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a b s t r a c t

This paper presents a decentralized observer with a consensus filter for the state observation of discrete-
time linear distributed systems. Each agent in the distributed system has an observer with a model of the
plant that utilizes the set of locally available measurements, which may not make the full plant state
detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state
estimate of each agent with its neighbors’ estimates. It is proven that the state estimates of the proposed
observer exponentially converge to the actual plant states under arbitrarily changing, but connected,
communication and pseudo-connected sensing graph topologies. Except these connectivity properties,
full knowledge of the sensing and communication graphs is not needed at the design time. As a byproduct,
we obtained a result on the location of eigenvalues, i.e., the spectrum, of the Laplacian for a family of
graphs with self-loops.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Decentralized estimation (Siljak, 1978) has long been an active
area of research with an increased recent interest in distributed
systems. This paper focuses on a decentralized observer problem
for a distributed system with multiple agents, where each agent
represents a physical entity such as an aircraft in a formation. In the
context of the observer synthesis problem, having a decentralized
observer implies that each agent has a local observer that computes
the estimate of the whole system state with locally available
measurements and communicated data with its neighbors. Having
a distributed systemmeans that the local measurements available
to the agents do not provide full state observability at the agent
level, and measurements of all agents collectively make the full
state observable.

✩ Thematerial in this paperwas partially presented at the 2011 American Control
Conference (ACC 2011), June 29–July 1, 2011, San Francisco, California, USA. This
paper was recommended for publication in revised form by Associate Editor Valery
Ugrinovskii under the direction of Editor Ian R. Petersen.

E-mail addresses: behcet@austin.utexas.edu (B. Açıkmeşe),
Milan.Mandic@jpl.nasa.gov (M. Mandić), speyer@seas.ucla.edu (J.L. Speyer).
1 Tel.: +1 626 3181002; fax: +1 512 471 3788.

http://dx.doi.org/10.1016/j.automatica.2014.02.008
0005-1098/© 2014 Elsevier Ltd. All rights reserved.
Someof the earlier research in decentralized estimation focused
on combining the state estimates of a systemwith multiple agents
into a single central estimate (Mutambara, 1998; Speyer, 1979;
Willsky, Bello, Castanon, Levy, & Verghese, 1982), where all the
information is communicated to all agents back and forth. Since
this approach requires fully connected communication network
and with possibly high volume of communication, it may not be
appropriate for distributed systems with a large number of agents.
The main idea behind these algorithms is to blend independently
obtained state estimates into a single better state estimate, which
has been the main idea behind the more recent algorithms as
well. In the covariance intersection method described in Arambel,
Rago, andMehra (2001) and Chen, Arambel, andMehra (2002), the
state estimates and their error covariance matrices are exchanged
without the exact knowledge of correlation between the estimates
of the different agents. The unknown correlation between the
exchanged state estimates is bounded by a bound on the
intersection of the error covariance matrices. This method ensures
that the unknown correlations are accounted for, but it requires
the computation of the error covariances and their inverses,
which can be computationally demanding. In a recent approach
to distributed system state estimation, Shi, Johansson, and Murray
(2008) considered a fusion center that combines measurements
or state estimates from the agents into a single estimate by

http://dx.doi.org/10.1016/j.automatica.2014.02.008
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.02.008&domain=pdf
mailto:behcet@austin.utexas.edu
mailto:Milan.Mandic@jpl.nasa.gov
mailto:speyer@seas.ucla.edu
http://dx.doi.org/10.1016/j.automatica.2014.02.008


1038 B. Açıkmeşe et al. / Automatica 50 (2014) 1037–1052
using a Kalman filter with a particular structure. However we
have to treat each agent as a fusion center if this approach is to
be adapted, which increases the complexity of the information
routing problem. Clearly this alternative approach may be more
desirable in some applications. Hence we do not claim that our
consensus based approach is a better design option for all possible
decentralized observation problems. Our objective is to establish a
rigorous analysis method for consensus based observer synthesis
that may aid engineers to make the best specific design choices.
A large number of recent research study the consensus problems
in distributed control systems in a graph theoretical framework
(Das & Mesbahi, 2006; Hatano & Mesbahi, 2005; Olfati-Saber, Fax,
& Murray, 2007; Olfati-Saber & Murray, 2004; Ren & Beard, 2005;
Smith & Hadaegh, 2007; Xiao, Boyd, & Kim, 2007). The distributed
Kalman filters with embedded consensus filters are studied by
Olfati-Saber (2005) and Olfati-Saber (2007). Particularly, Olfati-
Saber (2007) introduces a state estimator for continuous-time
linear systems with a consensus filter that blends state estimates
of neighboring agents, which motivated the particular observer
structure we adapted in this paper.

In this paper we consider a Linear Matrix Inequality (LMI) ap-
proach for designing observers with consensus filters for linear
decentralized systems, where we explicitly construct quadratic
Lyapunov functions to prove the exponential stability of the pro-
posed decentralized observer under time varying measurement
and communication topologies. LMI based centralized observer
design is considered for a general class of continuous-time sys-
tems with nonlinear and time-varying terms satisfying incremen-
tal quadratic inequalities (Açıkmeşe & Corless, 2011). LMI based
decentralized estimators are considered in Subbotin and Smith
(2009) for fixed and stochastic communication networks. In our
observer architecture, each agent utilizes its local measurements
and its neighbors’ communicated state estimates to update its
own state estimate, which makes the information routing prob-
lem straight-forward. The locally available measurement vectors
are described linearly as a function of the plant state via time-
varyingmatrices. The localmeasurements alone do not provide the
full state detectability that is required to have exponentially con-
vergent local observers. Thus, each agent uses a consensus filter
to blend the state estimates with its neighbors’ estimates in order
to achieve a consensus among agents, which ultimately resolves
this lack of local detectability. The consensus filters update their
internal states more frequently then the local observers, i.e., there
are multiple consensus updates in between the observer state up-
dates that utilize the locally available measurements. This ensures
that a sufficient level of consensus is reached for the stability of the
observers. For the proof of this, the overall error dynamics is first
split into an agreement and disagreement subspaces. First we prove
the exponential stability of the error dynamics in the agreement
subspace via a quadratic Lyapunov function, where the agreement
dynamics is captured via a norm bounded linear differential in-
clusion (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994) that prop-
erly accounts for all possible changes in the sensing topology. The
Lyapunov function is constructed by using LMIs and a new graph
theoretic result (a byproduct of this research) on the spectrum
of the Laplacian matrices corresponding to the undirected sens-
ing graphs with self-loops, which can be found in the Appendix.
We establish a single LMI-synthesis condition, which guarantees
the resulting observer has exponentially stable agreement error
dynamics for all possible time-varying sensing topologies. This
LMI-synthesis requires solution of several LMIs for the proposed
observer. The number of LMIs is a constant, and is independent
of the number of the possible sensing and communication topolo-
gies and the number of agents. In the second step, we establish a
sufficient number of consensus updates between each consecutive
pair ofmeasurement updates to ensure the disagreement error dy-
namics is driven to the origin. An upper bound on the number of
consensus updates needed is quantified by considering the agree-
ment and the disagreement dynamics as two interconnected sys-
tems and by utilizing a small gain type of argument.

It is important to note that the proposed observer construction
and its proof are non-trivial that requires overcoming several
difficulties. The first difficulty is establishing a proof of the observer
stability when all the measurements are available to a single
agent, before we establish the proof for the decentralized case.
For example if we use a Kalman filter for a discrete linear system,
there are observability and controllability conditions for stability
that are nontrivial to establish when any of the system matrices
are time varying (e.g., see Theorem 7.4 in Anderson & Moore,
1979 or Jazwinski, 1970), which is the case here due to changes in
the sensing topology. Furthermore obtaining a Lyapunov function
proving stability is an additional difficulty. The second difficulty
is establishing the exponential stability of the decentralized
observer, where each agent utilizes only a subset of measurements
and the estimates of its neighboring agents. Particularly obtaining
a sufficient upper bound on the number of consensus updates
(between consecutive measurement updates) proved to be one of
themain challenges. Note that this is not a difficulty in continuous-
time case, since the consensus speed can arbitrarily be increased
by simply adjusting a scalar design parameter (Olfati-Saber, 2007),
which is indeed the main challenge in going from continuous
to discrete-time design. In Kamgarpour and Tomlin (2008) a
decentralized Kalman filter with consensus is introduced. The
stability is ensured only for inherently stable linear systems, which
is a constraining assumption, that is relaxed in the current paper so
that the decentralized estimator can be applied to many practical
engineered systems. This relaxation brought many new technical
challenges and increased the complexity of our analysis to obtain
a more general result. A decentralized estimation architecture
with multiple consensus steps between measurement updates is
also considered in Khan and Jadbabaie (2011) for linear systems
with time-invariant sensing and communication graphs. The time-
invariance eliminated the key complications and challenges faced
in the current paper that considers time-varying sensing and
communication graphs, which are not known ahead of time.

