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a b s t r a c t

Different classes of multipliers have been proposed in the literature for obtaining stability criteria using
passivity theory, integral quadratic constraint (IQC) theory or Lyapunov theory. Some of these classes
of multipliers can be applied with slope-restricted nonlinearities. In this paper the concept of phase-
containment is defined and it is shown that several classes are phase-contained within the class of
Zames–Falb multipliers. There are two main consequences: firstly it follows that the class of Zames–Falb
multipliers remains, to date, the widest class of available multipliers for slope-restricted nonlinearities;
secondly further restrictions may be avoided when exploiting the parametrization of the other classes of
multipliers.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation of absolute stability for the system in Fig. 1,
whereG is a linear time-invariant (LTI) systemandφ is a nonlinear-
itywithin a given class, is knownas the Lur’e problem. For example,
if one would like to investigate the stability of a feedback control
system with saturation in the actuator, the closed-loop could be
expressed as Fig. 1. Because the saturation belongs to the class of
so-called sector boundednonlinearities, simple analysis conditions
based upon the LTI part of the system can be derived, i.e. strictly
positive realness (Khalil, 2002), and applied to anti-windup syn-
thesis (Mulder, Kothare, & Morari, 2001). However the conditions
are inherently conservative. In order to reduce such conservatism,
saturation can be more efficiently described as a slope-restricted
and odd nonlinearity; multiplier techniques may then be used.

InDesoer andVidyasagar (1975) and Zames and Falb (1968), the
classical multiplier approach is developed for any general applica-
tion (see Fig. 2). Loosely speaking, if M has a canonical factoriza-
tion, then positivity of MG and M∗φ is enough to prove stability.
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The multiplier technique can be used for applying either passivity
theory (Zames & Falb, 1968) or integral quadratic constraint (IQC)
theory (Megretski & Rantzer, 1997). Although the multiplier is not
directly used when Lyapunov theory is used, the results can also
be interpreted in terms of multipliers (Brockett & Willems, 1965)
by using the path integral approach (see Gruber, 1969; Willems,
1998). In summary, given a class of nonlinearities, a class of mul-
tipliers preserving the positivity of the class of nonlinearities must
be defined; then for a particular linear system, stability of the feed-
back interconnection of Fig. 1 is ensured if an element of the class
of multipliers can be found such thatMG is positive.

In this paper, we are concerned with nonlinearities that are
slope-restricted. In particular, for SISO slope-restricted and odd
nonlinearities several classes of multipliers were proposed in the
Sixties, summarized by Barabanov (1988). The celebrated paper
(Zames & Falb, 1968) appears to give the best description of the
class of multipliers, including RL and RCmultipliers (Falb & Zames,
1968). However more conservative graphical criteria, such as the
circle (Zames, 1966), Popov (Popov, 1961) or off-axis circle criteria
(Cho &Narendra, 1968), were developed due to the lack of tools for
searching for Zames–Falb multipliers.

As appropriate computation tools have become available, sev-
eral works (Carrasco, Heath, Li, & Lanzon, 2012; Chang, Mancera,
& Safonov, 2011; Chen & Wen, 1995; Gapski & Geromel, 1994;
Safonov & Wyetzner, 1987; Turner, Kerr, & Postlethwaite, 2009)
have proposed different searches within the class of Zames–Falb
multipliers. Meanwhile several authors propose extensions to the
Zames–Falb class. Jönsson (1997) extends the class of Zames–Falb
multipliers by adding a Popov term, and Altshuller (2011) extends
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Fig. 1. Lur’e problem. Stability conditions are sought in terms of the characteriza-
tion of the nonlinearity φ and the frequency properties of the LTI system G.

Fig. 2. Multiplier transformation. The class of multipliers is designed to preserve
the positivity of φ.

the class of Zames–Falb multipliers by adding a quadratic term.
Park (2002) proposes an LMI search for certain MIMO multipliers
and discusses their relation to the Zames–Falb multipliers in the
SISO case; the SISO version of Park (2002) is also given by Bara-
banov (1988), and was introduced by Yakubovich (1965) via a Lya-
punov approach and byDewey and Jury (1966) via an input–output
approach.

Dynamic multipliers such as Zames–Falb multipliers have been
used as an analysis tool (D’Amato, Rotea, Megretski, & Jönsson,
2001; Heath & Wills, 2007; Kothare & Morari, 1999). Although
their use in synthesis is proposed by, for example, Kerr, Turner,
Villota, Jayasuriya, and Postlethwaite (2011); Moreno, Baños, and
Berenguel (2010); and Veenman and Scherer (2011), it is not yet
understood how to exploit their full generality; more conservative
criteria are still in use for antiwindup synthesis.

