also a compact set,

which is an invariant set for (5). Therefore, for any initial condition, there will also be two

constants b1, b2 > 0 such that

|xi(k)− xj(k)| ≤ b1; |xi(k)|X0 ≤ b2 (51)

for all i, j and k.

Now we are ready to prove the optimal set convergence part of Theorem 4.1, which is stated

in the following conclusion.

Proposition 5.1 Assume Gk is bidirectional for all k ≥ 0 and A5 holds. Algorithm (5) achieves

a global optimal set aggregation a.s. if Gk is SIC.

Proof. With Lemmas 5.1 and 5.2, we only need to show

P
(
A ∩Mc ∩ Dc

)
= 0.

Take i0 ∈ V. Then we define two parallel hyperplanes

Wi0(k)
.
= {v|〈xi0(k)− PX0(xi0(k)), v − xi0(k)〉 = 0}

and

W ∗i0(k)
.
= {v|〈xi0(k)− PX0(xi0(k)), v − PX0(xi0(k))〉 = 0}.

The spaceRd is divided by the two hyperplanes into three disjoint partsM+(k) = {v|〈xi0(k)−

PX0(xi0(k)), v−xi0(k)〉 < 0}, M−(k) = {v|〈xi0(k)−PX0(xi0(k)), v−PX0(xi0(k))〉 < 0}, and the

rest M0(k) (see Figure 2). Also define N∞i0 = {j|j is a neighbor of i for infinitely many k}.

Claim. P{limk→∞ |xj(k)|Wi0
(k) = 0, j ∈ N∞i0 |A ∩M

c ∩ Dc} = 1.

Let {xω(k)}∞k=0 be a sample sequence in A∩Mc∩Dc. Then ∀` = 1, 2, . . . , ∃T (`, ω) > 0 such

that

k ≥ T ⇒ 0 < ξ(ω) ≤ |xωi (k)|X0 ≤ ξ(ω) +
1

`
and |xωi (k)|Xi ≤

1

`
, i = 1, . . . , n. (52)
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Figure 2: Finding the point xω∗ in the proof of Prop. 5.1.

Suppose there exist a constant ϑω > 0 and a sequence k1 < · · · < km < . . . such that

|xωj (km)|Wi0
(km) ≥ ϑω,m = 1, 2, . . . . Take km ≥ T . With (1), we see that for all k = 1, 2, . . . ,

X0 ⊆M−(k) ∪W ∗i0(k) = {v|〈xi0(k)− PX0(xi0(k)), v − PX0(xi0(k))〉 ≤ 0}.

Let xωi0(km) and PX0(xωi0(km)) be fixed. Then we can associate a unique point xω∗ to xωj (km) in

the way that xω∗ satisfies 〈PX0(xωi0(km))−xω∗ , xωi0(km))−xωj (km)〉 = 0 if the three points xωi0(km),

PX0(xωi0(km)) and xωj (km) form a triangle; and xω∗ = PX0(xωi0(km)) otherwise. Moreover, it is not

hard to find that there exists a unique scalar 0 < γ < 1 such that xω∗ = γxωi0(km)+(1−γ)xωj (km).

Note that, the upper process defines a continuous function (xωi0(km), PX0(xωi0(km)), xωj (km)) 7→ γ.

With (51), we have (xωi0(km), PX0(xωi0(km)), xωj (km)) always locates within a compact set {0 ≤

|xωi0(km)|X0 ≤ d∗; ϑ
ω ≤ |xωj (km))− xωi0(km)| ≤ b1; ξ(ω) ≤ |xωj (km))− PX0(xωi0(km))| ≤ b1 + b2}.

Therefore, there exist two constants 0 < γ∗ ≤ γ∗ < 1 (by a constant, we mean it does not

depend on km) such that γ∗ ≤ γ ≤ γ∗ (see Fig. 2).

Thus, every linear combination of xωi0(km) and xωj (km) can be rewritten into a linear combi-

nation of xωi0(km) and xω∗ , and the lower bound of the weights is preserved. We also have

|xω∗ |X0 ≤ |xω∗ − PX0(xωi0(km))| ≤ sinβ0(ξ(ω) +
1

`
) ≤ b∗(ξ(ω) +

1

`
), (53)

where β0 = φ(xωj (km)− xωi0(km), PX0(xωi0(km))− xωi0(km)) and 0 < b∗ =
√

1− ( ϑb1 )2 < 1. There-

fore, with (53), repeating the deduction used in the proofs of Lemmas 5.1 and 5.2, the claim can

then be proved.

Next, since Gk is SIC, i.e., the joint graph is connected with probability q > 0 independently

for infinite times, letting G∞ be the graph generated by neighbor sets N∞i0 , it is obvious that
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Figure 3: Locating v∗ in the proof of Prop. 5.1.

