
ar
X

iv
:1

30
5.

14
39

v1
 [

cs
.S

Y
]

 7
 M

ay
 2

01
3

SupervisionLocalization ofTimedDiscrete-EventSystems

Renyuan Zhang a, Kai Cai b, Yongmei Gan a, ZhaoanWang a, W.M.Wonham b

aSchool of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

bDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

Abstract

We study supervisor localization for real-time discrete-event systems (DES) in the Brandin-Wonham framework of timed
supervisory control. We view a real-time DES as comprised of asynchronous agents which are coupled through imposed logical
and temporal specifications; the essence of supervisor localization is the decomposition of monolithic (global) control action
into local control strategies for these individual agents. This study extends our previous work on supervisor localization for
untimed DES, in that monolithic timed control action typically includes not only disabling action as in the untimed case,
but also “clock preempting” action which enforces prescribed temporal behavior. The latter action is executed by a class of
special events, called “forcible” events; accordingly, we localize monolithic preemptive action with respect to these events. We
demonstrate the new features of timed supervisor localization with a manufacturing cell case study, and discuss a distributed
control implementation.

Key words: Supervisory control; Supervisor localization; Timed discrete-event systems.

1 Introduction

Recently we developed a top-down approach, called su-
pervisor localization [3, 4] to the distributed control of
untimed discrete-event systems (DES) in the Ramadge-
Wonham (RW) supervisory control framework [10, 14].
We view the plant to be controlled as comprised of in-
dependent asynchronous agents which are coupled im-
plicitly through logical control specifications. To make
the agents smart and semi-autonomous, our localization
algorithm allocates external supervisory control action
to individual agents as their internal control strategies,
while preserving the optimality (maximal permissive-
ness) and nonblocking properties of the overall mono-
lithic (global) controlled behavior. Under the localiza-
tion scheme, each agent controls only its own events, al-
though it may very well need to observe events originat-
ing in other (typically neighboring) agents.

⋆ This work was supported in part by the State Key Labora-
tory of Electrical Insulation and Power Equipment (China),
and by the Natural Sciences and Engineering Research Coun-
cil (Canada), Grant no. 7399.

Email addresses: r.yuan.zhang@gmail.com (Renyuan
Zhang), kai.cai@scg.utoronto.ca (Kai Cai),
ymgan@mail.xjtu.edu.cn (Yongmei Gan),
zawang@mail.xjtu.edu.cn (Zhaoan Wang),
wonham@control.utoronto.ca (W.M. Wonham).

In this paper we extend the supervisor localization the-
ory to a class of real-time DES, and address distributed
control problems therein. Many time-critical applica-
tions can be modeled as real-time DES, such as commu-
nication channels, sensor networks, scheduling and re-
source management [8]. Typical timing features include
communication delays and operational hard deadlines.
The correctness and optimality of real-time DES depend
not only on the system’s logical behavior, but also on the
times at which various actions are executed. Moreover,
rapid advances in embedded, mobile computation and
communication technologies [8, Part III] have enabled
distributed implementation of control algorithms. These
developments jointly motivate this study of supervisor
localization for real-time DES.

A variety of real-time DES models and approaches are
available. Notable works include Brave and Heymann’s
“clock automata” [2], Ostroff’s “timed transition mod-
els” [9], Brandin and Wonham’s timed DES (TDES) [1],
Cassandras’s “timed state automata” [5], Wong-Toi and
Hoffman’s model based on “timed automata” [12], and
Cofer and Garg’s model based on “timed Petri nets” [6].
We adopt Brandin andWonham’s TDES (or BWmodel)
as the framework for developing a timed supervisor lo-
calization theory for two reasons. First, the BW model
is a direct extension from the RW framework (where our
untimed localization theory is based), retaining the cen-
tral concepts of controllability, and maximally permis-

Preprint submitted to Automatica 16 October 2018

http://arxiv.org/abs/1305.1439v1

sive nonblocking supervision. This feature facilitates de-
veloping a timed counterpart of supervisor localization.
Second, the BW model captures a variety of timing is-
sues in a useful range of real-time discrete-event control
problems [1], [14, Chapter 9]. While it may be possible to
develop supervisor localization in an alternative frame-
work, as a preliminary step into real-time supervisor lo-
calization we choose the BW model for its close relation
with previous work.

The principal contribution of this paper is the develop-
ment of a timed supervisor localization theory in the
BWTDES framework, which extends the untimed coun-
terpart in [3, 4]. In this timed localization, a novel fea-
ture is “event forcing” as means of control, in addition
to the usual “event disabling”. Specifically, “forcible”
events are present in the BW model as events that can
be relied on, when subject to some temporal specifica-
tion, to “preempt the tick of the clock”, as explained
further in Section 2. Correspondingly, in localizing the
monolithic supervisor’s control action, we localize not
only its disabling action as in the untimed case, but also
its preemptive action with respect to individual forcible
events. Central to the latter are several new ideas: “lo-
cal preemptor”, “preemption consistency relation”, and
“preemption cover”. We will prove that localized dis-
abling and preemptive behaviors collectively achieve the
same global optimal and nonblocking controlled behav-
ior as the monolithic supervisor does. The proof relies on
the new preemption concepts and also controllability for
TDES. Moreover, the derived local controllers typically
have much smaller state size than the monolithic super-
visor, and hence their disabling and preemptive logics
are often more transparent. We demonstrate this empir-
ical result by a case study of a manufacturing cell taken
from [1].

The paper is organized as follows. Section 2 provides a
review of the BW TDES framework. Section 3 formu-
lates the timed supervisor localization problem, and Sec-
tion 4 presents a constructive solution procedure. Sec-
tion 5 studies a manufacturing cell example; and finally,
Section 6 draws conclusions.

2 Preliminaries on Timed Discrete-Event Sys-
tems

This section reviews the TDES model proposed by
Brandin andWonham [1], [14, Chapter 9]. First consider
the untimed DES model

Gact = (A,Σact, δact, a0, Am). (1)

HereA is the finite set of activities, Σact is the finite set of
events, δact : A×Σact → A is the (partial) activity transi-
tion function, a0 ∈ A is the initial activity, and Am ⊆ A
is the set ofmarker activities. LetN denote the set of nat-
ural numbers {0, 1, 2, ...}. We introduce time into Gact

by assigning to each event σ ∈ Σact a lower time bound
lσ ∈ N and an upper time bound uσ ∈ N∪{∞}, such that
lσ ≤ uσ; typically, lσ represents a delay in communica-
tion or in control enforcement, while uσ is often a hard
deadline imposed by legal specification or physical neces-
sity. With these assigned time bounds, the event set Σact

is partitioned into two subsets: Σact = Σspe∪̇Σrem (∪̇
denotes disjoint union) with Σspe := {σ ∈ Σact|uσ ∈ N}
and Σrem := {σ ∈ Σact|uσ = ∞}; here “spe” denotes
“prospective”, i.e. σ will occur within some prospective
time (with a finite upper bound), while “rem” denotes
“remote”, i.e. σ will occur at some indefinite time (with
no upper bound), or possibly will never occur at all.

A distinguished event, written tick, is introduced which
represents “tick of the global clock”.Attach to each event
σ ∈ Σact a (countdown) timer tσ ∈ N, whose default
value tσ0 is set to be

tσ0 :=

{

uσ if σ ∈ Σspe,

lσ if σ ∈ Σrem.
(2)

When timer tσ > 0, it decreases by 1 (counting down)
if event tick occurs; and when tσ = 0, event σ must
occur (resp. may occur) if σ ∈ Σspe (resp. if σ ∈ Σrem).
Note that while tick is a global event, each timer tσ is
local (with respect to the event σ). Also define the timer
interval Tσ by

Tσ :=

{

[0, uσ] if σ ∈ Σspe,

[0, lσ] if σ ∈ Σrem.
(3)

Thus tσ ∈ Tσ.

