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Abstract

We consider the feedback stabilization of a variable profile for an ensemble of non interacting half spins described by the
Bloch equations. We propose an explicit feedback law that stabilizes asymptotically the system around a given arbitrary target
profile. The convergence proof is done when the target profile is entirely in the south hemisphere or in the north hemisphere of
the Bloch sphere. The convergence holds for initial conditions in a H1 neighborhood of this target profile. This convergence is
shown for the weak H1 topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional
systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the target
profile.

Key words: nonlinear systems, Lyapunov stabilization, LaSalle invariance, quantum systems, Bloch equations, ensemble
controllability, infinite dimensional system.

1 Introduction

Ensemble controllability as introduced in Li and Khaneja
(2009) is an interesting control theoretic notion well
adapted to nuclear magnetic resonance (NMR) sys-
tems (see, e.g., Li and Khaneja (2006) and the reference
herein). In Beauchard et al. (2010) some controllability
issues of such NMR systems are investigated using open-
loop controls involving Dirac-combs. In Beauchard et al.
(2011) such open-loop Dirac-combs are combined with
Lyapunov stabilizing feedback to ensure closed-loop
convergence towards a target profile that is one of the
two steady-states, the south and north poles of the
Bloch sphere. In this note, we extend this Lyapunov
design to arbitrary target profiles and prove its local
convergence for weak H1 topology when the target pro-
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file lies entirely in the south hemisphere or in the north
hemisphere.

We consider an ensemble of non interacting half-spins
in a static field (0, 0, B0)

t in R3, subject to a transverse
radio frequency field (ũ1(t), ũ2(t), 0)

t in R3 (the control
input). The ensemble of half-spins is described by the
magnetization vector M ∈ R3 depending on time t but
also on the Larmor frequency ω = −γB0 (γ is the gyro-
magnetic ratio). It obeys to the Bloch equation:

∂M

∂t
(t, ω) = (ũ1(t)e1 + ũ2(t)e2 + ωe3) ∧M(t, ω), (1)

where −∞ < ω∗ < ω∗ < +∞, ω ∈ (ω∗, ω
∗), (e1, e2, e3)

is the canonical basis ofR3, ∧ denotes the wedge product
on R3. The equation (1) is an infinite dimensional bilin-
ear control system. The state is the ω-profile M , where,
for every ω ∈ (ω∗, ω

∗), M(t, ω) ∈ S2 (the unit sphere of
R3). The two control inputs ũ1 and ũ2 are real valued.

We propose here a first answer to the local stabilization
of an arbitrary profile: given an arbitrary target pro-
file Mf : (ω∗, ω

∗) → S2, define an explicit control law
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(ũ1(t,M), ũ2(t,M)), a neighborhood U of Mf (in some
space of functions to be determined), a diverging se-
quence of times (tn)n∈N, such that, for every initial con-
dition M0 ∈ U , the solution of the closed loop system is
uniquely defined and satisfies

lim
n→+∞

‖M(tn, .)−Mf(.)‖L∞(ω∗,ω∗) = 0.

In this note, the Lyapunov feedback proposed in Beauchard et al.
(2011) is adapted to provide a constructive answer to
this question. Section 2 is devoted to control design and
closed-loop simulations. In section 3 we state and prove
the main convergence result, theorem 1.

2 Lyapunov H1 approach

2.1 Some preliminaries

Let us recall the concept of a solution for (1) when
the control input u contains Dirac distributions. When
ũ1, ũ2 ∈ L1

loc(R), then, for every initial condition M0 ∈
L2((ω∗, ω

∗),R3), the equation (1) has a unique weak so-
lution M ∈ C0([0,+∞), L2((ω∗, ω

∗),R3)). Denote by
δ(t − a) the Dirac distribution located at t = a. When

ũ1 = αδ(t − a) + u♯
1 and ũ2 = u♯

2 where u♯
j ∈ L1

loc(R),

α > 0 and a ∈ (0,+∞), then the solution is the classical
solution on [0, a) and (a,+∞), it is discontinuous at the
time t = a, with an explicit discontinuity given by an
instantaneous rotation of angle α around the axis Re1

M(a+, ω) =









1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)









M(a−, ω).