In Kulkarni and Safonov (2002a), the class of Zames–Falb mul-
tipliers is stated to be the most general class of biproper multipli-
ers. However some classes of multipliers are improper, e.g. Popov
multipliers. The aim of this paper is to demonstrate that the
Zames–Falb class is the widest available class of multipliers for
slope-restricted nonlinearities. Firstly, we define notions of phase-
containment and phase-equivalence. Secondly, we show that Popov
multipliers, Park’s multipliers (Park, 2002), and the extensions
of the Zames–Falb multipliers are all phase-contained within the
class of Zames–Falb multipliers. Our treatment is consistent with
that of Falb and Zames (1968)who showed a similar relation for RC
and RLmultipliers. Note thatwhile the Popov and RL and RC classes
of multipliers have been described as belonging to (limiting) sub-
sets of the class of Zames–Falbmultipliers (e.g. Kulkarni & Safonov,
2002b), such statements have not been rigorously proven; nor are
they necessarily correct in all cases.

The most important consequences of this paper are:

• To date, Zames–Falb multipliers are the widest class for
analysing the stability of the class of slope-restricted nonlin-
earities. If a new class of multipliers is proposed containing
multipliers which are not Zames–Falb multipliers, it should not
necessarily be concluded that this new class is wider.

• Stability results for slope-restricted nonlinearities using the
multipliers under discussion can be stated as corollaries of the
Zames–Falb theorem. Therefore no extra conditions are needed
and L2 stability is obtained.
• Since the passivity theory and IQC theory are equivalent for
Zames–Falb multipliers (Carrasco, Heath, & Lanzon, 2012), it
follows that the theories are also equivalent for slope-restricted
nonlinearities using any of the multipliers under discussion.

The structure of the paper is as follows. After some preliminary
results in Section 2, we define our notions of phase-containment
and phase-equivalence in Section 3. These definitions are used in
Sections 4–6 for demonstrating different equivalences between
classes of multipliers. The usefulness of the classes of multipliers
is discussed in Section 7 and finally, conclusions are stated in
Section 8.

2. Notation and preliminary results

Let Lm
2 [0, ∞) be the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0, ∞) → Rm. Similarly, Lm
2

(−∞, ∞) can be defined for f : (−∞, ∞) → Rm. A truncation
of the function f at T is given by fT (t) = f (t) ∀t ≤ T and fT (t) =

0 ∀t > T . The function f belongs to the extended space Lm
2e[0, ∞)

if fT ∈ Lm
2 [0, ∞) for all T > 0. In addition, L1(−∞, ∞) (hence-

forth L1) is the space of all absolute integrable functions; given a
function h : R → R such that h ∈ L1, its L1-norm is given by

∥h∥1 =


∞

−∞

|h(t)|dt. (1)

A nonlinearity φ : L2e[0, ∞) → L2e[0, ∞) is said to be mem-
oryless if there exists N : R → R such (φv)(t) = N(v(t)) for all
t ∈ R. Henceforth we assume that N(0) = 0. A memoryless non-
linearity φ is said to be bounded if there exists a positive constant
C such that |N(x)| < C |x| for all x ∈ R. The nonlinearity φ is said
to be monotone if for any two real numbers x1 and x2 we have

0 ≤
N(x1) − N(x2)

x1 − x2
. (2)

Moreover, φ is said to be slope-restricted or incrementally
bounded in the sector S[0, k], (henceforward we write φk), if

0 ≤
N(x1) − N(x2)

x1 − x2
≤ k (3)

for all x1 ≠ x2. The nonlinearity φ is said to be odd if N(x) =

−N(−x) for all x ∈ R.
This paper focuses the stability of the feedback interconnection

of a stable LTI system G and a slope-restricted nonlinearity φk,
represented in Fig. 1 and given by

v = f + Gw,
w = −φkv.

(4)

Since G is a stable LTI system, the exogenous input in this part of
the loop can be taken as the zero signal without loss of general-
ity. It is well-posed if the map (v, w) → (0, f ) has a causal in-
verse on L2

2e[0, ∞); this interconnection is L2-stable if for any
f ∈ L2[0, ∞), then Gw ∈ L2[0, ∞) and φkv ∈ L2[0, ∞), and
it is absolutely L2-stable if it is L2-stable for all φk within the class
of nonlinearities. In addition, G(jω) means the transfer function of
the LTI system G. Finally, given an operator M , then M∗ means its
L2-adjoint (see Desoer & Vidyasagar, 1975 for a definition). For LTI
systems,M∗(s) = M⊤(−s), where ⊤ means transpose.

The standard notation L∞ (RL∞) is used for the space of all
(proper real rational) transfer functions bounded on the imaginary
axis and infinity; RH∞ is used for the space of all proper real
rational transfer functions such that all their poles have strictly
negative real parts; and RH⊥

∞
is used for the space of all proper

real rational transfer functions such that all their poles have strictly
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positive real parts. The H∞-norm of a SISO transfer function G is
defined as
∥G∥∞ = sup

ω∈R

(|G(jω)|). (5)

With some acceptable abuse of notation, given a rational strictly
proper transfer functionH(s) bounded on the imaginary axis, ∥H∥1
means the L1-norm of the impulse response of H(s).

2.1. Zames–Falb theorem

The following theorem provides the L2-stability of system (4)
subject to the existence of an appropriate Zames–Falb multiplier.