G∞ is connected with probability 1. Therefore, the upper analysis can then be further carried

out on G∞ following i0’s neighbors, i0’s neighbors’ neighbors, and so on, until we finally reach

lim
k→∞

|xj(k)|Wi0
(k) = 0; (54)

with probability 1 for all j ∈ V conditioned A ∩Mc ∩ Dc. Thus, by the definition of Wi0 and

(1), we have

P
(

lim
k→∞

|PW ∗i0 (xj(k))− PX0(xj(k))| = 0, j = 1, . . . , n|A ∩Mc ∩ Dc
)

= 1. (55)

Denote Ti0(k) = co{PXi0 (xi0(k)), PX0(x1(k)), . . . , PX0(xn(k))}. Then Ti0(k) ⊆ Xi0 ,∀k ≥ 0.

Tim(k) can then be defined for m = 1, . . . , n − 1 in the same way. Therefore, with (54), and

according to the structure of Wi0(k) and W ∗i0(k), with probability 1 conditioned A ∩Mc ∩ Dc,

there will be a point v∗ ∈
⋂n−1
m=0 Tim(k) ⊆ X0 for sufficiently large k such that v∗ ∈ M0(k) (see

Fig. 3), i.e.,

P
(
∃k s.t. 〈xi0(k)− PX0(xi0(k)), v∗ − PX0(xi0(k))〉 > 0

∣∣A ∩Mc ∩ Dc
)

= 1.

This implies P
(
A ∩Mc ∩ Dc

)
= 0 because P

(
〈y − PX0(y), v∗ − PX0(y)〉 > 0

)
= 0 for any

y ∈ Rd and v∗ ∈ X0 according to (1). The proof is completed. �

5.2 Consensus Analysis

This subsection focuses on the consensus analysis of Theorem 5.1.

We define a multi-projection function:Pikik−1...i1 : Rm →
⋃n
i=1Xi with i1, . . . , ik ∈ {1, . . . , n},

k ≥ 1 by Pikik−1...i1(y) = PXikPXik−1
. . . PXi1 (y). Define P∅(y) = y as the case for k = 0. Let

Γ
.
=
{
Pikik−1...i1 : i1, . . . , ik ∈ {1, . . . , N}, k = 0, 1, 2, . . .

}
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be the set which contains all the multi-projection functions. Denote Yk = co{x1(k), . . . , xn(k)}

be the convex hull of all the nodes’s state at step k, and define ∆Yk by ∆Yk
.
= co{P (y)|y ∈

Yk, P ∈ Γ}. Then it is not hard to see that ∆Yk is actually an invariant set along algorithm (5)

for any k ≥ 0, i.e., xi(s) ∈ ∆Yk for all i, k and s ≥ k.

We present another lemma establishing an important property of ∆Yk .

Lemma 5.3 For any y ∈ ∆Yk , we have |y|Yk ≤ 2 maxy∈Yk |y|X0.

Proof. With Lemma 2.2, any y ∈ ∆YK has the following form

y =
d+1∑
i=1

λiP
〈i〉(zi),

where
∑d+1

i=1 λi = 1 with λi ≥ 0, P 〈i〉 ∈ Γ and zi ∈ YK , i = 1, . . . , d + 1. Then, by the

non-expansiveness property (2), we have that for any z ∈ Rd and P̂ ∈ Γ,

|PX0(z)− P̂ (z)| = |P̂ (PX0(z))− P̂ (z)| ≤ |PX0(z)− z| = |z|X0 .

This leads to∣∣∣ d+1∑
i=1

λiP
〈i〉(zi)−

d+1∑
i=1

λizi

∣∣∣ ≤ d+1∑
i=1

λi

∣∣∣zi − PX0(zi)
∣∣∣+

d+1∑
i=1

λi

∣∣∣PX0(zi)− P 〈i〉(zi)
∣∣∣ ≤ 2 max

z∈K
|z|X0 ,

which implies the conclusion because
∑d+1

i=1 λizi ∈ Yk. �

We can now present the consensus analysis.

Proposition 5.2 Assume that Gk is bidirectional for all k ≥ 0 and A5 holds. Algorithm (5)

achieves a global consensus a.s. if Gk is SIC.

Proof. We only need to show P
(

limk→∞ S(k) = 0|Ac
)

= 1. Let {xω(k)}∞k=0 be a sample

sequence in Ac. Then ∀` = 1, 2, . . . , ∃T1(`, ω) > 0 such that

k ≥ T1 ⇒ |xωi (k)|X0 ≤
1

`
, i = 1, . . . , n. (56)

As a consequence, Lemma 5.3 implies

h(k + s) ≥ h(k)− 2

`
; H(k + s) ≤ H(k) +

2

`
(57)

for all k ≥ T1 and s ≥ 0.

