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Abstract

As a matter of course, designed control laws are to be acted on actual systems. However, most designed control laws are proven to be
effective when performed on ideal models of the systems as opposed to the actual systems themselves. One fundamental problem is how
to ensure the satisfactory performance of the designed control laws when they are performed on actual systems. Focusing on the state
stabilization of quantum systems, a two-step strategy is proposed to solve this problem. A feedback strategy and the open-loop control
technique of dynamical decoupling are combined therein to deal with the inevitable differences between an actual system and its model,
by taking advantage of the distinct quantum characteristics: the measurement-induced-state-transfer and the tensor product structure, with
the structure characterizing the coupling between a quantum system and its environment. Specifically, in the first step, a measurement-
based feedback control strategy is selected according to a model of the actual system. In the second step, by identifying the differences
between the actual system and the established model as decoherence noise, a specific control procedure is designed through dynamical
decoupling. This procedure allows the realization of the chosen control strategy so as to deal with the differences.
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1 Introduction

Due to potentially powerful capabilities of quantum informa-
tion technology, quantum engineering has been a hot topic of
intense research in recent years. The demand for an exquisite
degree of control over a quantum system to complete an as-
signed task is a key ingredient in the quantum information
technology, such as robustly preparing a family of fiducial
states (Bolognani & Ticozzi, 2010). With sustained effort to
the manipulation of quantum systems, much progress has
been made in both theory and experiments (Sayrin, Dot-
senko; Mirrahimi, Dotsenko; Zhang & James, 2011; Yang,
Lim; Gross, Strobel; Biercuk, Uys; Cui, Xi; Kuang & Cong,
2008; Bermudez, Jelezko; Zhang, Wang; Qi, 2012), ranging
from quantum optics and quantum dots, to trapped ions and
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superconductors.

However, it is worth pointing out that there is still a big gap
between theories being performed on actual systems and
those being designed based on their models. Since a system
of interest is generally open, the dynamics of its environment
will affect its evolution. However, the environment may be
so large and complicated that we are unable to gain all of
its precise information. Hence, one has to isolate the system
from its environment or simplify its environment with prop-
er approximations to get an applicable model. Even when
all the information of the total system can be obtained, its
dynamics may be too cumbersome to be analyzed. As a re-
sult, an appropriate simplified model also has to be set up
for effective analysis. Hence, it is imperative to build a suit-
able model of the system for substantial research. In fact,
hitherto most deliberately designed control laws and their
corresponding satisfactory performance have been based on
the systems’ models. None the less, our intended concern is
the effects of the control laws on the actual systems. Hence,
more effort should be devoted to the fundamental question:
how to ensure the satisfactory performance of the designed
control laws when they are being performed on actual sys-
tems.

Preprint submitted to Automatica 1 May 2014



The differences between the actual system and its built mod-
el can be regarded as some uncertainties, and there has been
some research on dealing with these uncertainties in quan-
tum control theory. For example, an open-loop control tech-
nique of dynamical decoupling (DD) has been employed in
suppressing decoherence of non-Markovian open quantum
systems (Khodjasteh, Lidar; Khodjasteh & Viola, 2009a,b;
Ng, Lidar). In James (Nurdin), a coherent feedback control
strategy was used to suppress the effect of noise. In Li &
Khaneja (2009), an ensemble control method was introduced
to robustly control a continuum of dynamical systems with
different values of parameters characterizing different sys-
tem dynamics. An LQG method was adopted in Stockton
(Geremia) to estimate an external magnetic field despite the
ignorance of the size of the spin ensemble. A robust con-
trol approach based on sliding mode design was proposed in
Dong & Petersen (2012) for two-level systems with bound-
ed uncertainties. By focusing on the state stabilization of
quantum systems, this paper presents a two-step strategy to
solve the identified problem. The advantages of feedback
control and open-loop control are combined to deal with the
differences between the actual systems and their models.

Feedback is an essential concept in control theory (Bolog-
nani & Ticozzi, 2010; Mirrahimi, Dotsenko; Zhang, Wu;
Wiseman & Milburn, 2010; Xie & Guo, 2000), through
which various methods for dealing with uncertainties can be
developed. In the first step of our two-step strategy, adopt-
ing the idea of measurement-based feedback, we first set up
a model based on the obtained information from the sys-
tem, and then determine an appropriate map from the mea-
surement outcomes to the ideal unitary transformations that
should be applied. In the second step, considering the differ-
ences between the system and its model as some uncertain-
ties which may lead to decoherence, we employ the power-
ful DD technique to realize the ideal unitary transformations
designed in the first step with a high level of accuracy.