The symbol ‖.‖ (resp. 〈., .〉) denotes the Euclidian norm
(resp. scalar product) on R

3 and the associated operator
norm on M3(R).

2.2 Transformation into a driftless system

As in Beauchard et al. (2011) we consider a control with
an “impulse-train” structure

ũ1 = u1 +

+∞
∑

k=1

π δ(t− kT ), ũ2 = (−1)ǫ(t)u2 (2)

where ǫ(t) := E(t/T ), for some period T > 0 and E(γ)
denotes the integer part of the real number γ. The new
controlsu1, u2 belong toL

1
loc(R). Considering the change

of variable

M1(t, ω) := P (t)M(t, ω) where P (t) :=









1 0 0

0 ǫ(t) 0

0 0 ǫ(t)









(3)
one gets the following dynamics

∂M1

∂t
(t, ω) = [u1(t)e1+u2(t)e2+ ǫ(t)ω]∧M1(t, ω). (4)

The application of impulses at t = kT , by changing the
sense of rotation of the null input solution, is expected
to reduce the dispersion in the closed loop system. Since
M(t, ω) = M1(t, ω) for every t ∈ [2kT, (2k + 1)T ], any
convergence result on M1(t) when t → +∞ provides a
convergence result on M .

The first step of the control design consists in putting
the system (4) in driftless form. The new function

M2(t, ω) := exp[σ(t)ωS]M1(t, ω)

where

σ(t) :=

∫ t

0

ǫ(s)ds, S :=









0 1 0

−1 0 0

0 0 0









, (5)

solves

∂M2

∂t
(t, ω) =

2
∑

i=1

ui(t)
[

exp(σ(t)ωS)ei

]

∧M2(t, ω). (6)

Since σ(2kT ) = 0, ∀k ∈ N, any convergence on M2(t)
when t → +∞ provides a convergence onM1(2kT ) when
k → +∞.

2.3 Transformation of the target profile

The second step of the control design consists in trans-
forming a convergence to a variable profile Mf into a
convergence to the constant profile −e3, for which we
developed tools in the previous work Beauchard et al.
(2011). It relies on the following proposition.

Proposition 1 There exists C > 0 such that, for all
Mf ∈ H1((ω∗, ω

∗), S2), there existsR ∈ H1((ω∗, ω
∗), SO3(R))

satisfying

R(ω)Mf(ω) = −e3, ∀ω ∈ [ω∗, ω
∗], (7)

‖R‖H1 6 C‖Mf‖H1 . (8)
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Proof: Let Mf ∈ H1((ω∗, ω
∗), S2) and set f(ω) :=

M ′
f(ω) ∧ Mf (ω). Denote by A(ω) the skew-symmetric

operator defined by R3 ∋ M 7→ f(ω) ∧ M ∈ R3. Con-
sider the Cauchy problem

d

dω
R = RA(ω) on [ω∗, ω

∗] with R(ω∗) = R∗

where R∗ is any rotation sending Mf (ω∗) to −e3:
R∗Mf (ω∗) = −e3. Since ω 7→ A(ω) is L2 the solution R
is well defined, unique and belongs to H1((ω∗, ω

∗), S2).
Direct computations show that d

dω
(RMf ) = 0. Thus

R(ω)Mf(ω) ≡ −e3. Moreover, ‖R(ω)‖ = 1 and
‖R′(ω)‖ = ‖A(ω)‖ = ‖M ′

f(ω)‖ for all ω ∈ [ω∗, ω
∗],

which proves (8). ✷.

Let us consider a target profile Mf ∈ H1((ω∗, ω
∗), S2).

Take R ∈ H1((ω∗, ω
∗), SO3(R)) given by the above

proposition. To any solution M2 of (6), we associate the
function

N(t, ω) := R(ω)M2(t, ω), ∀ω ∈ [−ω∗, ω
∗]. (9)

This function solves the equation

∂N

∂t
(t, ω) =

2
∑

i=1

ui(t)
[

F (t, ω)ei

]

∧N(t, ω) (10)

where

F (t, ω) := R(ω) exp(σ(t)ωS). (11)

The convergence ofN(t, ω) to −e3 as t → +∞ is equiva-
lent to the convergence ofM2(t, ω) toMf (ω) as t → +∞.