In summary, the main contributions of this paper are: (i) The
introduction of multiple consensus updates (repetitive consen-
sus) between measurement updates in the discrete-time decen-
tralized observers. (ii) A proof of the exponential stability of the
observer error dynamics, with repetitive consensus, under time-
varying communication and sensing topologies and without their
full knowledge. (iii) An explicit quantification of the number of
consensus updates between two consecutive measurement up-
dates sufficient for the exponential stability of the error dynamics.
(iv) Introduction of pseudo-connected graphs, which was instru-
mental in our developments and which we believe can be useful
in multi-agent system theory in general. (v) A useful result on the
eigenvalues of Laplacians of pseudo-connected graphs. We believe
that thismathematical result is interesting and useful in graph the-
ory, independent of its specific use in the current paper. Simulation
results of a group of spacecraft are presented to demonstrate the
observer design procedure and the performance of the resulting
decentralized observer.
Notation: The following is a partial list of notation (see the
Appendix for the graph theoretic notation):Rn is the n dimensional
real vector space; ∥ · ∥ is the vector 2-norm; I is the identity matrix
and Im is the identity matrix in Rm×m; 1m is a vector of ones in
Rm; ei is a vector with its ith entry +1 and the others zeros; σ(A)
is the set of eigenvalues of A; σ+(S) are the positive eigenvalues
of S = ST ; ρ(A) is the spectral radius of A; ‘‘⊗’’ is the Kronecker
product; (v1, . . . , vm) is a vector obtained by augmenting vectors
v1, . . . , vm: (v1, . . . , vm) ≡ [vT1 . . . v

T
m]

T ; Q = Q T > (≥)0 implies
Q is a symmetric positive (semi-)definite matrix; for P = PT > 0,
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P-norm of a vector q is given by ∥q∥P = ∥P
1
2 q∥ and P-norm of a

square matrix Q is given by ∥Q∥P = ∥P
1
2 QP−

1
2 ∥.

1.1. System description

We consider the problem of decentralized state observation for
the following discrete-time linear system representing a group of
N collaborative agents:

xk+1 = Axk (1)
yi,k = Ci,kxk, i = 1, . . . ,N (2)

where xk ∈ Rn is the state vector at time instance k and yi,k ∈ Rmi,k

is the measurement vector of the ith agent at time instance k. In
upcoming discussions, the index ‘‘i’’ is typically the index for an
agent and ‘‘k’’ is the index for a time instance. In this scenario, each
agent has its ownmeasurements determined by the measurement
matrix Ci,k and it has direct communication links with a subset
of other agents, which will be referred as the ‘‘neighbors’’. The
set of communication links in between the agents determine the
communication topology and an associated graph,Gc,k, where each
agent is represented by a vertex of Gc,k, and each communication
link is represented by an edge of Gc,k. We assume that the graph
Gc,k is a undirected connected graph (Deo, 1974) without self-
loops or multiple edges for all times, which implies that (Fiedler,
1973) a(Gc,k) > 0 for all k = 0, 1, . . . (see the Appendix for
the definition of algebraic connectivity a). The construction of a
sensing graph is more complex. To do that, we consider a ‘‘core’’
set ofm measurements zk,

zk =

z1,k
...

zm,k

 = Cxk where C =

C1
...
Cm

 , zi,k ∈ Rp
∀ i (3)

such that all locally available ‘‘actual’’ measurements are formed as
a linear combination of the core measurements:

yi,k =

Ei,k ⊗ Ip


zk ⇒ Ci,k = (Ei,k ⊗ Ip)C, ∀i, (4)

where Ei,k ∈ Rqi,k×m, i = 1, . . . ,N , are ‘‘vertex–edge adjacency’’
matrices, hence mi,k = qi,kp, i.e., the size of local measurement
vectors is an integer multiple of p for all agents. The vertex–edge
adjacency matrix of a graph is different from its incidence matrix.
Each row of the vertex–edge adjacency matrix describes an edge
between two vertices with entries corresponding to these vertices
are +1 and −1 (it does not matter which entry is + or −) and the
rest of the entries are zeros. Note that if the edge described by a
row is a self-loop then there is only one non-zero entry with +1.
In contrary each column of the incidence matrix describes an edge
with+1 entries corresponding to both vertices. Hence a row of Ei,k,
denoted byπ , defining an edge between pth and qth vertices of the
graph has its jth entry of πj as follows

πj =

1 j = p
−1(q−p) j = q
0 otherwise.

The assumption that all actual measurements can be expressed
in terms of the core measurements adds more structure to the
problem at handwithout losing generality, and its use will become
apparent in later sections. For example, in spacecraft example
given in Section 7, the set of core measurements is the position
of each spacecraft relative to a leader spacecraft. All other relative
positions are linear combinations of the relative positions to the
leader, i.e., the core measurements.

Next we collect the set of all distinct local measurements into a
global measurement vector yk as follows

yk = (Ek ⊗ Ip) zk = (Ek ⊗ Ip) Cxk, (5)
where the vertex–edge adjacencymatrix Ek contains all the distinct
rows of all Ei,k, i = 1, . . . ,N , that is, Ek is a vertex–edge adjacency
matrix of a graph without multiple edges. Therefore, yk is not nec-
essarily an augmentation of all localmeasurements in general, that
is, yk ≠ (y1,k, . . . , yN,k) in general. Moreover a local measurement
vector yi,k for any agent can simply be obtained by picking the right
entries of the vector yk. Consequently, a row of Ek can correspond
to a measurement that belongs to multiple agents. For each agent
we will define a vector hi,k ∈ Zqi,k that contains the positive inte-
ger numbers representing howmany agents each measurement is
available to. This implies that

L(Gs,k) = ET
k Ek =

N
i=1

ET
i,k


diag(hi,k)

−1 Ei,k (6)

where L(Gs,k) is the sensing graph Laplacian with possibly self-
loops but with the effects of multiple-edges removed by dividing
the expression with diag(hi,k). Without this division, since a mea-
surement can be available to multiple agents, the Laplacian would
have accounted for multiple edges between two vertices. In sum-
mary, the sensing graph Gs,k is constructed with its vertices as the
core set of measurements z1,k, . . . , zm,k and its edges represent the
actualmeasurements at time instance k. Since a coremeasurement
can also be an actual measurement, e.g., yi,k = zj,k, a sensing graph
can have self loops, and in the case when all measurements are the
core ones, the sensing graph can be completely disconnected in the
usual sense. We introduce a concept of pseudo-connected graphs
to capture useful properties of the sensing graphs that will be en-
countered (see Fig. 13 in the Appendix for an example). Given Def-
inition 1 in the Appendix, the following conditions are assumed to
hold for the system defined by Eqs. (1) and (2):

(A1) Gc,k is a connected graphwithout self-loops ormultiple edges
∀k.

(A2) Gs,k is pseudo-connected without multiple edges ∀k (see the
Definition 1 in the Appendix).

(A3) The pair (C, A) is detectable.
(A4) ith agent knows hi,k for yi,k for any k and i.

Assuming a pseudo-connected sensing graph implies that one
or more of the core measurements are among the actual measure-
ments at any given time. As will be apparent in Section 4, the main
reason behind this assumption is to establish the exponential sta-
bility of the observation error dynamics in the agreement subspace,
which is the subspace where all observer estimates are the same.

Having connected communication graphs can be relaxed to,
for example, having jointly connected communication graphs
(Jadbabaie, Lin, & Morse, 2003). Such relaxations can lead to some
generalizations of the forthcoming results, which is not discussed
further in this paper. The detectability of (C, A) pair ensures that
an exponentially stable observer exists by utilizing only the core
measurements.

The assumption of each agent having the information of hi,k
means that each agent knows howmany other agents have access
to the same information. The hi,k values can simply be available to
each agent that has a measurement, or the distributed systemmay
have the working assumption that eachmeasurement is known by
a fixed number of agents.

2. Decentralized observer with a consensus filter

This section introduces the following local observers with
a consensus filter, which is our first contribution, that process
both the locally available measurements and the neighbors’ state
estimates:
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x̂i,k+1 = Asi,k + Li,k(Ci,ksi,k − yi,k) (7)

ξi,l+1 = ξi,l −

j∈Si,k

δ(ξi,l − ξj,l), l = 0, . . . , r (8)

with ξi,0 = x̂i,k, i = 1 . . .N, (9)
si,k = ξi,r , i = 1 . . .N.

where r is the number of iterations per single time step, δ > 0 is
a design parameter, Si,k is the index set of neighbors for the agent i
at time k, and si,k is the current state estimate for ith agent. The
gain matrices Li,k are computed by using the matrix L, which is
defined as the core observer gain matrix corresponding to the core
measurement zk, as

Li,k = L

ET
i,kdiag(hi,k)

−1
⊗ Ip


, (10)

where Ei,k and hi,k are as defined in (5) and (6). Since L is the
observer gain for core measurements zk, the actual measurements
must be mapped back to the core measurements in order to apply
the gain L. This mapping is done via thematrix ET

i,kdiag(hi,k)
−1

⊗ Ip,
by noting that

Li,kyi,k = Li,k(Ei,k ⊗ Ip)zk = L(ET
i,kdiag(hi,k)

−1Ei,k ⊗ Ip)Cxk,

whose sum will lead to L(L(Gs,k) ⊗ Ip)Cxk (see Eq. (6)). As will be
shown in the proof of our first main result Theorem 1, this will
then lead to agreement dynamics (will be defined later) whose
stability is determined by the matrix A+

1
N L(L(Gs,k)⊗ Ip)C . This is

a time-varying matrix whose particular form is very conducive to
our stability analysis.