Theorem 2.1 (Zames & Falb, 1968). Consider the feedback system
in Fig. 1 with G ∈ RH∞, and a nonlinearity φk−ϵ slope-restricted in
S[0, k− ϵ] for some ϵ > 0. Assume that the feedback interconnection
is well-posed. Then suppose that there exists a convolution operator
M : L2(−∞, ∞) → L2(−∞, ∞) whose impulse response is of the
form

m(t) = δ(t) −

∞
i=1

ziδ(t − ti) − za(t), (6)

where δ is the Dirac delta function and

∞
i=0

|zi| < ∞, za ∈ L1, and ti ∈ R ∀i ∈ N. (7)

Assume that:
(i)

∥za∥1 +

∞
i=0

|zi| < 1; (8)

(ii) either za(t) ≥ 0 for all t ∈ R and zi ≥ 0 for all i ∈ N, or φk−ϵ is
odd; and

(iii) there exists δ > 0 such that

Re {M(jω)(1 + kG(jω))} ≥ δ ∀ω ∈ R. (9)

Then the feedback interconnection (4) is L2-stable. �

2.2. Zames–Falb multipliers

Eqs. (6)–(8) in Theorem 2.1 provide the class of Zames–Falb
multipliers. It is a subset of L∞, i.e. it is not limited to rational
transfer functions. However inmany parts of this paper we restrict
our attention to such rational multipliers, i.e. we set zi = 0 for all
i ∈ N.

Definition 2.2. The class of SISO rational Zames–Falb multipliers
M contains all SISO rational transfer functionsM ∈ RL∞ such that
M(s) = 1 − Z(s), where Z(s) is a rational strictly proper transfer
function and ∥Z∥1 < 1.

Lemma 2.3 (Carrasco, Heath, Li et al., 2012). Let M ∈ RL∞ be a ra-
tional transfer function with M(s) = M(∞) + M(s), where M(s)
denotes its associated strictly proper transfer function. Then M(s) is a
Zames–Falb multiplier if and only if ∥M∥1 < M(∞). �

Remark 2.4. The corresponding lemma given in Carrasco, Heath,
Li et al. (2012) is limited toM ∈ RH∞, but its extension toM ∈ RL∞

is straightforward.

In this paper, we will often consider first order Zames–Falb
multipliers, i.e. multipliers represented by a first order transfer
function. These are by implication rational. It is worth noting that
the impulse response of a first order Zames–Falb multiplier is
always positive. Hence in this case condition (ii) in Theorem 2.1
is always satisfied and the odd condition on φk−ϵ is not needed.
A multiplier M ∈ RH∞, with impulse response supported on
the positive time axis is termed a causal multiplier. A multiplier
M ∈ RH⊥

∞
with impulse response supported on the negative time

axis is called an anticausal multiplier. Otherwise, the multiplier is
called noncausal.

2.3. Practicalities and absolute stability

In the original theorem of Zames and Falb (1968), when the
linear condition (9) holds for some constant k, the nonlinearity
is required to belong to the sector S[0, k − ϵ], where ϵ can be
arbitrarily small but strictly positive. Nevertheless, its extension to
the sector S[0, k] is trivial since ∥M∥∞ < 1 (see Carrasco, Heath, Li
et al., 2012; Kulkarni & Safonov, 2002a); thus Theorem 2.1 actually
holds under the weaker assumption that ϵ ≤ 0. A prior lemma is
needed.

Lemma 2.5. Let M ∈ L∞ be a Zames–Falbmultiplier satisfying equa-
tions (6)–(8). Assume that (9) is satisfied for G ∈ RH∞,M, k > 0, and
δ > 0. Then there exist ξ > 0 and δ1 > 0 such that

Re {M(jω)(1 + (k + ξ)G(jω))} ≥ δ1 > 0 ∀ω ∈ R. (10)

Proof. Choose ξ =
δ

2∥G∥∞
. Then

Re

M(jω)


1 +


k +

δ

2∥G∥∞


G(jω)


= Re {M(jω)(1 + kG(jω))} +

δ

2∥G∥∞

Re {M(jω)G(jω)} . (11)

Taking into account that ∥M∥∞ < 1 and (9), it follows that

Re {M(jω)(1 + (k + ξ)G(jω))} ≥ δ1 > 0 ∀ω ∈ R, (12)

where δ1 =
δ
2 . �

The significance of Theorem 2.1 is that it can be applied
when the nonlinearity is characterized to be memoryless, slope-
restricted, and odd (in some cases). An absolute stability result can
be stated as follows:

Corollary 2.6. Consider the feedback system in Fig. 1 with G ∈ RH∞

and any nonlinearity φk slope-restricted in S[0, k]. Assume that the
system is well-posed. Then suppose that there exists M ∈ M such
that:
(i) either φk is odd or the inverse Laplace transform of H(s) = M(s)

− 1 is negative for all t ∈ R; and
(ii) there exists δ > 0 such that

Re {M(jω)(1 + kG(jω))} ≥ δ ∀ω ∈ R. (13)

Then the feedback interconnection (4) is absolutely stable.