It is worth pointing out that in our two-step strategy, not on-
ly feedback but also the open-loop control technique is tak-
en full advantage of in dealing with the differences between
the quantum system and its model. It will be shown that
the quantum characteristics, specifically, the measurement-
induced-state-transfer and the tensor product structure char-
acterizing the coupling between a quantum system and its
environment, play important roles in the control process.

The paper is organized as follows. In Section 2, the control
problem is formulated. In Section 3 and 4, we give the two-
step strategy and analyze its effect, respectively. Section 5
concludes the paper.

2 The Control Problem

Let S denote the system of interest, coupled to its environ-
ment E, with respective Hilbert space HS and HE . We as-
sume the Hamiltonian of the total system can be described

as
Htot = HS,0 +HS,e +HE +HSE +HC, (1)

where HS,0 is the known Hamiltonian of system S, while
HS,e accounts for the part of system S that we cannot identify
exactly. HE is the Hamiltonian of the environment, and HSE
describes the coupling between S and E. Suppose we only
know the structures of the Hamiltonian HS,e, HE , and HSE ,
and they can be together described in the following form:

H∆ = HS,e +HE +HSE =
N2

∑
α=1

Sα ⊗Eα , (2)

where N is the dimension of the Hilbert space HS. {Sα}N2

α=1
is a complete basis of orthonormal operators of the corre-
sponding Liouville space, namely TrS(S

†
i S j) = δi j, where †

denotes the Hermitian adjoint, δi j is the Kronecker function.
Eα , α = 1, 2, · · · , N2, are unknown but bounded opera-
tors acting on HE . For convenience, one of the basis oper-
ators is chosen to be proportional to the identity IS, name-
ly SN2 = (1/N)

1
2 IS, such that the other basis operators are

traceless, that is TrS(Sα) = 0, for α = 1, 2, · · · , N2−1.

HC is the control Hamiltonian which we can adjust. Since
our goal is to give a conceptual two-step control strategy for
quantum systems, we assume that there is no imperfection
in the controller part 1 , and that a universal control over S
is achievable (Nielsen & Chuang, 2000).

Furthermore, suppose a set of generalized measurement op-
erations {Mk}K

k=1 (∑
K
k=1 M†

k Mk = IS) can be performed on S,
where K is the maximum number of the possible measure-
ment outcomes. In the following, we assume that the mea-
surement time is much shorter than all other relevant time
scales. Hence, the effect of H∆ during the measurement pro-
cess can be ignored. This generalized measurement and the
Hamiltonian HC are all control means during the manipula-
tion process.

Our aim is to asymptotically engineer quantum states of S
to a desired subset. Specifically, given a target subspace HI
of HS, the corresponding target subset JS(HI) consists

of states in the form of

(
ρI 0

0 0

)
, where ρI is some state

associated with the subspace HI . Note that if the dimension
of the subspace HI is 1, the problem is equivalent to robustly
preparing a desired pure state.

According to the target subspace HI , we can make a di-
rect sum decomposition HS = HI

⊕
HR, where HR is the

remainder of HI . This decomposition can induce a block
structure for the matrix X representing an operator acting

1 This kind of imperfection can be suppressed to an arbitrarily
desired level by a classical control method.
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on HS: X =

(
XI XP

XQ XR

)
, where XI , XP, XQ, and XR are cor-

responding block matrices of X . In the rest of the paper the
subscripts I, P, Q, and R will follow this convention.

3 The Two-step Control Strategy

This section presents the proposed two-step strategy as fol-
lows.

Step 1. Set up an appropriate model and decide which uni-
tary operation should be applied after each measurement.

First, isolate system S from its environment according to the
precise information that is obtained, i.e., the Hamiltonian of
the model is:

Hmod = HS,0 +HC.

Suppose the model state of system S at step t is ρ̂t . After the
measurement, the k-th result will be obtained with probabil-
ity Tr(M†

k Mkρ̂t), and the corresponding quantum state will

collapse to ρ̂k
t =

Mkρ̂t M
†
k

Tr(M†
k Mkρ̂t )

. Then one should design a map

from the set of measurement outcomes to the set of unitary
operations {Uk}K

k=1, which are to be acted on S in order to
control the evolution of state ρ̂t . Should the k-th outcome
appear, Uk is to be applied to the model for it to evolve to
Ukρ̂k

t U†
k .