2.4 Lyapunov feedback

Let us consider the following Lyapunov-like functional

L(N) :=
‖N + e3‖

2
H1

2

=

ω∗

∫

ω∗

(1

2

∥

∥

∥

∂N

∂ω

∥

∥

∥

2

+ 1 + 〈N, e3〉
)

dω. (12)

The function L is defined for any N ∈ H1((ω∗, ω
∗), S2)

and takes its minimal value on this space at the point
N = −e3 with L(−e3) = 0. For any solution of (10),
some computations show that

dL

dt
[N(t)] =

2
∑

i=1

ui(t)Hi[t, N(t)]

where, for i = 1, 2 one has

Hi[t, N ] :=

∫ ω∗

ω∗

[〈

dN

dω
(ω),

(∂F

∂ω
(t, ω)ei

)

∧N(ω)

〉

+
〈

e3,
(

F (t, ω)e1

)

∧N(ω)
〉

]

dω.

Hence, with the feedback laws

ui(t, N) := −Hi[t, N ], ∀i ∈ {1, 2}, (13)

it follows that

dL

dt
[N(t)] = −u1(t, N)2 − u2(t, N)2 6 0. (14)

As in Beauchard et al. (2011), we have the following re-
sult.

Proposition 2 For every initial condition N0 ∈
H1((ω∗, ω

∗), S2), the closed loop system (10), (13) has a
unique solution N ∈ C1

(

[0,∞), H1
(

(ω∗, ω
∗),R3

))

such
that N(0) = N0.

2.5 Closed-loop simulations

We assume here ω∗ = 0, ω∗ = 1 andwe solve numerically
the T -periodic system (1) with the feedback law (ũ1, ũ2)
given by (2), (13). The closed-loop simulation is per-
formed for t ∈ [0, Tf ], Tf = 20T and T = 2π/(ω∗ − ω∗).
The ω-profile [ω∗, ω

∗] ∋ ω 7→ (x(t, ω), y(t, ω), z(t, ω)) is
discretized {1, . . . , N + 1} ∋ k 7→ (xk(t), yk(t), zk(t))

with a regular mesh of step ǫN = ω∗−ω∗

N
with N = 100.

In other words, one has a set of discrete values {ωi, i =
1, . . . , N + 1}, where ωi = ω∗ + (i − 1)ǫN .

We have checked that the closed-loop simulations are
almost identical for N = 100 and N = 200. In the
feedback law (16), the integral versus ω is computed as-
suming that (x, y, z) and (x′, y′, z′) are constant over
](k − 1

2 )ǫN , (k + 1
2 )ǫN [, their values being (xk, yk, zk)

and
(

xk+1−xk−1

2ǫN
,
yk+1−yk−1

2ǫN
,
zk+1−zk−1

2ǫN

)

. The obtained

differential system is of dimension 3(N + 1). It is in-
tegrated via an explicit Euler scheme with a step size
h = T/1000. We have tested that h = T/2000 yields al-
most the same numerical solution at t = Tf = 20T . Af-
ter each time-step the new values of (xk, yk, zk) are nor-
malized to remain in S2. The initial ω-profile M0(ω) of

(x, y, z) ∈ S2 is given by x0 = 0, y0 = −
√

1− z20 , where
z0 = − cos(π8 ) + 0.05

(

1− cos(π8 ) cos(ω
π
2 )
)

. The desired

final profile Mf(ω) is given by xf = −
√

1− z2f , yf = 0,

where zf = − cos( π
16 ) + 0.1

(

1− cos( π
16 ) sin(ω

π
4 )
)

.