In this paper, we compare different criteria for absolute
stability. If a criterion guarantees the stability of feedback of G ∈

RH∞ and any nonlinearity φk slope-restricted in S[0, k], then the
linear feedback interconnection of G(s) and any linear gain 0 ≤

K ≤ kmust be stable. The following definition is used inworks that
focus on stability criteria, e.g. Chen and Wen (1995); and Safonov
and Wyetzner (1987).

Definition 2.7. Given G ∈ RH∞, the Nyquist value kN is the supre-
mum of the values k such that KG(s) satisfies the Nyquist Criterion
for all K ∈ [0, k], i.e.

kN = sup{k ∈ R
+

: inf
ω

{|1 + KG(jω)|} > 0 ∀K ∈ [0, k]}. (14)

As a result, we can restrict our attention to a subset of RH∞

without loss of generality. This will be essential to prove the re-
lationship between Zames–Falbmultipliers and Popovmultipliers.
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Definition 2.8. The subset SR ⊂ RH∞ is defined as follows

SR = {G ∈ RH∞ :G−1
∈ RH∞ andG(∞) > 0}. (15)

Lemma 2.9. Assume that the feedback interconnection in Fig. 1 with
G ∈ RH∞ and any nonlinearity φk slope-restricted S[0, k] is L2-
stable. Then (1 + kG) ∈ SR.

It follows that if G = 1 + kG ∉ SR, with G ∈ RH∞ and
k > 0, then the feedback interconnection of G and the class of
nonlinearities slope-restricted in S[0, k] cannot be absolutely L2-
stable.

3. Equivalence of multipliers

In the literature of SISO slope-restricted nonlinearities, several
classes of multipliers have been defined. The equivalence between
specific classes is discussed by Falb andZames (1968); Kulkarni and
Safonov (2002b) but in neither is a general concept of equivalence
rigorously defined. Similarly, alternative definitions of the Popov
multiplier in the early literature (Brockett & Willems, 1965) im-
plicitly assume such equivalence. In the following, we define the
terms phase-substitute, phase-contained, and phase-equivalent with
respect to classes of multipliers.

Our notion of phase-containment for a class of nonlinearities is
madewith respect to an appropriate set of LTI systems.We restrict
our attention to the set SR, which by Lemma 2.9 is naturally
associated with slope-restricted nonlinearities.

For slope-restricted nonlinearities we can define the concept of
phase-substitution as follows:

Definition 3.1. LetMa andMb be twomultipliers andG ∈ SR. The
multiplierM is a phase-substitute of the multiplier Ma when

Re

Ma(jω)G(jω)


≥ δ1 ∀ω ∈ R

for some δ1 > 0 implies

Re

Mb(jω)G(jω)


≥ δ2 ∀ω ∈ R

for some δ2 > 0.

Remark 3.2. If a multiplier Mb is a phase-substitute of Ma, then
loosely speakingMa can be substituted byMb in a stability result.

The notion phase-containment is the extension of phase-
substitution for the full class.

Definition 3.3. Let MA and MB be two classes of multipliers. The
class MA is phase-contained within the class MB if given a multi-
plier Ma ∈ MA, then there exists Mb ∈ MB such that it is a phase-
substitute ofMa.

Definitions 3.1 and 3.4 lead naturally to the following definition
of equivalence:

Definition 3.4. Two classes of multipliers, MA and MB, are phase-
equivalent if MA is phase-contained within MB and MB is phase-
contained within MA.

In the following sections, we will show relationships between
different classes of multipliers and the Zames–Falb multipliers:

• The class of Popov multipliers is phase-contained within the
class of first order Zames–Falb multipliers, as suggested by
Kulkarni and Safonov (2002b). In Section 4,we confirm the rela-
tion with mathematical rigour. In particular we show the class
of Popov multipliers with positive constant is phase-contained
within the class of causal first order Zames–Falb multipliers
while the class of Popov multipliers with negative constant
is phase-contained within the class of anti-causal first order
Zames–Falb multipliers.

• In Section 5 we show the class of SISO multipliers proposed
by Park (2002) is phase-equivalent to the class of first order
Zames–Falb multipliers.

• In Section 6 we show the classes of multipliers generated by
the extensions of the Zames–Falbmultipliers given in Altshuller
(2011); Jönsson (1997); and Turner and Kerr (2012) are all
phase-contained within the class of Zames–Falb multipliers.

4. Popov multipliers

Popov multipliers were the first multipliers proposed in the
literature (Popov, 1961). Moreover, the cited paper gives the first
general solution to the Lur’e problem when the nonlinearity is
sector-bounded and time invariant. However, the use of this class
of multipliers carries the restriction that the LTI system must be
strictly proper and the derivative of the input (depicted f in Fig. 1)
must belong to L2 (see Section 6.6.2 in Vidyasagar (1993)).

