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Abstract

This paper is concerned with a pairs trading rule. The idea is to monitor
two historically correlated securities. When divergence is underway, i.e., one stock
moves up while the other moves down, a pairs trade is entered which consists
of a pair to short the outperforming stock and to long the underperforming one.
Such a strategy bets the “spread” between the two would eventually converge.
In this paper, a difference of the pair is governed by a mean-reverting model.
The objective is to trade the pair so as to maximize an overall return. A fixed
commission cost is charged with each transaction. In addition, a stop-loss limit
is imposed as a state constraint. The associated HJB equations (quasi-variational
inequalities) are used to characterize the value functions. It is shown that the
solution to the optimal stopping problem can be obtained by solving a number of
quasi-algebraic equations. We provide a set of sufficient conditions in terms of a
verification theorem. Numerical examples are reported to demonstrate the results.
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1 Introduction

This paper is concerned with pairs trading. The idea is to identify and monitor a pair

of historically correlated stocks. When the two stock prices diverge (one stock moves up

while the other moves down), the pairs trade would be triggered: to short the stronger

stock and to long the weaker one betting the eventual convergence of the prices. The

pairs trading was first developed by Bamberger and followed by Tartaglia’s quantitative

group at Morgan Stanley in the 1980s. A major advantage of pairs trading is its ‘market

neutral’ nature in the sense that it can be profitable under any market conditions. There

are many good discussions in connection with the cause of the divergence and subse-

quent convergence. We refer the reader to the paper by Gatev et al. [8], the book by

Vidyamurthy [16], and references therein.

In pairs trading, it is important to determine when to initiate a pairs trade (i.e., how

much divergence is sufficient to trigger a trade) and when to close the position (when to

lock in profits if the stocks perform as expected or when to cut losses if the trade goes

sour). It is the purpose of this paper to focus on the mathematics of pairs trading. In

particular, we consider the case when a difference of a pair satisfies a mean reversion

model, follow a dynamic programming approach to determine these key thresholds, and

establish their optimality.

Mean-reversion models are often used in financial markets to capture price movements

that have the tendency to move towards an “equilibrium” level. There are many studies

in connection with mean reversion stock returns; see e.g., Cowles and Jones [3]) Fama and

French [6], and Gallagher and Taylor [7] among others. In addition to stock markets,

mean-reversion models are also used to characterize stochastic volatility (Hafner and

Herwartz [10]) and asset prices in energy markets (see Blanco and Soronow [1]. See also

2



related results in option pricing with a mean-reversion asset by Bos, Ware and Pavlov

[2].

Mathematical trading rules have been studied for many years. For example, Zhang

[17] considered a selling rule determined by two threshold levels, a target price and a

stop-loss limit. In [17], such optimal threshold levels are obtained by solving a set of two-

point boundary value problems. Guo and Zhang [9] studied the optimal selling rule under

a model with switching Geometric Brownian motion. Using a smooth-fit technique, they

obtained the optimal threshold levels by solving a set of algebraic equations. These papers

are concerned with the selling side of trading in which the underlying price models are of

GBM type. Recently, Dai et al. [4] developed a trend following rule based on a conditional

probability indicator. They showed that the optimal trading rule can be determined

by two threshold curves which can be obtained by solving the associated Hamilton-

Jacobi-Bellman (HJB) equations. Similar idea was developed following a confidence

interval approach by Iwarere and Barmish [12]. In addition, Merhi and Zervos [14] studied

an investment capacity expansion/reduction problem following a dynamic programming

approach under a geometric Brownian motion market model. Similar problem under a

more general market model was treated by Løkka and Zervos [13]. In connection with

mean reversion trading, Zhang and Zhang [18] obtained a buy-low and sell-high policy

by charactering the ‘low’ and ‘high’ levels in terms of the mean reversion parameters.

Despite much progress in various mathematical trading rules, an important issue

hasn’t received much attention in the literature: How to cut losses and how to trade with

cutting losses. In practice, there are many scenarios that cutting losses may arise. A

typical one is margin call. When the pairs position is undergoing heavy losses, a margin

call may be enforced to close part or the entire position. In addition, a pairs trader

may determine a fixed stop-loss level from a pure money management consideration.
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Furthermore, a historically correlated pairs may cease to be correlated at some point.

For example, acquisition (or bankruptcy) of one stock in the pairs position. In this case,

it is necessary to modify the trading rule to accommodate a pre-determined stop-loss

level. From a control theoretical point of view, adding a stop-loss level is amount to

impose a hard state constraint. This typically poses substantial difficulties in solving the

problem. A major portion of this paper is devoted to address this important issue.

