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Abstract

This paper investigates the problems of non-uniform pole shifting or pole homothety in multivariable linear systems by using
a gametheoretic approach and more specifically a particular Nash strategy with an open-loop information structure for a
game including a time preference rate in the quadratic criteria. Such a result is possible due to properties of non–symmetric
Algebraic Riccati equations associated with an open-loop Nash strategy. Numerical examples allow to illustrate the efficiency
of the proposed approach.
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1 Introduction

Since the pioneering work of Rissanen [31] and Wonham [34], the problem of pole assignment for linear multivariable
systems has obtained a great attention in the automatic control literature in both continuous and discrete time
frameworks. The main result is called the pole assignment theorem which gave rise to different refinements and
discussions [16,32]. A particular pole assignment in linear multivariable systems consists in shifting only the real
part of the open-loop eigenvalues in continuous time domain or in applying an homothetic rate on them in discrete
time domain. Such a technique, denoted pole shifting in the sequel for the sake of clarity, allows usually to obtain some
desired time domain responses from a controlled process and has received a considerable attention [26,27,4,5,25].

One of the common features of all the aforementionned references is exploiting some interesting properties of the
Algebraic Riccati Equation (ARE) associated with a linear–quadratic problem. This includes the mirror effect as
in [26], the α–stability approach for continuous time [5], the ρ-stability for discrete time [10] and the introduction
of some parameters in the ARE as in [27,4,6]. Most of the proposed methods deal with a multiple step procedure
where in each step, one real pole or a pair of complex poles are shifted to a desired location. An elegant iterative
algorithm was also given in [25] where a special modification of the performance criteria associated with the use of

⋆ A preliminary version of this paper, dealing only with the continuous time case was presented at the 18th IFAC World
Congress, Milano, Italia [21]. Corresponding author M. Jungers. Tel. + 33 (0) 3 83 59 57 04. Fax + 33 (0) 3 83 59 56 44.
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the negative definite solution of the ARE allows pole shifting. The ARE approach is not the unique technique for
poles placement or shifting: the LMI approach should be pointed out [11].

In a gametheoretic framework, it has been shown that introducing an exponential term in the criteria associated
with each player leads to a global shift of poles for Stackelberg games (see [20] for continuous time and [19] for
discrete time). Such modifications of the performance criteria in a differential or difference game are quite natural in
studying decision problems in economy where the exponential term is associated with a specific discount rate for each
player or decision maker [12]. However, in all cited references, no precise pole shifting procedure is proposed, only
the observation that introducing discount rates in the criteria causes pole shifts of the dynamic or state matrix was
made. In fact, the gametheoretic approach involves Coupled (Differential or) Algebraic Riccati Equations (CARE)
belonging to the set of non symmetric algebraic Riccati equations, which are more difficult to handle and do not
exhibit the nice poles symmetry properties of standard ARE. On the other hand, to avoid solving CARE, pole
shifting is used as a central step in an inverse solution procedure to impose some time domain constraints [18].

In this paper, a single step, direct and simple method to operate non-uniform multiple pole shifting for continuous
time and non-uniform multiple pole homothety for discrete time for linear multivariable systems are proposed. The
non iterative algorithm is based on a special formulation of a linear–quadratic Nash differential or difference game
with an open-loop information structure scheme. By exploiting some properties of the corresponding non symmetric
CARE, a feedback gain matrix is easily determined such that all poles of the closed loop system have the desired
locations. The possible existence of several solutions for the CARE leading to the same closed loop system will be
used to provide several feedback gains associated with the desired pole shifting.

The paper is organized as follows. In Section 2, preliminary results on generalized Riccati equations are recalled.
Section 3 introduces the differential gametheoretic framework and the Nash strategy with open-loop information
structure. The solution of such a game problem via non symmetric CARE is presented in Section 4. Section 5
settles the problem of non-uniform poles shifting and provides a solution by defining particular a Open-Loop Nash
differential game. Sections 6 and 7 treat the case of discrete-time games for applying the non-uniform poles homothety.
Numerical examples illustrate the efficiency and the simplicity of the obtained results in Sections 8 and 9, before
making some concluding remarks in Section 10.