The map R(ω) is constructed for the discrete set
{ωi, i = 1, . . . , N + 1}, in the following way. For
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i = 1, one takes r3(ω1) = M0(ω1). Now choose a
vector θ among the vectors of the canonical basis
in a way that 〈θ,Mf (ω1)〉 is the minimum value.
Construct r2(ω1) = 1

‖θ∧r3(ω1)‖
(θ ∧ r3(ω1)). Then

one may take r1(ω2) = r2(ω2) ∧ r3(ω2). Now, for
i = 2, 3, . . . , N + 1 one chooses r3(ωi) = M0(ωi),
θ = −r1(ωi−1), r2(ωi) = 1

‖θ∧r3(ωi)‖
(θ ∧ r3(ωi)) and

r1(ωi) = r2(ωi) ∧ r3(ωi), and so on. The orthogonal
matrix R̄(ω) formed by the column vectors r1, r2, r3 is
then transposed to obtain R(ω).

Figures 1 and 2 summarize the main convergence issues
for these choices of initial profile M0 and of the desired
final profile Mf . The convergence speed is rapid at the
beginning and tends to decrease at the end. We start
with L(0) ≈ 0.1929. We get L(20T ) ≈ 0.0032. This nu-
merically observed convergence is confirmed by Theo-
rem 1 here below.
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Fig. 1. Lyapunov function L(t) defined by (12) and the
closed-loop control (u1, u2) defined by (13)

3 Main Result

3.1 Local stabilization

Theorem 1 For every Mf ∈ H1((ω∗, ω
∗), S2) with

〈Mf (ω), e3〉 6= 0, ∀ω ∈ [ω∗, ω
∗], (15)

there exists δ1 > 0 such that, for everyN0 ∈ H1((ω∗, ω
∗), S2)

with ‖N0 + e3‖H1 ≤ δ1, the solution of the closed loop
system (10), (13) with initial condition N(0, ω) = N0(ω)
satisfies N(t) ⇀ −e3 weakly in H1(ω∗, ω

∗) when
t → +∞.

The above theorem has the following corollary.

Corollary 1 For every Mf ∈ H1((ω∗, ω
∗), S2) with

(15), there exists δ2 > 0 such that, for every M0 ∈
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Fig. 2. Initial (t = 0) and final (t = Tf ) ω-profiles for x, y
and z solutions of the closed-loop system 1 with the feedback
(2), (13).

H1((ω∗, ω
∗), S2) with ‖M0 − Mf‖H1 < δ2, the so-

lution of the system (1) with the initial condition
M(0, ω) = M0(ω) and the feedback law given by (2),
(13) satisfies M((2kT )+) ⇀ Mf weakly in H1 when
k → +∞. In particular,

lim
k→+∞

‖M((2kT )+, .)−Mf‖L∞(ω∗,ω∗) = 0.

The remaining part of this section is devoted to the proof
of Theorem 1

3.2 LaSalle invariant set

The first step of our proof consists in checking that, lo-
cally, the invariant set is reduced to {−e3}.

Proposition 3 For every Mf ∈ H1((ω∗, ω
∗), S2)

with (15), there exists δ > 0 such that, for every
N0 ∈ H1((ω∗, ω

∗), S2) with ‖N0 + e3‖ < δ, the map
t 7→ L[N(t)] is constant on [0,+∞) if and only if
N0 = −e3.

Proof: Let us assume that t 7→ L[N(t)] is constant.
Then u1 = u2 = 0 and N(t, ω) ≡ N0(ω) (see (14) and
(10)). Thus, for every j ∈ {1, 2} and t ∈ [0,+∞)

0 =
∫ ω∗

ω∗

[〈

N ′
0(ω),

(

∂F
∂ω

(t, ω)ej

)

∧N0(ω)
〉

+
〈

e3,
(

F (t, ω)ej

)

∧N0(ω)
〉]

dω.
(16)

For t ∈ [0, T ], σ(t) = t so F (t, ω) =
∑∞

k=0
tkωk

k! R(ω)Sk

and ∂F
∂ω

(t, ω) =
∞
∑

k=0

tkωk

k! R′(ω)Sk +
∞
∑

k=1

tkωk−1

(k−1)! R(ω)Sk.
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Developing (16) in power series expansions of t and using
(5), we obtain, for every j ∈ {1, 2} and k > 1,

ω∗

∫

ω∗

〈

N ′
0(ω),

[(

ωk

k! R
′(ω) + ωk−1

(k−1)!R(ω)
)

ej

]

∧N0(ω)
〉

+
〈

e3,
(

ωk

k! R(ω)ej

)

∧N0(ω)
〉

dω = 0.

