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Abstract

We consider the problem of trajectory generation for constrained differentially flat
systems. Based on the topological properties of the set of admissible steady state
values of a flat output we derive conditions which allow for an a priori verification
of the feasibility of constrained set-point changes. We propose to utilize this rela-
tion to generate feasible trajectories. To this end we suggest to split the trajectory
generation problem into two stages: (a) the planning of geometric reference paths
in the flat output space combined with (b) an assignment of a dynamic motion to
these paths. This assignment is based on a reduced optimal control problem. The
unique feature of the approach is that due to the specific construction of the paths
the optimal control problem to be solved is guaranteed to be feasible. To illustrate
our results we consider a Van de Vusse reactor as an example.
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1 Introduction

The problem of transition between set-points is an important control task.
Transition problems are usually approached either by feedback control or via
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two-degree-of-freedom control schemes. While the first approach might lead
to sophisticated feedback controllers with aggressive behavior, the latter com-
bines feedforward inputs, which transfer the system smoothly from one set-
point to another one, with typically rather simple feedback structures, cf.
[4,8,11]. Feedforward inputs which ensure nominal set-point transition can
be obtained by solving an optimal control problem [2,15] or by using system
inversion techniques and/or flatness properties, cf. [4,7,8,10,16,25]. These ap-
proaches, however, share the general limitation that nonlinear dynamics and
constraints on states and/or inputs are difficult to handle. These difficulties
stem from the fact that for constrained nonlinear systems confirming whether
one set-point is reachable from another one is usually achieved by computation
of an admissible trajectory.

In order to combine optimal control methods with system inversion techniques
we focus on the special case of differentially flat systems. Exploiting flatness in
the context of dynamic optimization and trajectory generation has been con-
sidered previously, see [19-21,25-27]. Generally speaking, these works convert
an infinite dimensional optimal control problem into a finite dimensional static
optimization problem by describing the system evolution via parametrized
functions, e.g. splines, in a flat output space. One common restriction of
these works is that for nonlinear flat systems subject to input and state con-
straints, the existence of admissible solutions is in general not guaranteed. In
the present contribution we tackle this limitation.

To this end we investigate a reachability condition for flat systems, which
allows to confirm set-point reachability a priori, i.e. without explicit compu-
tation of admissible solutions. The condition is based on a relation between
the constrained reachability of flat systems and the topology of the set of
steady state values of a flat output. Similar observations are made but not
further investigated in [18,23]. We propose to utilize this relation in terms of
a two-stage-approach to trajectory generation: (a) the planning of a geomet-
ric reference path in a flat output space which connects the set points, and
(b) assigning an admissible dynamic trajectory to this curve. The first step
is subject to specific conditions and precomputed while in the second step a
small dimensional optimal control problem with strict feasibility guarantee is
formulated.

The remainder of the present contribution is structured as follows: In Section
2 we present the problem setting, briefly recall the property of differential
flatness, and present the main reachability result. The proof of this result
prepares the ground for a two-stage approach to trajectory generation for flat
systems which is presented in Section 3. Section 4 considers a nonlinear Van
de Vusse reactor subject to state and input constraints as an example.



Notation

The image of a set A C R™ under a map f : R" — R™ is denoted as f(.A).
The interior of a compact set B is written as int(B). The k-th time derivative
of a function r : [0,00) — R is written as dzzl(f) or more conveniently r*), C¥
denotes the set of k-times continuously differentiable functions. The solution
at time t of an ODE & = f(x, u) starting at (0) = x¢ and driven by an input

w: [0,t] = R™ is written as x(t, zo | u(-)).

2 Problem Statement and
Constrained Reachability Result

We consider nonlinear systems of the form

= f(z,u), x(0)=x, (1a)
y:h($,u,u,...,u(l)). (1b)

The states x € R" and inputs v € R™ are constrained by simply connected
compact sets X C R™ and U C R™. The state constraint set is described as
X ={zeR™|cf(z) <0, €C’i=1,...,ny} and the input constraint
s ={ueR™|c(u) <0, *€C’i=1,...,n} . The control objective
is to generate constraint consistent input and state trajectories as well as a
finite time T', such that the system is driven from one set-point (¢, ug) € X xU
to another set-point (zr,ur) € X X U, whereby

Ozf(xhui)a 1€ {07T}
holds. Formally this can be stated as follows.