It is well known that quantum mechanics only provides s-
tatistical properties of observables. Hence, only the average
evolution of the quantum state is considered. At each step
the measurement results are averaged, and this yields the
evolution of the model state immediately after applying the
unitary operations:

ρ̂t+1 = ε{M,U}(ρ̂t) = ∑
k

UkMkρ̂tM
†
kU†

k , (3)

where the map ε{M,U} is a quantum operation.

Now, the subproblem that is presented is how to determine
a map from the set of the measurement operators {Mk}K

k=1
to the set of {Uk}K

k=1, to asymptotically engineer the state
described by eq. (3) to the desired set JS(HI).

First, we recall three definitions (Bolognani & Ticozzi,
2010). Let S evolve under iterations of the quantum opera-
tion T :

T (ρ) = ∑
k

MkρM†
k ,

where ρ is a density operator.

Definition 1 (Invariance). The set JS(HI) is invariant if the
evolution of any initialized ρ0 ∈JS(HI) obeys ρt=T t(ρ0)

∈JS(HI) for any t ≥ 0, where T t indicates t applications
of the map T .

Definition 2 (Attractivity). The set JS(HI) is attractive if
for arbitrary ρ of S, we have

lim
t→∞
‖T t(ρ)−ΠIT

t(ρ)ΠI‖= 0,

where ΠI is the projection operator over the subspace HI ,
and ‖A‖=

√
Tr(A†A).

Definition 3 (Global Asymptotic Stability). The set JS(HI)
is globally asymptotically stable (GAS) if it is invariant and
attractive.

To solve the identified subproblem, we can employ the con-
structive algorithm in Theorem 5 in Bolognani & Ticozzi
(2010), whose basic idea is the following theorem:

Theorem 1 ( Theorem 2 in Bolognani & Ticozzi (2010)) Let
the quantum operation T be described by the Kraus map
T (ρ) = ∑k MkρM†

k . Consider an direct sum decomposition
HS = HI

⊕
HR, with JS(HI) invariant. Let the matrix

Mk be expressed in its block form Mk =

(
MI,k MP,k

MQ,k MR,k

)
,

according to the same state space decomposition. Then the
set JS(HI) is GAS if and only if there are no invariant
states with support on

⋂
k ker(MP,k), where ker(X) is the

kernel (0-eigenspace) of X.

By an algebraic characterization of the measurement oper-
ators {Mk}K

k=1, Theorem 5 in Bolognani & Ticozzi (2010)
clearly showed for a given set of {Mk}K

k=1, whether or not a
set of unitary operations {Uk}K

k=1 can be found to make that
there are no invariant states with support on

⋂
k ker(NP,k),

where Nk =UkMk. If this is possible, then from (3) and The-
orem 1, we can conclude that the desired subset JS(HI) is
asymptotically stable for the model dynamics (3). Moreover,
in this case Theorem 5 in Bolognani & Ticozzi (2010) pro-
vided an iterative control design procedure that can return
an effective control choice {Uk}K

k=1 in N steps at the most .

In Section 4, we will explicitly give the condition of {Mk}K
k=1

that can make us find a set of {Uk}K
k=1 to complete the

control task with the model system, while omit the detailed
procedure to get the control operations {Uk}K

k=1 which is the
same as in Theorem 5 in Bolognani & Ticozzi (2010).

Remark 1 For a real system, the undertaking of measure-
ment requires time. Usually the measurement operator Mk
does not commute with the Hamiltonian of the system. In
this paper, for simplicity, we assume that the measurement
time scale is much shorter than all other time scales. Un-
der this assumption, we can apply the measurement and u-
nitary transformation on the system sequentially as in eq.
(3). Moreover, since ∑k M†

kU†
k UkMk = I, we may consider
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{UkMk}K
k=1 as a new set of generalized measurement oper-

ators. Note that in Step 1, it is the measurement-induced-
state-transfer effect that is employed to asymptotically en-
gineer the model state to the target set JS(HI).