Notations. Relative to a matrix A ∈ R
m×n, AT denotes its transpose. In denotes the n × n identity matrix and

0n the n × n null matrix. Span(M) is the vector space span generated by the columns of matrix M . For a square
matrix M , λ(M) denotes the spectrum of M . For a complex scalar or vector z, z̄ is the conjugate of z. Finally, the
symbol « • » in a matrix denotes a block matrix with no sense value.

2 Preliminary results on generalized Riccati equations

Let us consider a rectangular matrix variable K(t) ∈ R
rn×n, with r and n two integers. This section is related to

solving the Generalized Differential Riccati Equation (GDRE) [1,14] (also called Rectangular one, or non–symmetric
one) on the finite time interval [t0, tf ]

{

K̇ = −KN11 + N22K + N21 −KN12K,

Kf = K(tf ),

(1)

(2)

and the associated Generalized Algebraic Riccati Equation (GARE)

0rn×n = −KN11 + N22K + N21 −KN12K, (3)

where N11, N12, N21 and N22 have appropriated dimensions and may be gathered in a characteristic matrix

N =




N11 N12

N21 N22



 ∈ R
(r+1)n×(r+1)n. (4)

The solutions of the non–linear differential equation (1) can be obtained by a backward time integration on the

2



time interval [t0; tf ], from the final values (18). Nevertheless it is interesting to notice that the GDRE (1) may be
linearized by the Radon’s Lemma [30] involving the characteristic matrix N (see also [1, Theorem 3.1.1] or [13]).

Theorem 1 Let K(t) be a solution of (1) on [t0, tf ]. If Q(t) ∈ R
n×n is a solution of the final value problem

Q̇(t) = (N11 + N12K(t))Q(t), Q(tf ) = In, (5)

and P (t) = K(t)Q(t), then Z(t) =

(

Q(t)

P (t)

)

is a solution of the associated linear system Ż(t) = NZ(t), with

Z(tf ) =

(

In

Kf

)

. In the other side, if Z(t) =

(

Q(t)

P (t)

)

is a solution of Ż(t) = NZ(t) such that Q(t) is regular for

t ∈ [t0, tf ], then K(t) = P (t)Q−1(t) is a solution of (1).

Theorem 1 implies that the GDRE (1) may be solved by a backward time integration of the differential equation

Ż(t) = NZ(t), on the time interval [t0; tf ]. When the time-horizon tends to infinity, that is by taking the limit
tf → +∞, the final value has no sense any more and the solution of the differential equations (1) become the ones of
the GARE defined by (3). The solutions of the GARE are obtained via the invariant subspaces of matrix N (see [1,
Theorem 6.2.2]).

Theorem 2 In one hand, S(K) = Span

(

In

K

)

is an invariant subspace of N and the closed-loop matrix Acl =

N11 +N12K is its matrix of restriction, i.e. N

(

In

K

)

=

(

In

K

)

Acl. In the other hand, if Span

(

X

Y

)

is an invariant

subspace of N , with X ∈ C
n×n invertible and Y ∈ C

nr×n, then

K = Y X−1 (6)

is a solution of the GARE (3).

The possible spectra of the closed–loop matrix Acl are not arbitrary, as shown in the following theorem.

Theorem 3 The eigenvalues of the closed-loop matrix Acl are among the eigenvalues of the matrix N .

Proof The proof is obtained directly by writing

[

In 0n×nr

K Inr×nr

]−1

N

[

In 0n×nr

K Inr×nr

]

=

[

Acl •

0nr×n •

]

.

Due to theorems 2 and 3, it is possible to provide the following algorithm checking the solvability and giving the
solutions of the GARE (3).

Algorithm 1 [1] Let a matrix N be given by (4).

Step 1: Select n desired eigenvalues λi ∈ C (i = 1, · · · , n) among the ones of N to design the desired eigenspectrum
Λdesired of Acl.