Based on (1)-(3), the TDES model G is given by

G := (Q,Σ, δ, q0, Qm), (4)

where Q := A×
∏

{Tσ|σ ∈ Σact} (
∏

denotes Cartesian
product) is the finite set of states 1 , a state q ∈ Q being
of the form q = (a, {tσ|σ ∈ Σact}) (i.e. a (1 + |Σact|)-
tuple); Σ := Σact∪̇{tick} is the finite set of events; δ :
Q×Σ → Q is the (partial) state transition function; q0 =
(a0, {tσ0|σ ∈ Σact}) (tσ0 as in (2)) is the initial state; and
Qm ⊆ Am×

∏

{Tσ|σ ∈ Σact} is the set of marker states.
Starting from q0, TDES G executes state transitions
in accordance with its transition function δ. Let q =
(a, {tα|α ∈ Σact}) ∈ Q and σ ∈ Σact; δ is defined at
(q, σ), written δ(q, σ)!, if δact of Gact is defined at (a, σ)
(i.e. δact(a, σ)!) and timer tσ satisfies (i) 0 ≤ tσ ≤ uσ−lσ
when σ ∈ Σspe, and (ii) tσ = 0 when σ ∈ Σrem. The new
state q′ = δ(q, σ) is given by q′ = (δact(a, σ), {t′α|α ∈

1 An upper bound for the state size |Q| is |A| ∗
∏

σ∈Σact

tσ0

(here
∏

denotes scalar multiplication), which in practice can
be much larger than its untimed counterpart |A|.

2

Σact}), where t′σ is set to be its default value tσ0 as in
(2); for other timers tα, α 6= σ, the reader is referred
to detailed updating rules given in [1, 14]. On the other
hand, δ(q, tick)! if no timer of a prospective event is zero,
and q′ = δ(q, tick) = (a, {t′α|α ∈ Σact}), i.e. there is no
change in the activity component a of q, while the rules
for updating timers are again referred to [1, 14].

Let Σ∗ be the set of all finite strings of elements in Σ =
Σact∪̇{tick}, including the empty string ǫ. For Σ′ ⊆ Σ,
the natural projection P : Σ∗ → Σ′∗ is defined according
to

P (ǫ) = ǫ, ǫ is the empty string;

P (σ) =

{

ǫ, if σ /∈ Σ′,

σ, if σ ∈ Σ′;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(5)

In the usual way, P is extended to P : Pwr(Σ∗) →
Pwr(Σ′∗), where Pwr(·) denotes powerset. Write P−1 :
Pwr(Σ′∗) → Pwr(Σ∗) for the inverse-image function of
P .

We introduce the languages generated by TDES G in
(4). The transition function δ is extended to δ : Q×Σ∗ →
Q in the usual way. The closed behavior of G is the
language

L(G) := {s ∈ Σ∗|δ(q0, s)!} (6)

and the marked behavior is

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (7)

We say that G is nonblocking if the prefix closure ([14])
L̄m(G) = L(G).

To use TDESG in (4) for supervisory control, it is neces-
sary to specify certain transitions that can be controlled
by an external supervisor. First, as in the untimed the-
ory [14], we need a subset of events that may be disabled.
Since disabling an event usually requires preventing that
event indefinitely from occurring, only remote events be-
long to this category. Thus let a new subset Σhib ⊆ Σrem

denote the prohibitible events; the supervisor is allowed
to disable any prohibitible event. Next, and specific to
TDES, we bring in another category of events which
can preempt event tick. Note that tick may not be dis-
abled, inasmuch as no control technology can stop the
global clock indefinitely. On this basis let a new subset
Σfor ⊆ Σact denote the forcible events; a forcible event
is one that preempts event tick: if, at a state q ofG, tick
is defined and so are one or more forcible events, then
tick can be effectively erased from the current list of de-
fined events (contrast with indefinite erasure) 2 . There is

2 One may also think of forcible events as being able to
occur so fast that they can occur between ticks. For a more
general use of forcible events, see [7].

no particular relation postulated a priori between Σfor

and any of Σhib, Σrem or Σspe; in particular, a remote
event may be both forcible and prohibitible. It is now
convenient to define the controllable event set

Σc := Σhib ∪̇ {tick}. (8)

Here designating both Σhib and tick controllable is to
simplify terminology. We emphasize that events in Σhib

can be disabled indefinitely, while tick may be pre-
empted only by events in Σfor. The uncontrollable event
set Σu is

Σu := Σ− Σc = Σspe∪̇(Σrem − Σhib). (9)

We introduce the notion of controllability as follows. For
a string s ∈ L(G), define

EligG(s) := {σ ∈ Σ|sσ ∈ L(G)} (10)

to be the subset of events ‘eligible’ to occur (i.e. defined)
at the state q = δ(q0, s). Consider an arbitrary language
F ⊆ L(G) and a string s ∈ F ; similarly define the eligi-
ble event subset

EligF (s) := {σ ∈ Σ|sσ ∈ F}, (11)

We say F is controllable with respect to G in (4) if, for
all s ∈ F ,

EligF (s) ⊇

EligG(s) ∩ (Σu∪̇{tick})

if EligF (s) ∩ Σfor = ∅,

EligG(s) ∩Σu

if EligF (s) ∩ Σfor 6= ∅.

(12)

Thus F controllable means that an event σ is eligible to
occur in F if (i) σ is currently eligible inG, and (ii) either
σ is uncontrollable or σ = tick when there is no forcible
event currently eligible in F . Recall that in the untimed
supervisory control theory [10,14], F controllable means
that the occurrence of an uncontrollable event in G will
not cause a string s ∈ F to exit from F ; the difference in
TDES is that, the special event tick (formally control-
lable) can be preempted only by a forcible event when
the forcible event is eligible to occur.

Whether or not F is controllable, we denote by C(F) the
set of all controllable sublanguages of F . Then C(F) is
nonempty, closed under arbitrary set unions, and thus
contains a unique supremal element denoted by supC(F)
[1, 14]. Now consider a specification language E ⊆ Σ∗

imposed on the timed behavior of G; E may represent

3

SUP

G
G

LOC
C

σ1
LOC

C

σ2
LOC

C

σ3

LOC
P

σ3
LOC

P

σ4
LOC

P

σ5

Fig. 1. Supervisor localization example for illustration:
let Σhib = {σ1, σ2, σ3}, Σfor = {σ3, σ4, σ5}; note
σ3 ∈ Σhib ∩ Σfor. Localization of SUP’s control action
includes two parts: (i) localizing its disabling action into
three local controllers LOC

C
σi
, i = 1, 2, 3, and (ii) localizing

its preemptive action into three local preemptors LOC
P
σj
,

j = 3, 4, 5.

a logical and/or temporal requirement. Let 3

SUP = (X,Σ, ξ, x0, Xm) (13)

be the corresponding monolithic supervisor that is opti-
mal (i.e., maximally permissive) and nonblocking in the
following sense: SUP’s marked language Lm(SUP) is

Lm(SUP) = supC(E ∩ Lm(G)) ⊆ Lm(G) (14)

and moreover its closed language L(SUP) is L(SUP) =
Lm(SUP).We note that in order to achieve optimal and
nonblocking supervision, SUP should correctly disable
prohibitible events as well as preempt tick via forcible
events.