Step 2. By considering the differences between the quan-
tum system and its model as some decoherence noise, a spe-
cific control procedure can be designed through employing
the powerful DD technique to realize the unitary operators
{Uk}K

k=1 with high fidelity so as to deal with the differences.

Step 1 shows that given a proper set of measurement opera-
tors {Mk}K

k=1, one can design a set of unitary transformations
{Uk}K

k=1 to complete the control task with the ideal model
(corresponding to the case of H∆ = HS,e +HE +HSE = 0).
However, for an actual system, the Hamiltonian H∆ is gen-
erally not zero. Hence, the system S and its environment E
may be coupled together, and one has to trace out the en-
vironment in order to get the state ρt describing the actual
dynamics of system S. In this sense, H∆ can be treated as
decoherence noise.

According to the measurement-control process proposed in
Step 1, the dynamics of ρt is:

ρt+1 = ε(ρt)

= ∑
k

Tr(M†
k Mkρt)TrE{Uk,tot(ρ

k
t ⊗ρ

k
t,E)U

†
k,tot}

= ∑
k

TrE{Uk,tot(MkρtM
†
k ⊗ρ

k
t,E)U

†
k,tot}, (4)

where the map ε is a quantum operation, ρk
t =

Mkρt M
†
k

Tr(M†
k Mkρt )

is

the state of the system after the k-th outcome being obtained,
while ρk

t,E is the corresponding state of the environment at
that time. Uk,tot is the actual unitary evolution of the total
system when Uk is expected to be applied on system S.

It can be clearly seen that the actual evolution in eq. (4) is
different from the ideal dynamics in eq. (3), owing to the
nonzero error Hamiltonian H∆. Although the precise infor-
mation of H∆ is not obtained, its algebraic form is known,
i.e., eq. (2). Now H∆ is regarded as a term which may lead
to decoherence, and the DD technique is employed to sup-
press its effect so as to realize the ideal {Uk}K

k=1 with a high
level of accuracy.

Suppose the initial state is the same ρ0
S for the model and

the actual system. The model state after the unitary trans-
formation U is ρU

.
= Uρ0

SU†, while the corresponding ac-
tual system state after the total unitary evolution Utot is
ρUtot

.
= TrE(Utot ρ0

S ⊗ρ0
E Utot), where ρ0

E is the correspond-
ing initial state of the environment.

Now, we define the trace distance between ρU and ρUtot as

D(ρU ,ρUtot ) =
1
2

Tr|ρU −ρUtot |,

where |A|=
√

A†A. The distance D(ρU ,ρUtot ) is used to char-
acterize how the ideal unitary transformation U can be real-
ized by Utot . Note that the smaller the trace distance is, the
more accurately U can be realized.

Our goal is to synthesize a control modulation which can
approximate U with an error scaling as O(τ l+1

0 ), where τ0 is
the minimum duration over which the control Hamiltonian
HC(t) is affected, and l is a positive integer. The synthesized
total unitary transformation is denoted by U [l]

tot with total time
duration denoted by τl .

In Khodjasteh (Lidar), a constructive algorithm is given to
synthesize unitary transformations with an arbitrarily high
level of accuracy at the price of nested structures and long
time duration. The main idea is DD, which is a powerful
and versatile technique for suppressing decoherence in non-
Markovian open quantum systems.

Now suppose that there exists a decoupling group G = {Gi}
for {Sα}N2−1

α=1 , with order |G | = d and m group generators
F = {Fj}m

j=1, i.e.,

d

∑
i=1

G†
i Sα Gi = 0, for α = 1, 2, · · · , N2−1. (5)

From Khodjasteh (Lidar), for any ideal unitary transforma-
tion U and positive integer l, a control modulation can be
recursively constructed such that the net error D(ρU ,ρU [l]

tot
)

is bounded by a function of τ0, denoted as ∆(τ0) with the
definition as

∆(τ0)
.
= (χl)

l2
c ‖HSE +HS,e‖(4χlτ0‖H∆‖)l

τ0, (6)

where χl = d(m+3), and c=O(1). In order to get this order
of the net error, the corresponding time duration τl satisfies

τl = [dm+(d−1)(1+2
1
l )+3]τl−1, l ≥ 1.

From (6), we can see that if the control modulation is fast
enough, i.e., τ0 is sufficiently small, then the upper bound of
the net error ∆(τ0) can be arbitrarily small. Hence, an ideal
unitary transformation can be realized with an arbitrarily
high level of accuracy.