Step 2: Select n eigenvectors vi ∈ C
n(r+1) of N associated with λi (i = 1, · · · , n).

Step 3: Determine X ∈ C
n×n and Y ∈ C

rn×n such that

(

X

Y

)

=
(

v1 · · · vn

)

.

Step 4: If det(X) 6= 0, then there exists a solution K for the GARE (3), given by (6) leading to Acl with the desired
eigenspectrum Λdesired.

Remark 1 The proposed algorithm should be associated with some comments:
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• If a complex λi is chosen, λ̄i should be also considered and the pair (vi, v̄i) be selected, in order to allow real-valued
solution K (see [1]).

• If the eigenvalues λi ∈ Λdesired have a multiplicity greater than one, the matrix N could be non–diagonalizable
and could imply proper invariant subspaces not restricted to eigenvectors. It is then possible to build the desired
invariant subspace by considering the canonical Schur decomposition of N and reordering it, by extending the
approach proposed in [24] (see for more details ([14,1])).

• A necessary condition for the invertibility of X is that each of the eigenvalues λi ∈ Λdesired is an (N11,N12)
controllable eigenvalue. This is an extension of [1, Theorem 6.2.5] in the case of non trivial time preference rate.
Contrary to the one-player case (see [23]), the above conditions are not sufficient.

Remark 2 It should be noticed that there exists a large panel of numerical methods to solve the GARE in the
literature. Among them, we can emphasize the Newton-Raphson method and its refinements [7,15,9] and the homotopy
continuation method [3]. Nevertheless, the Newton-Raphson iterative methods have not been chosen because they do
not ensure a convergence to the solution with the desired closed-loop eigenspectrum Λdesired among all the possible
(non-unique) solutions. The homotopy methods necessitate also to track the path of homotopy map over a finite
horizon (by using a Newton-Raphson method at each increment or by discretizing the initial value problem related to
the arc-length of the trajectory).

3 Open-Loop Nash Strategy in Continuous-Time with Discount Rates

Consider a r-player linear-quadratic differential game (see [8]), on a finite time horizon, defined by

ẋ (t) = Ax (t) +

r∑

i=1

Biui (t) , x (t0) = x0, (7)

where x ∈ R
n, ui ∈ Uad,i ⊂ R

mi (i ∈ {1; · · · ; r}); n, mi ∈ N; Uad,i is the admissible set of the controls ui and with

the cost functionals J̃i (i ∈ {1; · · · ; r}), including a time preference rate αi, given by

J̃i(x0, ui, u−i) =
1

2
xT

f (eαitfKif )xf +
1

2

∫ tf

t0

(

xT (eαitQi)x+

r∑

j=1

uT
j (eαitRij)uj

)

dτ, (8)

where xf = x (tf ) and u−i = (u1; · · · ;ui−1;ui+1; · · · ;ur) is a shortcut to denote the controls of all the players
distinct from Player i. We note also Uad,−i = Uad,1 × · · · × Uad,i−1 ×Uad,i+1 × · · · × Uad,r. All weighting matrices are
constant and symmetric with Qi ≥ 0, Kif ≥ 0, Rij ≥ 0 (i 6= j) and Rii > 0.

In order to define a Nash strategy, we introduce the rational reaction set Ri (u−i) of the Player i as {ũi; J̃i (x0, ũi, u−i) ≤
J̃i (x0, ũ

∗
i , u−i) ,∀ui ∈ Uad,i}.

Definition 1 A Nash strategy is a r−uplet (u∗1; · · · ;u∗r) satisfying the following inclusions (see [28]):

u∗i ∈ Ri(u
∗
−i); ∀i = 1; · · · ; r. (9)

By considering an open-loop information structure scheme (see [17,33,8]), the controls are only functions of time.
The Pontryagin’s Maximum Principle could be applied for each player, or inclusion (9). When the time preference
rates αi are not necessary null, we obtain the control laws proposed in [2]. These results are gathered in the following
theorem.

