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a b s t r a c t

We consider the problem of asymptotic reconstruction of the state and parameter values in systems of
ordinary differential equations. A solution to this problem is proposed for a class of systems of which the
unknowns are allowed to be nonlinearly parameterized functions of state and time. Reconstruction of
state and parameter values is based on the concepts of weakly attracting sets and non-uniform conver-
gence and is subjected to persistency of excitation conditions. In the absence of nonlinear parametrization
the resulting observers reduce to standard estimation schemes. In this respect, the proposedmethod con-
stitutes a generalization of the conventional canonical adaptive observer design.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We consider observer-based methods for state and parameter
estimation in nonlinear dynamical systems. These methods are
effective as long as the original system has, or can be transformed
into, one of the canonical adaptive observer forms (Bastin & Gevers,
1988; Besancon, 2000;Marino, 1990). Their common characteristic
is linearity in the unknown parameters. For this class of systems,
subject to persistency of excitation conditions, reconstruction of
state and parameter vectors can be achieved exponentially fast.

There are systems, however, in which the unknown parame-
ters enter the model nonlinearly. These systems constitute a re-
markably wide class including models in chemical kinetics (Bastin
&Dochain, 1990; Gorban&Karlin, 2005), biology and neuroscience
(Izhikevich, 2007). Whereas the problem of state estimation can
be solved for a large class of nonlinearly parameterized systems
(Marino & Tomei, 1993b), observer-based parameter reconstruc-
tion is often confined to systems with monotone (Liu, Ortega, Su,
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& Chu, 2011; Tyukin, Prokhorov, & van Leeuwen, 2007) or one-to-
oneparameterizations (Farza,M’Saad,Maatoung, &Kamoun, 2009;
Grip, 2009; Grip, Johansen, Imsland, & Kaasa, 2010; Grip, Saberi, &
Johansen, 2011).

Several authors have recently advanced strategies for overcom-
ing these limitations. In Johnson and Tucker (2008), combining
interval analysis with multiple shooting methods is proposed to
tackle the state and parameter reconstruction problem. Another
interesting approach is presented in Abarbanel, Creveling, Farisian,
and Kostuk (2009): the original continuous-timemodel is replaced
with a discrete-time approximation. Measured variables are then
considered as known functions of unknown parameters and initial
conditions, of which the estimates can be found by off-line non-
linear optimization routines (see also Alessandri, Baglietto, & Bat-
tistelli, 2008, Rao, Rawlings, & Mayne, 2003 where optimization
techniques with moving horizon are discussed). These approaches
offer obvious advantages, e.g. the availability of a vast library
of numerical methods for solving general nonlinear optimization
problems. Nevertheless, these methods run into restrictions too.
Exhaustive search for a global minimum may become intractable
for dimensions higher than 1 or 2. On the other hand, if conven-
tional polynomial-complexity algorithms are used then the possi-
bility arises that the algorithm will converge to a local minimum.

In this paper, we explore further possibilities of developing
adaptive observers for systems which are both linearly and non-
linearly parameterized. The parametrization is not required to be
invertible or monotone. Our approach combines the advantages of
the existing schemes, in being capable of ensuring exponentially

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.05.008

http://dx.doi.org/10.1016/j.automatica.2013.05.008
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:I.Tyukin@le.ac.uk
mailto:erik.steur@ppw.kuleuven.be
mailto:h.nijmeijer@tue.nl
mailto:cees.vanleeuwen@ppw.kuleuven.be
http://dx.doi.org/10.1016/j.automatica.2013.05.008


2 I.Y. Tyukin et al. / Automatica ( ) –

fast convergence with the flexibility of explorative behavior, a be-
havior inherent to algorithms for solving genuine nonlinear opti-
mization problems. Inference of the values of state and a part of the
parameter vector of these systems is achieved by employing ex-
ponentially fast converging estimators. Estimation of the values of
the remaining parameters is based on an explorative search proce-
dure. Since exploration is restricted to a subset of the unknown pa-
rameters, the proposed strategy reduces the overall computational
costs, as compared to when full-scale search-based optimization
had been invoked.

The resulting observer can be imagined as a system comprising
of an exponentially stable part coupled with an explorative one.
Systems of this type have previously been used in adaptive con-
trol (Ilchmann, 1997;Martensson, 1985;Martensson& Polderman,
1993; Pomet, 1992). Herewedemonstrate that these classical ideas
can be applied to the problem of adaptive observer design for sys-
tems which are nonlinearly dependent on parameters. We show
that, subject to a condition of persistent excitation, it is possible to
reconstruct state and parameters of a reasonably broad subclass of
these systems.

The paper is organized as follows. Notational agreements are
introduced in Section 2. Section 3 provides the formal statement
of the problem, Sections 4 and 5 contain main results of the article,
Section 6 discusses possible generalizations, Section 7 contains
illustrative examples, and Section 8 concludes the paper. Proofs of
auxiliary results are presented in the Appendix.

2. Notation

The following notational conventions are used throughout the
paper:

• R denotes the set of real numbers, R>a = {x ∈ R | x > a}, and
R≥a = {x ∈ R | x ≥ a};

• Z denotes the set of integers, andN stands for the set of positive
integers;

• the Euclidean norm of x ∈ Rn is denoted by ∥x∥ , ∥x∥2
= xTx,

where T stands for transposition;
• the space of n × n matrices with real entries is denoted by
Rn×n; let P ∈ Rn×n, then P > 0 (P ≥ 0) indicates that P is
symmetric and positive (semi-)definite; In denotes the n × n
identity matrix.

• by Ln
∞

[t0, T ], t0 ∈ R, T ∈ R, T ≥ t0 we denote the space of
all functions f : [t0, T ] → Rn such that ∥f∥∞,[t0,T ] = ess sup
{∥f(t)∥, t ∈ [t0, T ]} < ∞; ∥f∥∞,[t0,T ] stands for the Ln

∞
[t0, T ]

norm of f(t); if the function f is defined on a set larger than
[t0, T ] then notation ∥f∥∞,[t0,T ] applies to the restriction of f on
[t0, T ];

• Cr denotes the space of continuous functions that are at least r
times differentiable;

• let A be a subset ofRn, then for all x ∈ Rn, we define dist(A, x)
= infq∈A ∥x − q∥;

• A solution of ẋ = f(t, x, θ, u(t)), f : R × Rn
× Rm

× R →

Rn, θ ∈ Rm, u : R → R passing through x0 ∈ Rn at t = t0 is
denoted by x(t, t0, x0, θ, [u]). In cases when u and/or θ, x0, t0
are clearly determined by the context amore compact notation,
x(t, t0, x0, θ) (or x(t, t0, x0), x(t), x respectively), is used.

• The symbol K denotes the class of all strictly increasing con-
tinuous functions κ : R≥0 → R≥0 such that κ(0) = 0; the
symbol K∞ denotes the class of all functions κ ∈ K such that
lims→∞ κ(s) = ∞.

• Let ϵ ∈ R≥0, then ∥x∥ϵ stands for: ∥x∥ − ϵ if ∥x∥ > ϵ, and 0
otherwise.

• Finally, for λ ∈ Rp and θ ∈ Rm, the notation (λ, θ) stands for
col(λ1, . . . , λp, θ1, . . . , θm).

3. Preliminaries and problem formulation

3.1. Adaptive observer canonical form

Throughout the paper we will focus exclusively on the class of
systems that are forward-complete:

Definition 1. Let Lu[t0, ∞] be a subspace of L∞[t0, ∞]. A single-
input–single-output system described by ẋ = f(t, x, u(t)), f :

R×Rn
×R → Rn, y = h(t, x), h : R×Rn

→ R, u ∈ Lu[t0, ∞],
where u is the input, and y is the output, is called forward-complete
(with respect to Lu) if for any t0 ∈ R, x0 ∈ Rn, and u ∈ Lu[t0, ∞]

the solution x(t, t0, x0, [u]) exists and is defined for all t ≥ t0.

Let Lu[t0, ∞] = L∞[t0, ∞] ∩ C0
[t0, ∞], and consider a forward-

complete single-input–single-output system; let x ∈ Rn be its
state, y : R → R be the measured output, and u : R → R, u ∈ Lu
be the input. We recall that a system is in the adaptive observer
canonical form if it is governed by the following set of equations

ẋ = Ax + BφT (t, y)θ + g(t, y, u(t))

y = CTx, x(t0) = x0, x0 ∈ R
n,

(1)

where A =


a In−1

0


, a ∈ Rn, B ∈ Rn, C ∈ Rn, B = col(1, b1,

. . . , bn−1), C = col(1, 0, . . . , 0), the functions φ : R × R → Rm,
g : R × R × R → Rn, φ, g ∈ C0 are known, and θ ∈ Rm is the
vector of the unknown parameters. The triplet A, B, C is supposed
to satisfy
P(A + ℓ CT ) + (A + ℓ CT )TP ≤ −Q
PB = C (2)

for some ℓ ∈ Rn and P > 0,Q > 0. Although condition (2) may
appear restrictive, it has been shown in Marino and Tomei (1992)
that subject to the very natural constraint that the pair A, C is ob-
servable, there is a time-varying parameter-dependent coordinate
transformation such that in new coordinates the system is still of
the form (1) and satisfies condition (2). If requirement (2) holds
then the system

˙̂x = Ax̂ + ℓ (CT x̂ − y(t)) + BφT (t, y(t))θ̂ + g(t, y(t), u(t))
˙̂
θ = −γ (CT x̂ − y(t))φ(t, y(t)), γ ∈ R>0,

(3)

where x̂(t) ∈ Rn, θ̂(t) ∈ Rm, is an adaptive observer for (1) (cf.
Bastin & Gevers, 1988, Marino, 1990) provided that the restriction
of φ(·, y(·)) on R≥t0 is persistently exciting:

Definition 2. A function β : R≥t0 → Rm is said to be persistently
exciting if there exist L, µ ∈ R>0: t+L

t
β(τ )βT (τ )dτ ≥ µIm, ∀ t ≥ t0. (4)

The fact that (3) is an adaptive observer for (1) is based on a well-
known result on the exponential stability of the following class of
linear time-varying systems2

ė = A(t)e, A(t) =


A + ℓ CT BβT (t)
−β(t)CT 0


. (5)

The result is provided in Theorem3 (see e.g. Loria, 2004 for a proof).

2 In the context of adaptive observer design for (1) the function β in (5) is defined
as β(t) = φ(t, y(t)), t ≥ t0 .
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Theorem 3. Consider system (5). Suppose that condition (2) holds for
certain ℓ ∈ Rn, P > 0, Q > 0, the function β(t) is persistently
exciting, and

∃ M ∈ R>0 : max{∥β(t)∥, ∥β̇(t)∥} ≤ M ∀ t ≥ t0. (6)

Let Φ(t, t0), Φ(t0, t0) = In+m, be the fundamental solution ma-
trix of (5). Then there exist ρ,D ∈ R>0 such that ∥Φ(t2, t1)p∥ ≤

De−ρ(t2−t1)

∥p∥ for all t2 ≥ t1 ≥ t0 and p ∈ Rn+m.

The parameters ρ and D can be expressed explicitly as functions
of M, µ, L, and A, B, C, ℓ (Loria, 2004). By letting e = col(x̂ − x,
θ̂ − θ) and taking (1), (3) into account one can confirm that
the system-observer equations are of form (5). Thus, subject to
persistency of excitation of the restriction of φT (·, y(·)) on R≥t0 ,
limt→∞ x̂(t, t0, x̂0, θ̂0)− x(t, t0, x0, θ) = 0, limt→∞ θ̂(t, t0, x̂0, θ̂0)
= θ along the solutions of (1), (3), and the convergence is
exponential. The problem, however, is that if some parameters
enter the equations nonlinearly then this creates an obstacle for
the explicit use of Theorem3and, consequently, observer (3). In the
next sections we present and analyze a class of systems nonlinear
in the parameters which can be thought of as an immediate
generalization of (1).

3.2. Systems considered in this article

We begin with the following class of forward-complete single-
input–single-output nonlinear systems:

ẋ = Ax + BϕT (t, λ, y)θ + g(t, λ, y, u(t)) + ξ(t),

y = CTx, x(t0) = x0, x0 ∈ R
n,

(7)

where A ∈ Rn×n, and B, C ∈ Rn are defined as in (1); ϕ :

R×Rp
×R → Rm, g : R×Rp

×R×R → Rn, are known continuous
functions, λ = col(λ1, . . . , λp) ∈ Rp, θ = col(θ1, . . . , θm) ∈ Rm

are unknown parameters, and u ∈ Lu ∩C1, is the input. We assume
that the values of λ, θ belong to the hypercubes Ωλ ⊂ Rp, Ωθ ⊂

Rm with known bounds: θi ∈ [θi,min, θi,max], λj ∈ [λj,min, λj,max],
and that y(t) ∈ Dy, u(t) ∈ Du, Dy, Du ⊂ R for t ≥ t0.