Definition 4.1. The class of Popov multipliers is given by

M(s) = 1 + qs, where q ∈ R. (16)

Remark 4.2. An alternative definition is given by Brockett and
Willems (1965):

M(s) = (1 + qs)±1, where q > 0. (17)

This gives a phase-equivalent class of multiplier.

Since they are not biproper, these are not Zames–Falb multipli-
ers. They have been identified as a limiting case of the Zames–Falb
multiplier in Kulkarni and Safonov (2002b) as follows:

1 + qs = lim
ϵ→0+

1 + qs
1 + ϵs

, (18)

1
1 + qs

= lim
ϵ→0+

1 + ϵs
1 + qs

. (19)

A careful analysis of both limits shows that the transfer function on
the right in (18) is a Zames–Falb multiplier when ϵ is sufficiently
small, but that the transfer function on the right in (19) is not a
Zames–Falbmultiplier for small ϵ. Moreover the equivalence is not
well-defined: at high frequency the Popov multiplier in (18) is un-
bounded.

Let us first characterize the class of first order Zames–Falb
multipliers.

Corollary 4.3. Let M(s) be a first order transfer function given by

M(s) =
1 + νs
1 + κs

. (20)

Then, M ∈ M if and only if νκ > 0 and
1 −

ν
κ

 < ν
κ
.

Proof. Given ν > 0 and κ > 0, thenM(∞) =
ν
κ
, and M̃(s) is given

by

M̃(s) =
1 −

ν
κ

1 + κs
. (21)

Applying Lemma 2.3 and using the relation 1
1 + κs


1

= 1 (22)

gives the result. �
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It is clear that the limit in (18) is a Zames–Falb multiplier for all
ϵ > 0 since q

ϵ
− 1 <

q
ϵ
. The relation between multipliers indicated

by (18) can be formalized as follows:

Lemma 4.4. The class of Popov multipliers with positive constant q
is phase-contained within the class of causal first order Zames–Falb
multipliers.

Proof. Assume that there exists some q > 0 such that

Re

(1 + qjω)G(jω)


≥ δ ∀ω ∈ R, (23)

for some δ > 0 and someG ∈ SR. Let us take arbitrarily small ϵ
such that 0 < ϵ < q. Then, the phase-substitute multiplier

M(s) =
1 + qs
1 + ϵs

, (24)

is a Zames–Falb multiplier and it is straightforward that there
exists a δ2 such that

Re

M(jω)G(jω)


> δ2 ∀ω ∈ R. � (25)

In the case of ν < κ , Corollary 4.3 requires ν < κ < 2ν. Thus,
the limit in (19) is not a Zames–Falb multiplier as soon as 2ϵ ≤ q.
Nevertheless, if the class of Popov multipliers is considered by us-
ing (17), an appropriate limit with ϵ < 0 can be stated:

1 + qs = lim
ϵ→0−

1 + qs
1 + ϵs

, q < 0. (26)

Lemma 4.5. The class of Popovmultiplierswith negative constant q is
phase-containedwithin the class of anti-causal first order Zames–Falb
multipliers.

Proof. Similar to Lemma 4.4 but with ϵ < 0. �

Remark 4.6. We may think of a Popov multiplier as a first order
Zames–Falb multiplier but with its pole at infinity.

As a result, a new version of the Popov Theorem can be given
as a corollary of Theorem 2.1. We require that the nonlinearity
be slope-restricted with k finite. However the LTI system may be
biproper and input–output stability is established without further
restriction on the derivative of the input:

Corollary 4.7 (Popov Theorem). Let G ∈ RH∞ and let φk be a slope-
restricted S[0, k] nonlinearity. If there exists q ∈ R such that

Re {(1 + qjω)(1 + kG(jω))} ≥ δ ∀ω ∈ R (27)

for some δ > 0, then the feedback interconnection (4) is L2-
stable. �

5. Park’s multipliers

Park (2002) proposes a class of multipliers which corresponds
to a stability condition that can be tested by a convex search.
It is easy to show the phase-equivalence between this class of
multipliers and the class of first order Zames–Falb multipliers. The
multipliers are given by

M(s) = −s2 + a2 + bs, a ∈ R, b ∈ R. (28)

The quadratic term was introduced by Yakubovich (1965)2 where
the frequency condition was obtained by using a Lur’e–Postnikov

2 Other authors (Altshuller, 2011; Barabanov, 1988) cite a conference paper in
1962 now unavailable.
type Lyapunov function. A similar result was independently de-
veloped by Dewey and Jury (1966) within an embryonic passivity
framework. Barabanov (1988) uses the same class of multipliers to
demonstrate the Kalman conjecture for third order systems.

As commented by Park (2002), a proper multiplier with the
same phase can be defined as follows:

Definition 5.1. The class of Park’s multipliers is given by

MP(s) = 1 +
bs

−s2 + a2
(29)

where a and b are real numbers.

Not all multipliers in this class are Zames–Falb multipliers.
However the following results provide the equivalence to the class
of first order Zames–Falb multipliers. A prior result is needed in
order to show that all first order Zames–Falbmultipliers are phase-
equivalent to a subset of the first order Zames–Falb multipliers.