In this paper, we consider an optimal pairs trading rule in which a pairs (long-short)

position consists of a long position of one stock and a short position of the other. The

state process Zt is defined as a difference of the stock prices. The objective is to initiate

(buy) and close (sell) the pairs positions sequentially to maximize a discounted payoff

function. A fixed (commission or slippage) cost will be imposed to each transaction. As

in [18], we study the problem following a dynamic programming approach and establish

the associated HJB equations for the value functions. We show that the corresponding

optimal stopping times can be determined by three threshold levels x0, x1, and x2. These

key levels can be obtained by solving a set of algebraic like equations. We show that

the optimal pairs trading rule can be given in terms of two intervals: I1 = [x0, x1] and

I2 = (M,x2). Here M is the given stop-loss level (e.g., as the consequence of a margin

call) and I1 is contained in I2. The idea to initiate a trade whenever Zt enters I1 and

hold the position till Zt exits I2. In addition, we provide a set of sufficient conditions

that guarantee the optimality of our pairs trading rule. We also examine the dependence

of these threshold levels on various parameters in a numerical example. Finally, we

demonstrate how to implement the results using a pair of stocks and their historical

prices.

This paper is organized as follows. In §2, we formulate the pairs trading problem

under consideration. In §3, we study properties of the value functions, the associate
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HJB equations, and their solutions. In §4, we provide a set of sufficient conditions that

guarantee the optimality of our trading rule. A numerical example is given in §5. The

paper is concluded in §6.

2 Problem Formulation

Let X1
t and X2

t denote the prices of a pair of correlated stocks X1 and X2, respectively.

The corresponding pairs position consists of a long position in stockX1 and short position

in stock X2. For simplicity, we include one share of X1 and K0 shares of X
2 in the pairs

position. Here K0 is a given positive number. The price of the position is given by

Zt = X1
t −K0X

2
t . We assume that Zt is a mean-reverting (Ornstein-Uhlenbeck) process

governed by

dZt = a(b− Zt)dt+ σdWt, Z0 = x, (1)

where a > 0 is the rate of reversion, b the equilibrium level, σ > 0 the volatility, and Wt

a standard Brownian motion.

In this paper, the notation X i, i = 1, 2, are reserved for the underlying stocks and

Z the corresponding pairs position. One share long in Z means the combination of one

share long position in X1 and K0 shares of short position in X2. Similarly, for i = 1, 2,,

X i
t represents the price of stock X i and Zt the value of the pairs position at time t. Note

that Zt is allowed to be negative in this paper.

In addition, we impose a state constraint and require Zt ≥ M . Here M is a given

constant and it represents a stop-loss level. It is common in practice to limit losses to

an acceptable level to account for unforeseeable events in the marketplace. A stop-loss

limit is often enforced as part of money management. It can also be associated with a

margin call due to substantial losses.
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To accommodate such state constraint in our model, let τM denote the exit time of

Zt from (M,∞), i.e., τM = inf{t : Zt 6∈ (M,∞)}.

Let

0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ · · · ≤ τM (2)

denote a sequence of stopping times. A buying decision is made at τ bn and a selling

decision at τ sn, n = 1, 2, . . ..

We consider the case that the net position at any time can be either long (with one

share of Z) or flat (no stock position of either X1 or X2). Let i = 0, 1 denote the initial

net position. If initially the net position is long (i = 1), then one should sell Z before

acquiring any future shares. The corresponding sequence of stopping times is denoted

by Λ1 = (τ s1 , τ
b
2 , τ

s
2 , τ

b
3 , . . .). Likewise, if initially the net position is flat (i = 0), then

one should start to buy a share of Z. The corresponding sequence of stopping times is

denoted by Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
2 , . . .).

Let K > 0 denote the fixed transaction cost (e.g., slippage and/or commission) asso-

ciated with buying or selling of Z. Given the initial state Z0 = x and initial net position

i = 0, 1, and the decision sequences, Λ0 and Λ1, the corresponding reward functions

Ji(x,Λi) =





E

{
∞∑

n=1

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}

}
, if i = 0,

E

{
e−ρτs

1 (Zτs
1
−K)

+
∞∑

n=2

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}

}
, if i = 1,

(3)

where ρ > 0 is a given discount factor.

In this paper, given random variables ξn, the term E
∑∞

n=1 ξn is interpreted as

lim sup
N→∞

E
N∑

n=1

ξn.

6



In the reward function Ji, a buying decision has to be made before Zt reaches M .

When t = τM (or Zt = M), only a selling can be done if i = 1.

For i = 0, 1, let Vi(x) denote the value functions with the initial state Z0 = x and

initial net positions i = 0, 1. That is,

Vi(x) = sup
Λi

Ji(x,Λi). (4)

Note that

V0(M) = 0 and V1(M) = M −K. (5)

These give the boundary conditions.