Theorem 4 A Nash strategy r–uplet (u∗1; · · · ;u∗r) is given by

u∗i (t) = −R−1
ii B

T
i ψi(t), ∀i = 1; · · · ; r, (10)

where the costate vectors ψi(t), associated with the dynamic constraint (7) for the Player i, verify the necessary
conditions, for each player i, (∀i = 1; · · · ; r) and the associated transversality conditions

ψ̇i(t) = −Qix(t) − (AT + αiIn)ψi(t), ψi(tf ) = Kifx(tf ). (11)
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Proof Let us introduce the Hamiltonian Hi associated with each player i, with a temporary costate vector pi(t) ∈ R
n,

related to the dynamic constraint (7):

Hi(t, x, pi, ui, u−i) = pT
i

(

Ax+
r∑

j=1

Bjuj

)

+
1

2

(

xT (eαitQi)x+
r∑

j=1

uT
j (eαitRij)uj

)

. (12)

Applying the Pontryaguin’s Maximum Principle to each inclusion (9) leads to

ṗi =−
dHi

dx
(t, x, pi, u

∗
i , u

∗
−i) = −eαitQix−AT pi; (13)

0 =
dHi

dui

(t, x, pi, u
∗
i , u

∗
−i) = eαitRiiu

∗
i +BT

i pi. (14)

The final state x(tf ) being free, the transversality condition is given by:

pi(tf ) =
d

dxf

(1

2
xT

f e
αitfKifxf

)
= eαitfKifxf . (15)

Due to the presence of the exponential terms, time–varying coefficients occur in equations (13), (14) and (15). In
order to obtain time invariant differential equations, we propose the following change of variable concerning the
temporary costate vectors pi(t): ψi(t) = e−αitpi(t).

The transversality condition (15) becomes (11). Moreover due to the invertibility assumption of Rii, and the invert-
ibility of the exponential scalar, the equation (14) implies u∗i (t) = −R−1

ii B
T
i e

−αitpi(t), that is the relation (10).

To end the proof, the necessary condition (13) are reformulated thanks to the change of variable introducing ψi(t):

ψ̇i = −αiψi + e−αitṗi = −αiψi −Qix−AT pie
−αit = −Qix− (AT + αiIn)ψi. (16)

Differential equations (7) and (11) could be summarized into the extended linear system

(

ẋT ψ̇T
1 . . . ψ̇T

r

)T

= N
(

xT ψT
1 . . . ψT

r

)T

, N =




N11 N12

N21 N22



 =










A −S1 · · · −Sr

−Q1 −AT − α1In 0n

...
. . .

−Qr 0n −AT − αrIn










(17)

where the notation Si = BiR
−1
ii B

T
i is used. The linear system (17) with the initial condition x(t0) = x0 and the

transversality conditions (11) consists in a two-point boundary value problem. The following section provides a
solution of such a problem via Coupled Differential or Algebraic Riccati Equations.

4 Coupled Differential or Algebraic Riccati Equations

The system (17) being linear, it is possible to set matrices Ki(t) defined on [t0; tf ] by ψi(t) = Ki(t)x(t). The
matrices Ki(t) satisfy the following Coupled Differential Riccati Equations (CDRE) and the associated transversality
condition, induced by equation (11):

K̇i = −KiA−Qi − (AT + αiIn)Ki +Ki

r∑

j=1

SjKj , Kif = Ki(tf ). (18)
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The extended variable K(t) =
(

KT
1 (t) . . . KT

r (t)
)T

allows to rewrite the CDRE (18) in a compact form as a single

GDRE ([1,14]). This implies that the tools presented in section 2 can be used here. In the following section, this
framework and these properties will be used in order to provide a non-uniform multiple pole shifting.