The choices for the scalars r and δ and the synthesis of the gain
matrix Lwill be explained inmore detail later in the paper. Herewe
assume that the consensus filter can be iterated as many times as
the integer r dictates during a single time step. Hence r is a design
parameter determining the speed of the consensus dynamics for
the stability of the observer. The designparameter δ can be selected
as follows

0 < δ <
1

d(Gc,k)
∀ k = 0, 1, . . . . (11)

This choice will be clarified in Theorem 1. Note that d(Gc,k) ≤

N − 1 for an undirected graph with no multiple edges, and hence
choosing δ ∈ (0, 1/(N − 1)) leads to the satisfaction of (11) for all
communication graphs.

Intuitively, the observer can be explained as follows. First each
agent collects all its available measurements and updates its ob-
server state. Then it communicates its own state estimate to its
neighbors while collecting and blending the neighbors’ estimates
with its own. The consensus filter only changes the observer states
when there is a mismatch between them. If there were infinite
number of consensus iterations and if the communication graph
were connected, it is well known that this process would make
each agent’s observer estimate converge to a common value. Ad-
ditionally, if the sensing graph is pseudo-connected, the set of all
measurements has the information content of the core set. Since
each agent has this information infused into its observer state via
consensus and since (C, A) is detectable, it can be deduced that
each agent’s observer state will converge to the real state for large
enough consensus iterations. However, this is practically infea-
sible. Since the main reason to use consensus is to eliminate a
complicated measurement routing scheme through the commu-
nication network, using arbitrarily large number of consensus it-
erations will defeat this purpose. Hence we will find a safe upper
bound on the number of consensus iterations to keep the observer
exponentially stable.
Fig. 1. Sketch of the proof of the exponential stability.

Fig. 2. Relationships between technical results: Theorem 1 is the main analysis
result, which motivates the synthesis result given in Theorem 2. Lemmas 1 and
2 give LMI conditions for the exponential stability of the agreement and the
disagreement dynamics. These LMI results are then used in Theorem 2, which
combines them with Theorem 1 to obtain an LMI synthesis for the decentralized
observer with an exponentially stable error dynamics.

3. Exponential stability of the decentralized observer

In this section, we present a constructive proof of the exponen-
tial stability of the decentralized observer. As depicted in Fig. 1,
the observation error dynamics are projected into two subspaces:
(i) agreement; (ii) disagreement subspaces. The main result of this
section is Theorem 1 and it states that if agreement dynamics are
exponentially stable then there is always a number of consensus
updates that will ensure the exponential stability of the overall er-
ror dynamics. This result is key since it determines our synthesis
strategy: (i) first the estimator gain is designed to guarantee expo-
nential stability of the agreement dynamics (Section 4, Lemma 1);
(ii) then a valid lower bound on the number of consensus iterations
is computed to ensure the exponential stability of the overall error
dynamics (Section 5, Theorem 2 that builds on Lemmas 1 and 2).
See Fig. 2 for an overview of key results and their connections.

Let ξl be the overall (augmented) vector of ξi,l ∈ RnN defined in
(8) ξl = (ξ1,l, ξ2,l, . . . , ξN,l). Similarly, we define x̂k, the augmented
state estimate vector, and sk (both inRnN ), augmented state vector,
as

x̂k := (x̂1,k, x̂2,k, . . . , x̂N,k), sk := (s1,k, . . . , sN,k).

The ith row of the Laplacian matrix L(Gc,k) of the communication
graph Gc,k at time k is formed such that the (i, i)th (diagonal) entry
is the number of connections of the ith agent, and the (i, j)th entry
is −1 if there is a connection between ith and jth agents and 0
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otherwise. Consequently the overall consensus dynamics in (8) can
be expressed as
ξl+1 = (InN − δL⊗

c,k)ξl, l = 0, . . . , r, with ξ0 = x̂k,

⇒ ξr = (InN − δL⊗

c,k)
r x̂k

where L⊗

c,k := L(Gc,k) ⊗ In. Let the observation error be defined
as ei,k := x̂i,k − xk and ek := (e1,k, . . . , eN,k), then using Eq. (7), can
express the error dynamics as
ei,k+1 = x̂i,k+1 − xk+1

= Asi,k + Li,k(Ci,ksi,k − yi,k)− Axk.
Note that si,k is the state estimate for ith agent. The above equation
implies that
ek+1 = Ac,k(sk − 1N ⊗ xk)

= Ac,k(ξr − 1N ⊗ xk)

= Ac,k

(InN − δL⊗

c,k)
r x̂k − 1N ⊗ xk


. (12)

where Ac,k is defined as follows,

Ac,k = diag

A + Li,kCi,k; i = 1, . . . ,N


= diag


A + L(ET

i,kdiag(hi,k)
−1Ei,k ⊗ Ip)C;

i = 1, . . . ,N

. (13)

Since L⊗

c,k(1N ⊗ xk) = (L(Gc,k) ⊗ In)(1N ⊗ xk) = (L(Gc,k)1N)
⊗ xk = 0 and

(InN − δL⊗

c,k)
r
= InN + (. . .)L⊗

c,k + (. . .)L⊗
2

c,k + . . . ,

the following identity follows
(1N ⊗ xk) = (InN − δL⊗

c,k)
r(1N ⊗ xk).

Substituting this identity in (12), we obtain
ek+1 = Ac,k(InN − δL⊗

c,k)
r x̂k − 1N ⊗ xk

  
ek

.

The above relationship implies that the overall error dynamics for
ek can be expressed in a compact form as
ek+1 = Ac,k(InN − δL⊗

c,k)
rek

= Ac,k[(IN − δL(Gc,k))
r
⊗ In]ek. (14)

Eq. (14) is very useful since it describes the time evolution of the
error vector, ek, in a compact form that exposes the error dynamics
as a function of three keyparameters: (i) the observer gain L; (ii) the
sensing graph represented by Ei,k; (iii) the communication graph
represented by L(Gc,k).

The following theorem is our second key contribution that
establishes conditions under which the observer error dynamics
are exponentially stable.

Theorem 1. Suppose that the sensing graph is pseudo-connected and
communication graph is connected for all k = 1, 2, . . . , and there ex-
ist some L, P = PT > 0, and λ ∈ [0, 1) such that the following in-
equality holds for the Laplacian, Ls, of any pseudo-connected sensing
graph Gs,

λP − Aa(Ls)
TPAa(Ls) ≥ 0

where Aa(Ls) := A +
1
N
L(Ls ⊗ Ip)C . (15)

Let δ ∈ (0, 1/(N − 1)). Then there exists a large enough positive in-
teger r ≥ 1 such that the error dynamics of the observer given by
Eq. (14) are globally exponentially stable (GES), hence the observer
given by Eqs. (7) and (8) is GES and, for i = 1, . . . ,N,

∥x̂i,k − xk∥ ≤ ciλ̃ki ∥x̂i,0 − x0∥, ∀k = 0, 1, . . . (16)

for some ci > 0 and λ̃i ∈ (0, 1).
Proof. The proof has the following main steps:

(1) Define a transformation projecting the error dynamics into
agreement and disagreement dynamics, see Fig. 2.

(2) Proof of exponential stability of agreement dynamics via a
quadratic Lyapunov function.

(3) Proof of the overall stability via a sufficient level of consensus
with large enough r .

The first step is to find an appropriate transformation thatwill split
the error vector ek into agreement and disagreement subspaces.
These subspaces bring a geometrical insight to the observer syn-
thesis, and they help in clarifying the roles of the measurement
and communication feedback terms in the observer. Consider the
following ‘‘universal’’ transformation (time invariant and indepen-
dent of both sensing and communication graphs),

T =



1
√
N

1
√
2

1
√
6

. . . 1
√
N(N−1)

1
√
N

−1
√
2

1
√
6

. . . 1
√
N(N−1)

0 −2
√
6

. . . 1
√
N(N−1)

... 0
. . . 1

√
N(N−1)

0 0 0 −(N−1)
√
N(N−1)


  

Tc

⊗ In. (17)

It can easily be shown that columns of T and Tc form an orthonor-
mal set of vectors, hence T and Tc are orthogonalmatrices such that
T TT = TT T

= InN and T T
c Tc = TcT T

c = IN . Note that, for any graph
without self loops or multiple edges G, such as the communication
graph, we have

L(G) =


1Tv −vT

−v V


(18)

for some vector v ≥ 0 and matrix V = V T , which are related by
V1 = v, and we can express matrix Tc as follows,

Tc =


1/

√
N wT

1/
√
N U


with appropriately defined vector w and matrix U . This implies
that

T T
c L(G)Tc =


0 0T

0 Lp(G)


, (19)

where Lp(G) ∈ R(N−1)×(N−1) is a symmetric matrix given by

Lp(G) = (1Tv)wwT
− wvTU − UTvwT

+ UTVU . (20)