In (7), x = col (x1, x2, . . . , xn) ∈ Rn is the state vector, y is the
measured output, the input u is a known function, and ξ ∈ C0

:

R → Rn is an unknown yet bounded continuous function:

∃ ∆ξ ∈ R≥0 : ∥ξ(t)∥ ≤ ∆ξ ∀ t, (8)

representing some unmodeled dynamics (e.g. noise). The system’s
state x is not measured; only the values of the input u(t) and the
output y(t) = x1(t), t ≥ t0 in (7) are accessible over any time
interval [t0, t] that belongs to the history of the system.

For the time being we suppose that matrix A and vectors B, C in
(7) satisfy Assumption 3.1.

Assumption 3.1. The triple A, B, C is known, and there exist (and
are known) a vector ℓ and matrices P,Q > 0 such that condition
(2) holds.

Note that Assumption 3.1 implies that the vector B = col(1, b1,
. . . , bn−1) in (7) is such that the polynomial sn−1

+ b1sn−2
+ · · · +

bn−1 is Hurwitz. At first, Assumption 3.1 may seem restrictive.
In Section 6 we lift this restriction by showing that the results
presented for (7) can be generalized to systems

ẋ = Ax + 9(t, λ, y)θ + g(t, λ, y, u(t)) + ξ(t),

y = CTx, C = col (1, 0, . . . , 0) ,
(9)

in which the matrix A ∈ Rn×n may be unknown but it is known
that the pair A, C is observable, the function 9 : R × Rp

×

R → Rn×m, 9 ∈ C1, is Lipschitz in λ, and g(·, λ, y(·), u(·)),
ġ(·, λ, y(·), u(·)), 9(·, λ, y(·)), 9̇(·, λ, y(·)) are bounded for allλ ∈

Ωλ on [t0, ∞).
With regards to the functions ϕ and g in (7) the following

additional technical assumptions are made:

Assumption 3.2. The functions ϕ(·, λ, ·), g(·, λ, ·, ·) in (7) are
bounded and differentiable in R≥t0 × Dy and R≥t0 × Dy × Du
respectively, and Lipschitz in λ. That is, there existDϕ,Dg , Bϕ, Bg ∈

R≥0 such that for all t ∈ R≥t0 , y ∈ Dy, u ∈ Du, λ′, λ′′
∈ Ωλ

∥ϕ(t, λ′, y) − ϕ(t, λ′′, y)∥ ≤ Dϕ∥λ′
− λ′′

∥,
∥g(t, λ′, y, u) − g(t, λ′′, y, u)∥ ≤ Dg∥λ

′
− λ′′

∥,
(10)

∥ϕ(t, λ, y)∥ ≤ Bϕ, ∥g(t, λ, y, u)∥ ≤ Bg . (11)

Furthermore, there existMϕ,Mg ∈ R≥0 such that∂ϕ(t, λ, y)
∂y

ẏ +
∂ϕ(t, λ, y)

∂t

 ≤ Mϕ,∂g(t, λ, y, u)
∂y

ẏ +
∂g(t, λ, y, u)

∂u
u̇ +

∂g(t, λ, y, u)
∂t

 ≤ Mg

(12)

for all λ ∈ Ωλ, t ≥ t0 along the solutions of (7).

Conditions (10), (11) often hold naturally in the context of mod-
eling and identification; they may, however, impose limitations in
the framework of controller design. As for condition (12), the first
inequality is a version of (6) that is essential for the uniform expo-
nential convergence of solutions to the origin of (5) (Loria, 2004).
The second inequality in (12) is a technical condition. Although this
latter condition may look somewhat restrictive, it may be relaxed
if g(t, λ, y, u(t)) is expressed as g(t, λ, y, u(t)) = g1(t, y, u(t)) +

g2(t, λ, y, u(t)). In this case we would require that (11), (12) hold
for g2.

A non-exhaustive list of systems that are relevant in engi-
neering applications and are governed by (7) or (9) includes
bio-/chemical reactors (Boskovic, 1995; Poyton, Varziri, McAuley,
McLellan, & Ramsey, 2006), nonlinear saturated magnetic circuits
(Moreau & Trigeassou, 2006), magnetic bearings (Lin & Knospe,
2000), tire–road interaction, and dynamics of live cells (Rowat &
Selverston, 1993). A few examples from this list are provided in
Table 1. The first model, if described by (7), trivially satisfies As-
sumption 3.1; it also satisfies Assumption 3.2 if T is bounded, dif-
ferentiable, separated away from zero, and y, Ṫ are bounded. In the
secondmodel the pairA, C is observable, andϕ, ϕ̇ are bounded if y,
magnetic fluxes, expressed by q1, q2, and q̇1, q̇2 are bounded. This
is achievable via external controls (Lin & Knospe, 2000), at least for
small parametricmismatches and d. In the thirdmodel the pairA, C
is observable, and boundedness of y, ẏ, 9, 9̇ is consistent with the
physics of the system.

3.3. Problem formulation

Before we proceed with a formal problem statement, several
points related to parametrization of (7), (9) need to be discussed.
First, note that different definitions of systems (7), (9) may
correspond the same physical model. For example, functionsϕ and
g and parameters θ, λ for the first model in Table 1 may also be
defined as:

ϕ(t, λ, y) = col

1, y, eλ1

1
T (t) +λ2y


, g = 0,

θ = col

F
V
x0, −

F
V

, −kref


,

(13)

λ = col


−
E
R
,

E
RTref


, or

ϕ(t, λ, y) = col (1, y) , g(t, λ, y, u(t)) = −eλ1
1

T (t) +λ2y, (14)
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Table 1
Examples of physical systems in the form of (7), (9).

Physical system Model Possible parametrization: θ, λ,A, B, ϕ, 9, g

1. Reactant dynamics in a reactor
(Poyton et al., 2006)

ẋ =
F
V (x0 − x) − krefe

−
E
R


1

T (t) −
1

Tref


x, System (7): θ = col


F
V x0, −

F
V , −krefe

E
RTref


, λ = −

E
R ,

y = x A = 0, B = 1, ϕ(t, λ, y) = col

1, y, eλ 1

T (t) y


, g = 0

2. Magnetic bearings
(Lin & Knospe, 2000)

ẍ + J−1d(t) = b


q22(I2,a,x)
(x+a)2

−
q21(I1,a,x)
(x−a)2


System (7): θ = col


−J−1, b


, A =


0 1
0 0


, B =


0
1


,

y = x, |x| < a − ε, a, ε ∈ R>0 , λ = a, ϕ(t, λ, y) = col

d(t), q22(I2,λ,y)

(y+λ)2
−

q21(I1,λ,y)
(y−λ)2


, g = 0

d, ḋ are bounded

3. Action potentials in a cell
(Rowat & Selverston, 1993)

ẋ1 = −
x1
τm

+
Af
τm

tanh


σf
Af
x1


−
x2
τm

System (9): θ = col

−

1
τm

,
Af
τm

, σs
τs


, λ =

σf
Af

,

ẋ2 = −
x2
τs

+
σs
τs
x1 A =

0 −
1
τm

0 −
1
τs

 , 9(t, λ, y) =


y tanh(λy) 0
0 0 y


, g = 0

y = x1

with θ = col
 F
V x0, −

F
V


, λ = col


−

ln(kref)E
R ,

ln(kref)E
RTref


. It is clear

that if parametrization (13) is chosen then identical outputs y(t)
will be observed for infinitely many combinations of parameters
θ3, λ2. Models of this type are referred to as unidentifiable (Dis-
tefano & Cobelli, 1980) (see also Chapell, 1996, Denis-Vidal &
Joly-Blanchard, 2004). Dealingwith unidentifiablemodels imposes
technical difficulties. We will therefore assume that parametriza-
tions which are obviously unidentifiable are avoided, if possible.
As for the remaining alternative parametrizations, we assume that
preference is given to those in which the dimension of λ is mini-
mal, i.e. the parametrization in the first row in Table 1 is preferable
to (14).

Second, as far as identifiability is concerned, inferring true val-
ues of θ, λ from output observations, y(t), is not always possible,
even if the system is linearly parameterized and no unmodeled dy-
namics are present. Consider

ẋ = Ax +


1
1


θ +


0
1


λ, A =


−a1 1
−a2 0


y = x1, a1, a2 ∈ R>0.

(15)

Let x(t, θ, λ, x0) and x(t, θ ′, λ′, x′

0) be two solutions of (15) cor-
responding to different parameter values and initial conditions,
and let e = col(e1, e2) = x(t, θ, λ, x0) − x(t, θ ′, λ′, x′

0). Picking
e2(t0) = −θ + θ ′, e1(t0) = 0 ensures that e1(t) = 0 for all t ≥ t0
if θ − θ ′

+ λ − λ′
= 0. Another, albeit nonlinearly parameterized,

example is

ẋ = −x + θ + [sin2(λ + t) + x2 + 1]−1, y = x. (16)

In this case x(t, θ, λ, x0) = x(t, θ, λ′, x0) for all t ≥ t0 if λ′
=

λ + kπ, k ∈ Z, θ ′
= θ .

In order to account for possible non-unique parametrization, for
each pair θ, λ we introduce two sets: E0(λ, θ) and E(λ, θ). The set
E0(λ, θ):

E0(λ, θ) = {(λ′, θ′), λ′
∈ R

p, θ′
∈ R

m
|

η0(t, λ, θ, λ′, θ′) = 0, ∀ t ≥ t0}, (17)

η0(t, λ, θ, λ′, θ′) = B(ϕT (t, λ, y(t))θ − ϕT (t, λ′, y(t))θ′)

+ g(t, λ′, y(t), u(t)) − g(t, λ, y(t), u(t))

contains all parametrizations of (7) that are indistinguishable from
observations of x(t) for the given y(·), u(·), θ, λ at ξ(t) ≡ 0. That
is, if x(t, θ, λ, x0)− x(t, θ′, λ′, x0) = 0 for all t ≥ t0 then (λ′, θ′) ∈

E0(λ, θ). For system (15) the setE0(λ, θ) contains just one element,
(λ, θ). The set E0(λ, θ), however, is not finite for system (16) and
for parametrization (13) of the first model in Table 1.

The second set, E(λ, θ), is defined as:
E(λ, θ) = {(λ′, θ′), λ′

∈ R
p, θ′

∈ R
m

| ∃ p(θ, λ,

θ′, λ′) ∈ R
n−1

: C̃T eΛ(t−t0)p + η(t, θ, λ, θ′, λ′) = 0
∀ t ≥ t0}, (18)

where C̃ ∈ Rn−1, C̃ = col(1, 0, . . . , 0),
η(t, λ, θ, λ′, θ′) = ϕ(t, λ, y(t))T θ − ϕ(t, λ′, y(t))T θ′

+ g1(t, λ, y(t), u(t)) − g1(t, λ′, y(t),

u(t)) + q(t, λ, λ′) (19)

and q(t, λ, λ′) = C̃T z(t, λ, λ′):
ż = Λz + G(g(t, λ, y(t), u(t)) − g(t, λ′, y(t), u(t))),

Λ =


−b In−2

0


, G =


−b In−1


(20)

z(t0) = 0, b = col (b1, . . . , bn−1) .

If ξ(t) ≡ 0 then the set E(λ, θ) contains all indistinguishable
parametrizations of (7) for the given y(·), u(·), θ, λ (see Lemma 12
in Section 5), and E0(λ, θ) ⊆ E(λ, θ). Note that if dim(x) = 2 then
Λ = −b1,G = (−b1 1); if dim(x) = 1 we set E(λ, θ) = E0(λ, θ).
For system (15), E(λ, θ) = {(λ′, θ ′), λ ∈ R, θ ∈ R| θ − θ ′

+ λ −

λ′
= 0}. Note that if g(t, λ, y(t), u(t)) = Bg(t, λ, y(t), u(t)), B =

col(1, b1, . . . , bn−1), then q(t, λ, λ′) ≡ 0 for all t ≥ t0 in (19). The
introduction of sets E0(λ, θ), E(λ, θ) does not, of course, resolve
identifiability issues. It helps, however, to specify constraints on
the nonlinearities in (7) for which the parameter reconstruction,
up to E0, E , can be achieved.

Since this is desirable from an implementation point of view,
we will seek for a recursive procedure taking the values y(t),
u(t) as inputs and producing the estimates x̂(t), θ̂(t), λ̂(t) of
x(t, λ, θ, x0, [u]), θ, and λ, respectively, as outputs. Note that since
we allow for non-identifiable configurations, estimation of param-
eters θ, λ is possible only up to the set E(λ, θ). We will, there-
fore, be looking for an auxiliary system, i.e. an adaptive observer:
q̇ = f(t, y, u(t), q), f : R×R×R×Rq

→ Rq, q(t0) = q0, q ∈ Rq,
and functions hθ : Rq

→ Rm, hλ : Rq
→ Rp, hx : Rq

→ Rn

such that for the given t0, appropriately chosen q0, known func-
tions r1, r2 ∈ K , and all admissible λ, θ, x0 the following require-
ments hold for the observer:
lim sup
t→∞

∥hx(q(t, q0)) − x(t, λ, θ, x0)∥ ≤ r1(∆ξ ) (21)

lim sup
t→∞

dist


hλ(q(t, q0))
hθ (q(t, q0))


, E(λ, θ)


≤ r2(∆ξ ),

where ∆ξ is defined in (8).