5 Non-Uniform Pole Shifting in Continuous-Time

Let us consider the multivariable system, with the pair (A,B) controllable,

ẋ = Ax+Bu. (19)

We note ňr and ňc the numbers of real eigenvalues of A and of the pairs of conjugate complex eigenvalues of A
(ňr + 2ňc = n). The problem is to determine a real–valued gain feedback matrix G, i.e. u(t) = Gx(t), such that
some or all eigenvalues of matrix A are shifted (nr ≤ ňr real eigenvalues and nc ≤ ňc conjugate pairs of eigenvalues)
to predefined desired locations in the complex plane. The purpose is to shift all eigenvalues that need to be shifted
in a single step. Thus non-uniform shifts are operated simultaneously. The whole desired closed-loop spectrum will
be noted Λdesired. Therefore, the approach examined here is quite different from the global shift proposed by [5], or
iterative shifts proposed by [25]. We study a non-uniform shift technique of the eigenvalues, that is each modified
eigenvalue or conjugate pair of eigenvalues has its own shift amplitude. This is for example the case in Figure 1,
where nr = ňr = 2 and nc = ňc = 1: the conjugate pair of poles are shifted by s1, and the real eigenvalues are
shifted respectively by s2 and s3. We consider the case where s1, s2 and s3 are not necessarily equal as depicted on
Figure 1.

s1

Im(λ)

Re(λ)

s1

s2

s3

Fig. 1. Non-uniform poles shifting. × denotes the eigenvalues of A and © denotes the closed-loop desired eigenvalues.

The main idea is to use the framework of CARE for a specific characteristic matrix N including the desired shifted
eigenvalues in order to solve such a non-uniform pole shifting problem. The first step is to reformulate the problem
as defined by the system (19) into a gametheoretic framework as given in (7). To formulate a new special Nash game,
some fictitious players are introduced in the dynamic equation. We choose the number of fictitious players equal to
r = nr + nc (and not r = nr + 2nc, as it will be seen in Remark 3). In addition we impose

Bi = B, ∀i ∈ {1; · · · ; r}, u =

r∑

i=1

ui. (20)

The criteria J̃i (∀i = 1; · · · ; r) are restricted to the following form: Ji(x0, ui, u−i) = 1
2

∫ +∞

t0
uT

i (eαitRii)uidτ .

The set of criteria Ji could be interpreted as a compromise to reach, between the weighted input energies of each
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player. The characteristic matrix associated with an open-loop Nash game becomes

N =










A −S1 · · · −Sr

0n −AT − α1In 0n

...
. . .

0n 0n −AT − αrIn










. (21)

Such a particular matrix N is upper triangular per blocks, with matrices A or (−AT − αiIn) on the diagonal.
The time preference rates αi should be designed to allow the inclusion of the desired closed-loop eigenvalues in the
spectrum of N . Let us define the sets Ii = {j ∈ {1, · · · , n} | Im(λdesired,i) = Im(λj(A))}, ∀i ∈ {1, · · · , n}. The time
preference rates αi being real, it is only possible to reach a desired eigenvalue λdesired,i if there exists at least an
eigenvalue of A having the same imaginary part. The non-uniform desired shift is possible if Ii 6= ∅, ∀i ∈ {1, · · · , n}.
Then αi should be designed as αi = −Re(λi,desired + λj0(A)), j0 ∈ Ii, ensuring

Λdesired ⊂ λ(N ) = λ(A)
⋃( r⋃

i=1

λ(−AT − αiIn)
)

. (22)

The number of possible choices of αi depends on the cardinality of the set Ii. Notice that the eigenvalues of A are
included in the spectrum of N . This is useful for eigenvalues that do not need shifting and justifies that we select
only r ≤ n fictitious players, instead of n. The choice of weighting matrices Rii and αi allows a degree of freedom.
When the matrices Rii (∀i = 1; . . . ; r) are imposed, the whole number of choices for the time preference rates αi

is equal to (ňr)
nr × ňc. The closed-loop eigenspectrum is not influenced by the choice of weighting matrices Rii.

Their selection is only guided by numerically ensuring that the matrix X in the invariant subspace decomposition is
invertible and thus allowing to provide a finite solution of the CARE associated with the characteristic matrix N ,
with the desired eigenspectrum Λdesired.