This can be shown as follows:

T T
c L(G)Tc =

 1
√
N

1T

√
N

w UT



×


1

√
N
(1Tv − vT1  

0

) 1TvwT
− vTU

(−v + V1)  
0

/
√
N −vwT

+ VU



=

0 (1TvwT
− 1TvwT  
0T

−vTU +

vT
1TV U  

0T

)/
√
N

0 Lp(G)

 .
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Note that Tc (hence T ) is a universal transformation that does not
depend on the graph at hand, and it generates Lp(G) (that is a
function of the graph), which is symmetric. Furthermore, since Tc
is used as a similarity transformation, for any connected graph G
without self-loops or multiple edges, σ(L(G)) = σ(T T

c L(G)Tc).
This implies that

σ(Lp(G)) = σ(L(G)) \ {0} ⊂ [2(1 − cos(π/N)), 2d(G)]. (21)

Define the transformed error as,

ẽk , T T ek. (22)

Then Eq. (14) can be written as,

ẽk+1 = T TAc,k[(IN − δL(Gc,k))
r
⊗ In]T ẽk

= T TAc,kT  
:=Ãc,k

T T
[(IN − δL(Gc,k))

r
⊗ In]T  

:=Λr
k⊗In

ẽk. (23)

Next we derive an expression for Λk. Noting that T = Tc ⊗ In and
(Z1 ⊗ Z2)(Z3 ⊗ Z4) = (Z1Z3) ⊗ (Z2Z4) for compatible matrices
Z1, . . . , Z4, we have

T T
[(IN − δL(Gc,k))

r
⊗ In]T

= (Tc ⊗ In)T [(IN − δL(Gc,k))
r
⊗ In](Tc ⊗ In)

= (Tc ⊗ In)T [(IN − δL(Gc,k))
rTc ⊗ In]

= [T T
c (IN − δL(Gc,k))

rTc]  
=Λr

k

⊗In,

which implies that Λk = T T
c (IN − δL(Gc,k))Tc . By noting (IN −

δL(Gc,k))
r

= IN + c1L(Gc,k) + c2L(Gc,k)
2
+ · · · + crL(Gc,k)

r for
some c1, . . . , cr ∈ R, we have

Λr
k = T T

c (IN − δL(Gc,k))
rTc

= T T
c INTc + c1T T

c L(Gc,k)Tc + c2T T
c L(Gc,k)

2Tc + · · ·

+ crT T
c L(Gc,k)

rTc
= IN + c1L̃c,k + c2L̃2

c,k + · · · crL̃r
c,k = (IN − δL̃c,k)

r .

The newly defined L̃c,k is given by

L̃c,k , T T
c L(Gc,k)Tc =


0 0T

0 Lp(Gc,k)


,

which is obtained by noting that the first column of Tc , 1, is in the
null space of L(Gc,k), that is, L(Gc,k)1 = 0. Consequently

Λr
k = (IN − δL̃c,k)

r
=


1 0T

0 IN−1


− δ


0 0T

0 Lp(Gc,k)

r

=


1 0T

0 IN−1 − δLp(Gc,k)

r
.

This transformation allows us to project the overall estimation er-
ror vector ẽk into its components in the agreement subspace, εk, and
the disagreement subspace, ηk,

ẽk+1 =


εk+1
ηk+1


= Ae


εk
ηk


where Ae =


Aa(Gs,k) FkΛr

p,k
Gk Ad,kΛ

r
p,k


, (24)
and

Aa(Gs,k) = A +
1
N
L


N
i=1

ET
i,kdiag(hi,k)

−1Ei,k ⊗ Ip


  

L(Gs,k)⊗Ip

C,

Λp,k = (IN−1 − δLp(Gc,k))⊗ In,

Gk =



L1,kC1,k − L2,kC2,k
√
2N

L1,kC1,k + L2,kC2,k − 2L3,kC3,k
√
6N
...

N−1
i=1

Li,kCi,k − (N − 1)LN,kCN,k
N2(N − 1)


,

Fk =

 L1,kC1,k − L2,kC2,k
√
2N

L1,kC1,k + L2,kC2,k − 2L3,kC3,k
√
6N

, . . .

N−1
i=1

Li,kCi,k − (N − 1)LN,kCN,k
N2(N − 1)

 .
The terms in Eq. (24), Aa(Gs,k),Gk, and Fk are shown to be as above
by simply substituting Eqs. (13) and (17) in Eq. (23). Since their
derivations are straightforward algebraic manipulations, which do
not add any further insight to the discussion, they are omitted. We
also do not need the explicit form of Ad,k (defined in (24)) in the
proof. Lp(Gc,k), (2, 2) block of the matrix (T T

c L(Gc,k)Tc), is a sym-
metric matrix with 2(1 − cos(π/N))I ≤ Lp(Gc,k) ≤ 2d(Gc,k)I .
Hence the choice of δ ∈ (0, 1/(N − 1)) renders the eigenvalues
of the Laplacian of any connected communication graph inside the
unit circle, i.e., ρ(Λp,k) < 1 (see Eq. (11)).

With the transformed state we can express the Lyapunov func-
tion as follows:

Ṽ (ẽk) = ẽTk (I
−1
α ⊗ P)ẽk, where Iα =


1 0
0 αIN−1


and α > 0.

Consider some γ ∈ (λ, 1), we have

γ Ṽ (ẽk)− Ṽ (ẽk+1) = ẽTk S ẽk,

where S := γ (I−1
α ⊗ P)− AT

e (I
−1
α ⊗ P)Ae. (25)

We can express the matrix S as

S =


γ P 0
0 γ (α−1IN−1 ⊗ P)



−


Aa(Gs,k) FkΛr

p,k

Gk Ad,kΛ
r
p,k

T 
P 0
0 α−1IN−1 ⊗ P


×


Aa(Gs,k) FkΛr

p,k
Gk Ad,kΛ

r
p,k


= S1 − S2,
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where S1 and S2 are symmetric matrices defined by

S1 =


γ P − Aa(Gs,k)

TPAa(Gs,k)− α−1GT
k P̂Gk 0

0 α−1γ P̂


,

S2 =


0 α−1GT

k P̂Ad,kΛ
r
p,k + Aa(Gs,k)

TPFkΛr
p,k

(⋆)T Λr
p,k(α

−1AT
d,kP̂Ad,k + F T

k PFk)Λ
r
p,k


,

with P̂ = IN−1 ⊗ P . By using the inequality (15), for any k,

γ P − Aa(Gs,k)
TPAa(Gs,k) = λP − Aa(Gs,k)

TPAa(Gs,k)  
≥0

+(γ − λ)P

⇒ γ P − Aa(Gs,k)
TPAa(Gs,k) ≥ (γ − λ)P > 0.

This implies that agreement dynamics exponentially stable (dy-
namics with ηk = 0). Moreover α > 0 can be chosen large enough
such that S1 = ST1 > 0.

Next observe that Λp,k is a symmetric matrix with all its
eigenvalues in (λmin, λmax) ⊂ (−1, 1). Hence limr→∞ λ

r
minI ≤

limr→∞Λr
p,k ≤ limr→∞ λ

r
maxI = 0. Since all nonzero blocks of S2

contain Λr
p,k as common factor, limr→∞ S2 = 0. This implies that

the spectral radius of the symmetric matrix S2 = ST2 can be made
arbitrarily small by choosing r large enough for a given α. Conse-
quently, since S1 = ST1 > 0 by a choice of a large enough α, we can
guarantee that S = S1 − S2 > 0 by choosing r large enough. This
then implies that

γ Ṽ (ẽk)− Ṽ (ẽk+1) = ẽTk Sẽk ≥ λ̃Ṽ (ẽk) > 0 for ẽk ≠ 0,

for some λ̃ ∈ (0, 1). Since Ṽ is positive definite quadratic function
of ẽk. This implies the exponential stability of the error dynamics.
Eq. (16) is a direct consequence of this exponential stability, which
concludes the proof. �

4. LMI synthesis of exponentially stable agreement dynamics

This section will construct an LMI procedure to synthesize the
gain matrix L to quadratically stabilize the agreement subspace of
the error dynamics. Note that Eq. (24) implies that the error in the
agreement subspace evolves, when ηk = 0, as follows,

εk+1 = Aa(Gs,k)εk.

As an immediate consequence of this observation, the condition
(15) to hold for any pseudo-connected sensing graph implies
that the error dynamics are quadratically stable in the agreement
subspace.