Remark 1. Note that we allow the equalities in (2), i.e., one can buy and sell simul-

taneously. Nevertheless, owing to the existence of positive transactions cost K, any

simultaneous buying and selling are automatically ruled out by our optimality condi-

tions.

We also imposed the conditions τ bn ≤ τM and τ sn ≤ τM , n = 1, 2, . . .. If one has a

share position of Z and τ sn = τM for some n, then one has to sell the share to cut losses.

On the other hand, if τ bn = τM , then one should not buy because she has to sell it right

away, which only cause the round trip transaction fees.

Remark 2. Recall that in this paper the stock (pair) price is given by Zt. In [18], a

percentage slippage cost is required and the stock price is given by St = eZt . Suppose

K̃ percentage is added to a buying order. Then the total cost is given by St(1 + K̃) =

eZt(1 + K̃). Its natural logarithm equals approximately Zt + K̃, which matches the cost

structure in this paper.

Remark 3. In addition, we only consider the ‘long’ side trading in this paper. Actually,

one can trade by simply reversing the trading rule obtained in this paper. For example,
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if b = 0, then we can trade both Zt and (−Zt) simultaneously because they satisfy the

same system equation (1).

Remark 4. The optimal stopping problem considered in this paper can be generalized

to treat similar problems in related fields (e.g., the energy market). We refer the reader

to Hamadene and Zhang [11] and references therein for additional applications.

Example 1. Typically a highly correlated pair can be found from the same industry

sector. In this example, we choose Wal-Mart Stores Inc. (WMT) and Target Corp.

(TGT). Both companies are from the retail industry and they have shared similar dips

and highs. If the price of WMT were to go up a large amount while TGT stayed the same,

a pairs trader would buy TGT and sell short WMT betting on the convergence of their

prices. In Figure 1, the ’normalized’ (dividing each price by its long term moving average)

difference of WMT and TGT is plotted. In addition, the data (1992-2012) is divided into

two sections. The first section (1992-2000) is used to calibrate the model and the second

section (2001-2012) to backtest the performance of our results. Our construction of Zt

determines that the equilibrium level b = 0. By measuring the standard derivation of

Zt, we obtain the historical volatility σ = 0.56. Finally, following the traditional least

squares method, we obtain a = 1.00.

3 Properties of the Value Functions

In this section, we establish various bounds for the value functions and solve the associ-

ated HJB equations.

First, note that the sequence Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
2 , . . .) can be regarded as a combination

of a buy at τ b1 and then followed by the sequence of stopping times Λ1 = (τ s1 , τ
b
2 , τ

s
2 , τ

b
3 , . . .).
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Figure 1: WMT and TGT (1992–2012)

In view of this, we have, for x > M ,

V0(x) ≥ J0(x,Λ0)

= E

{
e−ρτs

1 (Zτs
1
−K)I{τb

1
<τM} +

∞∑

n=2

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}

}

−Ee−ρτb
1 (Zτb

1

+K)I{τb
1
<τM}

= J1(x,Λ1)− Ee−ρτb
1 (Zτb

1

+K)I{τb
1
<τM}.

In particular, setting τ b1 = 0 and taking supremum over Λ1, we obtain the inequality

V0(x) ≥ V1(x)− x−K. (6)

Similarly, we can show, for x > M , that

V1(x) ≥ V0(x) + x−K. (7)

Clearly, in view of the boundary conditions (5) these two inequalities hold for x = M .

Next, we establish lower and upper bounds for Vi(x).
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Lemma 1. The following inequalities hold:

0 ≤ V0(x) ≤ C0,

x−K ≤ V1(x) ≤ x+K + C0,

for all x ∈ [M,∞), where C0 = (ρ+ a)|M |/ρ.

Proof. Note that the lower bounds for Vi(x), (i = 0, 1), follow from their definitions.

In addition, if C0 is an upper bound for V0(x), then the upper bound for V1(x) follows

from the inequality in (6). It remains to show the upper bound for V0. Recall that

τ bn ≤ τ sn ≤ τM . Therefore, we have

E
(
Wτsn −Wτbn

)
I{τbn<τM} = E

(
Wτsn −Wτbn

)
− E

(
Wτsn −Wτbn

)
I{τbn=τM} = 0.

Recall also that Zt ≥ M for all t ≤ τM . Using Dynkin’s formula, we have, for each

n = 1, 2, . . .,

E
(
e−ρτsnZτsn − e−ρτbnZτbn

)
I{τbn<τM}

= E

(∫ τsn

τbn

e−ρt (−(ρ+ a)Zt) dt

)
I{τbn<τM} + E

(
σ(Wτsn −Wτbn

)
)
I{τbn<τM}

≤ (ρ+ a)|M |E
(∫ τsn

τbn

e−ρtdt

)
I{τbn<τM}

≤ (ρ+ a)|M |E
∫ τsn

τbn

e−ρtdt.