Problem 1 (Constrained set-point transition) Given system (1), an ini-
tial set-point (xo,ug) € X X U, and a target set-point (rr,ur) € X X U.
Compute

(1) a finite transition time T € [0,00);
(2) and an admissible input signal u : [0,T] — U C R™ such that the system
trajectory satisfies

Ve e [0,T]: x(t,zo|u()) € X, (2a)
i e {0, T} (2l mo ] u()), u(i)) = (s 1). (2b)
Note that the solution to this problem is usually not unique. Part (2) refers to

the general problem of reachability in the presence of constraints on states and
inputs. Part (1) requires to transfer the system between the set-points in finite
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Fig. 1. Illustration of the main idea of Theorem 1.

time. Often this problem is tackled as an optimal control problem: either with
an a priori choice of the transition time 7" or formulated as a free-end-time
optimal control problem, cf. [2,15]. However, it is in general difficult to verify

a priori whether—given system (1), the constraint sets X',/ and set-points
(x;,u;), i € {0, T}—Problem 1 is feasible.

To provide sufficient conditions on finite-time set point reachability we restrict
the further considerations to the class of differentially flat systems [7].

Definition 1 (Differentially flat system)

Consider the system (la). If there exists a variable & = (&, ... &, )" with
dim¢ = ne = dimu = m, such that the following statements hold at least
locally:

(1) The variable & can be written as a function of the state variables x =

(x1,...,2,)7T, the input variables u = (uy,...,uy,)" and a finite number
of time derivatives of the input variables
f:g(x,ul,...,ugll),...,um,...,ug{")). (3)

(2) The system variables x and u can be expressed as functions of the variable
E=1&,...,&]T and a finite number of time-derivatives of €. Hence there
exist maps @1 : R" — R" k=37 k; and &y : R*™ — R™ such that

T = ®1 (517 R £k1_1)7 A 7€m7 AR 7§(km_1)) (4&)
u=o (&, &, EE) (4b)

(8) The components of & are differentially independent, they do not fulfill any
differential equation.

Then & is called a flat output of (1a). Furthermore, (1a) is called a (differen-
tially) flat system.

As is well known the flatness property can be exploited in control tasks such as
trajectory generation and set-point changes, see e.g. [7,16,25]. We will utilize
flatness to tackle Problem 1. Thus we assume the following.



Assumption 1 (Flat system)
System (1a) is a differentially flat system and (1b) is one of its flat outputs.
Furthermore, the according maps ®1, ®o from (4) are continuous on suffi-
ciently large subsets T C R* J = T X J C Retm of their domains such
that

X XxUCD(T) x Po(T) (5)

holds.

In essence, this assumption states that flatness and continuity of the parametriza-
tions (4) hold for all (z,u) € X xU. Relaxing this will be discussed in Remark
1.

For brevity of presentation the set
S :={(z,u) e R" xR™ | f(z,u) =0} (6)

denotes the set of steady states of (1) and the map A : R" x R™ — R™

h(z,u) :== h(x,u,0,...,0) (7)

is the output map corresponding to stationary inputs of (1). The map P :
R™ — R"™ x R™

~ <I>1(y1,0,...,O,yQ,O,...,ym,O...,O)
P(y) = (8)
<I>2(y1,0,...,O,yg,O,...,ym,O,_,70)

is the stationary version of (4). These notions allow us to define the set of
stationary outputs which are consistent with the constraints.

Definition 2 (Consistent stationary outputs) The sets Y C )> C R™

~ ~

Y ={y=h(z,u)|(z,u) € SN (X xU)}, (9a)
Y= {y:ﬁ(:c,uﬂ(x,u) ESﬂint(XxU)} (9b)

are called set of constraint consistent steady state outputs and set of strongly
constraint consistent steady state outputs, respectively.

The following main reachability result sets the basis for the further consider-
ations.