Next we will construct the quadratic Lyapunov function of the
condition (15). Since the sensing graphGs,k is assumed to bepseudo
connected, by using Theorem 3 together with Eqs. (48) and (49) in
the Appendix, we have

2

1 − cos

π

2N + 1


I ≤

N
i=1

ET
i,kdiag(hi,k)

−1Ei,k

= L(Gs,k) ≤

2d

Go
sk


+ 1


I, (26)

where Go
sk is the sensing graph with the self-loops removed. Note

that, since Gs,k has m vertices, d(Go
sk) ≤ m − 1. Let

β1 = 2

1 − cos

π

2N + 1


,

β2 = max
k

2d(Go
sk)+ 1 ≤ 2m − 1.
Nowwe can express thematrix Aa(Gs,k) defined in Eq. (15) for each
time instance k as follows

Aa(Gs,k) = A +
1
N
L

L(Gs,k)⊗ Ip


C

+
β1 + β2

2N
LC −

β1 + β2

2N
LC

= A +
1
N
L


L(Gs,k)⊗ Ip −
β1 + β2

2
I


  
∆k

C +
β1 + β2

2N
LC

= A +
β1 + β2

2N
LC +

1
N
L∆kC

where −
β2−β1

2 I ≤ ∆k ≤
β2−β1

2 I . Then the agreement dynamics for
εk, when ηk = 0 for all k, are given by:

ϵk+1 =


A +

β1 + β2

2N
LC


  
:= Aϵ

ϵk +
1
N
Lpk (27)

pk = ∆kqk, qk = Cϵk, −β̃I ≤ ∆k = ∆T
k ≤ β̃I

where β̃ =
β2−β1

2 > 0. We will establish the quadratic stability of
the above system via a choice of the gain matrix L. The agreement
dynamics given by (27) above, is known in the Norm-Bound Linear
Differential Inclusion (NLDI) (Boyd et al., 1994) form. Note that,

pk = ∆kqk, ∥∆k∥ ≤ β̃ ⇔ pTkpk ≤ β̃2qTkqk. (28)

The expression (28) can be rewritten as,
qk
pk

T
M

qk
pk


≥ 0 whereM =


α̂β̃2I 0
0 −α̂I


(29)

where α̂ > 0 is a scalar variable introduced through S-procedure
(Açıkmeşe & Corless, 2008; Boyd et al., 1994).

Lemma 1. Consider the agreement dynamics given by (27) with the
gain matrix L given by L = P−1S, where P = PT > 0 and S are ob-
tained jointly by solving the following ADLMI (Agreement Dynamics
LMI) for some λ ∈ [0, 1), with solution variables P, S, and α̂,

λP − α̂β̃2CTC 0 ATP +
β1 + β2

2N
CT ST

0 α̂I
1
N
ST

PA +
β1 + β2

2N
SC

1
N
S P

 ≥ 0. (30)

Then the resulting agreement dynamics (27) are quadratically (hence
globally exponentially) stable, and the condition (15) in Theorem 1 is
satisfied with L, P, and λ.

Proof. Consider a Lyapunov function V (εk) = εTk Pεk with P =

PT > 0 such that, for some λ ∈ (0, 1),

λVk − Vk+1 ≥ 0, ∀


qk
pk

T
M

qk
pk


≥ 0. (31)

We combine the two inequalities in (31) into the following in-
equality via the S-procedure (Boyd et al., 1994) by noting that any
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positive multiple of a multiplier matrixM is also a multiplier

λVk − Vk+1 −


qk
pk

T
M

qk
pk


≥ 0,

for all εk, qk, pk. Then the above inequality implies that

λεTk Pεk −


Aεεk +

1
N
Lpk

T

P

Aεεk +

1
N
Lpk


−


εk
pk

T 
C 0
0 I

T
M

C 0
0 I

 
εk
pk


≥ 0.

The above inequality is equivalent toλP − AT
εPAε − α̂β̃2CTC −

1
N
AT
εPL

−
1
N
LTPAε α̂I −

1
N2

LTPL

 ≥ 0

⇒


λP − α̂β̃2CTC 0

0 α̂I


−

 AT
εPAε

1
N
AT
εPL

1
N
LTPAε

1
N2

LTPL


  

G

≥ 0,

where G =

 AT
εP

1
N
LTP

 P−1

PAε

1
N
PL

.

Using the Schur complements (Boyd et al., 1994), this is equivalent
to
λP − α̂β̃2CTC 0 AT

εP

0 α̂I
1
N
LTP

PAε
1
N
PL P

 ≥ 0

with P = PT > 0, α̂ > 0.

Finally, by setting S = PL and by expanding Aε , the ADLMI feasi-
bility problem is obtained with the solution variables S, P , and α̂.
This shows that the satisfaction of ADLMI implies the existence of a
quadratic Lyapunov function proving the quadratic stability of the
agreement dynamics, and furthermore this Lyapunov function sat-
isfies the condition (15). Note that, once a feasible solution of the
above ADLMI is obtained, we can construct the gain matrix by us-
ing L = P−1S, that is, the observer gain matrix L is synthesized by
solving for P = PT > 0 satisfying the ADLMI (30). �

5. Bound on consensus iterations for observer stability

Next, we compute a bound on the number of iterations, r ,
to ensure exponential stability of the overall error dynamics. As
shown in Eq. (43), the bound on r will depend on the bound of P-
norm of Ai,k := A + Li,kCi,k as in Eq. (13), that is,

Ai,k = A + L(ET
i,kdiag(hi,k)

−1Ei,k ⊗ Ip). (32)

In this section, we establish this bound, ā, that is, ∥Ai,k∥P ≤ ā for
all i and k and for all indices i and k,

∥Ai,k∥P ≤ ā ⇐⇒ wTAT
i,kPAi,kw ≤ ā2wTPw ∀w. (33)

Since Ai,k does not necessarily have all its eigenvalues in the unit
circle, due to lack of detectability with local measurements, a
part of the error may grow. We bound the growth of the local
observation error after the measurement update.
Lemma 2. Given Ai,k as in Eq. (32), then ∥Ai,k∥P ≤ ā for all i, k if the
following matrix inequality is satisfied for some α̃ > 0, ā2P − ATPA −AT S − α̃β2CT 0

−SA − α̃β2C 2α̃I ST

0 S P

 ≥ 0, (34)

where β2 = maxk 2d(Go
s,k)+ 1(≤2m − 1).

Proof. The inequality (33) indicates that, to prove ∥Ai,k∥P ≤ ā is
equivalent to proving that ā2Vk − Vk+1 ≥ 0 for Vk = wT

k Pwk and
wk is the state of the following system

wk+1 = Ai,kwk.

This discrete-time system can be rewritten in an LDI form as

wk+1 = Awk + Lp̃k, p̃k = Ωi,kq̃k, q̃k = Cwk,

where Ωi,k = ET
i,kdiag(hi,k)

−1Ei,k. Noting that 0 ≤ Ωi,k ≤ β2I , we
define the following multiplier matrices for this system

M =


0 α̃β2I
α̃β2I −2α̃I


.

This implies that [q̃Tk , p̃
T
k ]M[q̃Tk , p̃

T
k ]

T
≥ 0 for all k. Then satisfaction

of the following inequality implies that ā2Vk − Vk+1 ≥ 0 for allwk,
and hence ∥Ai,k∥P ≤ ā,

ā2Vk − Vk+1 −


q̃k
p̃k

T
M

q̃k
p̃k


≥ 0, q̃k = Cwk, ∀wk, p̃k.

The above inequality is equivalent to
ā2P − ATPA −ATPL − ãβ2CT

−LTPA − ãβ2C 2ãI − LTPL


≥ 0,

which is then equivalent to
ā2P − ATPA −ATPL − ãβ2CT

−LTPA − ãβ2C 2ãI


−


0

LTP


P−1


0

LTP

T
≥ 0.

By using the Schur complements and letting S = PL, we nowobtain
the desired matrix inequality (34). �

We now present the key synthesis result of this paper, Theo-
rem 2, to compute a bound on the number of consensus iterations
r needed for an exponentially stable decentralized observer. To do
that, the error dynamics (14) and the transformed error dynamics
(23) are utilized,

ek+1 = Ac,k(InN − δL⊗

c,k)
rek ⇒ ẽk+1 = Ãc,k(Λ

r
k ⊗ I)ẽk

where ẽk = T T ek, and Ãc,k and Λk are defined in Eq. (23). A new
quantity θ is defined that is instrumental in Theorem 2: a bound on
the normofmatrix ∥Λp,k∥ ≤ θ , whereΛp,k = (IN−1−δLp(Gc,k))⊗
In withLp as defined in (20). A simple optimization problem is con-
structed to compute a nonconservative value for θ . Let b and b̄ be
the lower and upper bounds on Lp(Gc,k), as defined in Eqs. (48)
and (49), respectively

b := min
k=0,1,...

a(Gc,k) ≥ 2(1 − cos(π/N)) and

b̄ := max
k=0,1,...

ρ(L(Gc,k)) ≤ 2(N − 1).
(35)

Note that the right-hand side of the inequalities provide analytical
bounds on b and b̄, which can be made tighter if the communica-
tion graphs had more specific structures that can be exploited, as
will be discussed in detail in Section 6. Next we define θ as

θ = min
δ>0

max

|1 − δb̄|, |1 − δb|


. (36)
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A byproduct of the solution of (36) is the optimal value of δ, which
determines the value of δ used in the consensus part of the observer
in (8):

δ∗ = argmin
δ>0

max

|1 − δb̄|, |1 − δb|


. (37)

A simple line search over δ can be performed to solve the optimiza-
tion problem (36). Note that θ ∈ [0, 1). θ ≥ 0 is a direct implica-
tion of the definition. Since b̄ ≥ b > 0, setting δ = 1/b implies
that max


|1 − δb̄|, |1 − δb|


= 1 − b/b̄ < 1, which then implies

that θ < 1.
The following theorem is our third main contribution, which

establishes a general bound on the number of consensus iterations
needed for the exponential stability of the error dynamics, in terms
of the properties of the system dynamics and the sensing and the
communication graphs.