(8)

It follows from the definition of J0(x,Λ0) that

J0(x,Λ0) ≤
∞∑

n=1

E
(
e−ρτsnZτsn − e−ρτbnZτbn

)
I{τb

1
<τM}

≤ (ρ+ a)|M |
∞∑

n=1

E
∫ τbn

τbn

e−ρtdt

≤ (ρ+ a)|M |
∫ ∞

0
e−ρtdt

=
(ρ+ a)|M |

ρ
= C0.
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✲

M x0 x1

v0=v1−x−K ρv0 −Av0 = 0ρv0 −Av0 = 0

✲

M x2ρv1 −Av1 = 0 v1 = v0+x−K

Figure 2: Continuation Regions

This implies V0(x) ≤ C0. ✷

Let A denote the generator of Zt, i.e.,

A = a(b− x)
∂

∂x
+

σ2

2

∂2

∂x2
.

Formally, the associated HJB equations should have the form:

min
{
ρv0(x)−Av0(x), v0(x)− v1(x) + x+K

}
= 0,

min
{
ρv1(x)−Av1(x), v1(x)− v0(x)− x+K

}
= 0,

(9)

for x ∈ (M,∞), with the boundary conditions v0(M) = 0 and v1(M) = M −K.

If i = 0, then one should only buy when the price is low (say less than or equal to

x1). In this case, v0(x) = v1(x) − x −K. The corresponding continuation region (given

by ρv0(x) − Av0(x) = 0) should include (x1,∞). In addition, one should not establish

any new position if Zt is close to the stop-loss level M . In view of this, the continuation

region should also include (M,x0) for some x0 < x1. On the other hand, if i = 1, then

one should only sell when the price is high (greater than or equal to x2 > x1), which

implies v1(x) = v0(x)+x−K and the continuation region (given by ρv1(x)−Av1(x) = 0)

should be (M,x2). These continuation regions are highlighted in Figure 2.

To solve the HJB equations in (9), we first solve the equations ρvi(x) − Avi(x) = 0
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with i = 0, 1 on their continuation regions. Let




φ1(x) =
∫ ∞

0
η(t)e−κ(b−x)tdt,

φ2(x) =
∫ ∞

0
η(t)eκ(b−x)tdt,

where η(t) = t(ρ/a)−1 exp (−t2/2) and κ =
√
2a/σ. Then the general solution (see Eloe et

al. [5]) is given by A0
1φ1(x) + A0

2φ2(x), for some constants A0
1 and A0

2.

First, consider the interval (x1,∞) and suppose the solution is given by A1φ1(x) +

A2φ2(x), for some A1 and A2. Recall the upper bound for V0(x) in Lemma 1, v0(∞)

should be bounded above. This implies that, A1 = 0 and v0(x) = A2φ2(x) on (x1,∞).

Let B1, B2, C1, and C2 be constants such that v0(x) = B1φ1(x) + B2φ2(x) on (M,x0)

and v1(x) = C1φ1(x) + C2φ2(x) on (x2,∞).

It is easy to see that these functions are twice continuously differentiable on their

continuation regions. We follow the smooth-fit method which requires the solutions to be

continuously differentiable. In particular, it requires v0 to be continuously differentiable

at x0. Therefore,




B1φ1(x0) +B2φ2(x0) = C1φ1(x0) + C2φ2(x0)− x0 −K,

B1φ
′
1(x0) +B2φ

′
2(x0) = C1φ

′
1(x0) + C2φ

′
2(x0)− 1.

(10)

Similarly, the smooth-fit conditions at x1 and x2 yield




A2φ2(x1) = C1φ1(x1) + C2φ2(x1)− x1 −K,

A2φ
′
2(x1) = C1φ

′
1(x1) + C2φ

′
2(x1)− 1,

(11)

and 



C1φ1(x2) + C2φ2(x2) = A2φ2(x2) + x2 −K,

C1φ
′
1(x2) + C2φ

′
2(x2) = A2φ

′
2(x2) + 1.

(12)

Finally, the boundary conditions at x = M lead to




B1φ1(M) +B2φ2(M) = 0,

C1φ1(M) + C2φ2(M) = M −K.

(13)
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For simplicity in notation, let

Φ(x) =




φ1(x) φ2(x)

φ′
1(x) φ′

2(x)


 .

Note that the determinant of Φ(x) is given by

−κ
(∫ ∞

0
η(t)e−κ(b−x)tdt

∫ ∞

0
tη(t)eκ(b−x)tdt+

∫ ∞

0
tη(t)e−κ(b−x)tdt

∫ ∞

0
η(t)eκ(b−x)tdt

)
,

which is less than zero for all x. Therefore, Φ(x) is invertible for all x.