Theorem 1 (Feasibility of set-point transitions)

Given a flat system which satisfies Assumption 1. Then for any pair of set-
points (z;,u;), © € {0, T} for which there exists an open, simply connected and
bounded set IC C Y C R™ such that

h(z;,u;) € K, 1€{0,T} (10)



holds, the constrained finite-time set-point transition, as defined in Problem 1,
18 feasible.

Some comments are in order before we prove this result. The main idea behind
the theorem is to split the set-point transition problem into two stages: (a)
planning of paths connecting the set-points in the flat output space, and (b)
assignment of an admissible dynamic reference evolution to this path. Fig-
ure 1 shows a graphical interpretation of this approach. In the path planning
stage a stationary problem description is used. This means that the set-points
and constraints are mapped from the extended state space—i.e. the space of
(z,u) € R™ x R™—to the flat output space via the map (7). In essence condi-
tion (10) implies that in the flat output space the set-points are connectable
via a smooth path P that is contained in one component of ) (dark grey color
in Figure 1). Thus each point p on the connecting path P corresponds to a
strongly constraint consistent steady state, i.e., ®(p) = (z,u) € int(X x U).
In the second stage the dynamic aspects of the transition problem are consid-
ered, i.e. we show that (10) is sufficient to ensure the existence of an admissible
transition trajectory which travels exactly along the path P. The ideas be-
hind the theorem and its proof lead to the derivation of a trajectory generation
approach with feasibility guarantees.

Proof of Theorem 1

The proof is constructive and structured as follows: Based on some technical
considerations, we reformulate the set-point transition problem as a path-
following problem in a flat output space of (1la). Specifically, we show how
to assign constraint consistent motions to reference paths which connect the
desired set-points. Finally, we conclude from the existence of an admissible
solution to this reformulated problem that the conditions of Theorem 1 are
sufficient to ensure feasibility of Problem 1.

Clearly, the conditions of Theorem 1 imply that the stationary output val-
ues that correspond to the set-points—i.e. the output values ﬁ(:l:o,u()) and
iL(l‘T, ur)—can be connected by a continuous path contained in & C ). Since
we require that fz(cco, up) and ﬁ(scT, ur) are contained in an open, simply con-
nected set I we can also ensure the existence of connecting paths which are

sufficiently often continuously differentiable.

Lemma 1 (Existence of C* connecting paths)
Consider an open, simply connected and bounded subset IC of R™. Any two



points po, pr € K can be connected by a regular path *
P={yeR"[0€0,0r] >y=p0)}CK (11)

with a parametrization p : [0y, 07] — P, p(0) € C*, where k is an arbitrary
number k € N.

The proof follows directly from the fact that simple connectedness implies
path connectedness and the fact that IC is open.

Definition 3 (Steady state consistent path)
A path P (11) is called steady state consistent with respect to (1) and the
constraints X, U, if P C Y. If P C Y C Y holds, then we call P strongly

steady state consistent.

Using this definition one can paraphrase the condition (10) of Theorem 1. In
essence, (10) implies that the stationary output values h(zo, uo) and h(zy, ur)
can be connected by a strongly steady state consistent path. In order to avoid
technicalities we make the following temporary assumption.

Assumption 2 (Known path parametrization)

Given two set-points (xg, uo), (1, ur), which fulfill the conditions of Theorem
1. We assume that a reqular, strongly steady consistent path P (11) is known,
such that

(1) its parametrization satisfies p(0) € Ck, whereby k = max{k;} with k;,i €
{1,...,m} from (4b); )
(2) and P connects the set-points, i.e. p(6;) = h(x;,u;), i € {0,T}.?

Reformulation as Path-following Problem

Instead of solving the set-point transition problem directly, we reformulate
Problem 1 as a constrained path-following problem. This means that we con-
sider the problem of steering the system (la) from one set-point to another
along the path P from Assumption 2. More formally, this problem is stated
as follows:

Problem 2 (Constrained exact path following)

Given the constrained system (1), and a path P (11) to be followed. Compute
an input signal v : [0,T] — U and a transition time T € [0, 00) such that the
following conditions are satisfied:

LA path is called regular when its parametrization is locally bijective [28].
2 We will comment on the computation of paths fulfilling this assumption in Section
3.
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Fig. 2. lllustration of the main idea of Theorem 2.