I.Y. Tyukin et al. / Automatica ( ) – 5

Sa

Sw

Fig. 1. Top panel: general structure of the observer. Bottom panel: phase curves of
system (25).

4. Main result

In this section, we introduce an observer for (7) and show that
asymptotic reconstruction of state and parameters of (7) is achiev-
able (up to the set E(λ, θ)), subject to some persistency of excita-
tion conditions.

4.1. Observer definition

Following the general ideas of Tyukin, Steur, Nijmeijer, and van
Leeuwen (2008) with regards to the treatment of uncertain sys-
tems with general nonlinear parametrization, we propose that an
asymptotically converging observer for (7) consists of two coupled
subsystems, Sa and Sw (see Fig. 1). The role of subsystem Sa is to
provide estimates of state and parameters θ of (7), and the role of
subsystem Sw is to search the values of parameters λ.

The dynamics of subsystem Sa is defined as follows:

Sa :


˙̂x = Ax̂ + ℓ (CT x̂ − y(t))

+BϕT (t, λ̂(t), y(t))θ̂ + g(t, λ̂(t), y(t), u(t))
˙̂
θ = −γθ (CT x̂ − y(t))ϕ(t, λ̂(t), y(t)),
ŷ = CT x̂, x̂(t0) ∈ R

n, θ̂(t0) ∈ R
m, γθ ∈ R>0.

(22)

The variable θ̂ = col(θ̂1, . . . , θ̂m) in (22) is an estimate of θ, and
λ̂ = col(λ̂1, . . . , λ̂p) is an estimate of λ. For the time being we
suppose that λ̂ is a continuous function of t . The matrix A and
vectors B, C in (22) are identical to those in (7), and the vector ℓ
in (22) satisfies Assumption 3.1. If the values of λ would be known
then substitution λ̂ = λ reduces system (22) to (3), and conditions
for asymptotic reconstruction of state and parameter values of (7)
follow fromTheorem3. The values ofλ, however, are unknown and
therefore a procedure for estimating the values of λ is needed.

Regarding the definition of Sw , we propose that the values of
λ̂(t) result from an explorative search in the domain Ωλ of the
admissible values for λ. The exploration can be realized by move-
ments along the solutions of a certain class of dynamical systems.
Let us, for instance, consider systems governed by the following
equations

ṡ = f(s), s(t0) = s0, λ̂ = β(s) (23)

where f : Rnp → Rnp , β : Rnp → Rp are continuous, and let
Ωs be the ω-limit set3of s0. In addition, suppose that the following
properties hold:

(P1) the functions f, β in (23) are Lipschitz;
(P2) the vector s0 is such that the solution s(t, s0) is bounded for

all t ≥ t0;
(P3) the image of Ωs under β contains Ωλ: for every λ ∈ Ωλ there

is an s ∈ Ωs such that β(s) = λ.

Properties P1 and P2 are technical requirements ensuring that
the derivative of λ̂, as a function of t , is bounded and has a bounded
growth rate. Property P3, however, is essential. It implies that the
projection β(s(·, s0)) of the trajectory s(·, s0) ontoΩλ is dense and
recurring in Ωλ:

∀ λ ∈ Ωλ, ∀ ε ∈ R>0, ∀ t ≥ t0
∃ t ′ > t : ∥λ − β(s(t ′, s0))∥ < ε.

(24)

Indeed, let λ′ be an element from Ωλ. Then according to P3 there
is an s′ ∈ Ωs: β(s′) = λ′. Since Ωs is the ω-limit set of s0, we can
conclude that there is a sequence {ti}, i = 1, 2, . . . , limi→∞ ti =

∞, such that limi→∞ s(ti, s0) = s′. Finally, using the continuity of
β we arrive at limi→∞ β(s(ti, s0)) = λ′. In other words, for any
λ′

∈ Ωλ and ε > 0 there will exist a sequence of time instances
ti : limi→∞ ti = ∞ such that ∥λ̂(ti) − λ′

∥ < ε, and hence (24)
follows. An example of a very simple system possessing a solution
s(t, s0) and an output function β satisfying properties P1–P3 for
Ωλ = [−1, 1]2 is

ṡ1 = −
√
2s2, ṡ2 =

√
2s1, ṡ3 = −s4, ṡ4 = s3,

β(s(t, s0)) = col(s1(t), s3(t)), s0 = col (1, 0, 1, 0) .
(25)

Phase curves of (25) are shown in Fig. 1, bottom panel. Projections
of the initial segment of the trajectory are shown by thick lines.
After evolving beyond the initial segment, the values of β(s(t, s0))
will densely fill the set [λ1,min, λ1,max]×[λ2,min, λ2,max] = [−1, 1]2,
cf. Nemytskii and Stepanov (1960).

The problem with using (23) directly as an estimator for λ
is that exploration of the set Ωλ continues indefinitely. For the
purposes of observer design we need to ensure that exploration of
Ωλ stops once a sufficiently small neighborhood of the set E(λ, θ)
has been reached. To enable this, the explorative subsystem must
be supplied with an error measure. A function of ∥y(t)− ŷ(t)∥ε is a
possible candidate for such a measure. Thus we replace the earlier
definition (23) for λ̂ with the following:

ṡ = γ σ(∥y(t) − ŷ(t)∥ε)f(s), ε ∈ R≥0, γ ∈ R>0,

λ̂ = β(s), s(t0) = s0,
(26)

where σ : R≥0 → R≥0 is a bounded Lipschitz function:

∃ Dσ , Mσ ∈ R>0 : σ(υ) ≤ Mσ ,

σ (υ) ≤ Dσ υ ∀ υ ≥ 0
(27)

such that σ(υ) > 0 for υ > 0, and σ(0) = 0.
For the sake of simplicity andwithout loss of generality, instead

of dealing with general systems (26), we will focus on a specific

3 Recall that a point z ∈ Rnp is an ω-limit point of z0 ∈ Rnp if there is a sequence
{ti}, i = 1, 2, . . . , limi→∞ ti = ∞, such that limi→∞ s(ti, z0) = z. The set of all
ω-limit points of z0 is the ω-limit set of z0 .
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system of equations:

Sw :



ṡ2j−1 = γ σ(∥y(t) − ŷ(t)∥ε)

· ωj · (s2j−1 − s2j − s2j−1(s22j−1 + s22j))
ṡ2j = γ σ(∥y(t) − ŷ(t)∥ε) · ωj

· (s2j−1 + s2j − s2j(s22j−1 + s22j))

λ̂j = βj(s), j = {1, . . . , p},

βj(s) = λj,min +
λj,max − λj,min

2
(s2j−1 + 1)

(28)

s0 = s(t0) : s22j−1(t0) + s22j(t0) = 1, (29)

where σ is a function satisfying (27). Parameters ωj ∈ R>0 in (28)
are supposed to be rationally-independent:

p
j=1

ωjkj ≠ 0, ∀ kj ∈ Z. (30)

Eqs. (28)–(30) are straightforward generalizations from the exam-
ple systemofwhich the phase curves are shown in Fig. 1. If the term
γ σ(∥y(t) − ŷ(t)∥ε) in the right-hand side of (28) is substituted
with 1, these equations satisfy the requirements P1–P3. Indeed,
we can immediately see that in this case (s2j−1(t, s0), s2j(t, s0)) =

(cos(ωj(t − t0) + aj), sin(ωj(t − t0) + aj)), aj ∈ R. Thus prop-
erties P1, P2 hold. Trajectories s1(·, s0), s3(·, s0), . . . s2p−1(·, s0)
evolve on a corresponding p-dimensional invariant torus. Since
ωj are rationally-independent these trajectories densely fill the
torus (cf. Arnold, 1978, Katok & Hasselblatt, 1999, Nemytskii &
Stepanov, 1960) or, alternatively, they densely fill the hyper-
cube [−1, 1]p. This implies that Ωs, the ω-limit set of s0, is
Ωs = {col


s1, s2, . . . , s2p


∈ Rp

| col

s1, s3, . . . , s2p−1


∈

[−1, 1]p, s2j = ±


1 − s22j−1, j = 1, . . . , p}. Noticing that the im-

age of Ωs under transformation β coincides with Ωλ we conclude
that P3 holds.

Concerning the structure of Sw , no additionalmodel-dependent
constraints are imposed on (28) (or, in general, on (26)), apart from
the general requirements P1–P3. Model-specific nonlinearities
are accounted for in the ‘‘converging’’ part, Sa, of the observer
producing the estimates for θ and x. The information about the
values of λ is transferred to the exploratory part, Sw , by means
of ∥y(t) − ŷ(t)∥ε . The latter variable modulates the speed of
exploration in Ωλ along a search trajectory. The search trajectory
itself does not need to be dependent on the properties of g, ϕ,
and neither is the structure of Sw . This potential advantage of
the approach, however, comes at a cost. According to (24), small
neighborhoods of sets to which the solutions of the combined
system (22), (28) converge are not necessarily forward invariant.
Hence these sets are not guaranteed to be asymptotically stable.
Nevertheless, albeit in a weak sense (Milnor, 1985), they are still
attracting. We illustrate this point in Section 7.

4.2. Asymptotic properties of the observer

Let us now proceed with specifying those properties of (7) that
can be useful for state and parameter reconstruction. Recall that
(7) is a generalization of the standard canonic observer form (1).
According to Theorem3, one of the conditions for (3) to be an adap-
tive observer for (1) is persistency of excitation of the restriction of
φ(·, y(·)) on R≥t0 . It is therefore natural to expect that some kind
of persistency of excitation conditions might be needed for recon-
struction of parameters θ, λ in (7) too. Two versions of these condi-
tions will be considered, namely the notions of uniform persistency
of excitation (Loria & Panteley, 2003) and nonlinear persistency of
excitation (Cao, Annaswamy, & Kojic, 2003).

Definition 4. A function α : R≥t0 × Ωλ → Rp is λ-Uniformly
Persistently Exciting (λ-UPE with T , µ), denoted by α(t, λ) ∈

λUPE(T , µ), if there exist T , µ ∈ R>0: t+T

t
α(τ , λ)αT (τ , λ)dτ ≥ µIp, ∀ t ≥ t0, λ ∈ Ωλ. (31)

In contrast to the conventional definitions of persistency of exci-
tation (cf. Definition 2), uniform persistency of excitation requires
existence of µ, T ∈ R>0 in (31) that are independent on λ for all
λ ∈ Ωλ. This is a stronger restriction; we will, however, require
that it holds for ϕ(t, λ, y(t)) (as a function of t, λ onR≥t0 ×Ωλ) in
(7).

Since parametrization of (7) is allowed to be nonlinear, it is
natural to expect that reconstruction of model parameters might
require a nonlinear version of standard persistency of excitation.
Here we employ the following generalization of the standard
notion (cf. Cao et al., 2003):

Definition 5. Let E be a set-valued map defined on D ⊂ Rd and
associating a subset ofD to everyp ∈ D . A functionα : R≥t0×D×

D → Rk is said to be weakly Nonlinearly Persistently Exciting in p
wrtE (wNPEwith L, β, E ), denoted byα(t, p, p′) ∈ wNPE(L, β, E),
if there exist L ∈ R>0, t1 ≥ t0, and β ∈ K∞:

∀ t ≥ t1, p, p′
∈ D ∃t ′ ∈ [t, t + L] :

α(t ′, p, p′)


≥ β

dist(E(p), p′)


. (32)

If the set E(p) contains just one element, p, then the inequality in
(32) reduces to

α(t ′, p, p′)
 ≥ β(∥p − p′

∥). Taking the above
notions into account we formulate the main technical assumption
on the nonlinearities in (7):

Assumption 4.1. The functions ϕ, g in the right-hand side of (7)
are such that

(A1) the restriction of the function α1 : R×Rp
→ Rm, α1(t, λ) =

ϕ(t, λ, y(t)) on R≥t0 × Ωλ is λ-UPE with T , µ;
(A2) the restriction of α2 : R × Rp+m

× Rp+m
→ R, α2(t, (λ, θ),

(λ′, θ′)) = η(t, λ, θ, λ′, θ′), where η(·) is defined in (19),
on R≥t0 × Rp+m

× Rp+m is weakly nonlinearly persistently
exciting in (λ, θ) wrt to the map E(λ, θ) determined by (18).