Theorem 2. Suppose that there exist α̂ > 0, α̃ > 0, P = PT > 0,
and S such that the matrix inequalities (30) and (34) are satisfied for
some λ ∈ [0, 1) and ā > 0. Then the overall error dynamics given
by (14) are exponentially stable if the integer r ≥ 1 is chosen such
that ρ(Γ (r)) < 1, where

Γ (r) =

√
λ āθ r

ā āθ r


and θ ∈ [0, 1) is given by (36). (38)

Proof. For any vector φ of appropriate dimension, we have
∥Ãc,kφ∥IN⊗P ≤ ∥Ãc,k∥IN⊗P∥φ∥IN⊗P . The P-norm of Ãc,k can be sim-
plified,

∥Ãc,k∥IN⊗P =

IN ⊗ P
1
2


(T T

c ⊗ In)Ac,k(Tc ⊗ In)

IN ⊗ P−

1
2


=

(T T
c ⊗ In)


IN ⊗ P

1
2


Ac,k


IN ⊗ P−

1
2


(Tc ⊗ In)


= ∥Ac,k∥IN⊗P ,

where we use that TcT T
c = T T

c Tc = I and ∥Tc∥ = 1 (see Eq. (17) for
Tc). Then we can infer the following expression,

∥ẽk+1∥IN⊗P ≤ ∥Ãc,k∥IN⊗P∥ (Λ
r
k ⊗ I)ẽk  
φk

∥IN⊗P

= ∥Ac,k∥IN⊗P∥φk∥IN⊗P .

Then, by using Eq. (24) we have

∥ηk+1∥IN−1⊗P ≤ ∥ẽk+1∥IN⊗P ≤ ∥Ac,k∥IN⊗P∥φk∥IN⊗P . (39)

Here, φk can be represented as

φk =


εk

Λr
p,kηk


⇒ ∥φk∥IN⊗P ≤ ∥εk∥P + ∥Λr

p,kηk∥IN−1⊗P ,

withΛp,k defined from Eq. (24) asΛp,k = (IN−1 − δLp(Gc,k))⊗ In.
From here,

∥Λr
p,kηk∥IN−1⊗P ≤ ∥Λr

p,k∥IN−1⊗P∥ηk∥IN−1⊗P .

Now we have,

∥Λp,k∥IN−1⊗P =

IN−1 ⊗ P
1
2


Λp,k


IN−1 ⊗ P−

1
2


=

IN−1 ⊗ P
1
2


(IN−1 − δLp(Gc,k))

⊗ In

IN−1 ⊗ P−

1
2


= ∥(IN−1 − δLp(Gc,k))⊗ In∥ = ∥Λp,k∥.
This implies that,

∥Λr
p,kηk∥IN−1⊗P ≤ ∥Λp,k∥IN−1⊗P∥Λ

r−1
p,k ηk∥IN−1⊗P

= ∥Λp,k∥ ∥Λr−1
p,k ηk∥IN−1⊗P

...

≤ ∥Λp,k∥
r
∥ηk∥IN−1⊗P ≤ θ r∥ηk∥IN−1⊗P ,

where θ ≥ ∥Λp,k∥∀ k. Then, by letting ā such that ∥Ac,k∥IN⊗P ≤ ā,
and combining these results with Eq. (39) we get:

∥ηk+1∥IN−1⊗P ≤ ā∥εk∥P + āθ r∥ηk∥IN−1⊗P . (40)

Again by using Eq. (24), ∥Aa(Gs,k)εk∥p ≤
√
λ∥εk∥P , and the triangle

inequality with P-norm,

∥εk+1∥P ≤
√
λ∥εk∥P + ∥FkΛr

p,kηk∥p, (41)

where

∥FkΛr
p,kηk∥P =

FkΛr
p,kηk
0


IN⊗P

=

0 Fk
0 0

 
0

Λr
p,kηk


IN⊗P

≤

In 0
0 0


(T T

c ⊗ In)Ac,k(Tc ⊗ In)

×


0 0
0 In(N−1)


IN⊗P

 0
Λr

p,kηk


IN⊗P

≤ ∥Ac,k∥IN⊗P∥Λp,k∥
r
IN−1⊗P∥ηk∥IN−1⊗P .

Consequently, since ∥Ac,k∥IN⊗P ≤ ā and ∥Λp,k∥ ≤ θ , the expres-
sion (41) becomes:

∥εk+1∥P ≤
√
λ∥εk∥P + āθ r∥ηk∥IN−1⊗P . (42)

Now, by combining Eqs. (40) and (42), we obtain
∥εk+1∥P

∥ηk+1∥IN−1⊗P


≤

√
λ āθ r

ā āθ r


  

:=Γ (r)


∥εk∥P

∥ηk∥IN−1⊗P


. (43)

The above is a recursive inequality of the form: ψk+1 ≤ Γ (r)ψk,
where ψk = (∥εk∥P , ∥ηk∥IN−1⊗P) ≥ 0 (element-wise) and Γ (r)
≥ 0 (element-wise) with ψ(0) ≥ 0. Note that, since λ and
θ are both in [0, 1), r can be chosen large enough such that
σ(Γ (r)) ⊂ (−1, 1). This follows from the fact that the eigenvalues
of Γ (r), s1,2, are given as

s1,2(r) =
1
2
(āθ r +

√
λ)±

1
2


(āθ r −

√
λ)2 + 4ā2θ r .

Since ā and θ are positive, simple inspection reveals that both
eigenvalues are real numbers. Furthermore

lim
r→∞

s1(r) =
√
λ and lim

r→∞
s2(r) = 0.

Since s1,2 are continuous function of r , the above implies that there
exists large enough r such that |s1,2(r)| < 1. Next, since Γ (r) has
positive entries, ψk ≤ Γ (r)ψk−1 ≤ Γ (r)2ψk−2 ≤ · · · ≤ Γ (r)kψ0.
Since σ(Γ (r)) ⊂ (−1, 1), and hence limk→∞ Γ (r)k = 0, which
implies that limk→∞ ψk = 0. This then implies stability with
limk→∞ ψk = 0 exponentially. �

Theorem 2 implies that r can be chosen large enough such
that ρ(Γ (r)) < 1 to ensure the exponential stability of the error
dynamics, which can be done via a line search on r as shown on
an example case in Fig. 4. Hence, we now have a decentralized
observer synthesis described as follows.
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Fig. 3. An example of λ versus ∥A∥P ≤ ā for N = 8.

Algorithm 1.

• Step 1: Solve for θ and δ using Eqs. (36) and (37).
• Step 2: Perform a line search over λ ∈ [0, 1) to determine the

smallest integer r ≥ 1 such that ρ(Γ (r)) < 1: for each λ,
perform a line search on ā and determine the pair (λ, ā) for
which inequalities (30) and (34) are jointly feasible for P =

PT > 0 and S. Then compute the smallest r such thatρ(Γ (r)) <
1 (Γ (r) is given by (38)).

λ, ā, r , are computed by the algorithm via multiple line searches
with the following order: the highest level line search is for λ. Then
for each λ there is a line search for ā. Since r is a positive integer, for
each pair of (λ, ā), the computation of smallest r requires minimal
computation. Note that, using (43), λ is the exponential decay rate
for the agreement dynamics, that is, ∥εk+1∥P ≤

√
λ∥εk∥P when

ηk = 0, with λ ∈ [0, 1]. This implies that reducing λ towards zero
increases the exponential decay rate of the agreement dynamics,
and hence it would also reduce the value of r (see Eq. (38)) needed
for the stability of the overall observer. This can also be observed
from the form of the matrix Γ (r), where the reduction in λ allows
smaller r values for the satisfaction of ρ(Γ (r)) < 1.

6. Impact of communication topology on consensus

This section discusses how the specific structure of the commu-
nication graph can be exploited to find less conservative bounds on
the number of consensus iterations, r , needed for the exponential
stability of the observer. For illustration, we consider N = 8 with
λ = 0.9.

First, it is assumed that a specific connected communication
subgraph is contained in all communications graphs. This implies
that all other communication graphs are simply obtained by adding
connections to this subgraph. The following result states that
the algebraic connectivity is then bounded from below by this
subgraph, which is used to obtain tighter lower bounds on the
Laplacian eigenvalues.

Proposition 1. Adding a new edge to a connected graph will not
decrease its algebraic connectivity.

Proof. Consider a graph with Laplacian Lc . Suppose we introduce
additional links, which add to the Laplacian with ∆ :=


(i,j)∈Eδ

(ei − ej)(ei − ej)T for additional set of edges Eδ , such that La =

Lc + ∆ is the new Laplacian. The following hold: Lc,La, and ∆
are positive semidefinite matrices and the vector 1 is in each’s
Table 1
Algebraic connectivity and consensus bounds, as predicted by Algorithm 1, for
various communication graphs.