(1) Ezact Path Following: The system output (1b) moves from a consistent
initial condition h(-)|i=o = p(0o) in forward direction exactly along the
path P to h(-)|i=r = p(fr) .

(2) Constraint Satisfaction: The feedforward input u(-) satisfies the input
constraints and the corresponding system trajectory satisfies the state con-
straints, i.e. for allt € [0,T]: u(t) € U and x(t,zo|u(-)) € X.

At first glance it seems as if the introduction of the path constraint—part 1
of Problem 2—complicates the set-point transition problem. Essentially, the
formulation of Problem 2 implies an m-dimensional algebraic constraint

h (x, u, U, . .. ,u(l)> —p(0(t)) =0 (12)

for the system. The motivation to reformulate the set-point transition (Prob-
lem 1) as a path-following problem (Problem 2) is as follows: if we can show
feasibility of the latter problem for paths contained in ) then the existence
of an admissible solution to Problem 1 follows directly via Assumption 2 and
Lemma 1.

The key point of path-following problems is that the timing ¢ — 6(t) to move
along the path is not specified a priori, rather it is an additional degree of
freedom during the controller design, cf. [1,6]. We use this freedom of choosing
t — 6(t) to rigorously ensure the satisfaction of state and input constraints. 3

Without loss of generality we restrict ourselves to forward movement along
the path, i.e. > 0 should hold for all ¢ € [0, T].

Next we show that flatness of (1a) enables to state sufficient conditions for
exact path following in the presence of constraints. As a preliminary step
we recall sufficient conditions for unconstrained exact path following of flat
systems.

Lemma 2 (Unconstrained exact path following)

3 The idea to treat the timing of the reference as a degree of freedom is related to
the concept of orbital flatness that relies on the use of a time-rescaling to identify a
flat output [9,22,30]. A detailed investigation of the relation between orbital flatness
and path-following is, however, beyond the scope of this work.



Given an unconstrained nonlinear flat system (la) and any reqular path P
specified by an a priori known parametrization p(0) in a flat output space

(1b).

Furthermore, suppose that
(i) the parametrization p(d) € C*, where k = max{k;} and the constants
ki,i € {1,...,m} are defined by (4b); )
(ii) the initial condition xo of (1a) is consistent with P and 0(t) € C*, i.e.

0 =0 (p(O(1)), ..., L) (13)

t=0
where O(t) > 0 and 0(0) = 6y and 6(T) = O7.
Then the feedforward input

k km
up(?) - By (pr(6(1), ., GBs, . k) (14)

guarantees that the system (la), starting from xq, follows the path P exactly
in forward direction and reaches p(6r) att ="1T.

The proof of this lemma follows directly by calculation of the time derivatives
of p(0(t)), use of (4b) and the ideas presented in [11,24].

The challenging part is to extend Lemma 2 such that constraints on inputs and
states can be considered. To achieve such an extension we use a key observation
from Lemma 2: due to its flatness, system (1a) under the feedforward control
(14) can be described via the timing 6(t) € C*. This means that the timing
along the path implicitly defines the states and inputs of (1a):

Theorem 2 (Equivalence to single input system) Given a nonlinear flat
system (1), and a regular path P specified by an a priori known parametriza-
tion p(0) in a flat output space of the system. Suppose that the conditions of
Lemma 2 are satisfied. Then the dynamics of the nonlinear MIMO system (1)
under the feedforward control up(-) from (14), where 0(t) is of class C*, are
equivalent to a linear, single input system in Brunovsky normal form

2‘11 = Z9
2 = & (15)
S = 00 (1),

Proof. The main idea of the theorem is sketched in Figure 2. We show that
the application of (14) to system (1) guarantees that states and inputs of (1)



can be uniquely calculated from the state of the single input system (15) and
vice versa.? Flatness of system (1a) implies that the feedforward-controlled
system is equivalent to a MIMO system in Brunovsky normal form [11]. If the
system (1la) is controlled via the input (14) we know from Lemma 2 that the
flat output (1b) has to be on the path P. This implies that the flat output
and its time-derivatives have to satisfy

Vie{l,....om}, Vie{0,..  knt: y@) =p7(6(1)).