3 Formulation of Localization Problem

Let TDES G in (4) be the plant to be controlled, and
E be a specification language. Synthesize as in (14) the
monolithic optimal and nonblocking supervisor SUP;
throughout the paper we assume that Lm(SUP) 6= ∅.
Supervisor SUP’s control action includes (i) disabling
prohibitible events in Σhib and (ii) preempting tick via
forcible events in Σfor. This section formulates the lo-
calization of SUP’s control action with respect to each
prohibitible event as well as to each forcible event; an il-
lustration of localization is provided in Fig. 1. Compared
to [3], the present supervisor localization is an extension
from untimed DES to TDES. As will be seen below, the
treatment of prohibitible events is the timed counter-
part of the treatment of controllable events in [3]; on the
other hand, localization of forcible events’ preemptive
action is specific to TDES, and we introduce below the
new concept “local preemptor”. Further, we will discuss
applying supervisor localization to the distributed con-
trol of multi-agent TDES.

3
SUP need not be a (strict) TDES as defined in (4). It can

be any automaton whose event set contains tick; we refer to
such automata as generalized TDES.

First, let α ∈ Σfor be an arbitrary forcible event. We

say that LOCP
α = (Yα,Σα, ζα, y0,α, Ym,α)

4 , Σα ⊆ Σ, is
a local preemptor (for α) if α is defined at every state of

LOCP
α where event tick is preempted. Let Pα : Σ∗ →

Σ∗

α be the natural projection as in (5). Then in terms
of language, the above condition means that for every
s ∈ Σ∗ there holds

s.tick ∈ L(G) & s ∈ P−1
α L(LOCP

α) &

s.tick /∈ P−1
α L(LOCP

α) ⇒ sα ∈ L(G) ∩ P−1
α L(LOCP

α).

Notation s.tick means that event tick occurs after
string s, and will be used henceforth. The left side of
the above implication means that event tick is pre-
empted in LOCP

α after string s (after s event tick is

defined in L(G) but not in LOCP
α), and the right side

says that forcible event α is defined in LOCP
α (and in

L(G)) after s. That is, forcible event α acts to preempt

tick. The event set Σα of LOCP
α in general satisfies

{α, tick} ⊆ Σα ⊆ Σ; in typical cases, however, both
subset containments are strict, as will be illustrated in
Section 5. Also, for simplicity we assume the lower and
upper time bounds of events in Σα coincide with the
bounds on the corresponding events in Σ (this is, in
fact, guaranteed by the localization procedure presented
below in Section 4). It is worth emphasizing that Σα

(precisely defined below) is not fixed a priori, but will
be systematically determined, as part of our localization
result, to ensure correct preemptive action.

Next, let β ∈ Σhib be an arbitrary prohibitible event. We
say that LOCC

β = (Yβ ,Σβ , ζβ , y0,β, Ym,β), Σβ ⊆ Σ, is a

local controller (for β) if LOCC
β can disable only event

β. Let Pβ : Σ∗ → Σ∗

β be the natural projection as in (5).
Then in terms of language, the above condition means
that for all s ∈ Σ∗ and σ ∈ Σ, there holds (cf. [3])

sσ ∈ L(G) & s ∈ P−1
α L(LOCC

β) &

sσ /∈ P−1
α L(LOCC

β) ⇒ σ = β.

The event set Σβ of LOCC
β in general satisfies {β} ⊆

Σβ ⊆ Σ. 5 Like Σα above, Σβ will be generated as part
of our localization result to guarantee correct disabling
action; again, the events in Σβ are assumed to have the
same lower and upper time bounds as the corresponding
events in Σ.

Nowwe formulate the Supervisor Localization Problem of
TDES: Construct a set of local preemptors {LOCP

α |α ∈

4
LOC

P
α is a generalized TDES; we further explain this

below in Section 4.
5 Event set Σβ need not contain event tick, since LOC

C
β ’s

disabling action may be purely logical and irrelevant to time.

4

Σfor} and a set of local controllers {LOCC
β |β ∈ Σhib},

with

L(LOC) :=

⋂

α∈Σfor

P−1
α L(LOCP

α)

∩

⋂

β∈Σhib

P−1
β L(LOCC

β)

 (15)

Lm(LOC) :=

⋂

α∈Σfor

P−1
α Lm(LOCP

α)

∩

⋂

β∈Σhib

P−1
β Lm(LOCC

β)

 (16)

such that LOC is control equivalent to SUP (with re-
spect to G) in the following sense:

L(G) ∩ L(LOC) = L(SUP),

Lm(G) ∩ Lm(LOC) = Lm(SUP).

For the sake of easy implementation and comprehensibil-
ity, it would be desired in practice that the state sizes of
local preemptors/controllers be verymuch less than that
of their parent monolithic supervisor. Inasmuch as this
property is neither precise to state nor always achievable,
it is omitted from the above formal problem statement;
in applications, nevertheless, it should be kept in mind.

Using a set of local preemptors and local controllers
that is control equivalent to SUP, we can build an opti-
mal and nonblocking distributed control architecture for
a multi-agent TDES plant. Let the plant G with event
set Σ be composed 6 of n component TDES (or agents)
Gk with Σk (k ∈ [1, n]). 7 According to (4), Σk =
Σact,k∪̇{tick} (event tick is shared by all agents); thus
Σ =

⋃n
k=1 Σact,k∪̇{tick}. In addition to tick, we also al-

low the Σact,k to share events. Now let Σfor,k,Σhib,k ⊆
Σk be the forcible event set and prohibitible event set,
respectively, of agent Gk; then Σfor =

⋃n
k=1 Σfor,k and

Σhib =
⋃n

k=1 Σhib,k. For each forcible event α ∈ Σfor

there is a local preemptor LOCP
α ; and for each pro-

hibitible eventβ ∈ Σhib there is a local controllerLOCC
β .

These local preemptors/controllers need to be allocated
among individual agents, for each agent may have mul-
tiple forcible/prohibitible events. A convenient alloca-
tion is to let each local controller/preemptor be owned
by exactly one agent; an example is displayed in Fig 2.

6 Composition of multiple TDES involves first taking syn-
chronous product of the untimed DES, and then unifying the
time bounds of shared events [1,14].
7 Note that each Gk may contain multiple forcible and/or
prohibitible events.

LOC
C

σ1
LOC

C

σ2

G1 G2 G3

LOC
C

σ3
LOC

P

σ3
LOC

P

σ4
LOC

P

σ5

LOC
C

σ1
LOC

C

σ2
LOC

C

σ3

LOC
P

σ3
LOC

P

σ4
LOC

P

σ5

G1 G2 G3

Communication

G

Fig. 2. Example of distributed control by allocating local
preemptors/controllers. Continuing the example in Fig. 1,
let plant G be composed of three agents Gk with event
sets Σk, k ∈ [1, 3]. Suppose σ1, σ2 ∈ Σ1, σ2, σ3 ∈ Σ2, and
σ3, σ4, σ5 ∈ Σ3; thus G1 and G2 share event σ2, and G2

and G3 share event σ3. Then a convenient allocation is dis-
played, where each local controller/preemptor is owned by
exactly one agent. The allocation creates a distributed con-
trol architecture for the multi-agent plant, in which each
agent acts semi-autonomously while interacting with other
agents through communication of shared events.

Choosing this or (obvious) alternative ways of allocation
would be case-dependent.