Remark 3 It is important to notice that for the pair (λdesired,i; λ̄desired,i), the pair (vi; v̄i) should be selected according
to remark 1. Thus vi and v̄i should be generated by the same block −AT − αiIn, which explains why r = nr + nc. If
r = nr + 2nc, the eigenspace associated with λ̄i is not restricted to a vector and it will be difficult to select precisely
v̄i as eigenvector of N .

Remark 4 We present here a global methodology to design a non–uniform multiple pole shifting, in a single step.
Nevertheless it is obviously possible to adapt our approach to provide an iterative scheme by considering only r = 1
and applying successively our method to each real desired eigenvalue or each conjugate pair of desired complex
eigenvalues. Such an iterative algorithm could be useful for large scale systems, that is with large n and r. In such a
case, the size of the matrix N could induce numerical problems making the use of the proposed single step approach
more difficult.

The same idea can be adapted to the framework of discrete-time. That is the aim of the following sections.

6 Open-Loop Nash Strategy in Discrete-Time

In this section, we consider the framework of discrete-time for the game, that is the r-player difference game defined
by:

x(k + 1) = Ax(k) +

r∑

i=1

Biui(k), x(k0) = x0, (23)

with the same notation of the section 3 and the cost function J̃i associated with each player i ∈ {1, · · · , r}, including
a time preference rate (in discrete-time) ρi, with a finite time horizon [k0, kf ], defined by

J̃i(x0, ui, u−i) =
1

2
x(kf )TKi,fx(kf ) +

1

2

kf−1
∑

k=k0

(

x(k)T (ρk
iQi)x(k) +

r∑

j=1

uj(k)
T (ρk

iRij)uj(k)
)

. (24)
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The definition of the Nash strategy (definition 1) is still true in the discrete-time case, thus the necessary conditions
for the Nash strategy are given by the following theorem via an extension of the result in [29].

Theorem 5 A Nash strategy r–uplet is given by

u∗i (k) = −R−1
ii B

T
i ψi(k + 1), ∀i ∈ {1, · · · , r}, (25)

where the costate vectors ψi(k) verify the necessary conditions

1

ρi

ψi(k) = Qix(k) +ATψi(k + 1), ∀i ∈ {1, · · · , r} (26)

and the transversality conditions ψi(kf ) = Ki,fx(kf ). The conditions could be reformulated into an extended linear
system










In S1 · · · Sr

0n AT 0n

...
. . .

0n 0n AT










︸ ︷︷ ︸

L










x(k + 1)

ψ1(k + 1)
...

ψr(k + 1)










=












A 0n · · · 0n

−Q1
1

ρ1
In 0n

...
. . .

−Qr 0n

1

ρr

In












︸ ︷︷ ︸

G










x(k)

ψ1(k)
...

ψr(k)










. (27)

Proof The proof of Theorem 5 follows the one of Theorem 4 by considering an Hamiltonian associated with each
player i:

Hi(k, x, pi, ui, u−i) = pT
i (k)

(

Ax+

r∑

j=1

Bjuj

)

+
1

2

(

xT (ρk
iQi)x+

r∑

j=1

uT
j (ρk

iRij)uj

)

(28)

and by applying the change of variable ψi(k) =
pi(k)

ρk−1
i

.

As in the continuous-time case, we can search in the form ψi(k) = Ki(k)x(k). By denoting φ(k) = (In+
∑r

j=1 SiKi(k)),

we have the CARE in discrete-time ∀i ∈ {1, · · · , r}:

1

ρi

Ki(k) = Qi +ATKi(k + 1)(φ(k + 1))−1A (29)

and the closed-loop dynamic is defined by x(k + 1) = (φ(k + 1))−1Ax(k).

When the time horizon is infinite, the CARE (29) become algebraic, that is Ki are independent on the time k. Such
a solution verifies the following theorem

Theorem 6 [1] Let us consider L and G defined by (27). If A is invertible, then the matrix L is also invertible. This
implies that the solutions Ki are obtained by the invariant subspaces of the matrix L−1G, which spectrum contains
the spectrum of φ−1A.