Remark 6. Checking that condition A1 holds is straightforward
if e.g. ϕ(t, λ, y(t)) is periodic in t . Regarding condition A2, we
note that, according to (19), η(t, λ, θ, λ′, θ′) can be expressed as
η(t, λ, θ, λ′, θ′) = r(t, λ, θ) − r(t, λ′, θ) + ϕ(t, λ′, y(t))T (θ − θ′),
where

r(t, λ, θ) = ϕ(t, λ, y(t))T θ + g1(t, λ, y(t), u(t))

+ C̃T
 t

t0
eΛ(t−τ)Gg(τ , λ, y(τ ), u(τ ))dτ .

Ifϕ, g are differentiable then r(t, λ, θ)−r(t, λ′, θ) = R(t, λ, λ′, θ)

(λ − λ′), where R(t, λ, λ′, θ) =
 1
0

∂
∂s r(t, s(ξ , λ, λ′), θ)dξ , s(ξ ,

λ, λ′) = λξ + (1 − ξ)λ′. Hence

η(t, λ, θ, λ′, θ′) = (ϕT (t, λ′, y(t)),

R(t, λ, λ′, θ))(θ − θ′, λ − λ′). (33)

It is therefore clear that if (ϕT (t, λ′, y(t)),R(t, λ, λ′, θ)), t ≥ t0,
λ, λ′

∈ Ωλ, θ ∈ Ωθ , is (λ, λ′, θ)-uniformly persistently exciting,
then the system is uniquely identifiable, it satisfies condition A2,
and E0(λ, θ) coincides with E(λ, θ).
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We are now ready to state the main result:

Theorem 7. Consider system (7) together with the observer defined
by (22), (28)–(30). Suppose that Assumptions 3.1, 3.2, and 4.1 hold.
Then there exist a constant γ̄ ∈ R>0 and functions r1, r2 ∈ K
such that if γ , ε are the corresponding parameters of (28), and γ ∈

(0, γ̄ ), ε > r1(∆ξ ), then

lim sup
t→∞

dist


λ̂(t)
θ̂(t)


, E(λ, θ)


≤ r2(ε). (34)

If, in addition,E(λ, θ) coincideswithE0(λ, θ) then there is an r3 ∈ K:

lim sup
t→∞

x̂(t) − x(t)
 ≤ r3(ε). (35)

The proof of Theorem 7 is presented in the next section.
Let us briefly comment on the assumptions made in the the-

orem statement. Assumptions 3.1 and 3.2 are standard; condition
A1 in Assumption 4.1 is the conventional requirement ensuring ex-
ponential convergence of x̂(t), θ̂(t) to x(t) and θ provided that the
value ofλ andhence the values ofϕ(t, λ, y(t)) are known (cf. Theo-
rem3); A2 ensures that the distance from (λ̂, θ̂) to the set E(λ, θ) is
inferable from the values of y(t)−ŷ(t) over [t0, ∞) (cf. Lemma 12).
Note that nonlinear dependence of η on λ, λ′ can impose certain
technical and computational difficulties whilst checking that this
condition holds. Finally, observe that the state estimation in the
proposed scheme requires that E0(λ, θ) = E(λ, θ). System (15) il-
lustrates that violation of this assumption may prevent the recon-
struction of the state from observed output data.

The value of γ̄ and the functions r1, r2, r3 could in principle be
given explicitly. However, due to dependence of these functions
on A, B, C, parameters Dϕ,Dg ,Mϕ,Mg and T , L, µ, β specified in
Assumptions 3.1, 3.2 and Definitions 4, 5, explicit expressions for
γ̄ and r1, r2, r3 are too lengthy and thus are removed from the
theorem’s statement. They are, nevertheless, provided in the proof
(see e.g. (59), (69)). A procedure for finding the values of γ̄ and ε is
discussed in Section 7.

The value of ε, viz. the accuracy of the estimation, is determined
by the bound∆ξ on the amplitude of perturbation ξ(t). This depen-
dency is established through the function r1 determining a lower
bound for parameter ε in (28). If no perturbation ξ(t) is present
in the right-hand side of (7) then the value of ε can be chosen ar-
bitrarily small. Note that, the convergence itself is asymptotic and
not necessarily exponential. This is the price for the presence of
unknown parameters λ in (7).

Remark 8. The estimate λ̂(t) is guaranteed to converge to a sin-
gle element of Ωλ (see (60)); estimates θ̂(t) may oscillate due the
influence of ξ(t). These oscillations are bounded, and will eventu-
ally be confined to the 2r2(ε)-neighborhood of E(λ, θ). Hence, for
t1 sufficiently large and all t ≥ t1 ≥ t0, the 2r2(ε)-neighborhood of
(λ̂(t), θ̂(t))will always contain an element ofE(λ, θ). This element
may not necessarily be from Ωλ × Ωθ . If the elements of E(λ, θ)
are separated by distances exceeding 3r2(ε) then the estimates are
guaranteed to converge to the r2(ε)-vicinity of just one element.
This point in E(λ, θ) will depend on ξ, x0, and on the initial state
of the observer.

Remark 9. The functionβ inDefinition 5 can be allowed to depend
on (λ, θ). In view of Remark 6, this relaxes the requirement
that (ϕT (t, λ′, y(t)),R(t, λ, λ′, θ)) in (33) (as a function of
t, (λ, λ′, θ) for t ≥ t0) is (λ, λ′, θ)-UPE to the condition that
(ϕT (t, λ′, y(t)),R(t, λ, λ′, θ)) is λ′-UPE. Note that thiswillmake r2
in (34) and r3 in (35) dependent on (λ, θ). Finally, note that A2 need
not hold for all (λ, θ) ∈ Rp+m and can be restricted to the union of
Ωλ × Ωθ and the domain to which (λ̂(t), θ̂(t)) belong for t ≥ t0.

5. Proof of Theorem 7

According to Assumption 3.2 and (8), functions ϕ, g and ξ are
continuous and are bounded inR≥t0 ×Ωλ ×Dy,R≥t0 ×Ωλ ×Dy×

Du and R≥t0 respectively. Therefore solutions of the combined
system, (7), (22), (28)–(30) exist and are defined for all t ≥ t0. Let
us denote e = col(e1, e2), e1 := x̂ − x, e2 := θ̂ − θ, α(t, λ̂) =

ϕ(t, λ̂, y(t)). Then according to (7) and (22) the following holds
along the solutions of (7), (22), (28)–(30)
ė1
ė2


=


A + ℓ CT BαT (t, λ̂(t))

−γθα(t, λ̂(t))CT 0


e1
e2


+


v(t, λ̂(t), λ, y(t), u(t))

0


(36)

where the function v:

v(t, λ̂, λ, y, u) = B(ϕT (t, λ̂, y) − ϕT (t, λ, y))θ

+ g(t, λ̂, y, u) − g(t, λ, y, u) − ξ(t) (37)

is continuous and bounded for all y ∈ Dy, u ∈ Du, λ, λ̂ ∈ Ωλ and
t ≥ t0.

The proof of the theorem is split into three parts. In the first part
we consider systems
ė1
ė2


=


A + ℓ CT BαT (t, λ̂(t))

−γθα(t, λ̂(t))CT 0


e1
e2


, (38)

where γθ ∈ R>0 and λ̂ : R≥t0 → Ωλ is a continuous, differentiable
and bounded function. Let Φ(t) be a fundamental solution matrix
of (38), and denote Φ(t, t0) = Φ(t)Φ(t0)−1. Since Φ(t0, t0) is
the identity matrix we say that Φ(t, t0) is the normalized solution
matrix of (38). We show that if Assumptions 3.1, 3.2 and condition
A1 of Assumption 4.1 hold then there are positive numbers Mλ, ρ,
andDρ such that the fundamental (normalized)matrix of solutions,

Φ(t, t0), of (38) with λ̂ : ∥
˙̂
λ(t)∥ ≤ Mλ satisfies the inequality

∥Φ(t, t0)p∥ ≤ Dρe−ρ(t−t0)∥p∥, p ∈ Rn+m, t ≥ t0.
Using this result, in the second part of the proof we demonstrate

the existence of γ̄ and an ε, dependent on ∆ξ , such that setting
γ ∈ (0, γ̄ ] ensures that the estimate λ̂(t) converges to a λ∗ from
Ωλ: limt→∞ λ̂(t) = λ∗.

In the third part of the proof we show that condition A2 of
Assumption 4.1 guarantees that (35) holds and that, subject to the
condition that E0(λ, θ) coincides with E(λ, θ), property (34) holds
too.

Part 1 of the proof is contained in the following.

Lemma 10. Consider system (38), and suppose that

(C1) the matrices A, B, and C satisfy Assumption 3.1
(C2) the restriction of the function α in the right-hand side of (38) on

R≥t0 × Ωλ is λ-UPE with constants T , µ as in (31)
(C3) the function α(t, ·) is Lipschitz in Ωλ uniformly in t, t ≥ t0:

there is a D ∈ R>0 such that ∥α(t, λ) − α(t, λ′)∥ ≤ D∥λ −

λ′
∥ ∀λ, λ′

∈ Ωλ, t ≥ t0
(C4) the function α and its partial derivatives wrt t, λ are bounded;

that is, there is a constant M such that max

∥α(t, λ)∥, ∂α(t,λ)

∂t

,  ∂α(t,λ)

∂λ

 ≤ M ∀ λ ∈ Ωλ, ∀ t ≥ t0.

Then there exist ρ,Dρ ∈ R>0 such that for all λ̂ : R≥t0 →

Ωλ, λ̂ ∈ C1:

∥
˙̂
λ(t)∥ ≤ Mλ (39)

0 ≤ Mλ ≤ µr/(2DMT 2), r ∈ [0, 1) (40)
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the following holds

∥8(t2, t1)p∥ ≤ e−ρ(t2−t1)Dρ ∥p∥ , p ∈ R
n+m, (41)

where t2 ≥ t1 ≥ t0, and 8(·, ·) is the fundamental (normalized)
solution matrix of (38).

The proof of Lemma 10 and other auxiliary results are provided in
the Appendix.

Part 2. Consider now the interconnection of (7) with the ob-
server (22), (28)–(30). The dynamics of the combined system in
the coordinates e, λ̂ is described by (36), (28)–(30). Recall that
e(t), λ̂(t) are defined for all t ≥ t0. With respect to e(t), the fol-
lowing holds

e(t) = Φ(t, t0)e(t0)

+

 t

t0
Φ(t, τ )


v(τ , λ̂(τ ), λ, y(τ ), u(τ ))

0


dτ . (42)

The variable λ̂ in the combined system, as a function of t , is
bounded, continuous, and differentiable with bounded derivative.
Moreover, for any A, B, C, θ ∈ Ωθ , λ ∈ Ωλ and for any choice
of ℓ , γθ in (22) we have that |

˙̂
λj(t)| ≤ γMσ maxi |ωi|

λi,max−λi,min
2 ,

whereMσ , ωi, and γ are defined in (27), (30), and (28). Thus ∀ t ≥

t0 we have:

λ̂(t) ∈ Ωλ, ∥
˙̂
λ(t)∥ ≤ γ

√
pMσ max

i
|ωi|

λi,max − λi,min

2
, (43)

where p is the dimension of λ. According to Assumption 3.2, func-
tion α is bounded, differentiable, and Lipschitz in the second argu-
ment. In particular, ∥α(t, λ̂)∥ ≤ Bϕ,

 α(t,λ̂)

∂t

 ≤ Mϕ,

 α(t,λ̂)

∂λ̂

 ≤

Dϕ ∀ t ≥ t0, λ̂ ∈ Ωλ. Hence there is anM = max{Bϕ,Mϕ,Dϕ} such
that condition C4 of Lemma 10 holds. Moreover, according to A1
in Assumption 4.1, the restriction of α onR≥t0 × Ωλ is λ-UPE with
T , µ. This, together with (43), implies that requirements C1–C4 of
Lemma 10 are satisfied.