4 Procedure of Supervisor Localization

We solve the Supervisor Localization Problem of TDES
by developing a localization procedure for the supervi-
sor’s preemptive and disabling action, respectively. The
procedure extends the untimed counterpart in [3]. In par-
ticular, localizing the supervisor’s preemption of event
tick with respect to each individual forcible event is
novel in the current TDES setup, for which we introduce
below two new ideas “preemption consistency relation”
and “preemption cover”.

Given a TDES plant G = (Q,Σ, δ, q0, Qm) (as
in (4)) and a corresponding monolithic supervisor
SUP = (X,Σ, ξ, x0, Xm) (as in (13)) with respect to
an imposed specification, we present the localization of
SUP’s preemptive and disabling action in the sequel.

4.1 Localization of Preemptive Action

Fix an arbitrary forcible event α ∈ Σfor. First define
Etick : X → {1, 0} according to

Etick(x) = 1 iff ξ(x, tick)!. (17)

Thus Etick(x) = 1 means that tick is defined at state
x in SUP. Next define Fα : X → {1, 0} according to

5

initial state marker stateNotation:

α ∈ Σfor
q0 q1 q2

q3

q4

tick

σ2

tick

σ1

α

tick

tick

G
x0 x1 x2

Etick(xi)

Fα(xi)

1

1

0 0

0 0

x3

1

0 x0 x1 x2 x3

ασ2

tick

σ1

tick

SUP

Fig. 3. Preemption consistency relation is not transitive:
(x0, x1) ∈ RP

α , (x1, x2) ∈ RP
α , but (x0, x2) /∈ RP

α .

Fα(x) = 1 iff

ξ(x, α)! & ¬ξ(x, tick)! & (∃s ∈ Σ∗)
(

ξ(x0, s) = x & δ(q0, s.tick)!
)

(18)

So Fα(x) = 1 means that forcible event α is defined
at state x (i.e. ξ(x, α)!), which effectively preempts the
occurrence of event tick (i.e. tick is not defined at x
in SUP but is defined at some state in the plant G
corresponding to x via string s). It should be noted that
at state x, α need not be the only forcible event that
preempts tick, for there can be other forcible events, say
α′, defined at x. In that case, by (18) Fα′(x) = 1 as well.

Based on the preemption information captured by Etick

and Fα above, we define the following binary relation
RP

α (for α) on X , called ‘preemption consistency’. This
relation determines if two states of SUP have consistent
preemptive action with respect to the forcible event α.

Definition 1 Let RP
α ⊆ X × X. We say that RP

α is a
preemption consistency relation with respect to α ∈ Σfor

if for every x, x′ ∈ X, (x, x′) ∈ RP
α iff

Etick(x) · Fα(x
′) = 0 = Etick(x

′) · Fα(x). (19)

Thus a pair of states (x, x′) in SUP is not preemption
consistent with respect to α only when tick is defined at
x but is preempted by α at x′, or vice versa. Otherwise,
x and x′ are preemption consistent, i.e. (x, x′) ∈ RP

α .
It is easily verified that RP

α is reflexive and symmetric,
but not transitive; an illustration is provided in Fig. 3.
Hence RP

α is not an equivalence relation. This fact leads
to the following definition of a preemption cover. Recall
that a cover on a set X is a family of nonempty subsets
(or cells) of X whose union is X .

Definition 2 Let I be some index set, and CP
α = {Xi ⊆

X |i ∈ I} a cover on X. We say that CP
α is a preemption

cover with respect to α if

(i) (∀i ∈ I, ∀x, x′ ∈ Xi)(x, x
′) ∈ RP

α ,

(ii) (∀i ∈ I, ∀σ ∈ Σ)
[

(∃x ∈ Xi)ξ(x, σ)! ⇒ (20)

(

(∃j ∈ I)(∀x′ ∈ Xi)ξ(x
′, σ)! ⇒ ξ(x′, σ) ∈ Xj

)

]

.

A preemption cover CP
α lumps states of SUP into (pos-

sibly overlapping) cells Xi, i ∈ I. According to (i) all
states that reside in a cell Xi must be pairwise preemp-
tion consistent; and (ii) for every event σ ∈ Σ, all states
that can be reached from any states in Xi by a one-step
transition σ must be covered by the same cellXj . Induc-
tively, two states x, x′ belong to a common cell of CP

α if
and only if x and x′ are preemption consistent, and two
future states, say y and y′, that can be reached respec-
tively from x and x′ by a given string are again preemp-
tion consistent. We say that a preemption cover CP

α is a
preemption congruence if CP

α happens to be a partition
on X , namely its cells are pairwise disjoint.

Having defined a preemption cover CP
α on X , we con-

struct, below, a local preemptorLOCP
α = (Yα,Σα, ζα, y0,α,

Ym,α) for the forcible event α to preempt tick.

(Step 1) The state set is Yα := I, with each state y ∈ Yα

being a cell Xi of the cover CP
α . In particular, the initial

state y0,α is a cell Xi0 where x0 belongs, i.e. x0 ∈ Xi0,
and the marker state set Ym,α := {i ∈ I|Xi ∩Xm 6= ∅}.

(Step 2) For the event set Σα, define the transition
function ζ′α : I × Σ → I over the entire event set Σ by
ζ′α(i, σ) = j if

(∃x ∈ Xi)ξ(x, σ) ∈ Xj and

(∀x′ ∈ Xi)
[

ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj

]

. (21)

Choose Σα to be the union of {α, tick} with other events
which are not selfloop transitions of ζ′α, i.e.

Σα := {α, tick}∪̇{σ ∈ Σ− {α, tick} | (∃i, j ∈ I)

i 6= j & ζ′α(i, σ) = j}. (22)

Intuitively, only those non-selfloop transitionsmay affect
decisions on tick preemption, and thus the events that
are only selfloops may be removed. Note that {α, tick} ⊆
Σα ⊆ Σ.

(Step 3) Define the transition function ζα to be the
restriction of ζ′α to Σα; namely ζα := ζ′α|Σα

: I × Σα →
I according to ζα(i, σ) = ζ′α(i, σ) for every i ∈ I and
σ ∈ Σα.

We note that LOCP
α thus constructed is not a TDES as

defined in (4), for its states do not contain timer infor-

mation. LOCP
α is indeed a generalized TDES because

6

its event set Σα contains tick. We will be concerned only
with its behavior, namely its closed and marked lan-
guages. Also note that, owing to possible overlapping of
cells in the cover CP

α , the choices of y0,α and ζα may not

be unique, and consequently LOCP
α may not be unique.

In that case we pick an arbitrary instance of LOCP
α . If

CP
α happens to be a preemption congruence, however,

then LOCP
α is unique.

By the same procedure, we generate a set of local pre-
emptors LOCP

α , one for each forcible event α ∈ Σfor.
We will verify below that these generated preemptors
collectively achieve the same preemptive action of event
tick as the monolithic supervisor SUP does.