Topology type a(G) θ (N = 8) r (N = 8)

Path 2(1 − cos(π/N)) 0.96 76
Cycle 2(1 − cos(2π/N)) 0.91 33
Star 1 0.86 21
Complete N 0.27 3
Cube (m-dim) 2 0.75 11

Fig. 4. Maximum absolute eigenvalue of the Γ (r; L, δ)matrix for the example of 8
agents and various topologies.

null space. Let λa and λc be algebraic connectivities, a, of Lc and
La with vc and va are the corresponding eigenvectors. Note that
vTa 1 = vTc 1 = 0 since eigenvectors of symmetric matrices form
an orthogonal set of vectors and 1 is an eigenvector for both
Laplacians. Consider a similarity transformation P as follows: P =

[Pr | 1/
√
n] where Pr is a one-to-one matrix such that PT

r 1 = 0
and PT

r Pr = I . Then P−1
= PT . Since 1 is in the null space of the

Laplacians, e.g., Lc1 = 0 and 1TLc = 0T , L̃c = PTLcP has the
following form

L̃c =


L̃c,p PT

r Lc1/
√
n

1TLcPr/
√
n 1TLc1/n


=


L̃c,p 0
0 0


where L̃c,p = PT

r LcPr . By using this similarity transformation, we
can define L̃a, L̃a,p, and ∆̃, ∆̃p, i.e., L̃a = PTLaP and ∆̃ = PT1P .
Both matrices will have the same block-diagonal structure as L̃c
with L̃c,p replaced by L̃a,p = PT

r LaPr and ∆̃p = PT
r 1Pr . Note that

L̃a,p ≥ λaI, L̃c,p ≥ λc I , and ∆̃p ≥ 0. Observe that, since 1Tva = 0,
PTva = (ṽa, 0) for some ṽa and L̃a = L̃c + ∆̃. Combining these
observations

λa = vTa PP
TLaPPTva ≥ vTa PP

TLcPPTva

= ṽTa L̃c,pṽa ≥ λc,

which implies λa ≥ λc , which concludes the proof. �

Table 1 presents the number of consensus iterations needed in
this example, when such a common subgraph (with path, cycle,
star, complete, and cube topologies) is shared among all graphs.
The tighter lower bound due to the algebraic connectivity is used
with a bound ā on ∥A∥P , which is computed as described in
Algorithm 1 (see Fig. 3). Fig. 4 shows ρ(Γ (r)) as a function of r
for different topologies, which is then used to construct this table.
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As Table 1 and Fig. 4 imply, for a given λ and hence ā, the
values of θ and r can vary significantly as a function of the
communication topology. If there is additional information on all
possible communication topologies, we can obtain a smaller value
for θ , which in return implies a smaller value of r . The value of θ
decreases as the gap between the values of b and b̄ gets smaller,
as determined by Eq. (36), which in return implies smaller values
of r . Next we present several examples where this observation is
exploitedwhen a specific communication graph persists over time.

Example 1. The cube topology of dimension m,Qm, has a fixed
lower bound on the algebraic connectivity, a(Qm), but also a
much smaller upper bound on the maximum eigenvalue of its
Laplacian matrix, than predicted by Eq. (49) in the Appendix. In
fact, all the eigenvalues of Qm are known (Chung, 1994; Mohar,
1997) as, λ(L(Qm)) = 2k with multiplicity

m
k


for k = 0 . . .m.

This implies, for instance, that a cube Q3 has a(Q3) = 2 and
max(σ (L(Q3))) = 6, rather than 0.15 and 14, respectively, as pre-
dicted by Eqs. (48) and (49). Consequently, the new bounds on the
eigenvalues of the cube Laplacian provide θ = 0.5 and hence r = 5
instead of r = 11, which is shown in Fig. 5. Also note that the
bounds for the cube communication topology are independent of
the number of agents N , and hence stay the same as the number
of agents increases. This means that the number of iterations re-
quired would remain the same as the number of agents increase as
long as λ and ā do not change.

Example 2. The star topology with N number of vertices, GStarN ,
has eigenvalues of its Laplacian at 0, 1 (withmultiplicityN−2) and
N (Chung, 1994). Hence a(GStarN ) = 1 andmax(σ (L(GStarN ))) = N ,
leading to tighter bounds than predicted by Eqs. (48) and (49) in
the Appendix. For N = 8, the value of θ = 0.78 and the number of
consensus iterations is r = 12. This is also shown in Fig. 5.

Example 3. For a fully connected topology with N vertices, all the
non-zero eigenvalues of the corresponding Laplacian are equal to
N , which implies that b = b̄, with θ = 0 and δ = 1/N . This is
intuitive, because all agents communicate with each other and the
consensus is immediately achieved as the simple average of all the
communicated information. Therefore choosing r = 1 is sufficient
for observer stability.

In summary, decreasing the gap between the algebraic connec-
tivity and maximum eigenvalue of a graph’s Laplacian matrix is
important as it allows to reduce θ term. Therefore, if we design
communication topologies containing a graph with a large alge-
braic connectivity (such as cube or star topology), the eigenvalues
can be controlled as adding new edges will not decrease the al-
gebraic connectivity. Furthermore, in practice, it is observed that
only a few consensus iterations are actually needed (see Section 7),
which is far less than what the theoretical bounds above predict.

7. Numerical example

This section presents an example of spacecraft in Low Earth
Orbit (LEO) to demonstrate the performance of the decentralized
observer with the consensus filter. We assume a group of N
spacecraft with time-varying sensing topology defined by the
graphs Gs,k, k = 0, 1, . . . , and communication topology Gc,k, k =

0, 1, . . . . According to Gc,k each vehicle i, where i = 1 . . .N , has
a set of neighbors Si,k. The state vector to be estimated consists of
the relative positions and velocities of all vehicles with respect to
the central vehicle (i.e., vehicle 1). Therefore, the state vector size
is n = 6(N − 1). The relative translational state of the formation is
defined as the vector of positions and velocities of each spacecraft
relative to the reference spacecraft in the formation, which is
Fig. 5. Maximum absolute eigenvalue of the Γ (r; L, δ) matrix for the example of
8 agents, with special case communication topologies, star and cube, as stated in
Examples 1 and 2.

designated with the index 1 without loss of generality (Açıkmeşe,
Scharf, Carson, & Hadaegh, 2008; Sukhatme, 2009). Specifically,

x =

p12,1 . . . p1N,1 p12,2 . . . p1N,2 . . . v12,3 . . . v1N,3

T (44)

where N is the number of spacecraft in the formation, and

pij =

pij,1
pij,2
pij,3


, vij =


vij,1
vij,2
vij,3


,

i ≠ j, i = 1, . . . ,N − 1, j = 2, . . . ,N, (45)

where pij,k (vij,k), k = 1, 2, 3, is the kth coordinate of the position
(velocity) of the jth relative to the ith spacecraft.

The discrete time dynamics for the relative formation state is
given by Eq. (1) where Amatrix is defined as

A = eA01t
⊗ IN−1 (46)

A0 represents the linearized orbital dynamics (Açıkmeşe et al.,
2008)

A0 =


03 I3
ω2D0 ωS0


, D0 =

3 0 0
0 0 0
0 0 −1


,

S0 =

 0 2 0
−2 0 0
0 0 0


,

ω =

µ/R3, R is the radius of the orbit and µ is the gravita-

tional parameter of the primary body, Im and 0m are them×m iden-
tity and zero matrices. Finally, the measurement model is given
by Eq. (2). The measured output is a linear, time-varying function
of the state. Ck is a time-varying matrix corresponding to time-
varying sensor graphs topology Gs,k, which is a pseudo-connected
undirected graph. Measurements can be obtained by a variety of
formation sensors and can be of different type.Without loss of gen-
erality, we assume that the measurements from each sensor give a
relative position vector between a pair of agents, and that themea-
surement is available to both agents.

7.1. Algorithm performance under parameter variations

The simulation results show the effect of the observer conver-
gence rate parameter, λ, and number of consensus iterations, r on
convergence and consensus of the local observers. We show that
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Fig. 6. Sensing topology.
Fig. 7. Communication topology.
the parameterλ can control convergence rates and that the param-
eter r plays an important role in achieving stability of the observer
and faster agreement among the agents’ estimates. We also show
that only a relatively low number of iterations is required to reach
a consensus, which implies lower communication bandwidth. This
can be useful for algorithm’s applicability to real systems. Addi-
tional simulation results can be found in Mandić, Açıkmeşe, and
Speyer (2010).

Applying the approach described in the Algorithm 1, we com-
pute the θ, δ and ā parameters, as well as the bound on consensus
iterations. In these simulations, hi,k = 2, ∀i, k, i.e., if there exist
a relative measurement between two spacecraft, both spacecraft
have access to it. Simulations show that the algorithm works well
even with only r = 3 though the theory predicts higher number of
iterations for certain topologies.