Proof The property is verified straightforwardly due to the relation

L
[

In KT
1 . . . KT

r

]T

φ−1A = G
[

In KT
1 . . . KT

r

]T

. (30)

Simultaneously the relation (30) allows to obtain solutions of (29) via the invariant subspaces of the matrix N =
L−1G. By using the relation (29), the closed loop is given by N11 + N12K = φ−1A.

Remark 7 If the matrix A is not invertible, the result of theorem (6) can be extended in the framework of deflating
subspaces of the pencil (L,G) (see [22]). Notice also that the controls u∗i defined by (25) can be rewritten as u∗i =
−R−1

ii B
T
i Kiφ

−1Ax(k).
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7 Pole Homothety

Let us consider in this section, the multivariable system, with the pair (A,B) controllable: x(k+1) = Ax(k)+Bu(k).
As defined in the continuous-time part of the paper, ňr and ňc are the numbers of real eigenvalues of A and of the
pairs of conjugate complex eigenvalues of A. The problem is to determine a real-valued gain feedback G, u(k) = Gx(k)
such that some or all eigenvalues of matrix A are homothetically modified (nr ≤ ňr and nc ≤ ňc) with a rate hi ∈ R

to obtained a predefined desired locus in the complex plane, such for instance in Fig. 4.

-1

h1h3

h2

h1

h3

Re(λ)

Im(λ)

1

Fig. 2. Eigenvalues of matrix A and closed-loop homothetic ones (with homothetic rates hi). × denote eigenvalues of A and
© the closed-loop ones.

In order to solve such a problem, as in the continuous time, we consider a fictitious Nash game involving r = nr +nc

players defined by the relation (20). The criteria J̃i are restricted to the case Ji(x0, ui, u−1) =
∑+∞

k=0 u
T
i (ρk

iRii)ui

such that

L−1G =














A −
S1A

−T

ρ1
· · · −

SrA
−T

ρr

0n

A−T

ρ1
0n

...
. . .

0n 0n

A−T

ρr














. (31)

The methodology of selecting ρi is the same as in continuous time. Let us introduce, ∀i ∈ {1, · · · , n}, the sets
Ji = {j ∈ {1, · · · , n} | Arg(λdesired,i) = Arg(λj(A))}. The homothety is possible if Ji 6= ∅, ∀i ∈ {1, · · · , n} and thus
the value of ρi should verify ρi = ‖λj0‖‖λdesired,i‖, j0 ∈ Ji.

8 Numerical Example in continuous time

In order to illustrate our methodology, we present the following example, with n = 4 from Example 6.6.9 in [1] in
continuous time:

A =










−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.2855 −0.707 1.329

0 0 1 0










; B =










0.4422 0.1761

3.0447 −7.5922

−5.52 4.99

0 0










;

The eigenvalues of A are 0.2823 + 0.0853i, 0.2823 − 0.0853i, −0.3359, and −1.9823. That is n̄c = 1 and n̄r = 2.
We want to maintain the real eigenvalue −1.9823 and shift the others in order to have the closed-loop eigenvalues

9



Λdesired = {−1 + 0.0853i;−1 − 0.0853i;−3;−1.9823}. It implies we have nr = 1; nc = 1 and r = 2. We choose
arbitrarly positive definite matrices R11 and R22, by avoiding equal matrices R11 = I2 and R22 = diag(1; 2). Equal
matrices Rii lead to equal matrices Sii and thus could generate dependent eigenvectors of N . Among the several
possibilities, we select the time preference rate as follows α1 = −(0.2823 + (−1)) = 0.7177, in order to shift the
conjugate pair of eigenvalues and α2 = −(−1.9823 + (−3)) = 4.9823, in order to shift the desired real eigenvalue
which is not an eigenvalue of A. By selecting the desired closed-loop eigenvalues and their eigenvectors associated
with matrix N , it leads to a complex matrices X and Y (not precised here for more convenience), but to real matrices

K1 and K2 as expected K1 =










−0.0465 0.0034 −0.0007 −0.0064

0.0552 0.0045 −0.0006 −0.0307

0.3863 0.0234 −0.0031 −0.1783

0.5470 0.0270 −0.0034 −0.2253










; K2 =










0.0259 0.0011 −0.0037 −0.0170

0.1712 0.0073 −0.0245 −0.1124

−0.5855 −0.0251 0.0838 0.3845

0.7458 0.0320 −0.1068 −0.4898










.