Also, let

R(x) = Φ−1(x)



φ2(x)

φ′
2(x)


 , P1(x) = Φ−1(x)



x+K

1


 , P2(x) = Φ−1(x)



x−K

1


 ,

Rewrite the equations (10)-(13) in terms of these vectors. We have




B1

B2


 =




C1

C2


− P1(x0), (14)

A2R(x1) =




C1

C2


− P1(x1), (15)




C1

C2


 = A2R(x2) + P2(x2), (16)

and 



(φ1(M), φ2(M))




B1

B2


 = 0,

(φ1(M), φ2(M))




C1

C2


 = M −K.

(17)
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Multiplying both sides of (14) from the left by (φ1(M), φ2(M)) and using (17), we

have

(φ1(M), φ2(M))P1(x0) = M −K. (18)

Combining (15) and (16) and eliminating (C1, C2)
T , we obtain

A2(R(x1)− R(x2)) = P2(x2)− P1(x1). (19)

Also, multiplying both sides of (16) from the left by (φ1(M), φ2(M)) yields

M −K = A2(φ1(M), φ2(M))R(x2) + (φ1(M), φ2(M))P2(x2). (20)

It is easy to check that

(φ1(M), φ2(M))R(x2) = φ2(M) det Φ(x2) 6= 0.

This leads to

A2 =
M −K − (φ1(M), φ2(M))P2(x2)

(φ1(M), φ2(M))R(x2)
. (21)

Finally, substitute this into (19) to obtain

(R(x1)− R(x2))

(
M −K − (φ1(M), φ2(M))P2(x2)

(φ1(M), φ2(M))R(x2)

)
= P2(x2)− P1(x1). (22)

Solving equations (18) and (22), we can obtain the triple (x0, x1, x2). Then solving the

equations (14), (15), and (21), to obtain A2, (B1, B2), and (C1, C2).

We need additional conditions for x1 and x2. Note that vi(x) has to satisfy the

following inequalities for being solutions to the HJB equations (9):




ρv0(x)−Av0(x) ≥ 0,

ρv1(x)−Av1(x) ≥ 0,

v0(x) ≥ v1(x)− x−K,

v1(x) ≥ v0(x) + x−K,

(23)
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for all x ≥ M . Next, we examine each of these inequalities on intervals (M,x0), (x0, x1),

(x1, x2), and (x2,∞).

First, on (M,x0), the top two inequalities in (23) become equalities. We only need

the last two inequalities to hold. Therefore, we have

x−K ≤ v1(x)− v0(x) ≤ x+K on (M,x0). (24)

Then, on (x0, x1), note that v0(x) = v1(x)−x−K implies v1(x) ≥ v0(x)+x−K. We

only need ρv0(x)−Av0(x) ≥ 0. Again, using v0(x) = v1(x)−x−K and ρv1(x)−Av1(x) =

0 on this interval, we have

ρv0(x)−Av0(x) = ρ(v1(x)− x−K)−A(v1(x)− x−K)

= ρ(−x −K)−A(−x−K)

= −(ρ+ a)x− ρK + ab.

In view of this, ρv0(x)−Av0(x) ≥ 0 on (x0, x1) is equivalent to

x1 ≤
ab− ρK

ρ+ a
. (25)

Similarly, on (x1, x2), we only need the inequalities

x−K ≤ v1(x)− v0(x) ≤ x+K. (26)

Finally, on (x2,∞), we only require

x2 ≥
ab+ ρK

ρ+ a
. (27)

Note that the inequalities in (24) and (26) are equivalent to the following inequalities,




|(C1 − B1)φ1(x) + (C2 − B2)φ2(x)− x| ≤ K on (M,x0),

|C1φ1(x) + (C2 − A2)φ2(x)− x| ≤ K on (x1, x2),

(28)

respectively.

In what follows, we show that the triple (x0, x1, x2) satisfying these conditions leads

to the optimal stopping rules.
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4 A Verification Theorem

In this section, we give a verification theorem to show that the solution vi(x), i = 0, 1, of

equation (9) are equal to the value functions Vi(x), i = 0, 1, respectively, and sequences

of optimal stopping times can be constructed from the triple (x0, x1, x2).

Theorem 1. Let (x0, x1, x2) be a solution to (18) and (22) and satisfy

x1 ≤
ab− ρK

ρ+ a
and x2 ≥

ab+ ρK

ρ+ a
.

Let A2, B1, B2, C1, and C2 be constants given by (14), (16), and (21) satisfying the

inequalities in (28).

Let 



v0(x) =





B1φ1(x) +B2φ2(x) if x ∈ [M,x0),

C1φ1(x) + C2φ2(x)− x−K if x ∈ [x0, x1),

A2φ2(x) if x ∈ [x1,∞),

v1(x) =





C1φ1(x) + C2φ2(x) if x ∈ [M,x2),

A2φ2(x) + x−K if x ∈ [x2,∞).