The results are shown for the 1t = 1 s with 8 spacecraft. The
sensing and communication topologies change according to Figs. 6
and 7. Both topologies may or may not change at the same time.
The time of topology change is indicated in the error-plotswith the
blue circle and red dot, for communication and sensing topology
changes respectively. Also note that the communication topologies
in Fig. 7 represent, graphically, the communication graphs directly.
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Fig. 8. Sensing graph example. E is vertex-adjacency matrix for the sensing graph
with self-loops.

Fig. 9. λ = 0.90, r = 11.

On the other hand the sensing topologies do not have the same
interpretation: a connection between each spacecraft represents
a relative measurement. The conversion of a sensing topology to
a sensing graph and the corresponding vertex-adjacency matrix is
given in Fig. 8.

Figs. 9 and 10 show the performance of the algorithm for λ =

0.90 and λ = 0.80 respectively, with number of iterations set
to r = 11. It is worth noting the improvement in convergence
when λ = 0.80 by observing the transient times in both cases.
For the case with λ = 0.80 the first crossing of the x-axis occurs
at around 80 s, while in the case λ = 0.90 it takes about 140 s. On
the other hand, to decrease the communication bandwidth needed
and speed up the execution, we set r = 3. Fig. 11 shows that
the consensus is reached and algorithm converges. Each spacecraft
exchanges enough informationwith other spacecraft tomaintain a
stable observer. During the transient the consensus is not achieved
as fast as in previous cases, which is expected with decreased
number of iterations. But decreasing the number of iterations
further can be harmful, and in the case when r = 1 and λ = 0.90
the observer becomes unstable, as shown in Fig. 12.

8. Conclusions

The decentralized observer with consensus filter proposed
here provides a computationally efficient estimation technique for
Fig. 10. λ = 0.80, r = 11.

Fig. 11. λ = 0.90, r = 3.

Fig. 12. λ = 0.90, r = 1.

handling time-varying sensing and communication topologies for
distributed systems. The method is computationally efficient and
it does not require onboard gain computation. The observer gains
are computed offline by solving an LMI feasibility problem. The im-
plementation of the algorithm requires minimal communication
load,whichmakes the algorithmsuitable for realtime systemswith
lowcommunicationbandwidth. Simulation results for a set of eight
spacecraft are presented to support the convergence results of the
algorithm.
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Future workmay include: (i) considering process andmeasure-
ment noise in the decentralized observer design; (ii) obtaining
tighter bounds on the number of consensus iterations by exploit-
ing the structure of the specific communication graphs at hand;
(iii) a comparative study of communication complexity for consen-
sus based decentralized observers with a simple communication
routing scheme, as studied in this paper, and observers requiring
the routing of all the measurements with a more complex routing
scheme.
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Appendix. Graph theoretic concepts and Laplacian of graphs
with self-loops

In this section wewill introduce some known facts about graph
theorywith a new result on graphswith self-loops. For graphswith
self-loops, wewill introduce the concept of pseudo connectedness,
which is useful in our developments.

Let G = (V, E) represents a finite graph with a set of vertices V
and edges E with (i, j) ∈ E denoting an edge between the vertices
i and j. L(G) is the Laplacian matrix for the graph G; a(G) is the
algebraic connectivity of the graph G, which is the second smallest
eigenvalue ofL(G). E is the vertex–edge adjacencymatrix,which is
described later on in Section 1.1, A is the adjacency matrix, and D
is the diagonal matrix of node in-degrees for G, then the following
gives a relationship to compute the Laplacian matrix

L(G) = ETE = D − A. (47)

The following relationships are well known in the literature
(Fiedler, 1973; Horn & Johnson, 1999) for a connected undirected
graphGwithN vertices andwithout any self-loops ormultiple edges

a(G) ≥ 2(1 − cos(π/N)) (48)

2d(G) ≥ max(σ (L(G))), (49)

where d(G) is the maximum in-degree of G. Indeed the inequality
(49) is valid for any undirected graph without self-loops or multi-
ple edges whether they are connected or not. Also, due to the con-
nectedness of the graph, the minimum eigenvalue of the Laplacian
matrix is 0 with algebraic multiplicity of 1 and the eigenvector of
1. Next we characterize the location of the Laplacian eigenvalues
for a connected undirected graph G with self-loops. Having a self-
loop does not change whether a graph is connected or not, that is,
a graph with self-loops is connected if and only if the same graph
with the self-loops removed is connected. Furthermore, we define
the Laplacian of an undirected graph with at least one self-loop as

L(G) = L(Go)+


(i,i)∈E

eieTi (50)

where Go is the largest subgraph of Gwith the self-loops removed,
and

L(Go) =


(i,j)∈E, i≠j

(ei − ej)(ei − ej)T . (51)
Fig. 13. Lifted graph of a pseudo-connected graph with self-loops.

The following definition introduces the concept of the pseudo-
connected graphs, which is our fourth contribution.

Definition 1. An undirected graph G(V, E)withoutmultiple edges
is pseudo-connected if every vertex is connected to itself and/or to
another vertex and if every connected subgraph of G has at least
one vertex with a self-loop.

Nextwe develop useful results on the eigenvalues of undirected
graphs with self-loops, which are instrumental in the stability
analysis of the decentralized observer. We refer to Mesbahi
and Egerstedt (2010) for a graph theoretic view of multi-agent
networks.

Lemma 3. The Laplacian of a pseudo-connected graph is positive
definite.

Proof. A pseudo-connected graph can be partitioned into sub-
graphs that are connected with at least one self-loop in each sub-
graph. Note that some of these subgraphs can have a single vertex
that has a self-loop. Clearly each subgraph with a single vertex and
a self-loop has Laplacian 1. If we can also show that the connected
subgraphs that have multiple vertices with at least one self-loop
have positive definite Laplacians, then the Laplacian of the overall
graph will also be positive definite. This will conclude the proof.
To do that we prove that a connected graph G with at least one
self-loop has a positive definite Laplacian. Let Go be the connected
graph formed by removing the self-loops fromG. Any vector v ≠ 0,
which can be expressed as v = w+ ζ1wherewT1 = 0, and either
or bothw ≠ 0 and ζ ≠ 0. Then, by using (51) L(G) = L(Go)+ Qo
where Qo :=

q
i=1 eie

T
i and q is the number of self-loops and hav-

ing 1TQo1 = q,

vTL(G)v = wTL(Go)w + wTQow + 2ζwTQo1 + qξ 2 ≥ 0.

If w ≠ 0, wTL(Go)w > 0 (due to connectedness of Go), we have
vTL(G)v > 0. Next, ifw = 0 and ζ ≠ 0, then vTL(G)v = qζ 2 > 0.
Consequently L(G) = L(G)T > 0, where q is the number of self-
loops. �

Next we introduce the concept of lifted graph to characterize the
eigenvalues of the Laplacian of a graph with self-loops.

Definition 2. Given an undirected graph G(E,V) with N vertices
and with at least one self-loop, its lifted graph Ĝ(Ê, V̂) is a graph
with 2N + 1 vertices and with no self-loops such that (Fig. 13):
For every vertex i in G there are vertices i and i + N + 1 in Ĝ,
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i = 1, . . . ,N , and also a middle vertex N + 1 with the following
edges

(i, j) ∈ E ⇒ (i, j) ∈ Ê and (i + N + 1, j + N + 1) ∈ Ê
(i, i) ∈ E ⇒ (i,N + 1) ∈ Ê and (N + 1, i + N + 1) ∈ Ê.

The following theorem is the main result of this section on the
eigenvalues of the Laplacians of pseudo-connected graphs, which
is our fifth key contribution.

Theorem 3. For a finite undirected graph, G, with self-loops but
without multiple-edges:

σ (L(G)) ⊆ σ

L(Ĝ)


∩ [0, 2d(Go)+ 1], (52)

where Go(V, Eo) is a subgraph of G(V, E) where Eo
⊂ E and Eo

contains all the edges of E that are not self-loops. Particularly, if G
is a pseudo-connected graph, then

σ (L(G)) ⊆ σ+


L(Ĝ)


∩ [0, 2d(Go)+ 1]. (53)

Proof. Consider the vertex–edge adjacency matrix Eo for Go. We
have the following relationship for the vertex adjacency matrices
of G and Ĝ, E and Ê, in terms of Eo

Ê =

Eo 0 0
S 1 0
0 1 S
0 0 Eo

 , E =


Eo

S



where the matrix S has entries of +1 or 0. This implies that

L(Ĝ) =

EoTEo
+ ST S ST1 0

1T S 2N 1T S
0 ST1 EoTEo

+ ST S


and L(G) = EoTEo

+ ST S. Now suppose that ψ ∈ σ (L(G)) with
the corresponding eigenvector v. Then

L(Ĝ)


v
0

−v


=


L(G)v

0
−L(G)v


= ψ


v
0

−v


.

Consequently ψ ∈ σ

L(Ĝ)


too. Next note that 0 ≤ ST S ≤ I ,

which implies that L(G) ≤ L(Go)+ I . This implies that

max(σ (L(G))) ≤ max(σ (L(Go)))+ 1 ≤ 2d(Go)+ 1 (54)

which follows from (49). This proves the relationship given by (52).
Now by using Lemma 3, the relationship given by (53) directly
follows from (52). �
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