Let γ ∈ (0, γ ∗
], where γ ∗ is defined as:

γ ∗
=

µr
2Dϕ max{Bϕ,Mϕ,Dϕ}T 2

×


√
pMσ max

i
|ωi|

λi,max − λi,min

2

−1

. (44)

This and (43) imply that the requirement (39) of the lemma is
satisfied. Hence if γ ∈ (0, γ ∗

] then according to Lemma 10 the
matrix Φ(t, t0) in (42) satisfies (41). This ensures the existence of
ρ,Dρ ∈ R>0 such that, along the solutions of (36), (28)–(30), for
all t ≥ t0 we have: ∥e(t)∥ ≤ e−ρ(t−t0)Dρ ∥e(t0)∥ + Dρ

 t
t0
e−ρ(t−τ)

·v(τ , λ̂(τ ), λ, y(τ ))

 dτ . The functions ϕ, g in the definition of
the function v, (37), are Lipschitz with respect to λ. Furthermore,
according to (8) the following holds: ∥ξ(t)∥ ≤ ∆ξ . Therefore, in
accordance with (37), (8), and Assumption 3.2.v(t, λ̂(t), λ, y(t))

 ≤ Dv

λ̂(τ ) − λ


∞,[t0,t]

+ ∆ξ , (45)

Dv = Dϕ ∥B∥ ∥θ∥ + Dg ,

and hence

∥e(t)∥ ≤ e−ρ(t−t0)Dρ ∥e(t0)∥ +
DρDv

ρ

λ̂(τ ) − λ


∞,[t0,t]

+
Dρ∆ξ

ρ
. (46)

Let j ∈ {1, . . . , p}, and consider the solution of

q̇2j−1 = ωj · (q2j−1 − q2j − q2j−1(q22j−1 + q22j)), (47)

q̇2j = ωj · (q2j−1 + q2j − q2j(q22j−1 + q22j)),

satisfying the initial condition q2j−1(t0) = s2j−1(t0), q2j(t0) =

s2j(t0); the parameters ωj and values of s2j−1(t0), s2j(t0) are sup-
posed to coincide with those defined in (28), (29). The solution of
(28) satisfying initial condition (29) is obviously unique, and can
be expressed as a function q : R → R2p: q2j−1(t) = cos(ωjt
+ ϑj), q2j = sin(ωjt + ϑj), ϑj ∈ R, j = {1, . . . , p}. Parame-
ters ϑj are determined in accordance with: cos(ωjt0 + ϑj) = s2j−1
(t0), sin(ωjt0 + ϑj) = s2j(t0). Given that ωj in (47) are rationally-
independent we conclude that the ω-limit set of (q1(t, s0),
q3(t, s0), . . . , q2p−1(t, s0)) is the hypercube [−1, 1]p (see e.g. Ka-
tok & Hasselblatt, 1999, Proposition 1.4.1). Consider the function
β : R2p

→ Rp:

βj(q) = λj,min +
λj,max − λj,min

2
(q2j−1 + 1), (48)

and define λ̄(t) = β(q(t, s0)). System (47), (48) satisfies condi-
tions P1–P3, and hence we can conclude that trajectory λ̄(·) satis-
fies the recurrence property (24):

∀ λ ∈ Ωλ, ∆λ ∈ R>0, t ≥ t0
∃ t ′ > t : ∥λ − λ̄(t ′)∥ < ∆λ.

(49)

Noticing that s(t, s0) = q(T (t), s0), where T (t) = t0 + γ
 t
t0

σ

(∥y(τ ) − ŷ(τ )∥ε)dτ , we can conclude that for all t ≥ t0 the vari-
able λ̂(t) defined in (28) can be expressed in terms of λ̄(T (t)) as

λ̂(t) = λ̄


t0 + γ

 t

t0
σ(∥y(τ ) − ŷ(τ )∥ε)dτ


. (50)

Denoting h(t) = t ′ − t0 − γ
 t
t0

σ(∥y(τ ) − ŷ(τ )∥ε)dτ , where the
value of t ′ is chosen such that (49) holds, we arrive at the following
estimate:λ − λ̂(t)

 ≤
λ − λ̄(t ′)

+

λ̄(t ′) − λ̂(t)


=
λ − λ̄(t ′)

+
λ̄(t ′) − λ̄(t ′ − h(t))

 . (51)

The function λ̄(·) is Lipschitz: ∥λ̄(t1) − λ̄(t2)∥ ≤
√
p

maxi
|ωi|(λi,max−λi,min)

2 |t1 − t2|, t1, t2 ∈ R≥t0 . Thus (50), (51) imply
thatλ − λ̂(t)

 ≤
λ − λ̄(t ′)

+

λ̄(t ′) − λ̂(t)


≤ ∆λ + Dλ ∥h(t)∥ , Dλ

=
√
pmax

i

|ωi|(λi,max − λi,min)

2
. (52)

Taking (46) and (52) into accountwe can conclude that the dynam-
ics of the combined system (7), (22), (28)–(30) obeys the following
set of constraints:

∥e(t)∥ ≤ e−ρ(t−t0)Dρ ∥e(t0)∥ +
DρDvDλ

ρ
∥h(τ )∥∞,[t0,t]

+
DρDv∆λ

ρ
+

Dρ∆ξ

ρ
, (53)

h(t) = h(t0) − γ

 t

t0
σ(∥CTe1(τ )∥ε)dτ .
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To proceed further we need an auxiliary result below.

Lemma 11. Consider a system of which the dynamics for all t ≥ t0
satisfy the following inequalities

∥x(t)∥ ≤ ϱ(t − t0) ∥x(t0)∥ + c ∥h(τ )∥∞,[t0,t] + ∆, (54)

−

 t

t0
γ0(∥x(τ ) + d(τ )∥ε)dτ ≤ h(t) − h(t0) ≤ 0,

where x : R≥t0 → Rn, h : R → R are trajectories reflecting the
evolution of the system’s state, d : R → Rn, ∥d(τ )∥∞,[t0,∞) ≤

∆d is a continuous and bounded function on [t0, ∞), ϱ is a strictly
monotonically decreasing function with, ϱ(0) ≥ 1, lims→∞ ϱ(s) =

0; c, ∆ ∈ R>0, and γ0 : R → R≥0:

|γ0(s)| ≤ Dγ |s|, Dγ ∈ R>0. (55)

Then x(·), h(·) in (54) are globally bounded in forward time, for
t ≥ t0, provided that the following conditions hold for some d ∈

(0, 1), κ ∈ (1, ∞):

ε ≥ ∆


1 + ϱ(0)

κ

κ − d


+ ∆d, (56)

Dγ ≤
κ − 1

κ


ϱ−1


d
κ

−1

×
h(t0)

ϱ(0)∥x(t0)∥ + |h(t0)|c

1 +

κϱ(0)
(1−d)

 . (57)

The proof of Lemma 11 is provided in the Appendix. Notice that
h(t) in (53) satisfies −γDσ

 t
t0

∥e(τ )∥εdτ ≤ h(t) − h(t0) ≤ 0.
Indeed, ∥CTe1∥ε ≤ ∥e∥ε by virtue of definition of ∥ · ∥ε and C, and
the function σ in (53) is Lipschitz (see (27)). Thus (53) is of the form
(54) where

c = DρDvDλ/ρ, ∆ = DρDv∆λ/ρ + Dρ∆ξ/ρ,

ϱ(s) = Dρe−ρs.
(58)

Notice also that because (49) holds, the value of t ′ in (52) can
be chosen arbitrarily large. This implies that the value of h(t0) in
(53) may be chosen arbitrarily large too. Having this in mind, and
invoking Lemmas 10 and 11 we can conclude that choosing ε, γ in
(28) as

ε ≥ r0(∆), r0(∆) = ∆


1 + Dρ

κ

κ − d


,

0 < γ < γ̄ = min{γ ∗,Dγ ,∞}

Dγ ,∞ =
κ − 1
Dσ κ


ln

Dρ

κ

d

−1 ρ

c(1 + κDρ/(1 − d))
, (59)

where γ ∗ is defined as in (44), ensures that the function h(·)
in (53) is bounded. Given that h(·) by construction is monotone
and bounded, the Bolzano–Weierstrass theorem implies that h(t)
converges to a limit, and hence

lim
t→∞

 t

t0
σ(∥CTe1(τ )∥ε)dτ = h̄, h̄ ∈ R,

lim
t→∞

λ̂(t) = λ∗, λ∗
∈ Ωλ.

(60)

Noticing that σ(∥CTe(τ )∥ε) is uniformly continuous and using
Barbalat’s lemma we conclude that

lim
t→∞

sup
τ∈[t,∞)

∥CTe1(τ )∥ ≤ ε. (61)

Part 3. Let us rewrite the equation for ė1 in (36) as:

ė1 = (A + ℓ CT )e1 + v1(t, θ̂(t), λ̂(t), θ, λ)

+ v2(t, λ̂(t), λ) + v3(t), (62)
where v3(t) = −ξ(t) and

v1(t, θ̂, λ̂, θ, λ) = B(ϕT (t, λ̂, y(t))θ̂ − ϕT (t, λ, y(t))θ)

v2(t, λ̂, λ) = g(t, λ̂, y(t), u(t)) − g(t, λ, y(t), u(t)). (63)
Next steps make use of the following lemma.

Lemma 12. Consider

ẋ = Ax + u(t) + d(t),

y = CTx, x(t0) = x0, x0 ∈ R
n,

(64)

where A and C are defined as in (1), and u, d : R → Rn,u ∈ C1, d ∈

C. Let u, u̇, d be bounded:max{∥u(t)∥, ∥u̇(t)∥} ≤ B, ∥d(t)∥ ≤ ∆ξ

for all t ≥ t0.
Then, if the solution of (64) is globally bounded for all t ≥ t0, there

exist κ1, κ2 ∈ K:

∥y(τ )∥∞,[t0,∞) ≤ ε ⇒ ∃ t ′(ε, x0) ≥ t0 : ∥z1(τ ) + u1(τ )∥∞,[t ′,∞)

≤ κ1(ε) + κ2(∆ξ ),

where z1 = (1 0 · · · 0)z,

ż = Λz + Gu(t), Λ =


−b In−2

0


,

G =

−b In−1


, z(t0) = 0,

(65)

and b = col (b1, . . . , bn−1): real parts of the roots of sn−1
+b1sn−2

+

· · · + bn−1 are negative.
Moreover, if d(t) ≡ 0, then

y(t) = 0 ∀ t ≥ t0 ⇒ ∃p ∈ R
n−1

: ∀ t ≥ t0
(1 0 · · · 0)eΛ(t−t0)p + z1(t) + u1(t) = 0.

(66)

The proof of Lemma 12 is provided in the Appendix. According to
(8) and Assumption 3.2, v1(·, θ̂(·), λ̂(·), θ, λ), v2(·, λ̂(·), λ), v3(·)
and v̇1, v̇2 are bounded. Thus assumptions of Lemma 12 are met
for Eqs. (62), (63), and hence (61) implies that there is a t1(ε) ≥ t0
and κ1, κ2 ∈ K such that ∀ t ≥ t1(ε) we have:ϕT (t, λ̂(t), y(t))θ̂(t) − ϕT (t, λ, y(t))θ + v2,1(t, λ̂(t), λ)

+ C̃T
 t

t0
eΛ(t−τ)Gv2(τ , λ̂(τ ), λ)dτ

 ≤ κ1(ε) + κ2(∆ξ ),

where G ∈ R(n−1)×n, C̃ ∈ Rn−1 are defined as in (18)–(20), and
v2,1(·) is the first component of v2(·). Given that

 t
t0
eΛ(t−τ)Gv2

(τ , λ̂(τ ), λ)dτ =
 t
t0
eΛ(t−τ)Gv2(τ , λ∗, λ)dτ +

 t
t0
eΛ(t−τ)G(v2(τ ,

λ̂(τ ), λ) − v2(τ , λ∗, λ))dτ , noticing that Λ is Hurwitz and that,
according to (60) v2(t, λ̂(t), λ) − v2(t, λ∗, λ) → 0 as t →

∞, we can conclude that there is a t2(ε) ≥ t1(ε) such that
η(t, θ̂(t), λ∗, θ, λ) defined as in (19) satisfies:

∥η(t, θ̂(t), λ∗, θ, λ)∥ =

ϕT (t, λ∗, y(t))θ̂(t) − ϕT (t, λ, y(t))θ

+ C̃T
 t

t0
eΛ(t−τ)Gv2(τ , λ∗, λ)dτ

+ v2,1(t, λ∗, λ)


≤ κ1(ε) + κ2(∆ξ ) + ε ∀t ≥ t2(ε). (67)
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Recall that the restriction of α2(t, (λ′, θ′), (λ, θ)) = η(t, θ′, λ′, θ,
λ) on R≥t0 × Rp+m

× Rp+m is wNPE with L, β, E . Let t3(ε) be
such that ∥CTe1(t)∥ < 2ε for all t ≥ t3(ε) (existence of such
t3(ε) follows from (61)). Consider the sequence {τi}

∞

i=0, τi = max
{t3(ε), t2(ε)} + iL. Since ϕ(·, λ̂(·), y(·)) is bounded, there is an
Mθ ∈ R>0:

∥θ̂(τ ) − θ̂(τi)∥∞,[ti,ti+1] ≤ ε2γθBϕL = εMθ (68)

for all t ≥ τ0. Hence∀ t : t ∈ [τi, τi+1], i ∈ N, wehave:∥η(t, θ̂(τi),
λ∗, θ, λ)∥ ≤ κ1(ε) + κ2(∆ξ ) + ε(MθBϕ + 1). This, however,

implies that there is an N ∈ N such that dist


λ∗

θ̂(τi)


, E(λ, θ)


≤ β−1(κ1(ε) + κ2(∆ξ ) + ε(MθBϕ + 1)) for all i ≥ N . Therefore,
taking (43), (68) into account, we can conclude that there is a t ′(ε):

dist


λ̂(t)
θ̂(t)


, E(λ, θ)


≤ 2εMθ + β−1(κ1(ε)

+ κ2(∆ξ ) + ε(MθBϕ + 1)) ∀ t ≥ t ′(ε).