The global feedback law is thus u(t) =

[

−1.7795 −0.0477 0.5242 1.5846

0.6077 0.0075 −0.2912 −0.7271

]

x(t). By applying this state feedback,

the resulting closed-loop system has the expected spectrum. The eigenvalues of A and the closed-loop ones are
depicted in the complex plan on Figure 3. As precised above, with imposed Rii, there is (ňr)

nr × ňc = 21 × 1 = 2

!!"# !! !$"# !$ !%"# !% !&"# & &"#
!&"%

!&"&'

!&"&(

!&"&)

!&"&$

&

&"&$

&"&)

&"&(

&"&'

&"%

*+,!
-
.

/0
,!
-
.

Fig. 3. Eigenvalues of matrix A and closed-loop shifted ones. × denote eigenvalues of A and © the closed-loop ones.

eventual solutions, the second solution corresponds to α1 = 0.7177 as previously and α2 = 3.3359, then X is also

invertible and we obtain:K1 =










−0.0286 0.0042 −0.0032 −0.0182

0.0527 0.0044 −0.0003 −0.0291

0.3510 0.0219 0.0019 −0.1551

0.4838 0.0243 0.0057 −0.1838










;K2 =










0.3823 0.0164 −0.0548 −0.2511

−0.3891 −0.0167 0.0557 0.2555

−0.9549 −0.0410 0.1367 0.6272

−0.3606 −0.0155 0.0516 0.2368










.

These solutions lead to the real-valued gain feedback G =

[

−2.4656 −0.0772 0.6224 2.0352

−0.4747 −0.0389 −0.1362 −0.0162

]

associated with

the same spectrum depicted on Figure 3.

9 Illustration in discrete-time

Let us now consider an example in discrete time, with A =







1.57 1.23 1.30

0.07 1.23 −0.20

−0.27 −0.43 0.80







; B =







0.6

0.1

1







. The eigenvalues

of A are {1.5; 1.05 + 0.31i; 1.05 − 0.31i}, that is n̄c = 1 and n̄r = 1. We want to apply a non-uniform homothety to
obtain a real eigenvalue with a modulus equal to 0.9 and a pair of complex conjugate eigenvalues with a modulus
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equal to 0.4. We have thus nr = 1; nc = 1 and r = 2. We choose arbitrarly positive definite matrices R11 = 2

and R22 = 1. Such we obtain K1 =







11.62 31.20 2.26

0.37 −0.30 2.23

11.99 30.90 4.49







; K2 =







0.20 0.75 −0.05

0.61 2.24 −0.14

0.20 0.75 −0.05







, which lead to the closed-loop

spectrum as desired on Figure 4 and to the feedback gain including G =
[

−1.32 −3.46 −0.80
]

.

(! ("#$ " "#$ ! !#$

("#%

("#&

("#'

("#(

"

"#(

"#'

"#&

"#%

)*+⁄
,
-

./
+⁄
,
-

Fig. 4. Eigenvalues of matrix A and closed-loop homothetic ones. × denote eigenvalues of A and © the closed-loop ones.

10 Conclusion

The problem of pole shifting and of pole homothety in multivariable linear systems is revisited in a gametheoretic
framework. It is shown that when a special Nash differential game is defined multiple non-uniform pole shifting can
be obtained in a direct and simple way. The main idea is to introduce the desired eigenvalues of the closed loop
system in the characteristic matrix associated with the non symmetric coupled Riccati equations by modifying the
cost functionals in the special Nash game. Then, by an appropriate choice of the invariant subspace defining the
solution of such matrix equations, a constant feedback gain matrix could be easily determined.
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