Lemma 5.2. The class of first order Zames–Falb multipliers is phase-
equivalent to the subset of first order Zames–Falb multiplier given by

M(s) =
s + a
s + b

(30)

such that ab > 0 and |a| < |b|.

Proof. Weneed to show that the first order Zames–Falbmultiplier
which are not contained within the subset can be substituted by a
elementwithin the subset. Let us consider a first order Zames–Falb
multiplier

M(s) =
s + a
s + b

(31)

where ab > 0, and assume that |a| > |b| and

Re{M(jω)G(jω)} > δ1 ∀ω ∈ R, (32)

for someG ∈ SR. Then, its phase-substitute Zames–Falb multi-
plier is

M ′(s) =
s − b
s − a

, (33)

where Corollary 4.3 can be applied in order to prove that M ′
∈ M

and

(jω + a)(−jω + a)
(jω + b)(−jω + b)

Re{M ′(jω)G(jω)} > δ1 ∀ω ∈ R. (34)

Since there exists ξ such that

1
ξ

>
(jω + a)(−jω + a)
(jω + b)(−jω + b)

> ξ ∀ω ∈ R (35)

it follows that there exists δ2 such that

Re{M ′(jω)G(jω)} > δ2 ∀ω ∈ R. � (36)

An equivalence result follows:

Lemma 5.3. The class of Park’s multipliers is phase-equivalent to the
class of first order Zames–Falb multipliers.

Proof. LetMP be a Park’s multiplier such that

Re{MP(jω)G(jω)} > δ1 ∀ω ∈ R, (37)
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for some δ1 and someG ∈ SR and let z1 and z2 be the roots of
−s2 + bs + a2. If b > 0, then

z1 =
b −

√
b2 + 4a2

2
, (38)

z2 =
b +

√
b2 + 4a2

2
, (39)

and if b < 0

z1 =
b +

√
b2 + 4a2

2
, (40)

z2 =
b −

√
b2 + 4a2

2
. (41)

Note that |z1| < |z2|. Then, (37) is equivalent to the condition

Re

−

(jω − z1)(jω − z2)
(a + jω)(a − jω)

G(jω)


> δ1 ∀ω ∈ R (42)

or equivalently

Re

−

(jω − z1)(jω − z2)
(a + jω)(a − jω)

(−jω − z2)
(−jω − z2)

G(jω)


> δ1 (43)

for all ω ∈ R. This can be rewritten as

Re

jω − z1
jω + z2

(jω − z2)(−jω − z2)
(a + jω)(a − jω)

G(jω)


> δ1 (44)

for all ω ∈ R. But there exists ξ such that

1
ξ

>
(jω − z2)(−jω − z2)

(a + jω)(a − jω)
> ξ > 0. (45)

Hence, it follows that (37) is satisfied if and only if there exists some
δ2 > 0 such that

Re

jω − z1
jω + z2

G(jω)


> δ2 ∀ω ∈ R. (46)

Since z1z2 < 0 and |z1| < |z2|, the application of Lemma 2.3 leads
to

M(s) =
s − z1
s + z2

∈ M. (47)

Finally, we need to prove the necessity. The result is straightfor-
wardly obtained by using Lemma 5.2. �

Remark 5.4. A more detailed classification can be extracted from
(39) and (46). Given a Park’s multiplier with b > 0, its phase-
substitute Zames–Falb multiplier is causal, whereas if b < 0, its
phase-substitute Zames–Falb multiplier is anticausal.

The stability result proposed in Park (2002) now follows as a
corollary of Theorem 2.1 and can be stated in terms of L2-stability
without a requirement that the LTI plant be strictly proper.

Corollary 5.5. Let G ∈ RH∞ and let φk be a slope-restricted S[0, k]
nonlinearity. If there exists a multiplier Mp of the form (29) such that

Re

Mp(jω)(1 + kG(jω))


≥ δ ∀ω ∈ R (48)

for some δ > 0, then the feedback interconnection (4) is L2-
stable. �

In summary, the result given in Park (2002) can be understood
as an LMI search over the whole class of first order rational
Zames–Falb multipliers.
6. Extensions of Zames–Falb multipliers

Three different extensions of the class of Zames–Falb multipli-
ers have beenproposed in the literature: adding a ‘‘Popov term’’, i.e.
qs, (Jönsson, 1997), adding a Popovmultiplier (Turner &Kerr, 2012)
and adding a ‘‘Yakubovich term’’ i.e. −κ2s2 (Altshuller, 2011).
For SISO systems, we show that all three extensions are phase-
contained within the original class, and hence any additional con-
ditions associated with the extra terms are not needed.

6.1. Extension adding the Popov term

The extended class is defined as follows:

Definition 6.1. The class of Popov-extended Zames–Falbmultipli-
ers is given by

MPZF(s) = qs + M(s) (49)

where q ∈ R and where M(s) belongs to the class of Zames–Falb
multipliers.