Denote k1 = T1. Take ν0 ∈ V with xν0,[](k1) = h(k1). Define

k̂1
.
= inf

k≥k1

{
∃j ∈ V s.t. (ν0, j) ∈ Ek

}
; V1

.
=
{
j ∈ V : (ν0, j) ∈ Ek̂1

}
.
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With (56), we have

xν0,[](k̂1) ≤ xν0,[](k1) +
1

`
= h(k1) +

1

`
. (58)

Thus,

P
(
xν1,[](k̂1 + 1) ≤ ηh(k1) + (1− η)H(k1) +

2

`

∣∣∣∣Ac) ≥ p (59)

for any ν1 ∈ V1, which leads to

P
(
xi,[](k̂1 + 1) ≤ ηh(k1) + (1− η)H(k1) +

2

`
, i ∈ V1

∣∣∣∣Ac) ≥ p|V1|. (60)

Similar with the proof of Lemma 5.1, we can repeat the upper process, and V2, . . . ,Vd0 can

be defined for some constant 1 ≤ d0 ≤ n − 1 until V \ {ν0} =
⋃d0
j=1 Vj . Moreover, we can also

obtain that

P
(
xi,[](k̂d0 + 1) ≤ ηd0h(k1) + (1− ηd0)H(k1) +

2d0
`
, i ∈ V

∣∣∣∣Ac) ≥ pn−1. (61)

Therefore, denoting k2 = k̂d0 + 1, we have

P
(
H(k2) ≤ ηd0h(k1) + (1− ηd0)H(k1) +

2d0
`
|Ac
)
≥ pn−1.

We see from (57) and (62) that

P
(
S(k2) ≤ (1− ηd0)S(k1) + L0 ·

2(d0 + 1)

`
|Ac
)
≥ pn−1.

Then we know P
(

limk→∞ S(k) = 0|Ac
)

= 1 by similar deduction as the proof of Prop. 4.1.

The proof is completed. �

Then we see that Theorem 5.1 follows from Propositions 5.1 and 5.2.

6 Numerical Example

In this section, we study a numerical example to compare the convergence rates of deterministic

and randomized algorithms, and to illustrate the optimal choice of the decision probability p in

the randomized algorithm.

Consider a network with three nodes V = {1, 2, 3}. The communication graph is fixed and

directed. Here E = {(1, 2), (2, 3), (3, 1)} is the arc set. We take aij(k) = 0.5 for all (i, j) ∈ E .

The optimal solution sets corresponding to the nodes are three disks in R2 with radius 1 and

centers (−1, 0), (1, 0) and (0,−1), respectively. Their intersection X0 = {(0, 0)} is a singleton.

Initial values for each node are (−2, 2), (−2,−2) and (2,−2), respectively.
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We compare the randomized algorithm presented in this paper and the projected consensus

algorithm in [41], which is a deterministic algorithm with each node taking averaging and pro-

jection alternatively. Numerical experiments show that the deterministic algorithm leads to a

faster convergence than the mean performance of the randomized algorithm. The reason for this

is natural since consecutive projections may take place for some nodes. However, surprisingly

enough there are still about 5 percents of the experiments for which the randomized algorithm

performs better than the deterministic one. Moreover, we also find that the randomized algo-

rithm usually converge faster near X0. See Figure 4.
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Figure 4: The left figure shows the average performance of the randomized algorithm, and in

the right one we select a typical sample when the randomized algorithm converges faster. Here

D0(k) = maxi=1,2,3 |xi(k)|X0 .

We further compare the average performance of the randomized algorithm when p takes

values from 0.2, 0.5 and 0.8. Experiments show that the case when p = 0.5 reaches the fastest

convergence. This is to say, it is better for the nodes to balance computation (projection) and

communication (averaging). See Figure 5.
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Figure 5: Convergence rates for different decision probabilities (D0(k) = maxi=1,2,3 |xi(k)|X0).

7 Conclusions

The paper investigated a randomized optimal consensus problem for multi-agent systems with

stochastically time-varying interconnection topology. In this formulation, the decision process

for each agent was a simple Bernoulli trial between following its neighbors or sticking to its

own opinion at each time step. In terms of the optimization problem, each agent independently

chose either taking an average among its time-varying neighbor set, or projecting onto the

optimal solution set of its own objective function randomly with a fixed probability. Both

directed and bidirectional communications were studied, and stochastically jointly connectivity

conditions were proposed to guarantee an optimal consensus almost surely. The results showed

that under this randomized decision making protocol, a group of autonomous agents can reach an

optimal opinion with probability 1 with proper convex and nonempty intersection assumptions

for the considered optimization problem. Fundamental challenges still lie in the convergence

rate of the randomized algorithm and the choice of optimal decision probability to reach a faster

convergence.
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