Counsider the substitution
. T
Z = (217Z27"'72E+1)T: (9,0,,0(k)) . (16)

Combining this with the flat parametrizations (4) yields that the states and
inputs of (1) subject to the path-following input (14) can be written as

wp=0ip (0.0, 0%V) = &y p(2) (17a)
up = Byp (0.6,....00) = @yp(2) (17b)

Whereby the map ®p : RF! — R™™ is the composition (z,u) = ®p(z) =
P o A(z), cf. Figure 2, and A : R¥! — R*™ is given by

A z(t) = (pu(aa(0), a1 (D), o PV (21 (0)))

Provided that P is regular and w is contained in the image of A we can
deduce from Lemma 4, which is given in Appendix A, that w = A(z) is locally
invertible. The output map (1b) is sufficiently often continuously differentiable
and thus the inverse of (z,u) = ®p(z) exists and is z = ®5'(z,u) = A~lo
®~!(x,u). Taking into account that one is free to choose the highest time-
derivative of 8(t), i.e. for any choice of 6¥+1(t), satisfying 6(¢) > 0 and 6(0) = 6,
and 0(T) = Or, system (1) subject to (14) follows the path and the map
®p : RFF1 — R™™ is invertible. W.lo.g. regard 0571(t) = v(t) as virtual
input. It follows that system (1) subject to the feedforward control (14) is
equivalent to (15). O

Subsequently, we use (16) and rewrite (15) briefly as 2 = Az + Bv, whereby
the matrices A € REFD*E+) and B € R¥! have the obvious structure of an
integrator chain. Now we can paraphrase the question for admissible solutions
to Problem 2 in terms of feasibility of the following optimal control problem

4 With respect to Figure 2 we can also interpret condition (13) of Lemma 2: The
initial condition z( has to lie on the manifold of solutions of (1) that travel exactly
along the path P. In Figure 2 this manifold is denoted as X’p.

10



(OCP):

minimize 7T (18a)
v(-), T
subject to the dynamics
2 = Az + B, (18b)
the convex constraints
2(0) = [6,0,...,0]" (18¢)
2(T) = [0r,0,...,0]" (18d)
Vte [0,T]: 2z(t) >0, (18e)
v(t) e VCR (18f)
and the usually nonconvex constraints
Vie [0,T]: ap(t)=P1p(2(t) € X (18g)
up(t) = Pap(2(t)) € U. (18h)

Note that this optimal control problem has a small number of linearly coupled
dynamic states. The scalar measurable input function v : [0,7] — V and the
free end time T are decision variables. And V C R is an arbitrarily large
convex and compact set. The constraints (18¢) and (18d) enforce rest-to-rest
motion from the initial path point p(6y) to the final path point p(67). Equation
(18¢) implies forward movement along the path (part (1) of Problem 2). The
constraints on states and inputs of the flat system (1a) are considered via the
usually nonconvex description (18g,h), cf. part (2) of Problem 2. Note that
the optimal solution v*(-) is the virtual input to the system (18b). Finally, the
input applied to the nonlinear differentially flat system (1a) can be obtained
from the optimal evolution z*(¢, zo | v*(+)) via the input parametrization (17b).

Note that—provided the system initial condition zy € X satisfies (13)—any
admissible solution v(-) to (18) and the corresponding evolution of z(¢, zo | v(+))
describe a constraint consistent motion of the system along P. Consequently,
we can recast the question of whether there exist admissible solutions to Prob-
lem 2 as a question of sufficient feasibility conditions for the OCP (18). The
next lemma summarizes such conditions.

Lemma 3 (Feasibility of OCP (18))
Suppose that Assumptions 1 & 2 hold, then the OCP (18) has a (not neces-
sarily unique) optimal solution with a finite minimal transition time T*.

The proof of this lemma is provided in Appendix B. Using the Lemma 3 we
are able to state the following sufficient conditions which ensure feasibility of
the exact path-following problem.