Lemma 6.2. The class of Popov-extended Zames–Falb multipliers is
phase-contained within the class of Zames–Falb multiplier.

Proof. Given a multiplier M ∈ M then M(s) = 1 + H(s) for some
strictly proper transfer functionH(s)with ∥H(s)∥1 < 1. Then there
exists ρ > 0 such that ∥H(s)∥1 < 1 − ρ. Thus,

M(s) = ρ + ((1 − ρ) + H(s)) = ρ + M ′(s) (50)

where M ′(s) is a Zames–Falb multiplier. Hence (49) can be
rewritten as follows

MPZF(s) = ρ


1 +

q
ρ
s


+ (M(s) − ρ). (51)

The argument is similar to the proof of Lemma 4.4. LetG ∈ SR.
There is some δ1 > 0 such thatMPZF satisfies

Re{MPZF(jω)G(jω)} > δ1 ∀ω ∈ R. (52)

For ϵ sufficiently small chosen such that ϵq > 0, the multiplier
given by

M2(s) = ρ


1 +

q
ρ
s

1 + ϵs


+ M ′

1(s), (53)

is a Zames–Falb multiplier (since the sum of two Zames–Falb
multipliers is also a Zames–Falb multiplier) and satisfies

Re{M2(jω)G(jω)} > δ2 ∀ω ∈ R, (54)

with δ2 > 0. �

Remark 6.3. Jönsson (1997) suggests that such an extension can
give better results. The apparent contradiction here is associated
with our restriction that Ĝ should be biproper, whereas the exam-
ple of Jönsson (1997) is strictly proper. See Carrasco, Heath, and
Lanzon (2013) for further discussion.

We can state the result given by Jönsson (1997) as a corollary of
Theorem 2.1, avoiding further conditions normally imposed by the
use of a Popov multiplier.

Corollary 6.4. Let G ∈ RH∞ and let φk be a slope-restricted S[0, k]
nonlinearity. Assume that there exists a Popov-extended Zames–Falb
multiplier MPZF such that

Re {MPZF(jω)(1 + kG(jω))} ≥ δ ∀ω ∈ R (55)

for some δ > 0. Then the feedback interconnection (4) is L2-
stable. �
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6.2. Extension adding a Popov multiplier

A convex search over a class of causal Zames–Falbmultipliers is
proposed by Turner et al. (2009). A further proposal to add a Popov
multiplier gives improved results (Turner & Kerr, 2012). See also
Carrasco, Heath, Li et al. (2012) and Turner, Kerr, and Postlethwaite
(2012) for discussion.

Definition 6.5. The class of Popov plus Zames–Falb multipliers is
given by

MP+ZF(s) = ϑ(1 + qs) + M(s) (56)

where q ∈ R, where ϑ > 0 and whereM(s) belongs to the class of
Zames–Falb multipliers.

Lemma 6.6. The class of Popov plus Zames–Falb multipliers is phase-
contained within the class of Zames–Falb multipliers.

Proof. Let us take a Popov plus Zames–Falb multiplier given by

MP+ZF(s) = ϑ + ηs + M(s) ϑ > 0 η ∈ R, (57)

where M(s) is a Zames–Falb multiplier, i.e.

MP+ZF(s) = ϑ + ηs + 1 + H(s), (58)

where ∥H∥1 < 1. Then MP+ZF can be rewritten as a multiplier
consider in the previous section as follows

MP+ZF(s) = (ϑ + 1)


η

ϑ + 1
s + 1 +

H(s)
ϑ + 1


, (59)

where the proportional constant can trivially be ignored. Since
ϑ > 0, then H(s)

ϑ + 1


1

< 1, (60)

yielding

MP+ZF(s) = (ϑ + 1)MPZF(s). (61)

Therefore, the result is obtained by applying Lemma 6.2. �

Remark 6.7. Turner and Kerr (2012) claim that a search over the
class of Popov plus Zames–Falb multipliers can have significant
improvement over the search proposed by Turner et al. (2009).
Lemma 6.6 does not contradict the result presented by Turner and
Kerr (2012). The original search of Turner et al. (2009) is carried
out within the class of causal Zames–Falb multipliers, whereas the
search over the class of Popov plus Zames–Falb multipliers can
result in a noncausal Zames–Falb multiplier if q < 0, as shown
in Lemma 4.5.

Once again, the following corollary of Theorem 2.1 relaxes the
conditions for applying Proposition 1 of Turner andKerr (2012) and
provides an L2-stability result.

Corollary 6.8. Let G ∈ RH∞ and let φk be a slope-restricted S[0, k]
nonlinearity. Assume that there exists a Popov plus Zames–Falb
multiplier MP+ZF such that

Re {MP+ZF(jω)(1 + kG(jω))} ≥ δ ∀ω ∈ R (62)

for some δ > 0. Then the feedback interconnection (4) is L2-stable.