Assume v0(x) ≥ 0. Then, vi(x) = Vi(x), i = 0, 1. Moreover, if initially i = 0, let

Λ∗
0 = (τ b∗1 , τ s∗1 , τ b∗2 , τ s∗2 , . . .),

such that the stopping times τ b∗1 = inf{t ≥ 0 : Zt ∈ [x0, x1]} ∧ τM , τ s∗n = inf{t > τ b∗n :

Zt 6∈ (M,x2)} ∧ τM , and τ b∗n+1 = inf{t > τ s∗n : Zt ∈ [x0, x1]} ∧ τM for n ≥ 1. Similarly, if

initially i = 1, let

Λ∗
1 = (σ∗

1 , τ
∗
2 , σ

∗
2 , τ

∗
3 , . . .),

such that τ s∗1 = inf{t ≥ 0 : Zt 6∈ (M,x2)} ∧ τM , τ b∗n = inf{t > τ s∗n−1 : Zt ∈ [x0, x1]} ∧ τM ,

and τ s∗n = inf{t > τ b∗n : Zt 6∈ (M,x2)} ∧ τM for n ≥ 2. Then Λ∗
0 and Λ∗

1 are optimal.
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Proof. We divide the proof into two steps. In the first step, we show that vi(x) ≥ Ji(x,Λi)

for all Λi. Then in the second step, we prove that vi(x) = Ji(x,Λ
∗
i ), which implies

vi(x) = Vi(x) and Λ∗
i is optimal.

Let I0 = (M,x0) ∪ (x0, x1) ∪ (x1,∞) and I1 = (M,x2) ∪ (x2,∞). It is easy to see

that v0 ∈ C2(I0), v1 ∈ C2(I1), and both v0 and v1 are in C1([M,∞)). In addition,

they satisfy the quasi-variational inequalities in (9), i.e., ρvi(x) − Avi(x) ≥ 0, i = 0, 1,

whenever they are twice continuously differentiable. Using these inequalities, Dynkin’s

formula, and Fatou’s lemma as in Øksendal [15, p. 226], we have, for any stopping times

0 ≤ θ1 ≤ θ2 ≤ τM , a.s.,

Ee−ρθ1vi(Zθ1) ≥ Ee−ρθ2vi(Xθ2),

Ee−ρθ1vi(Zθ1)I{θ1<τM} ≥ Ee−ρθ2vi(Xθ2)I{θ1<τM},

(29)

for i = 0, 1. Given Λ0 = (τ b1 , τ
s
1 , τ

b
2 , τ

s
2 , . . .), using (6) and v0(M) = 0, we have

v0(x) ≥ Ee−ρτb
1v0(Zτb

1

)

= Ee−ρτb
1v0(Zτb

1

)I{τb
1
<τM}

≥ Ee−ρτb
1

(
v1(Zτb

1

)− (Zτb
1

+K)
)
I{τb

1
<τM}

= Ee−ρτb
1v1(Zτb

1

)I{τb
1
<τM} − Ee−ρτb

1 (Zτb
1

+K)I{τb
1
<τM}.

It follows again from (29) and then (7) that

v0(x) ≥ Ee−ρτs
1 v1(Zτs

1
)I{τb

1
<τM} − Ee−ρτb

1 (Zτb
1

+K)I{τb
1
<τM}

≥ Ee−ρτs
1 (v0(Zτs

1
) + Zτs

1
−K)I{τb

1
<τM} − Ee−ρτb

1 (Zτb
1

+K)I{τb
1
<τM}

= Ee−ρτs
1 v0(Zτs

1
)I{τb

1
<τM} + E

[
e−ρτs

1 (Zτs
1
−K)− e−ρτb

1 (Zτb
1

+K)
]
I{τb

1
<τM}

= Ee−ρτs
1 v0(Zτs

1
) + E

[
e−ρτs

1 (Zτs
1
−K)− e−ρτb

1 (Zτb
1

+K)
]
I{τb

1
<τM}.

Note that

Ee−ρτs
1 v0(Zτs

1
) ≥ Ee−ρτb

2v0(Zτb
2

) = Ee−ρτb
2v0(Zτb

2

)I{τb
2
<τM}.
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Similarly, we have

Ee−ρτs
1 v0(Zτs

1
) ≥ Ee−ρτs

2 v0(Zτs
2
) + E

[
e−ρτs

2 (Zτs
2
−K)− e−ρτb

2 (Zτb
2

+K)
]
I{τb

2
<τM}. (30)

Repeat this process and note that v0(x) ≥ 0 to obtain

v0(x) ≥ E
N∑

n=1

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}.