Notice that r0 in (59) is a class K∞ function of ∆. Parameter ∆,
as defined in (58), is the sum: ∆ =

DρDv∆λ

ρ
+

Dρ∆ξ

ρ
. Given that

the value of ∆λ can be chosen arbitrarily, we pick ∆λ = ∆ξ . This
renders r0 in (59) a class K∞ (and hence class K) function of ∆ξ .
Denote this function as r1, then ε > r1(∆ξ ) implies that

β−1(κ1(ε) + κ2(∆ξ ) + ε(MθBϕ + 1)) + 2εMθ

< β−1(κ1(ε) + κ2(r−1
1 (ε)) + ε(MθBϕ + 1)) + 2εMθ

= r2(ε). (69)

Thus (34) holds.
Finally, if E(λ, θ) coincides with E0(λ, θ), then Assumption 3.2

and (34) imply that ∥v1(t, θ̂(t), λ̂(t), θ, λ) + v2(t, λ̂(t), λ)∥ <
M1r2(ε) for some M1 ∈ R>0, t ≥ t ′(ε). Since A + ℓ CT in (62) is
Hurwitz, (35) follows. �

6. Discussion and generalization

6.1. Removing passivity requirement (Assumption 3.1)

Theorem 7 requires that A, B, C in (7) satisfy Assumption 3.1.
Here we invoke the idea of filtered transformations (Marino &
Tomei, 1992, 1993a) to show how observer (22), (28) can be mod-
ified so that this condition could be replaced with the requirement
that the pair A, C is observable. Consider a generalization of (7)

ẋ = Ax + 9(t, λ, y)θ + g(t, λ, y, u(t)) + ξ(t), (70)

y = CTx, A =


0 In−1
0 0


, C = col(1, 0, . . . , 0),

where 9 : R × Rp
× R → Rn×m, 9 ∈ C1, is Lipschitz in λ, and

9(·, λ, y(·)), 9̇(·, λ, y(·)) are bounded onR≥t0 . The function ξ and
parameters are defined as in (7), and the function g satisfies As-
sumption 3.2.

Let B = col (1, b1, . . . , bn−1) be a vector such that the polyno-
mial sn−1

+b1sn−2
+· · ·+bn−1 is Hurwitz. As an observer candidate

for (70) we propose a system in which Sw is defined as in (28), and
Sa is given as follows:

Ṁ = (A − BCTA)M + (In − BCT )9(t, λ̂(t), y(t)),
˙̂
ζ = Aζ̂ + ℓ (CT ζ̂ − y(t)) + BϕT (t, λ̂(t), y(t), [λ̂, y])θ̂

+ g(t, λ̂(t), y(t), u(t)), (71)
˙̂
θ = −γθ (CT ζ̂ − y(t))ϕ(t, λ̂(t), y(t), [λ̂, y]), γθ ∈ R>0,

x̂ = ζ̂ + Mθ̂, M ∈ R
n×m, M(t0) = 0,

where

ϕT (t, λ̂(t), y(t), [λ̂, y]) = CTAM(t, [λ̂, y])

+ CT9(t, λ̂(t), y(t)). (72)

The first row of M is zero for all t ≥ t0, and ŷ = CT x̂ = CT ζ̂. Since
9(·, λ̂(·), y(·)) is bounded on R≥t0 and Lipschitz in λ̂, M(·, [λ̂, y]),
Ṁ(·, [λ̂, y]) are globally bounded on R≥t0 , and M(t, [λ̂, y]) is Lips-
chitz in λ̂ for λ̂ = const. Let ζ = x − Mθ, then using (70)–(72) we
can write

ζ̇ = Aζ + Bϕ(t, λ̂(t), y(t), [λ̂, y])θ + (9(t, λ, y(t), u(t))

− 9(t, λ̂(t), y(t), u(t)))θ + g(t, λ, y(t), u(t)) + ξ(t).

Dynamics of (70), (71) in the coordinates e1 = ζ̂ − x + Mθ,
e2 = θ̂ − θ is
ė1
ė2


=


A + ℓ CT BαT (t)

−γθα(t)CT 0


e1
e2


+


ṽ(t, λ̂(t), λ, y(t), u(t))

0


(73)

where α(t) = ϕ(t, λ̂(t), y(t), [λ̂, y]), ṽ(t, λ̂, λ, y, u) = (9(t, λ̂, y)
−9(t, λ, y))θ+g(t, λ̂, y, u)−g(t, λ, y, u)−ξ(t). Since the pairA, C
is observable there always is an ℓ so that (2) holds. The structure
of (73) is now identical to that of (36), and Assumptions 3.1 and 3.2
hold for the functionsϕ, g in (71). Finally, consider the functionη1:

η1(t, λ, θ, λ′, θ′) = ϕT (t, λ′, y(t), [λ′, y])(θ′
− θ)

+ CT (9(t, λ′, y(t)) − 9(t, λ, y(t)))θ
+ g1(t, λ′, y(t), u(t))
− g1(t, λ, y(t), u(t)) + q(t, λ′, λ, θ),

where q(t, λ′, λ, θ) = C̃z(t, λ, λ′, θ), ż = Λz+G((Ψ (t, λ′, y(t))−
Ψ (t, λ, y(t)))θ+g(t, λ′, y(t), u(t))−g(t, λ, y(t), u(t))), z(t0) = 0,
and C̃, Λ,G are defined as in (20). The following is now immediate:

Theorem 13. Consider (70), (71), (28)–(30). Suppose that condi-
tion A1 of Assumption 4.1 holds for the function α3 : R≥t0 × Ωλ →

Rm, α3(t, λ) = ϕ(t, λ, y(t), [λ, y]), where ϕ is defined as in (71).
Furthermore, let the restriction of α4 : R × Rp+m

× Rp+m
→

R, α4(t, (λ, θ), (λ′, θ′)) = η1(t, λ, θ, λ′, θ′) on R≥t0 × Rp+m
×

Rp+m be weakly nonlinearly persistently exciting in (λ, θ) wrt to the
map E1:

E1(λ, θ) = {(λ′, θ′), λ′
∈ R

p, θ′
∈ R

m
|B(θ′

− θ)T · ϕ(t, λ′,

y(t), [λ′, y]) + (9(t, λ′, y(t)) − 9(t, λ, y(t)))θ
+ g(t, λ′, y(t), u(t)) − g(t, λ, y(t), u(t)) = 0,
∀ t ≥ t0}.

Then there exist a constant γ̄ ∈ R>0 and functions r1, r2, r3 ∈ K
such that if γ , ε are the corresponding parameters of (28), and γ ∈

(0, γ̄ ), ε > r1(∆ξ ), then (35), (34) hold (with E replaced by E1) for
the interconnection (70), (71) and (28).

The proof is largely identical to that of Theorem 7 (a sketch is pre-
sented in the Appendix). According to Remarks 6 and 9 one can re-
place the requirement that the restriction of α4 onR≥t0 ×Rp+m

×

Rp+m is wNPEwith L, β, E1 with that of the λ′-uniform persistency
of excitation of the restriction of α5:

α5(t, λ′) = (ϕT (t, λ′, y(t), [λ′, y]),R1(t, λ, λ′, θ)), (74)

where R1(t, λ, λ′, θ) =
 1
0

∂
∂s r1(t, s(ξ , λ, λ′), θ)dξ , s(ξ , λ, λ′) =

λ′ξ + (1 − ξ)λ, and r1(t, λ, θ) = CT9(t, λ, y(t))θ + g1(t, λ,
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Fig. 2. Left panel: a qualitative picture of the system dynamics in the coordinates (s1, s2, θ̂ ). Shaded regions depict envelops of 15 trajectories of the system for various initial
conditions. Actual trajectories of the system are very oscillatory, and individual trajectories are hardly distinguishable. Qualitatively, their behavior is shown by the black
arrowed lines.Middle panel: typical simulated trajectories of θ̂ , λ̂ as functions of t . Solid and dark gray curves correspond to the case when no measurement noise is added;
dashed and light gray curves show trajectories of the estimates in presence of additive measurement noise. Dotted lines indicate true values of θ and λ. Right panel: envelops
of the modified system solutions in the coordinates (s1, s2, θ̂ ).

y(t), u(t)) + C̃T
 t
t0
eΛ(t−τ)G(9(τ , λ, y(τ ))θ + g(τ , λ, y(τ ), u(τ )))

dτ , on R≥t0 × Ωλ.
Consider now systems (9). Since A, C is observable, there is a

coordinate transformation x → T (A)x bringing system (9) into
the form (70), albeit with the functions 9, g and vector θ defined
differently. An example illustrating the viability of this approach is
provided in Section 7. Notice also that observability of A, C implies
that the system ẋ = Ax + 9̃(t, λ, x)θ + g̃(t, λ, x, u(t)) + ξ(t),
y = CTx, in which the functions 9̃, g̃ are bounded and Lipschitz in
x can be brought into the form (70) by using an auxiliary high-gain
observer (cf. Grip et al., 2011).

6.2. Presence of measurement noise

Suppose now that observations of system (7) output, y, are cor-
rupted by noise. That is, instead of y = CTx we can access only
the variable yd = CTx + d, yd ∈ Dy, where d : R → R, d ∈

C1, ∥d(τ )∥∞,[t0,∞) ≤ ∆d, ∆d ∈ R≥0, and |ḋ(t)| is bounded. In this
case the variable y in the observer definition (22), (28) is replaced
by yd, and the dynamics of e1 = x̂ − x, e2 = θ̂ − θ becomes:
ė1
ė2


=


A + ℓ CT BαT (t, λ̂(t))

−γθα(t, λ̂(t))CT 0


e1
e2


+


v(t, λ̂(t), λ, yd(t), u(t))

0


+


ξ1(t)
ξ2(t)


whereαT (t, λ̂) = ϕT (t, λ̂, yd(t)), v(t, λ̂, λ, yd, u) = B(ϕT (t, λ̂, yd)
− ϕT (t, λ, yd))θ + g(t, λ̂, yd, u) − g(t, λ, yd, u) − ξ(t), and
ξ1(t) = B(ϕT (t, λ, yd(t))−ϕT (t, λ, y(t)))θ+(g(t, λ, yd(t), u(t))−
g(t, λ, y(t), u(t))) − ℓ d(t), ξ2(t) = −γθd(t)α(t, λ̂(t)). It can now
be seen that if ϕ, g are Lipschitz in y then there is an Md > 0 such
that max{∥ξ1(τ )∥∞,[t0,∞), ∥ξ2(τ )∥∞,[t0,∞)} ≤ Md∆d. Thus invok-
ing Lemmas 10 and 11 and following the argument provided in
proof of Theorem 7 one can establish existence of γ > 0 and ε > 0
such that (60), (61) hold. Convergence of the estimates will also
follow subject to corresponding persistency of excitation require-
ments (cf. part 3 of the proof). An illustration of the influence of
measurement noise on performance of the observer is provided in
Section 7, Fig. 2.

7. Examples

Consider the following system:

ẋ = Ax + Bθ + B(sin(λ cos(t)) + eλ sin(t)) + ξ(t), (75)

A =


−2 1
−1 0


, B =


1
1


,

y = CTx, x(t0) = x0,
C = col(1, 0, . . . , 0),

where θ ∈ [0, 1] = Ωθ , λ ∈ [0.1, 1] = Ωλ are unknown param-
eters, and x0 is only partially known. The function ξ : R → R2,
ξ(t) = 0.001col (sin(t), cos(t)), stands for the unmodeled dynam-
ics and is supposed to be unavailable for direct observation.

Let the task be to infer the values of x, θ, λ from the measure-
ments of y over time. System (75) belongs to the class of equations
described by (7) with ϕ(t, λ, y) = 1 ∀ t, λ, y, and g(t, λ, y, u) =

B(sin(λ cos(t)) + eλ sin(t)). Moreover, it satisfies Assumption 3.1
with

P =


2 −1

−1 1


, Q =


6 −3

−3 2


, ℓ =


0
0


,

and Assumption 3.2 with Dϕ = 0, Dg = Bg = Mg =
√
2(1 +

e), Bϕ = 1, and Mϕ = 0. According to (22)–(28) the observer can-
didate is:

˙̂x = Ax̂ + Bθ̂ + B(sin(λ̂ cos(t)) + eλ̂ sin(t))
˙̂
θ = −γθ (CT x̂ − y(t))

(76)

ṡ1 = γ tanh(∥CT x̂ − y(t)∥ε)(s1 − s2 − s1(s21 + s22))

ṡ2 = γ tanh(∥CT x̂ − y(t)∥ε)(s1 + s2 − s2(s21 + s22))

λ̂ = 0.1 + 0.45(s1 + 1), s21(t0) + s22(t0) = 1. (77)

Parameters γ , γθ , and ε will be specified in a later stage.
Note that ϕ(t, λ, y) = 1. Hence condition A1 in Assumption 4.1

holds. Notice also that the function η, as defined in (19), in this case
becomes: η(t, λ, θ, λ′, θ ′) = θ − θ ′

+ sin(λ cos(t)) + eλ sin(t)
−

sin(λ′ cos(t)) − eλ′ sin(t). One can now check that condition A2 is
satisfied as well. According to Theorem 7, system (76), (77) is an
adaptive observer for (75) subject to the choice of γ , γθ , and ε. A
procedure for setting specific values of these parameters can be
derived from the argument provided in the proof of the theorem.
Let us show how this procedure works in this example.