4.2 Localization of Disabling Action

Next, we turn to the localization of SUP’s disabling
action, which is analogous to the treatment in [3]. Fix
an arbitrary prohibitible event β ∈ Σhib. First define
Eβ : X → {1, 0} according to

Eβ(x) = 1 iff ξ(x, β)! (23)

So Eβ(x) = 1 means that β is defined at state x in SUP.
Next define Dβ : X → {1, 0} according to Dβ(x) = 1 iff

¬ξ(x, β)! & (∃s ∈ Σ∗) (ξ(x0, s) = x & δ(q0, sβ)!) (24)

Thus Dβ(x) = 1 means that β must be disabled at x
(i.e. β is disabled at x in SUP but is defined at some
state in the plant G corresponding to x via string s). In
addition, define M : X → {1, 0} according to

M(x) = 1 iff x ∈ Xm. (25)

Thus M(x) = 1 means that state x is marked in SUP.
Finally define T : X → {1, 0} according to

T (x) = 1 iff (∃s ∈ Σ∗)ξ(x0, s) = x&δ(q0, s) ∈ Qm

(26)

So T (x) = 1 means that some state, corresponding to x
via s, is marked inG. Note that for each x ∈ X , it follows
from Lm(SUP) ⊆ Lm(G) that T (x) = 0 ⇒ M(x) = 0
and M(x) = 1 ⇒ T (x) = 1 [3].

Based on (23)-(26), we define the following binary rela-
tionRC

β ⊆ X×X , called control consistencywith respect

to prohibitible event β (cf. [3]), according to (x, x′) ∈ RC
β

iff

(i) Eβ(x) ·Dβ(x
′) = 0 = Eβ(x

′) ·Dβ(x),

(ii) T (x) = T (x′) ⇒ M(x) = M(x′). (27)

Thus a pair of states (x, x′) in SUP satisfies (x, x′) ∈ RC
β

if (i) event β is defined at one state, but not disabled at
the other; and (ii) x and x′ are both marked or both un-
marked in SUP, provided both are marked or unmarked
in G. It is easily verified that RC

β is generally not tran-

sitive [3], thus not an equivalence relation. Now let I be
some index set, and CC

β = {Xi ⊆ X |i ∈ I} a cover on

X . Similar to Definition 2, we define CC
β to be a control

cover with respect to β if

(i) (∀i ∈ I, ∀x, x′ ∈ Xi)(x, x
′) ∈ RC

β ,

(ii) (∀i ∈ I, ∀σ ∈ Σ)
[

(∃x ∈ Xi)ξ(x, σ)! ⇒ (28)

(

(∃j ∈ I)(∀x′ ∈ Xi)ξ(x
′, σ)! ⇒ ξ(x′, σ) ∈ Xj

)

]

.

Note that the only difference between control cover and
preemption cover in Definition 2 is the binary relation
(control consistencyRC

β or preemption consistencyRP
α)

used in condition (i).

With the control cover CC
β on X , we construct by the

same steps (Step1) - (Step 3), above, a local controller

LOCC
β = (Yβ ,Σβ , ζβ , y0,β, Ym,β) for prohibitible event

β. Here, the choice of event set Σβ is (cf. (22))

Σβ := {β}∪̇{σ ∈ Σ− {β} | (∃i, j ∈ I)

i 6= j & ζ′β(i, σ) = j}. (29)

Σβ need not contain event tick, as noted in Footnote 5.
As before, owing to possible overlapping of cells in the
control cover CC

β , a local controller LOCC
β need not be

unique. If, however, CC
β happens to be a control congru-

ence (i.e. CC
β is a partition onX), then LOCC

β is unique.
In the same way, we generate a set of local controllers
LOCC

β , one for each prohibitible event β ∈ Σhib. We will
verify that the collective disabling action of these local
controllers is identical to that of the monolithic supervi-
sor SUP.

Finally, notice that an event β may be both prohibitible
and forcible. In that case, β will be equipped with both a
local controller which exercises disabling action specific
to β, and a local preemptor which implements preemp-
tion of event tick via β. It appears that here a conflict
could arise: β’s local preemptor intends to use β to pre-
empt tick, but β is disabled by its local controller. How-
ever, since β’s local preemptor and controller are both
derived from SUP which is proved to contain no such
conflict [1, 14], the conflict indeed cannot arise between
β’s local preemptor and controller. Our main result be-
low confirms this fact.

7

4.3 Main Result

Here is the main result of this section, which states that
the local preemptors and controllers generated by the
proposed localization procedure collectively achieve the
monolithic optimal and nonblocking supervision.

Theorem 3 The set of local preemptors {LOCP
α |α ∈

Σfor} and the set of local controllers {LOCC
β |β ∈ Σhib}

constructed above solve the Supervisor Localization Prob-
lem; that is,

L(G) ∩ L(LOC) = L(SUP), (30)

Lm(G) ∩ Lm(LOC) = Lm(SUP). (31)

where L(LOC) and Lm(LOC) are as defined in (15) and
(16), respectively.

Theorem 3 extends the untimed supervisor localization
result in [3] to the TDES setup, where not only the dis-
abling action but also the tick-preemptive action of the
monolithic supervisor needs to be localized. Thus su-
pervisor localization in TDES generates a set of local
controllers, one for each individual prohibitible event, as
well as a set of local preemptors, one for each individual
forcible event. The proof of Theorem 3, below, relies on
the concepts of TDES controllability, control cover, as
well as preemption cover.

Since for every preemption cover (resp. control cover),
the presented procedure constructs a local preemptor
(resp. preemption cover), Theorem 3 asserts that every
set of preemption and control covers together generates
a solution to the Supervisor Localization Problem. In
particular, a set of state-minimal local preemptors (resp.
local controllers), possibly non-unique, can in princi-
ple be defined from a set of suitable preemption covers
(resp. control covers). The minimal state problem, how-
ever, is known to be NP-hard [11]. In [3] we proposed,
nevertheless, a polynomial-time localization algorithm
which computes congruences instead of covers; and em-
pirical evidence was given that significant state size re-
duction can often be achieved. That localization algo-
rithm (see [3, Section III-B]) for untimed DES can easily
be adapted in the current TDES case, the only modi-
fication being to use the new definitions of preemption
and control consistency given in Sections 4.1 and 4.2.

So far we have focused on localization of the monolithic
supervisor. In fact, the developed localization procedure
may be applied to decompose a modular (decentralized
or hierarchical) supervisor just as well. Thus when a
TDES is large-scale and the monolithic supervisor not
feasibly computable, we may in principle combine lo-
calization with an effective modular supervisory synthe-
sis: first compute a set of modular supervisors which
achieves the same behavior as the monolithic supervisor,
and then apply localization to decompose each modular

supervisor in the set. This is done in [3,4] for large-scale
untimed DES; and we aim to work out the timed coun-
terpart in future research.

We now provide the proof of Theorem 3. Equation (31)
and the (⊇) direction of (30) may be verified analogously
as in [3]. For completeness we present the verification
in the Appendix. Here we prove (⊆) in (30), which in-
volves the TDES’s controllability definition, preemption
consistency, and control consistency.

Proof of Theorem 3. (⊆, 30) We show this by induction.
First, the empty string ǫ belongs to L(G), L(LOC),
and L(SUP), because these languages are all nonempty.
Next, suppose s ∈ L(G) ∩ L(LOC), s ∈ L(SUP), and
sσ ∈ L(G) ∩ L(LOC) for an arbitrary event σ ∈ Σ. It
will be proved that sσ ∈ L(SUP). Since Σ = Σu ∪̇ Σc =
Σu ∪̇ {tick} ∪̇ Σhib (as in (9)), we consider the following
three cases.

(i) Let σ ∈ Σu. SinceLm(SUP) is controllable (see (12)),
and sσ ∈ L(G) (i.e. σ ∈ EligG(s) by (10)), we have
σ ∈ EligLm(SUP)(s). That is, by (11) sσ ∈ Lm(SUP) =
L(SUP).