Remark 2 From (2) and (5), one can see that the distinc-
t property of the quantum system, i.e., the tensor product
structure between S and its environment E, is tactically uti-
lized by the open-loop control technique of DD to suppress
the effect of the error Hamiltonian H∆. Hence, the open-
loop control technique has been used in the second step to
deal with the differences between the quantum system and
its model. This is significantly different from the control of
classical systems.

4



Remark 3 Note that in step 2, although we use a specific
powerful DD technique to realize the chosen unitary trans-
formations with high fidelity, the total frame is different. Our
aim is to combine the advantages of the feedback control
and open-loop control to provide a possible solution to the
identified problem. It is worth pointing out that the exten-
sive time is required to obtain a high level of accuracy when
synthesizing an ideal unitary transformation using the DD
technique, the total duration is very long. Moreover, DD is
effective only against low-frequency noise, and an enough
rate of control modulation should be employed. Further re-
search will involve the exploration of other efficient methods
to complete the identified task.

4 Performance Evaluation

In this section, we combine the results of Step 1 and Step
2 to analyze the effect of the two-step strategy in achieving
our control objective.

We first define the distance between a state ρ and the target
set JS(HI) as

D(ρ,JS(HI)) = inf
σ∈JS(HI)

D(ρ,σ).

Consider the canonical QR decomposition of the measure-
ment operator Mk = QkRk (Bolognani & Ticozzi, 2010),
where Qk is an orthogonal matrix (meaning that Q†

kQk = I)
and Rk is an upper triangular matrix. Recall that according
to the direct sum decomposition HS =HI

⊕
HR, where HI

is the desired subspace, and HR is its remainder, the cor-
responding block structure of a matrix X acting on HS is

X =

(
XI XP

XQ XR

)
. Let Rk be expressed in its block form

Rk =

(
RI,k RP,k

RQ,k RR,k

)
.

Now we can give the main theorem:

Theorem 2 Under the two-step strategy as described in
Section 3, the distance D(ρt ,JS(HI)) between the system
state ρt and the target subset JS(HI) can be arbitrarily
small in finite steps, if the following conditions are satisfied:

A1. For the canonical QR decomposition of the measure-
ment operators Mk =QkRk, there exists at least one RP,k 6=
0, and

⋂
k ker(RP,k) = {0};

A2. A universal control over S is achievable through control
Hamiltonian HC, and there exists a decoupling group G
for {Sα}, i.e., eq. (5) is met;

A3. H∆ is bounded, and the rate of the control modulation
is fast enough, i.e., τ0 is sufficiently small.

Proof. It is clear that

D(ρt ,JS(HI))≤ D(ρ̂t ,JS(HI))+D(ρt , ρ̂t), (7)

where ρt (ρ̂t ) is the actual (model) state of system S, e-
volving as eq. (4) (eq. (3)). Hence, we just need to estimate
D(ρ̂t ,JS(HI)) and D(ρt , ρ̂t).

In order to estimate D(ρ̂t ,JS(HI)), from Theorem 5 in
Bolognani & Ticozzi (2010), we conclude that if at least
one RP,k 6= 0 and

⋂
k ker(RP,k) = {0}, one can find a set of

unitary operators {Uk} such that ρ̂t can be engineered to the
desired set JS(HI) asymptotically. The dynamics of ρ̂t can
be further described as

ρ̂t+1 = ∑
k

Nkρ̂tN
†
k , (8)

where Nk =UkMk, satisfying ∑k N†
k Nk = I and

⋂
k ker(NP,k)=

{0}.

Note that if
⋂

k ker(NP,k) = {0}, it is not difficult to get

∑
k

N†
P,kNP,k > 0.

From ∑k N†
k Nk = I and ∑k N†

P,kNP,k > 0, it is clear that

∑
k

N†
R,kNR,k < I.

From (8), one has

ρ̂t+1,R = ∑
k

NR,kρ̂t,RN†
R,k.

Hence,

λ (ρ̂t+1,R)≤ Tr(ρ̂t+1,R)≤ λ (∑
k

N†
R,kNR,k)Tr(ρ̂t,R),

where λ (A) denotes the maximum eigenvalue of A. Hence,
it is not difficult to see that

λ (ρ̂t+1,R) = O(λ t(∑
k

N†
R,kNR,k)).