According to the theorem, parameter γθ is an arbitrary positive
number; here, for simplicity, we set γθ = 1. Parameters γ , ε are to
satisfy (58), (59). The choice of γ is subjected to two constraints.
The first constraint is γ ∈ (0, γ ∗

], where γ ∗ is specified in (44). It
ensures that the restriction ofϕ(·, λ̂(·), y(·)) onR≥t0 is persistently
exciting. In our case ϕ(t, λ̂(t), y(t)) is independent on λ̂(t), and
this property holds for any γ > 0. The second constraint is: γ <
κ−1
Dσ κ


ln

Dρ

κ
d

−1 ρ

c(1+κDρ/(1−d)) , κ > 1, d ∈ (0, 1),Dσ = 1, c =

DρDvDλ/ρ,whereDλ = 0.45,Dv =
√
2(1+e) (see (52), (45)), and

ρ and Dρ are such that the fundamental matrix of solutions of (38),
Φ(t, t0), satisfies: ∥Φ(t, t0)p∥ ≤ Dρe−ρ(t−t0)∥p∥. In this example

Φ(t, t0) = eA1(t−t0), A1 =


−2 1 1
−1 0 1
−1 0 0


,
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and ρ = 0.5,Dρ = 4.242. Picking d = 0.2, κ = 2 results in
γ̄ = 0.00286. Since the values of d, κ are now defined, we can
set the value of ε. Taking (58), (59) into account and noticing that
∆λ = 0 (this is because trajectories of (77) in which the term
tanh(∥CT x̂ − y(t)∥ε) is replaced with 1 will pass through every
point ofΩλ = [0.1, 1]), we arrive at ε ≥

Dρ∆ξ

ρ


1 + Dρ

κ
κ−d


, where

∆ξ : ∥ξ(t)∥ ≤ ∆ξ . Given that ∆ξ = 0.001 we obtain: ε ≥ 0.018.
Computer simulation results of the combined system (75)–(77)

with parameters θ = 0.2, λ = 0.7, γ = 0.0028, γθ = 1, ε =

0.018 are summarized in Fig. 2. As can be observed, the system has
two weakly attracting sets (marked as white circles). These sets
correspond to the true values of θ and λ. Even though trajecto-
ries of the system are converging to the attracting sets asymptoti-
cally, small neighborhoods of these sets are not forward-invariant.
Hence the sets themselves are not globally asymptotically stable,
albeit they are clearly attracting. Middle panel depicts typical tra-
jectories of λ̂ and θ̂ . To showhow the proposed observer behaves in
presence of measurement noise we simulated the model-observer
system in which signal y(t) = x1(t) in the observer subsystem
was replaced with yd(t) = x1(t) + 0.05 sin(2t). The value of ε was
changed to 0.068 to account for this perturbation. The observer re-
tained functionality, albeit with lower precision of estimation.

In order to illustrate the behavior of the system in the case of
multiple equivalent parameterizations, we simulated a modified
version of the combined system (75)–(77), in which the nonlin-
early parameterized terms, i.e. B(sin(λ cos(t)) + eλ sin(t)) in (75)
and B(sin(λ̂ cos(t))+ eλ̂ sin(t)) in (76), are replaced with B(sin((λ−

0.45)2 cos(t)) + e(λ−0.45)2 sin(t)) and B(sin((λ̂ − 0.45)2 cos(t)) +

e(λ̂−0.45)2 sin(t)) respectively. Assumptions 3.1, 3.2 and A1 in As-
sumption 4.1 still hold for themodified system (with the same val-
ues of parameters). Yet, system (75) with the modified g(t, λ) =

B(sin((λ − 0.45)2 cos(t)) + e(λ−0.45)2 sin(t)) is no longer uniquely
identifiable since g(t, 0.7) = g(t, 0.2) for all t . Simulation results
of the modified system are presented in Fig. 2, right panel. Instead
of two attracting sets as in the previous configuration, the modi-
fied system has four weakly attracting sets corresponding to two
equivalent parameterizations θ = 0.2, λ = 0.7 (true) and θ =

0.2, λ = 0.2 (spurious). Parameter estimates converge to small
vicinities of these alternative parameterizations. Note that, the es-
timates do not jump between neighborhoods of θ = 0.2, λ = 0.7
and θ = 0.2, λ = 0.2, which is consistent with Remark 8.

Finally, we illustrate the applicability of our approach tomodels
(9). Consider the third example from Table 1 with nominal
parameter values as follows: τm = 0.1666, τs = 5, Af = 1, σf
= 2, σs = 0.8. Suppose that true values of these parameters
are unknown, but it is known that they are within ±25% of
their nominal values. Since the pair A, C is observable, there is a
parameter-dependent coordinate transformation x → Tx, T =

1 0
τ−1
s −τ−1

m


rendering the original equations into (70) with 9(t,

λ, y) =


y tanh(λy) 0 0
0 0 y tanh(λy)


, g = 0 and θ = col


−

1
τs

−

1
τm

,
Af
τm

, − 1+σs
τmτs

,
Af

τmτs


, λ =

σf
Af
. Note that A, 9 and θ differ from

those in the original parametrization. Let B = col (1, 1) and
consider M(t, [λ, y]) =


mij(t, [λ, y])


, i = 1, 2, j = 1, . . . , 4 in

(71). It is clear that the polynomial s+1 formed by the coefficients
of B is Hurwitz, m1,j(t, [λ, y]) = 0,m2,j(t, [λ, y]) are defined as
ṁ2,1 = −ṁ2,1 − y(t), ṁ2,2 = −ṁ2,2 − tanh(λy(t)), ṁ2,3 =

−ṁ2,3 + y(t), ṁ2,4 = −ṁ2,2 + tanh(λy(t)),m2,j(t0) = 0,
and that ϕ(t, [λ, y]) = col(m2,1(t, [y]) + y(t),m2,2(t, [λ, y]) +

tanh(λy(t)),m2,3(t, [y]),m2,4(t, [λ, y])). Given that Af , σf vary
within 25% of their nominal values we obtain that Ωλ = [1.2,
3.33]. For the given system, y is bounded, ϕ(t, [λ, y]), as a function
of t, λ on R≥t0 × Ωλ, is λ-UPE with T = 100, µ = 0.08. Moreover
the restriction of α5, defined in (74), on R≥t0 × Ωλ is λ′-UPE

Fig. 3. Estimates θ̂, λ̂ as functions of t . True values of θ, λ are shown as dashed
lines.

with T = 100, µ = 0.0054. Hence assumptions of Theorem 13
are met. We simulated the system and observer (71), (28) with
γθ = 4, γ = 0.004, and ε = 0 for various initial conditions and
values of θ, λ; θ̂, λ̂ approached true values of θ, λ asymptotically
as prescribed. An example of typical behavior of the estimates is
shown in Fig. 3. Original parameters of themodel can be recovered
as: τ̂s = θ̂2/θ̂4, τ̂m = −1/(θ̂1 + 1/τ̂s), Âf = τ̂mθ̂2, σ̂s = −θ̂3τ̂sτ̂m −

1, σ̂f = Âf λ̂. Further examplesmay be found in the supplementary
material (Tyukin, Steur, Nijmeijer, & van Leeuwen, 2013).

8. Conclusion

Wederived an observer that can reconstruct asymptotically the
unknown state and parameter values of a class of systems with
general nonlinear parametrization. This class can be viewed as
an extension of the adaptive observer canonical forms (Bastin &
Gevers, 1988; Marino, 1990). In contrast to the earlier approaches
addressing the problem of nonlinear parametrization in the
problem of adaptive observer design (Farza et al., 2009; Grip,
2009; Grip et al., 2010, 2011; Liu et al., 2011; Tyukin et al.,
2007), the class of parameterizations for which the reconstruction
is guaranteed is not limited to convex/concave or one-to-one
functions. We showed that reconstruction can be achieved,
subject to additional conditions of linear/nonlinear persistency of
excitation, if nonlinearly parameterized functions in themodel are
bounded, differentiable and Lipschitz.

The set to which the estimates converge is not guaranteed to
be asymptotically stable. Yet the set is attracting in a weaker, Mil-
nor sense, cf. Milnor (1985). Numerical simulations revealed that
the convergence time in our approach depends heavily on the di-
mension of λ; it does not, however, depend crucially on the dimen-
sion of θ. This renders the method more efficient than exhaustive
search; the smaller the dimension of λ the more advantageous our
method becomes. In this respect a related question arises: is there
a ‘‘best’’ parametrization for a given physical model in the class of
systems (7) or (9)? The answer is likely to require a quantitative
assessment of the performance of various observers for all admis-
sible parametrizations. We do not answer this question here, but
hope to be able to address it in future.

Appendix

Lemma 14. Consider ẏ = ky + u(t) + d(t), k ∈ R, u, d : R≥t0 →

R, u ∈ C1, d ∈ C0, and let max{|u(t)|, |u̇(t)|} ≤ B, |d(t)| ≤ ∆ξ .
Then ∥y∥∞,[t0,∞) ≤ ε ⇒ ∃ t1(ε) ≥ t0 : ∥u∥∞,[t1(ε),∞) ≤

√
ε(1 +

e|k|
√

ε
+ B) + ∆ξ .

Proof of Lemma 14. Noticing that y(t) for t ≥ t0 + T , T > 0, can
be expressed as: y(t) = y(t − T )ekT +

 t
t−T e

k(t−τ)(u(τ ) + d(τ ))dτ
and using theMean-value theoremwe obtain: y(t)−y(t−T )ekT =

Tek(t−τ ′)(u(τ ′) + d(τ ′)), τ ′
∈ [t − T , t]. Hence ε(1 + ekT ) ≥
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Tek(t−τ ′)(|u(t)| − TB − ∆ξ ), and ∆ξ + TB +
ε(1+ekT )

T min{1,ekT }
≥ ∆ξ +

TB +
ε(1+ekT )

T min{1,ek(t−τ ′)}
≥ |u(t)| for all t ≥ t0 + T . Given that T can

be chosen arbitrarily we let T =
√

ε, and thus |u(t)| ≤
√

ε(1 +

ek
√

ε)max{1, e−k
√

ε
}+B

√
ε+∆ξ ≤

√
ε(1+ e|k|

√
ε
+B)+∆ξ ∀ t ≥

t0 +
√

ε. �

Proof of Lemma 12. Let us rewrite (64) as

ẏ = a1y + C̃x̃ + u1(t) + d1(t)
˙̃x = Ãx̃ + ãy + bu1(t) + Gu(t) + d̃(t),

where ã = col(a2, . . . , an), C̃ = col(1, 0, . . . , 0), d̃(t) = col
(d2(t), . . . , dn(t)), and G =


−b In−1


, Ã =


0 In−2
0 0


. Let

∥y(t)∥∞,[t0,∞) ≤ ε and denote e(t) = C̃T x̃(t) + u1(t). According
to Lemma 14, there is a t1(ε) > t0 and υ1, υ2 ∈ K such that
∥e(t)∥ = ∥C̃T x̃(t) + u1(t)∥ ≤ υ1(ε) + υ2(∆ξ ) ∀ t ≥ t1(ε).

Using the notation above we obtain: ˙̃x = (Ã− bC̃T )x̃+ ãy(t) +

G̃u(t) + be(t) + d̃(t). Matrix Ã − bC̃T
= Λ is Hurwitz, and hence

there are D, k ∈ R>0 such that ∥eΛ(t−t0)∥ ≤ De−k(t−t0). Therefore
∥C̃T x̃(t)− C̃T

 t
t0
eΛ(t−τ)Gu(τ )dτ∥ ≤ De−k(t−t0)∥x̃(t0)∥+

D
k (∥a∥ε+

∥b∥(υ1(ε) + υ2(∆ξ )) + ∆ξ ).
Noticing that z1 = C̃T

 t
t0
eΛ(t−τ)Gu(τ )dτ and denoting κ1(ε) =

2D
k (∥a∥ε + ∥b∥υ1(ε)) + υ1(ε), κ2(∆ξ ) = 2D

k (∆ξ + ∥b∥υ2(∆ξ )) +

υ2(∆ξ ) we can conclude that there is a t ′(ε, x0) ≥ t1(ε) such that

∥z1(τ ) + u1(τ )∥∞,[t,∞) ≤ κ1(ε) + κ2(∆ξ ) ∀ t ≥ t ′(ε).