(ii) Let σ = tick. We will show tick ∈ EligLm(SUP)(s)

to conclude that s.tick ∈ Lm(SUP) = L(SUP). By
the hypothesis that s, s.tick ∈ L(LOC) and equation
(15), for every forcible event α ∈ Σfor there holds

s, s.tick ∈ P−1
α L(LOCP

α), i.e. Pα(s), Pα(s) tick ∈
L(LOCP

α). Recall LOCP
α = (Yα,Σα, ζα, y0,α, Ym,α),

and let i := ζα(y0,α, Pα(s)) and j := ζα(i, tick). By
definition of ζ′α in (21), any σ /∈ Σα (defined in (22)) is
only a selfloop transition of ζ′α; hence ζ′α(y0,α, s) = i.
By (21) again, there exist x, x′ ∈ Xi and x′′ ∈ Xj such
that ξ(x0, s) = x and ξ(x′, tick) = x′′ in SUP. These

state-transition correspondences between LOCP
α and

SUP are displayed in Fig. 4.

Now that x, x′ belong to the same cellXi, by the preemp-
tion cover definition (Definition 2) x and x′ must be pre-
emption consistent, i.e. (x, x′) ∈ RP

α . Since ξ(x′, tick)!,
by (17) we have Etick(x

′) = 1. Thus the requirement
Etick(x

′)·Fα(x) = 0 (Definition 1) yields thatFα(x) = 0.
The latter, by (18), gives rise to the following three
cases: (Case 1) ¬ξ(x, α)!, (Case 2) ξ(x, tick)!, or (Case 3)
(¬∃s ∈ Σ∗)

(

ξ(x0, s) = x& δ(q0, s.tick)!
)

. First, Case 3 is
impossible, because by the hypothesis that s ∈ L(SUP)
and s.tick ∈ L(G) we have ξ(x0, s)! and δ(q0, s.tick)!.
Next, Case 2 means directly tick ∈ EligLm(SUP)(s). Fi-
nally, Case 1 implies α /∈ EligLm(SUP)(s); note that this
holds for allα ∈ Σfor. HenceEligLm(SUP)(s)∩Σfor = ∅.
Then by the fact that SUP is controllable, we derive
from (12) that tick ∈ EligLm(SUP)(s).

(iii) Let σ ∈ Σhib. By the hypothesis s, sσ ∈ L(LOC)

and equation (15), we have s, sσ ∈ P−1
σ L(LOCC

σ),

8

LOC
P
α = (Yα,Σα, ζα, y0,α, Ym,α)

Pαs tick

SUP = (X,Σ, ξ, x0, Xm)
s

Xi Xj

y0,α i j

x0
x

x′ x′′

tick

Fα(x) = 0

tick

Fig. 4. State-transition correspondences between LOC
P
α and

SUP. It is proved in the text that tick is also defined at
state x.

MACH1 MACH2

CONV1 CONV2
P1

P2

P1: CONV1 → MACH1 → MACH2 → CONV2

P2: CONV1 → MACH2 → MACH1 → CONV2

0 12

βi2

αi2 βi1

αi1

Untimed DES models of
MACHi, i = 1, 2

Fig. 5. Manufacturing Cell

i.e. Pσ(s), Pσ(s)σ ∈ L(LOCC
σ). As in (ii), let i :=

ζσ(y0,σ, Pσ(s)) = ζ′σ(y0,σ, s) and j := ζσ(i, σ). By
the definition of ζ′σ in (21), there exist x, x′ ∈ Xi,
x′′ ∈ Xj such that ξ(x0, s) = x and ξ(x′, σ) = x′′.
Since x, x′ belong to the same cell Xi, by the control
cover definition x and x′ must be control consistent,
i.e. (x, x′) ∈ RC

σ . That ξ(x′, σ)! implies by (23) that
Eσ(x

′) = 1. Thus the requirement Eσ(x
′) · Dσ(x) = 0

yields that Dσ(x) = 0. The latter, by (24), gives rise to
the following two cases: (Case 1) ξ(x, σ)!, or (Case 2)
(¬∃s ∈ Σ∗)ξ(x0, s) = x & δ(q0, sσ)!. Case 2 is impossi-
ble, because by the hypothesis that s ∈ L(SUP) and
s.tick ∈ L(G) we have ξ(x0, s)! and δ(q0, s.tick)!. But
in Case 1, ξ(x, σ)! i.e. sσ ∈ L(SUP). �

5 Case Study: Manufacturing Cell

We illustrate supervisor localization in TDES by study-
ing a manufacturing cell example, taken from [1], [14,
Section 9.11]. As displayed in Fig. 5, the cell consists of
two machines, MACH1 and MACH2, an input con-
veyor CONV1 as an infinite source of workpieces, and
output conveyor CONV2 as an infinite sink. Each ma-
chine processes two types of parts, P1 and P2. Each type
of part is routed as shown in Fig. 5. The untimed DES
models of the machines are also displayed in Fig. 5; here
αij (i, j ∈ [1, 2]) is the event “MACHi starts to work
on a Pj-part”, while βij (i, j ∈ [1, 2]) is “MACHi fin-
ishes working on a Pj-part”. Assign lower and upper time
bounds to each event, with the notation (event, lower

0 1

α21

β11

β21, α11, ∗ *

∗ = {tick, α12, α22,
β12, β22}
SPEC1

0

1

2

3

β21

β12

β12
*

*

β21

*

*

∗ = {tick, α11, α12, α21, α22,
β11, β22}
SPEC3

0 1

*

α12

β22

α22, β12, ∗

∗ = {tick, α11, α21,
β11, β21}
SPEC2

0

1 2

3 4

5 6

7 8
tick

tick tick

tick

* *

*

tick

tick

* *

tick

*

*

tick

tick

*

∗ = {α11, α12, α21, α22,

β11, β12, β21, β22}

SPEC4

Fig. 6. Control specifications: logical and temporal. The
marked state 3 of SPEC3 corresponds to the completion of
a production cycle: one P1-part and one P2-part are pro-
cessed by both machines.

bound, upper bound), as follows:

MACH1’s timed events :

(α11, 1,∞) (β11, 3, 3) (α12, 1,∞) (β12, 2, 2)

MACH2’s timed events :

(α21, 1,∞) (β21, 1, 1) (α22, 1,∞) (β22, 4, 4)

So αij are remote events (upper bound ∞), and βij

prospective events (finite upper bounds). Now the TDES
models of the two machines can be generated [14, p.425].
Their joint behavior is the synchronous product of the
two TDES, which in this example is the plant to be con-
trolled.

To impose behavioral constraints on the two ma-
chines’ joint behavior, we take the events αij to be
both prohibitible and forcible, i.e. Σhib = Σfor =
{αij |i, j = 1, 2}, and the βij to be uncontrollable, i.e.
Σu = {βij |i, j = 1, 2}. We impose the following logical
control specifications as well as a temporal specification:

(S1) A P1-part must be processed first byMACH1 and
then by MACH2.

(S2) A P2-part must be processed first byMACH2 and
then by MACH1.

(S3) One P1-part and one P2-part must be processed in
a production cycle.

(S4) A production cycle must be completed in at most
8 time units. 8

8 Here we choose “8 time units” because it is, according to [1,

9

0 1

2

3

4 5 6

789101112

13 14

15

17

16

18

α12

β21

tick
α11

tick
α22

α21

tick

β12

tick

β12

tick

tick

tick tick

tick

α22

β21

β22 β11

α11

Fig. 7. Monolithic optimal and nonblocking supervisor SUP.