Remark 6.9. Although not required in Corollary 6.8, a condition
that G be strictly proper is required for the derivation of the LMI
given by Eq. (3) of Turner and Kerr (2012) since the state space
representation of sG(s) is used.
6.3. Extension with ‘‘Yakubovich term’’

Using Theorem 3 in Altshuller (2011) for SISO systems, the class
of Zames–Falb multipliers can be extended as follows:

Definition 6.10. The class of Yakubovich–Zames–Falb multipliers
is given by

MYZF(s) = −κ2s2 + M(s), κ ∈ R, (63)

where κ ∈ R and M(s) is a Zames–Falb multiplier.

Lemma 6.11. The class of Yakubovich–Zames–Falb multiplier is
phase-contained with the class of Zames–Falb multipliers.

Proof. We have already observed thatM(jω) in (28) has the same
phase as MP(jω) in (29); see also Corollary 4 and Corollary 5 in
Dewey and Jury (1966). Similarly, since (1 + κ2ω2) > 1 for all
ω ∈ R, it is straightforward to show that the class defined by (63)
is phase-equivalent to the class defined by

MYZF(s) = 1 +
H(s)

1 − κ2s2
, (64)

where H(s) is a strictly proper transfer function such that ∥H∥1 <
1. Since ∥H1H2∥1 ≤ ∥H1∥1∥H2∥1 (Lemma 12 in Vidyasagar (1993,
p. 295)), it follows that H
1 − κ2s2


1

≤ ∥H∥1

 1
1 − κs


1

 1
1 + κs


1

< 1. (65)

Hence, the multiplierMYZF(s) is a Zames–Falb multiplier. �

Finally, the following corollary of Theorem 2.1 is less restrictive
that the SISO version of the result given by Altshuller (2011).

Corollary 6.12. Let G ∈ RH∞ and let φk be a slope-restricted S[0, k]
nonlinearity. Assume that there exists a Yakubovich Zames–Falb
multiplier MYZF such that

Re {MYZF(jω)(1 + kG(jω))} ≥ δ ∀ω ∈ R (66)

for some δ > 0. Then the feedback interconnection (4) is L2-
stable. �

7. Comments on the classes of multipliers

Our results prompt the natural questions: are multipliers such
as the Popov multiplier and Park’s multiplier redundant when the
nonlinearity is slope-restricted and are the extensions useless? The
answers remain an emphatic no.

Consider for example the class of Park’s multipliers. We have
shown (Lemma 5.3) that it is phase-equivalent to the class of first
order Zames–Falb multipliers (note in passing that this gives an
independent proof of Theorem 2 in Park (2002)). We have also ob-
served that Park’s multipliers have been discovered many times in
the literature (Barabanov, 1988; Dewey & Jury, 1966; Yakubovich,
1965). Nevertheless themain contribution of Park (2002) remains:
a parametrization of the first order Zames–Falb multipliers that
is amenable to convex search. It is for this reason that the stabil-
ity test of Park (2002) has become a benchmark (e.g. Turner et al.,
2009) despite appearing in the literature more than 30 years after
the originalwork of Zames and Falb (1968).We emphasize that it is
the parametrization of the class of multiplier rather than the class
itself that is novel.

In Turner and Kerr (2012); and Turner et al. (2012), a search
over the class of Popov–Zames–Falb multipliers shows promis-
ing results. As demonstrated in Section 6, there exists an equiva-
lent Zames–Falb multiplier with the same properties as any such
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Popov–Zames–Falbmultiplier, but a convex search over the equiv-
alent Zames–Falb multipliers is not yet known. A similar search
over anticausal Zames–Falb multipliers has been proposed by
Carrasco, Maya-Gonzalez, Lanzon, and Heath (2012) and its ex-
tension to Popov–Zames–Falb multipliers is also possible. They
appear to be the most competitive searches over Zames–Falb
multipliers. Therefore, extensions are very useful to provide bet-
ter parametrizations of the class of Zames–Falb multipliers.

8. Conclusion

In order to analyse the relationships between different
classes of multipliers, notions of phase-containment and phase-
equivalence have been defined. Most of the classes of multipli-
ers defined in the literature for slope-restricted nonlinearities,
such as Popovmultipliers, Park’s multipliers, and the extensions of
Zames–Falb multipliers, are discussed in this paper. Lemmas 4.4,
4.5, 5.3, 6.2, 6.6 and 6.11 show that all these classes of multi-
pliers are phase-contained within the class of Zames–Falb mul-
tipliers. This provides new L2-stability results as corollaries of
Theorem 2.1. The only conditions required are those which are
given for the Zames–Falb multipliers (Zames & Falb, 1968). Corol-
laries 4.7, 5.5, 6.4 and 6.12 are all believed to be novel.

No convex search over the whole class of Zames–Falb multipli-
ers has yet been found. This can be largely ascribed to difficulties
associated with the bound on the L1-norm in the original defini-
tion. Hence from a practical point of view, the classes ofmultipliers
discussed in this paper remain useful. The analysis of this paper in-
dicates that any improvement from their use should be interpreted
as arising from a convenient parametrization within the class of
Zames–Falb multipliers.
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