Noticing that y(t), d(t) ≡ 0 ⇒ e(t) ≡ 0 ensures that (66) holds
too. �

Proof of Lemma 10. Consider J(λ, t) = zT
 t+T

t α(τ , λ)αT (τ , λ)

dτ

z =

 t+T
t ∥zTα(τ , λ)∥2, where z ∈ Rn+m, z ≠ 0, for t ∈

R≥t0 . According to C2 we have: J(λ, t) ≥ µ∥z∥2
∀ λ ∈ Ωλ.

Let λ̂ : R≥t0 → Ωλ be a differentiable function, and consider
J(λ̂(t), t) −

 t+T
t ∥zTα(τ , λ̂(τ ))∥2dτ =

 t+T
t ∥zTα(τ , λ̂(t))∥2

−

∥zTα(τ , λ̂(τ ))∥2dτ =
 t+T
t ∥zTα(τ , λ̂(t))∥2

−zTα(τ , λ̂(t))αT (τ , λ̂

(τ ))z+ zTα(τ , λ̂(t))αT (τ , λ̂(τ ))z−∥zTα(τ , λ̂(τ ))∥2dτ =
 t+T
t zT

α(τ , λ̂(t))[αT (τ , λ̂(t)) − αT (τ , λ̂(τ ))]z +
 t+T
t zT [α(τ , λ̂(t)) −

α(τ , λ̂(τ ))]αT (τ , λ̂(τ ))zdτ . Applying the Cauchy–Schwarz in-
equality to the last equality, and invoking C4 and C3 we obtain:
J(λ̂(t), t) −

 t+T
t ∥zTα(τ , λ̂(τ ))∥2dτ ≤ (

 t+T
t ∥zT [α(τ , λ̂(t)) −

α(τ , λ̂(τ ))]∥2dτ)
1
2 2MT∥z∥ ≤ 2DMT 2

∥z∥2 maxτ∈[t,t+T ] ∥
˙̂
λ(τ )∥.

Thus (39), (40) ensure that
 t+T
t ∥zTα(τ , λ̂(τ ))∥2dτ ≥ J(λ̂(t), t) −

rµ∥z∥2. This, in accordance with C2, guarantees that
 t+T
t ∥zTα(τ ,

λ̂(τ ))∥2dτ ≥ (1 − r)µ∥z∥2. Hence α(t, λ̂(t)) is persistently excit-
ing in the sense of Definition 2. The value of (1 − r)µ does not de-
pend on the choice of λ̂ as long as (40), (39) hold. Finally, notice that
C4 and (39) guarantee boundedness ofα(·, λ̂(·)) and its derivative:
max{∥α(t, λ̂(t))∥, ∥α̇(t, λ̂(t))∥} ≤ M + MMλ = M +

µr
2DT2

. Tak-
ing C1 and Theorem 3 into account we conclude that the lemma
follows. �

Proof of Lemma 11. According to conditions of the lemma, (57),
we conclude that h(t0) ≥ 0. Introduce a strictly decreasing
sequence: {σi}, i = 0, 1, . . . , σi = (1/κ)i, κ ∈ (1, ∞). Further,
let {ti}, i = 1, . . . , t1 < t2 < · · · < tn < · · · be an ordered infinite
sequence:

h(ti) = σih(t0). (A.1)

If {ti} satisfying (A.1) does not exist then it is clear that h(t0) ≥

h(t) ≥ 0 for all t ≥ t0. Hence, in accordance with (29), x(·) is
bounded for all t ≥ t0, and nothing remains to be proven. Let us

now show that if (56), (57) and (A.1) hold then

h(t) → 0 ⇒ t → ∞. (A.2)

Consider Ti = ti − ti−1. It is clear from (55) that

TiDγ max
τ∈[ti−1,ti]

∥x(τ ) + d(τ )∥ε ≥ h(t0)(σi−1 − σi). (A.3)

In addition,maxτ∈[ti−1,ti] ∥x(τ )+d(τ )∥ε = ∥x(τ )+d(τ )∥∞,[ti−1,ti]−

ε if ∥x(τ )+d(τ )∥∞,[ti−1,ti] > ε, andmaxτ∈[ti−1,ti] ∥x(τ )+d(τ )∥ε =

0 overwise, we can see from (A.3) that

Ti ≥


h(t0)(σi−1 − σi)

Dγ

1
∥x(τ ) + d(τ )∥∞,[ti−1,ti] − ε

,

∥x(τ ) + d(τ )∥∞,[ti−1,ti] > ε;

∞, ∥x(τ ) + d(τ )∥∞,[ti−1,ti] ≤ ε.

(A.4)

Consider the case when ∥x(τ ) + d(τ )∥∞,[ti−1,ti] − ε > 0 for all
i = 1, 2, . . . . Let us pick

τ ∗
= ϱ−1 (d/κ) , d ∈ (0, 1), (A.5)

and select the value of Dγ such that (57) holds. Given that ∥x(τ ) +

d(τ )∥∞,[t0,t1] −ε ≤ ϱ(0)∥x(t0)∥+ ch(t0)+∆+∆d −ε, conditions
(57) and (56), and (A.5) imply Dγ ≤

κ−1
κ

h(t0)
ϱ(0)∥x(t0)∥+c|h(t0)|

1
τ∗ ≤

h(t0)(σ0−σ1)
(∥x(τ )+d(τ )∥∞,[t0,t1]−ε)

1
τ∗ . This, as follows from (A.4), guarantees that

T1 ≥ τ ∗.
Without loss of generality suppose that there is an i ≥ 2:

Tj ≥ τ ∗ for all 1 ≤ j ≤ i − 1. Let us show that Ti−1 ≥

τ ∗
⇒ Ti ≥ τ ∗. This will ensure that (A.2) is satisfied and that the

lemma hold. Consider ∥x(τ )∥∞,[ti−1,ti]; (54) and (A.1) imply that:
∥x(τ )∥∞,[ti−1,ti] ≤ ϱ(0)∥x(ti−1)∥ + cσi−1h(t0) + ∆. Hence

∥x(τ )∥∞,[ti−1,ti] ≤ ϱ(0)[ϱ(Ti−1)∥x(ti−2)∥ + cσi−2h(t0)]

+ ϱ(0)∆ + ch(t0)σi−1 + ∆

≤ ϱ(0)ϱ(τ ∗)∥x(ti−2)∥ + P1,

where P1 = ϱ(0)cσi−2h(t0) + cσi−1h(t0) + ϱ(0)∆ + ∆. Invoking
(54) again results in

∥x(τ )∥∞,[ti−1,ti] ≤ ϱ(0)ϱ2(τ ∗)∥x(ti−3)∥ + P2,

where P2 = ch(t0)ϱ(0)[ϱ(τ ∗)σi−3 + σi−2] + cσi−1h(t0) + ϱ(0)
[ϱ(τ ∗)∆ + ∆] + ∆, and

∥x(τ )∥∞,[ti−1,ti] ≤ ϱ(0)ϱ3(τ ∗)∥x(ti−4)∥ + P3,

where P3 = ch(t0)ϱ(0)[ϱ2(τ ∗)σi−4 + ϱ(τ ∗)σi−3 + σi−2] + cσi−1

h(t0) + ∆ϱ(0)[ϱ(τ ∗)2 + ϱ(τ ∗) + 1] + ∆ = ch(t0)ϱ(0)[
2

j=0 ϱj

(τ ∗)σi−j−2] + ch(t0)σi−1 + ∆ϱ(0)[
2

j=0 ϱj(τ ∗)] + ∆. After i − 1
steps we obtain

∥x(τ )∥∞,[ti−1,ti] ≤ ϱ(0)ϱi−1(τ ∗)∥x(t0)∥ + Pi−1, (A.6)

with Pi−1 = ch(t0)ϱ(0)[
i−2

j=0 ϱj(τ ∗)σi−j−2] + ch(t0)σi−1 + ∆ϱ(0)
[
i−2

j=0 ϱj(τ ∗)] + ∆. The values of Ti, as follows from (A.4), are
bounded from below by:

Ti ≥
σi−1 − σi

σi−1Dγ σ−1
i−1

h(t0)
∥x(τ ) + d(τ )∥∞,[ti−1,ti] − ε

 . (A.7)

Considerσ−1
i−1(∥x(τ )+d(τ )∥∞,[ti−1,ti]−ε). Taking (A.6) into account

we derive that:

σ−1
i−1(∥x(τ ) + d(τ )∥∞,[ti−1,ti] − ε)

≤ ϱ(0)ϱi−1(τ ∗)κ i−1
∥x(t0)∥ + ki−1Pi−1 + ki−1∆d − ki−1ε
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= ϱ(0)ϱi−1(τ ∗)κ i−1
∥x(t0)∥ + ch(t0)ϱ(0)κ


i−2
j=0

ϱj(τ ∗)κ j



+ ch(t0) + κ i−1


∆(ϱ(0)

i−2
j=0

ϱj(τ ∗) + 1) + ∆d − ε


.

Noticing that τ ∗ is chosen in accordance with (A.5) one can
therefore obtain:

σ−1
i−1(∥x(τ ) + d(τ )∥∞,[ti−1,ti] − ε)

≤ ϱ(0)∥x(t0)∥ + ch(t0) + ch(t0)ϱ(0)κ
i−2
j=0

dj

+ κ i−1


∆


ϱ(0)

i−2
j=0

d
κ

j

+ 1


+ ∆d − ε



≤ ϱ(0)∥x(t0)∥ + ch(t0)

1 +

ϱ(0)κ
1 − d


+ ki−1


∆


ϱ(0)

1 − d/k
+ 1


+ ∆d − ε


.

Condition (56) implies that ∆(
ϱ(0)
1−d/k + 1) + ∆d − ε ≤ 0. Hence

σ−1
i−1(∥x(τ )+d(τ )∥∞,[ti−1,ti]−ε) ≤ ϱ(0)∥x(t0)∥+ch(t0)(1+

ϱ(0)κ
1−d ).

Substituting the latter estimate into (A.7) and using (57) yields
Ti ≥ τ ∗. Thus h(·) is bounded for t ≥ t0, and hence so is x(·). �

Proof of Theorem 13. Let Λ0 = A − BCTA, G0 = In − BCT . Con-
sider ϕ̃(t, λ̂(t), T1) = CTA

 t
t−T1

eΛ0(t−τ)G09(τ , λ̂(t), y(τ ))dτ +

CT9(t, λ̂(t), y(t)). It is clear that for any ε1 > 0 there are T1, t1
sufficiently large and γ1 sufficiently small:

∥ϕ̃(t, λ̂(t), T1) − ϕ(t, λ̂(t), y(t), [λ̂, y])∥ < ε1 (A.8)

for all γ ∈ (0, γ1) and t ≥ t1 ≥ t0. Indeed, consider δ1(T1, t)
= CTAeΛ0T1

 t−T1
t0

eΛ0(t−T1−τ)G09(τ , λ̂(τ ), y(τ ))dτ , δ2(T1, t) =

CTA
 t
t−T1

eΛ0(t−τ)G0(9(τ , λ̂(τ ), y(τ )) − 9(τ , λ̂(t), y(τ )))dτ , pick
ε1 > 0, and let T1 be so large that |δ1(T1, t)| < ε1/2 for t ≥ t0 +T1.
Let γ1 ∈ R>0 be so small that |δ2(T1, t)| < ε1/2 for all t ≥ t0 + T1
(such a choice is always possible due to that 9 is Lipschitz in
λ̂). Noticing that ϕ(t, λ̂(t), y(t), [λ̂, y]) = δ1(T1, t) + δ2(T1, t) +

ϕ̃(t, λ̂(t), T1) we can conclude that (A.8) holds.
Given that the restriction of ϕ(t, λ, y(t), [λ, y]) (as a function

of t, λ) onR≥t0 × Ωλ is λ-UPE with T , µ, there is a ε1 in (A.8) such
that ϕ̃(t, λ, T1) ∈ λUPE(T , µ−ϵ), ϵ ∈ (0, µ/3). On the other hand
(see the first part of the proof of Lemma 10), there is a γ2 such that
ϕ̃(t, λ̂(t), T1) is persistently excitingwith parameters T , µ−2ϵ for
all γ ∈ (0, γ2). Choosing γ ∈ (0,min{γ1, γ2}) and taking (A.8) into
account we conclude that the restriction of ϕ(·, λ̂(·), y(·), [λ̂, y])
on R≥t2 is persistently exciting (t2 > t1 > t0) provided that ε1 is
small enough and t2 is sufficiently large. Thus, invoking the argu-
ment presented in Part 2 of the proof of Theorem7we can conclude
that (61) and (60) hold for the combined system. Convergence of
state and parameter estimates can now be shown similarly to the
3d part of the proof of Theorem 7. �
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