These four specifications are formalized as automata
SPEC1, SPEC2, SPEC3, and SPEC4, respectively,
as displayed in Fig. 6. The temporal specification
SPEC4 is simply an 8-tick sequence, with all states
marked; SPEC4 forces any TDES with which it is
synchronized to halt after at most 8 ticks, i.e. after 8
ticks to execute no further event whatever except event
tick. Thus it extracts the marked strings (if any) which
satisfy this constraint, namely the ‘tasks’ of TDES that
can be accomplished in at most 8 ticks (which turns out
to be exactly one production cycle according to [1, 14]).

Now the plant to be controlled is the synchronous prod-
uct of TDES MACH1 and MACH2 [14, p.425], and
the overall control specification is the synchronous prod-
uct of automata SPEC1-SPEC4 in Fig. 6. We com-
pute as in (14) the correspondingmonolithic optimal and
nonblocking supervisor SUP; the computation is done
by the supcon command in XPTTCT [13]. SUP has 19
states and 21 transitions, as displayed in Fig. 7. We see
that SUP represents the behavior that the manufactur-
ing cell accomplishes exactly one working cycle, within
8 ticks, producing one P1-part and one P2-part. Indeed,
each event is executed exactly once, and each forcible
event preempts tick immediately after it becomes eligi-
ble to occur.

We now apply supervisor localization to decompose the
monolithic supervisor SUP into local preemptors and
local controllers, respectively for each forcible event and
each prohibitible event. Specifically, since Σhib = Σfor =
{αij |i, j = 1, 2}, we will compute a local preemptor and
a local controller for each αij , responsible for αij ’s tick-
preemptive action and its disabling action, respectively.
This computation can be done by an algorithm adapted
from [3] (as discussed in Section 4.3); here, however, ow-
ing to the simple (chain-like) structure of SUP (Fig. 7),
local preemptors/controllers can be derived by inspec-
tion. We demonstrate such a derivation below, which re-
sults in a local preemptor LOCP

α11
for the forcible (and

14], the minimal time to complete one production cycle. Thus
this temporal specification represents a time-minimization
requirement.

prohibitible) event α11. Other derivations of local pre-
emptors/controllers are similar.

To derive a local preemptor LOCP
α11

for event

α11, we find a preemption cover CP
α11

for α11 on

SUP’s state set as follows. Initialize CP
α11

to be

CP
α11

=
{

[0], [1], [2], ..., [18]
}

, i.e. each cell contains ex-
actly one state of SUP. Subsequently, we merge as many
cells together as possible according to Definitions 1 and
2, while maintaining CP

α11
to be a preemption cover.

(i) Cells [0] and [1] cannot be merged. Since Etick(0) = 1
(event tick is defined at state 0) and Fα11

(1) = 1 (tick
is preempted by α11 at state 1), the pair of states (0, 1)
is not preemption consistent, i.e. (0, 1) /∈ RP

α11
. Conse-

quently, merging cells [0] and [1] violates requirement (i)
of preemption cover (Definition 2).

(ii) Cells [1], [3] and cells [2], [4] can be merged. For cells
[2] and [4], we have Fα11

(2) = 0, Etick(2) = 0 (tick
is preempted at state 2, but by α22 not by α11) and
Etick(4) = 1, Fα11

(4) = 0 (event tick is defined at state
4). Thus (2, 4) ∈ RP

α11
, which satisfies requirement (i) of

preemption cover. Moreover since no common event is
defined on states 2 and 4, requirement (ii) of preemption
cover is trivially satisfied. Therefore cells [2], [4] can be
merged.

For cells [1] and [3], we have Fα11
(1) = Fα11

(3) = 1
(tick is preempted by α11 at both states 1 and 3) and
Etick(1) = Etick(3) = 0. Thus (1, 3) ∈ RP

α11
, which sat-

isfies requirement (i) of preemption cover. Now event α11

is defined at both states 1 and 3, but it leads to states
2 and 4 respectively, which have been verified to be pre-
emption consistent. Hence, requirement (ii) of preemp-
tion cover is also satisfied, and cells [1], [3] can bemerged.

By merging the above two pairs of cells, we derive CP
α11

=
{

[0], [1, 3], [2, 4], [5], ..., [18]
}

.

(iii) Cells [2, 4], [5], . . . , [18] can all be merged together.
Note, indeed, that Fα11

(·) = 0 for all these states (no
tick preemption by α11). On checking the preemption
consistency and preemption cover definitions as above,
we conclude that the final preemption cover is CP

α11
=

{

[0], [1, 3], [2, 4, 5, ..., 18]
}

. It is in fact a preemption con-
gruence.

Having found the preemption cover CP
α11

, we apply (Step
1) - (Step 3) in Section 4.1 to construct a local pre-

emptor LOCP
α11

, with transition structure displayed in

Fig. 8. Note that the event set of LOCP
α11

is exactly

{α11, tick}, which means that LOCP
α11

does not need
to observe any external events in order to execute its
preemptive action. Similarly, we derive other local pre-
emptors and local controllers, all displayed in Figs. 8
and 9. Here, for example, the event set of LOCP

α12
is

10

0 1 2

α11

tick

tick

LOCP
α11

0 1 2

α12

ticktick

β22

LOCP
α12

0 1 2 3

tick

tick α21α12

tick

LOCP
α21

0 1 2

tick

tick α22

LOCP
α22

Fig. 8. Local preemptors for individual forcible events. The
alphabet of each local preemptor is the set of events displayed
in each automaton.

{α12, tick, β22}; so event β22 originating inMACH2 has

to be observed by LOCP
α12

. We have then verified that
their joint behavior (via synchronous product) is identi-
cal to the monolithic optimal and nonblocking behavior
of SUP, i.e. (30) and (31) hold.

We see that each local preemptor/controller has fewer
states, with a simpler structure, than the monolithic
SUP; this renders each one’s preemptive/disabling ac-
tion more transparent. For example, the local preemp-
tor LOCP

α11
(resp. LOCP

α22
) in Fig. 8 means that af-

ter one tick, forcible event α11 preempts event tick and
MACH1 starts to work on a P1-part (resp. α22 pre-
empts tick and MACH2 works on a P2-part). This is
possible because α11 (resp. α22) has lower time bound
1 and becomes eligible to occur after one tick. For an-
other example, the local preemptor LOCP

α21
in Fig. 8

specifies that after occurrence of α12 followed by a tick,
forcible event α21 preempts tick and MACH2 starts to
work on a P1-part. This preemption is due to the fact
that α21 has lower time bound 1 and becomes eligible
to occur after occurrence of β22 plus one tick (according
to Fig. 7 event α22 first occurs in MACH2, which im-
plies from the untimed model in Fig. 5 the event order
α22.β22.α21). But occurrence of α12 implies that β22 has
just occurred (see Fig. 7).

For control logic, the local controller LOCC
α12

in Fig. 9
means that prohibitible event α12 is enabled only after
occurrence of event β22, i.e. MACH1 starts to work
on a P2-part only after MACH2 finishes that P2-part.
On the other hand, the logic of LOCC

α21
is a bit subtle;

it specifies that prohibitible event α21 is enabled after
occurrence of event α22. At first glance, the logic seems
to violate the specification SPEC1 in Fig. 6, which says
that α21 should not be enabled before occurrence of β11.
Observe, nevertheless, that α21 cannot become eligible
to occur before occurrence of β22 which has lower (and
upper) time bound 4, and event β11 in fact has already
occurred when β22 occurs (see Fig. 7). Hence it is legal
to enable α21 after α22.