Sending N → ∞ to obtain v0(x) ≥ J0(x,Λ0) for all Λ0. Therefore, v0(x) ≥ V0(x).

Similarly, using (30), we can show that

v1(x) ≥ Ee−ρτs
1 v1(Zτs

1
)

≥ Ee−ρτs
1

(
v0(Zτs

1
) + Zτs

1
−K

)

= Ee−ρτs
1 (Zτs

1
−K) + Ee−ρτs

1 v0(Zτs
1
)

≥ · · ·

= Ee−ρτs
1 (Zτs

1
−K) + E

N∑

n=2

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}.

It follows that v1(x) ≥ V1(x).

Next, we establish the equalities. Define τ b∗1 = inf{t ≥ 0 : Zt ∈ [x0, x1]} ∧ τM . Note

that τM < ∞, a.s. (see [18, Lemma 6]). Therefore, τ b∗1 < ∞, a.s. Using again Dynkin’s

formula, we have

v0(x) = Ee−ρτb∗
1 v0(Zτb∗

1

)

= Ee−ρτb∗
1 v0(Zτb∗

1

)I{τb
1
<τM}

= Ee−ρτb∗
1

(
v1(Zτb∗

1

)− (Zτb∗
1

+K)
)
I{τb

1
<τM}

= Ee−ρτb∗
1 v1(Zτb∗

1

)I{τb
1
<τM} − Ee−ρτb∗

1 (Zτb∗
1

+K)I{τb
1
<τM}.
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Let τ s∗1 = inf{t ≥ τ b∗1 : Xt = x2} ∧ τM . Then, τ s∗1 < ∞, a.s. We have also

Ee−ρτb∗
1 v1(Zτb∗

1

)I{τb
1
<τM}

= Ee−ρτs∗
1 v1(Zτs∗

1
)I{τb

1
<τM}

= Ee−ρτs∗
1

(
v0(Zτs∗

1
) + (Zτs∗

1
−K)

)
I{τb

1
<τM}

= Ee−ρτs∗
1 v0(Zτs∗

1
)I{τb

1
<τM} + Ee−ρτs∗

1 (Zτs∗
1
−K)I{τb

1
<τM}

= Ee−ρτs∗
1 v0(Zτs∗

1
) + Ee−ρτs∗

1 (Zτs∗
1
−K)I{τb

1
<τM}.

It follows that

v0(x) = Ee−ρτs∗
1 v0(Zτs∗

1
) + E

[
e−ρτs∗

1 (Zτs∗
1
−K)− e−ρτb∗

1 (Zτb∗
1

+K)
]
I{τb

1
<τM}.

Continue this way to obtain

v0(x) = Ee−ρτs∗
N v0(Zτs∗

N
) + E

N∑

n=1

[
e−ρτs∗n (Zτs∗n −K)− e−ρτb∗n (Zτb∗n

+K)
]
I{τb∗n <τM}.

Similarly, we can show

v1(x) = Ee−ρτs∗
1 v1(Zτs∗

1
)

= Ee−ρτs∗
1 (v0(Zτs∗

1
) + Zτs∗

1
−K)

= Ee−ρτs∗
1 v0(Zτs∗

1
) + Ee−ρτs∗

1 (Zτs∗
1
−K)

= Ee−ρτs∗
N v0(Zτs∗

N
) + Ee−ρτs∗

1 (Zτs∗
1
−K)

+E
N∑

n=2

[
e−ρτs∗n (Zτs∗n −K)− e−ρτb∗n (Zτb∗n

+K)
]
I{τb∗n <τM}.

Recall that P (τM < ∞) = 1. This implies limN→∞ τ s∗N = τM , a.s. Recall also that

v0(M) = 0. It follows that Ee−ρτs∗n v0(Zτs∗n ) → 0. This completes the proof. ✷

5 A Numerical Example

In this section, we use the parameters of the WMT-TGT example, i.e.,

a = 1.0, b = 0, σ = 0.56, ρ = 0.10, K = 0.001.
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Solving the equations (18) and (22) gives the triple (x0, x1, x2) = (−0.142,−0.077, 0.077).

Next, we vary one of the parameters at a time and examine the dependence of the triple

(x0, x1, x2) on these parameters.

Dependence of (x0, x1, x2) on parameters

First we consider the triple (x0, x1, x2) associated with varying a. A larger a implies

larger pulling rate back to the equilibrium b = 0. It can be seen in Table 1 that the lower

buying level x0 decreases as a gets bigger. Also the higher buying level x1 increases in a.