From the above equation and the definition of D(ρ,JS(HI)),
one gets

D(ρ̂t+1,JS(HI)) = O(λ t(∑
k

N†
R,kNR,k)). (9)

Since we have proved

∑
k

N†
R,kNR,k < I,

5



we get λ (∑k N†
R,kNR,k)< 1. Note that λ t(∑k N†

R,kNR,k) is an

exponential function with base λ (∑k N†
R,kNR,k) and variable

t, therefore, ρ̂t will converge exponentially to the desired set
JS(HI).

Now we estimate D(ρt , ρ̂t). First we construct a reference
process ρ ′t as

ρ
′
t+1 = ∑

k
UkMkρtM

†
kU†

k , (10)

where ρt evolves as (4). From the triangle inequality of trace
distance, one gets

D(ρt+1, ρ̂t+1)≤ D(ρ ′t+1, ρ̂t+1)+D(ρt+1,ρ
′
t+1). (11)

Note that on one hand, from the property of quantum oper-
ations (Nielsen & Chuang, 2000), one gets

D(ρ ′t+1, ρ̂t+1) = D(εM,U (ρt),εM,U (ρ̂t))

≤ D(ρt , ρ̂t); (12)

On the other hand, from the property of trace distance
(Nielsen & Chuang, 2000), one has

D(ρt+1,ρ
′
t+1)

=D(∑
k

Tr(M†
k Mkρt)TrE{Uk,tot(ρ

k
t ⊗ρ

k
t,E)U

†
k,tot}, (13)

∑
k

Tr(M†
k Mkρt)Ukρ

k
t U†

k )

≤∑
k

Tr(M†
k Mkρt)D(TrE{Uk,tot(ρ

k
t ⊗ρ

k
t,E)U

†
k,tot},Ukρ

k
t U†

k )

(14)

From inequalities (6), (11)-(13), condition A2, and ρ0 = ρ̂0,
it is clear that

D(ρt+1, ρ̂t+1) = (t +1)O(∆(τ0)). (15)

Combining inequalities (6), (7), (9), and (15), we have

D(ρt ,JS(HI)) = O(λ t−1(∑
k

N†
R,kNR,k))+ tO(∆(τ0)).

Hence, we conclude from condition A3 that the control ob-
jective can be achieved satisfactorily after finite steps. �

Remark 4 In the measurement-based feedback control of
quantum systems, measurement itself can be considered
as a control means due to the measurement-induced-state-
transfer effect. Hence, one has to choose the measurement
operators appropriately in order to achieve the quantum
control target. Condition A1 is actually a technical assump-
tion. It may be a little limited, but it does give a criterion of
how to choose the measurement operators. If there exists at
least one RP,k 6= 0, then unitary operations {Uk}K

k=1 can be

found to make the desired subset asymptotically stable for
the model dynamics.

⋂
k ker(RP,k) = {0} further guarantees

that the convergence rate of the model state to the desired
subset is exponential.

Remark 5 Conditions A2 and A3 may be realized in spin
systems. For example, the system S may be an electron spin,
while its environment may consist of a finite number of nu-
clear spins. For a spin system, it is easy to see that the de-
coupling group can be the identity and Pauli matrices, i.e.,

G = {I,X =

(
0 1

1 0

)
,Y =

(
0 −i

i 0

)
,Z =

(
1 0

0 −1

)
}. The

error Hamiltonian H∆ is bounded owing to the limited envi-
ronment. Furthermore, thanks to the rapid development of
the ultra fast pulse technique, the rate of control modulation
can be made sufficiently fast.

Remark 6 From (3), (10) and (12), one can see that the
measurement-induced-state-transfer effect plays a positive
role in dealing with the differences between the actual and
ideal evolution of the state.

5 Conclusion

In this paper, we combine the concepts of feedback and the
open-loop control technique to present a two-step strategy
by focusing on a control problem of quantum state stabiliza-
tion. This two-step strategy is used to investigate the funda-
mental question: how to ensure the satisfactory performance
of the control laws when they are performed on actual sys-
tems. In the proposed strategy, we first set up a model based
on the available information, and decide the corresponding
control strategy. We then employ the DD technique to re-
alize the design strategy to deal with the inevitable differ-
ences between the system and the established model. It is
expected that the proposed approach will trigger more stud-
ies aiming to bridge control theories being designed based
on the models as opposed to actual systems.
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