Finally, with the derived set of local preemptors and
controllers, we build a distributed control architec-

0 1
α11

LOCC
α11

10 2
β22 α12

LOCC
α12

10 2
α21α22

LOCC
α21

0 5
α22

LOCC
α22

Fig. 9. Local controllers for individual prohibitible events.
The alphabet of each local controller is the set of events
displayed in each automaton.

LOC
C

α11
LOC

C

α12

MACH1

Communication

LOC
P

α11
LOC

P

α12

LOC
C

α21
LOC

C

α22

MACH2

LOC
P

α21
LOC

P

α22

α12

β22

Fig. 10. Distributed control architecture for manufacturing
cell.

ture for this manufacturing cell of two machines;
see Fig. 10. Each machine acquires those local pre-
emptors/controllers with respect to its own distinct
forcible/prohibitible events, thereby being capable of
executing local preemptive/disabling actions. For these
local actions to jointly achieve the same controlled be-
havior as the monolithic supervisor does, communicat-
ing certain ‘critical’ events (in this case α12 and β22) be-
tween the two machines is essential. The critical events
are obtained by intersecting the alphabet of one ma-
chine and the alphabets of local preemptors/controllers
of the other machine.

6 Conclusions

We have established supervisor localization in the
Brandin-Wonham timed DES framework. Under this
localization scheme, each individual agent disables its
own prohibitible events and preempts event tick via its
own forcible events; overall, these local control actions
collectively achieve monolithic optimal and nonblocking
supervision. We have demonstrated the timed supervi-
sor localization on a manufacturing cell case study. In
future research, we aim to combine the developed local-
ization approach with an effective modular supervisor
synthesis to address distributed control of large-scale
real-time DES.

References

[1] B. Brandin and W.M. Wonham. Supervisory control of
timed discrete-event systems. IEEE Trans. Autom. Control,
39(2):329–342, 1994.

[2] Y. Brave and M. Heymann. Formulation and control of real
time discrete event processes. In Proc. 27th IEEE Conf. on

Decision and Control, pages 1131–1132, Austin, TX, 1988.

11

[3] K. Cai and W. M. Wonham. Supervisor localization: a
top-down approach to distributed control of discrete-event
systems. IEEE Trans. Autom. Control, 55(3):605–618, 2010.

[4] K. Cai and W.M. Wonham. Supervisor localization for large
discrete-event systems: case study production cell. Int. J.

of Advanced Manufacturing Technology, 50(9-12):1189–1202,
2010.

[5] C.G. Cassandras. Discrete Event Systems: Modeling and

Performance Analysis. Irwin, 1993.

[6] D.D. Cofer and V.K. Garg. Supervisory control of real-time
discrete-event systems using lattice theory. IEEE Trans.

Autom. Control, 41(2):199–209, 1996.

[7] C. H. Golaszewski and P. J. Ramadge. Control of discrete
event processes with forced events. In Proc. 26th IEEE Conf.

on Decision and Control, pages 247–251, Los Angeles, CA,
1987.

[8] J. Leung I. Lee and S. Son, editors. Handbook of Real-Time

and Embedded Systems. Chapman & Hall/CRC, 2007.

[9] J. S. Ostroff. Deciding properties of timed transition models.
IEEE Trans. Parallel and Distributed Systems, 1(2):170–183,
1990.

[10] P.J. Ramadge and W.M. Wonham. Supervisory control of
a class of discrete event process. SIAM J. Control and

Optimization, 25(1):206–230, 1987.

[11] R. Su and W.M. Wonham. Supervisor reduction for discrete-
event systems. Discrete Event Dynamic Systems, 14(1):31–
53, 2004.

[12] H. Wong-Toi and G. Hoffman. The control of dense real-time
discrete event systems. In Proc. 30th IEEE Conf. on Decision

and Control, pages 1527–1528, Brighton, England, 1991.

[13] W.M. Wonham. Design Software: XPTTCT. System
Control Group, ECE Dept, University of Toronto, July 2008.
Available at http://www.control.utoronto.ca/DES.

[14] W.M. Wonham. Supervisory Control of Discrete-

Event Systems. Systems Control Group, ECE Dept,
University of Toronto, July 2012. Available at
http://www.control.utoronto.ca/DES.

A Appendix

We complete the proof of Theorem 3, namely equation
(31) and (⊇) in (30).

(⊇, 31) Since Lm(SUP) ⊆ Lm(G), it suffices to show
that Lm(SUP) ⊆ Lm(LOC). That is, by (16),

(∀α ∈ Σfor) Lm(SUP) ⊆ P−1
α Lm(LOCP

α), (A.1)

(∀β ∈ Σhib)Lm(SUP) ⊆ P−1
β Lm(LOCC

β). (A.2)

We prove (A.1), and (A.2) follows similarly. Let
s = σ0σ1 · · ·σh ∈ Lm(SUP). Then x1 := ξ(x0, σ0), ...,

xh+1 := ξ(x0, s) ∈ Xm. By the construction of LOCP
α

(α ∈ Σfor arbitrary), in particular the transition func-
tion ζ′α over Σ in (21), there exist i0, i1, ..., ih+1 with

(i0 = y0,α) such that

x0 ∈ Xi0 & ζ′α(i0, σ0) = i1,

x1 ∈ Xi1 & ζ′α(i1, σ1) = i2,

... (A.3)

xh+1 ∈ Xih+1
& ζ′α(ih, σh) = ih+1.

So ζ′α(i0, σ0σ1 · · ·σh) = ζ′α(i0, s)!, and belongs to Ym,α

becauseXih+1
∩Xm 6= ∅ (xh+1 belongs toXm). Moreover

since any σ /∈ Σα (defined in (22)) is only a selfloop
transition of ζ′α, we derive ζα(i0, Pα(s)) ∈ Ym,α. Hence,

Pα(s) ∈ Lm(LOCP
α), i.e. s ∈ P−1

α Lm(LOCP
α).

(⊇, 30) This is an easy consequence of (⊇, 31):

L(SUP) = Lm(SUP)

⊆ Lm(G) ∩ Lm(LOC)

⊆ L(G) ∩ L(LOC).

(⊆, 31) Let s ∈ Lm(G) ∩ Lm(LOC); by (16), for

every β ∈ Σhib, s ∈ P−1
β Lm(LOCC

β), i.e. Pβ(s) ∈

Lm(LOCC
β). Write i := ζβ(y0,β, Pβ(s)). Then there ex-

ists x ∈ Xi∩Xm; thusM(x) = 1 (defined in (25)), which
also implies T (x) = 1 (defined in (26)). On the other
hand, since Lm(G) ∩ Lm(LOC) ⊆ L(G) ∩ L(LOC) =
L(SUP) (the last equality has already been shown),
we have s ∈ L(SUP). That is, ξ(x0, s)!; as in (A.3)
above we derive ξ(x0, s) ∈ Xi, and by the control cover
definition (28) it holds that (x, ξ(x0, s)) ∈ RC

β . Since

s ∈ Lm(G), i.e. δ(q0, s) ∈ Qm, we have T (ξ(x0, s)) = 1.
Therefore by requirement (ii) of the control consistency
definition (27), M(ξ(x0, s)) = 1, i.e. s ∈ Lm(SUP).

12

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

	1 Introduction
	2 Preliminaries on Timed Discrete-Event Systems
	3 Formulation of Localization Problem
	4 Procedure of Supervisor Localization
	4.1 Localization of Preemptive Action
	4.2 Localization of Disabling Action
	4.3 Main Result

	5 Case Study: Manufacturing Cell
	6 Conclusions
	References
	A Appendix