These lead to larger buying interval [x0, x1] resulting greater buying opportunities. The

selling level x2 decreases which suggests one should take profit sooner as a gets bigger

because the potential of going higher becomes smaller. In addition, the interval (x1, x2)

is symmetric about b = 0.

a 0.60 0.80 1.00 1.20 1.40

x0 -0.124 -0.135 -0.142 -0.147 -0.151

x1 -0.089 -0.083 -0.077 -0.073 -0.069

x2 0.089 0.083 0.077 0.073 0.069

Table 1. (x0, x1, x2) with varying a.

In Table 2, we vary the volatility σ. The volatility is the source forcing the price to go

away from its equilibrium. The large the σ, the further the price fluctuates. As a result,

every element in the triple (x0, x1, x2) moves along the opposite direction as σ increases

resulting a smaller buying interval [x0, x1] and a higher profit target x2.
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σ 0.36 0.46 0.56 0.66 0.76

x0 -0.164 -0.153 -0.142 -0.130 -0.117

x1 -0.057 -0.067 -0.077 -0.086 -0.095

x2 0.057 0.067 0.077 0.086 0.095

Table 2. (x0, x1, x2) with varying σ.

Next, we vary the discount rate ρ. Larger ρ means quicker profits. This is confirmed

in Table 3. It shows that larger ρ leads to a smaller x0, a slightly larger x1, and a slightly

smaller x2. This means more buying opportunities and quicker profit taking.

ρ 0.06 0.08 0.10 0.12 0.14

x0 -0.1412 -0.1416 -0.1420 -0.1426 -0.1430

x1 -0.078 -0.078 -0.077 -0.077 -0.076

x2 0.078 0.078 0.077 0.077 0.076

Table 3. (x0, x1, x2) with varying ρ.

Finally, we examine the dependence on the stop-loss level M . Clearly, a smaller M

is associated with a larger loss when it goes wrong. In Table 4, the lower buying level x0

decreases in M . On the other hand, the buying-selling interval (x1, x2) is not as sensitive

to variations in M .

M -0.16 -0.18 -0.20 -0.22 -0.24

x0 -0.091 -0.118 -0.142 -0.166 -0.189

x1 -0.077 -0.078 -0.077 -0.077 -0.077

x2 0.077 0.078 0.077 0.077 0.077

Table 4. (x0, x1, x2) with varying M .
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Backtesting (WMT-TGT)

We backtest the pairs trading rule using the stock prices of WMT and TGT from 2001

to 2012. Let X1
t be the WMT stock divide by its 1000 day moving average and X2

t

the TGT stock by its same period moving average. We take Zt = X1
t − X2

t . Using the

parameters obtained in Example 1 based on the historical prices from 1992 to 2000, we

found the triple (x0, x1, x2) = (−0.142,−0.077, 0.077). A pairs trading is triggered when

Zt gets inside the buying interval [x0, x1]. The position is closed when Zt exits the interval

(M,x2). Initially, we allocate trading the capital $100K. When the first long signal is

triggered, buy $50K WMT stocks and short the same amount TGT. Close the position

either when Zt reaches the target x2 or when it drops below the stop-loss level M . Such

half-and-half capital allocation between long and short applies to all trades. In addition,

each pairs transaction is charged $5 commission fee. Furthermore, two variations from

the assumptions prescribed in Theorem 1 in our ‘actual’ trading: (a) After the stop-loss

level M is reached, the trading continues and a buying order is entered when Zt goes

back to the trading range; (b) All available capital will be used (half long and half short)

for trading rather than following the ‘single’ share rule,

In Figure 3, the corresponding Zt, the threshold triple, and the corresponding equity

curve are plotted. There are total 8 trades and the end balance is $126.602K.

Note that Zt is symmetric, i.e., (−Zt) satisfies the same equation (1). Naturally, one

can reverse the pair and trade (−Zt) the same way. The reversed Zt and equity curve is

given in Figure 4. Such trade leads to the end balance $114.935K. Note that both types

of trades have no overlap, i.e., they do not compete for the same capital. The grand total

profit is $41547 which is a %41.54 gain.
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The main advantage of pairs trading is its risk neutral nature, i.e., it can be profitable

regardless the general market condition. In addition, there are only 2x8 trades leaving

the capital in cash most of the time. This is desirable because the cash sitting in the

account can be used for other types of shorter term trading in between, at least drawing

interest over time.

Finally, the choice of stop-loss level M can depend on many factors including the

trader’s risk tolerance level and margin requirements. Our choice M = −0.2 corresponds

to a %10 loss when WMT drops %10 and TGT stays the same.

6 Conclusion

In this paper, we have studied the pairs trading problem following a mean reversion ap-

proach and obtained a closed-form solution under reasonable conditions. Much attention

was given to the trading rule with loss cutting, which is an important component of

money management.

A simple real market (WMT-TGT) example was considered. It would be interesting

to examine how the method works for a larger selection of pairs of correlated stocks.

Some practical considerations can be found in the book by Vidyamurthy [16].
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