By linearity, the following equality holds, for every Q ∈
R[X ] and j ∈ {1, 2}

ω∗

∫

ω∗

〈

N ′
0(ω),

[

(Q(ω)R′(ω) +Q′(ω)R(ω)) ej

]

∧N0(ω)
〉

+
〈

e3,
[

Q(ω)R(ω)ej

]

∧N0(ω)
〉

dω = 0.

(17)
Thanks to the density of polynomial functions in
H1((ω∗, ω

∗),C), the previous equality holds for ev-
ery Q ∈ H1((ω∗, ω

∗),R). Let us recall the relations
〈X,Y ∧ Z〉 = 〈Y, Z ∧ X〉 and 〈MX,Y 〉 = 〈X,M⊤Y 〉,
∀X,Y, Z ∈ R3 and M ∈ M3(R), where M

⊤ denotes the
transposed matrix of M . Then, the equality (17) may
also we written

ω∗

∫

ω∗

〈

Q(ω)ej , R
′(ω)⊤[N0(ω) ∧N ′

0(ω)]
〉

+
〈

Q′(ω)ej , R(ω)⊤[N0(ω) ∧N ′
0(ω)]

〉

+
〈

Q(ω)ej , R(ω)⊤[N0(ω) ∧ e3]
〉

dω = 0.

(18)

for every Q ∈ H1((ω∗, ω
∗),R) and j ∈ {1, 2}. By linear-

ity, we deduce that

ω∗

∫

ω∗

〈

Q(ω), R′(ω)⊤[N0(ω) ∧N ′
0(ω)] +R(ω)⊤[N0(ω) ∧ e3]

〉

+
〈

Q′(ω), R(ω)⊤[N0(ω) ∧N ′
0(ω)]

〉

dω = 0

(19)
for every Q ∈ H1((ω∗, ω

∗),V) where V := Span(e1, e2).
Let P : R3 → V be the orthogonal projection on V. The
previous equality is equivalent to

{

PR(ω)⊤[N0(ω) ∧ e3 −N0(ω) ∧N ′′
0 (ω)] = 0 in H−1

R(ω)⊤[N0(ω) ∧N ′
0(ω)] = 0 at ω = ω∗ and ω∗.

(20)
Here, H−1 denotes the dual space of H1

0 (ω∗, ω
∗) for the

L2-scalar product; the first equation has to be under-
stood in the distribution sens. Thanks to ‖N0(ω)‖ ≡ 1,
we have ‖R(ω)⊤[N0(ω)∧N ′

0(ω)]‖ ≡ ‖N ′
0(ω)‖. Thus, the

second line of (20) is equivalent to N ′
0 = 0 at ω∗ and

ω∗. Notice that PR(ω)⊤|V is bijective on V for every
ω ∈ [ω∗, ω

∗]. Indeed, thanks to (7) and (15), we have

Range[PR(ω)⊤|V]⊥ = Ker[PR(ω)|V]

= {v ∈ V;R(ω) ∈ Re3}

= V ∩RMf (ω) = {0}.

Moreover, (PR(ω)⊤|V)−1 ∈ H1, thus (20) gives

{

−N ′′
0 ∧ e3 +N0 ∧ e3 = g in H−1((ω∗, ω

∗),V),

N ′
0 ∧ e3 = 0 at ω∗, ω

∗,
(21)

where

g(ω) := −(PR(ω)⊤|V)
−1

PR(ω)⊤[N ′′
0 (ω)∧ (N0(ω)+e3)].

Therefore, there exists C1 = C1(ω∗, ω
∗) > 0 such that

‖N0(ω) ∧ e3‖H1 6 C1‖g‖H−1 . (22)

Thanks to (8), there exists C2 = C2(ω∗, ω
∗, ‖Mf‖H1) >

0 such that

‖g‖H−1 6 C2‖N0 + e3‖
2
H1 .

WhenN0 is close enough to−e3 inH1, then ‖N0∧e3‖H1

and ‖N0 + e3‖H1 are equivalent norms and then (22)
gives

‖N0(ω) ∧ e3‖H1 6 C3‖N0(ω) ∧ e3‖
2
H1

for some constant C3 = C3(ω∗, ω
∗, ‖Mf‖H1) > 0. This

implies N0 ∧ e3 = 0, i.e. N0 = −e3. ✷

Remark 1 ForMf ≡ e1, any constant functionN0 with
values in Span(e2, e3) belongs to the invariant set (see
(20)). Thus, an assumption of the type (15) is required
for our strategy to work.

3.3 Convergence proof

For the proof of Theorem 1, we need the following result.

Proposition 4 Take Mf ∈ H1((ω∗, ω
∗), S2) and R ∈

H1((ω∗, ω
∗), SO(3)) as in Proposition 1. Let (N0

n)n∈N a
sequence of H1((ω∗, ω

∗), S2) and N0
∞ ∈ H1((ω∗, ω

∗), S2)
such that N0

n ⇀ N0
∞ weakly in H1 and N0

n → N0
∞

strongly in L2. Let α ∈ [0, 2T ] and (τn)n∈N be a sequence
of [0, 2T ) such that τn → α. LetNn (resp. N∞) be the so-
lutions of the closed loop system (10), (13) associated to
the initial conditionNn(τn) = N0

n (resp.N∞(α) = N0
∞).

Then, we have Nn(t) ⇀ N∞(t) weakly in H1, ∀t > α,
and uj [t, Nn(t)] → uj [t, N∞(t)], ∀t > α, ∀j ∈ {1, 2}.

Proof: The sequence (N0
n)n∈N is bounded in H1 and

L[Nn(t)] 6 L[N0
n], for every t ∈ [τn,+∞) and n ∈ N

so there exists M0 > 0 such that ‖Nn(t)‖H1 6 M0,
for every t ∈ [τn,+∞) and n ∈ N. The function t ∈
R 7→ F (t, .) ∈ H1((ω∗, ω

∗),M3(R)) defined by (11) is
continuous and 2T -periodic, thus, there exists M1 > 0
such that ‖F (t, .)‖H1 6 M1, for every t ∈ R. Thanks
to (13), we have |uj[t, Nn(t)]| 6 2M1M0, for every
n ∈ N and t ∈ [τn,+∞). We deduce from (10) that
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∥

∥

∥

∂Nn

∂t
(t)

∥

∥

∥

L2
6 4M1M0 for every t ∈ [τn,+∞) and

n ∈ N. The end of the proof is as in Beauchard et al.
(2011). ✷

Proof ofTheorem1:The proof is as in Beauchard et al.
(2011). One may replace Barbalat’s lemma by the
Lebesgue reciprocal theorem, in the following way.
Thanks to (14), t 7→ ui[t, N(t)] belongs to L2(0,+∞),
thus, for any diverging sequence of times kn, the se-
quence (t ∈ (0,+∞) 7→ ui[2knT + t, N(2knT + t)])n∈N

converges to zero in L2(0,+∞). Therefore, there exists
a subset N ⊂ (0,+∞) with zero Lebesgue measure such
that uj [t, N(2knT + t) → 0 for every t ∈ (0,+∞) − N
and j ∈ {1, 2}. ✷

4 Concluding remark

Open-loop ”impulse-train” control are combined with
Lyapunov feedback to steer an initial profile [ω∗, ω

∗] ∋
ω 7→ M(0, ω) of the Bloch-sphere system (1) towards an
arbitrary target profile [ω∗, ω

∗] ∋ ω 7→ Mf (ω). Conver-
gence is proved to be local for any target profile belong-
ing either to the south or to the north hemisphere. We
guess that our convergence proof could be extended to
the case where Mf intersects transversely the equator
and thus where Mf is not confined in only one hemi-
sphere.
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