11



Theorem 3 (Constrained exact path following)
Suppose that Assumptions 1 € 2 hold, and the initial condition xo of (la)
satisfies xo = ®1p(20), then Problem 2 admits feasible solutions.

Proof. Assumptions 1 & 2 ensure that we can apply Lemma 3. Hence we
know that the OCP (18) is feasible. Therefore the corresponding input and
state trajectories of system (1), obtained via (17), satisfy the constraints.

The condition zy = ®;p(2) states that the initial condition xy of (la) is
consistent with path P, cf. condition (2) of Lemma 2. Thus by application of
Lemma 2 we conclude that system (1) can exactly follow path P and reaches
its endpoint in finite time while the constraints on states and inputs are sat-
isfied. O

Remark 1 (Continuity of flat parametrizations)

Assumption 1 can be relaxed with respect to the continuity of the flat parametriza-
tions ®1 and ®y from (4). The proofs of Lemma 3 and Theorem 3 can be per-
formed in similar ways if merely local continuity of (4) is assumed. To this
end consider the set of stationary values of z corresponding to points on the
path

Zoz[QO,QT]xOx---XOCRk“. (19)

To obtain the statements of Lemma 3 and Theorem 8 it suffices to suppose
that ®1p and ®op from (17) are continuous in a neighborhood of 2.

Summarizing, we have shown that the conditions of Theorem 1 ensure the ex-
istence of paths connecting the set-points in a flat output space. Furthermore,
Problem 1 can be reformulated as a path-following problem whose feasibility
can be easily verified. Hence, we can conclude that the conditions of Theorem 1
ensure set-point reachability in the presence of constraints. Up to now we have
assumed that a sufficiently often continuously differentiable path parametriza-
tion is available. In the next section, we show that under suitable assumptions
it is possible to compute such parametrizations.

3 Two-stage Constrained Trajectory
Generation

Subsequently, we use the OCP (18) to compute admissible solutions to set-
point transition problems. We propose to compute trajectories and suitable
feedforward inputs as follows:

Algorithm 1 (Two-stage trajectory generation)

(0) Compute a (convex) inner approzimation Y of Y such that Y CY C Y.

12



(1) Given two set-points (o, up), (7, ur) € int(X xU) compute a path P and
its path parametrization p(6) € C* which connects h(zo, wo) and h(xy, ur)
through Y .

(2) Compute a transition time T < oo, an admissible solution v : [0,T] — V
to the projected OCP (18), and the corresponding trajectory z(t, zo | v(-))
of the wvirtual states z. Obtain the admissible feedforward input up :
[0,T] — U and the corresponding admissible trajectory xp(t, xo|up(-))
of the original system (la) via the maps (17).

The main idea is to split the computation of solutions to the constrained
trajectory generation problem (Problem 1) into an offline pre-computation
(step 0) and two online stages: a path planning stage (step 1) and a dynamic
assignment of constraint consistent trajectories (step 2). Note that the purpose
of this algorithm is not to compute true minimum-time trajectories between
considered set-points. The intention is rather to state an algorithm with strict
feasibility guarantees for a class of set-points.

Step 0 refers to an offline pre-computation of the set of constraint consistent
stationary values of the flat output (1b). One computes an inner approxima-
tion of the set Y from (13). To clarify this it is helpful to recall that flatness
allows to describe the set of (unconstrained) set-points of (la) via the map
® : R™ — R" x R™ from (8). Clearly, the steady states (or set-points) of (1a)
can be obtained as (x,u) = ®(y), cf. Figure 1. Thus the pre-computation in
step (0) refers to the approximation of the preimage

Y={yeR"|d(y) €int(X xU)} (20)

by a set YyCYy. In general the approximation of preimages of maps is a chal-
lenging task. To this end one can, for example, apply gridding techniques, or
use methods based on interval arithmetics [13]. Note that merely the preimage
of the static flat parametrizations (8) has to be approximated. Compared to
the computation of the preimage of the dynamic flat parametrizations (4)—
i.e. the parametrization where not only the components of the flat output
but also their time derivatives appear—this is easier since the domain R™ of
the map @ is less dimensional compared to the domains R® and R*t™ of @,
respectively, &5 from (4).

In step 1 one has to compute a path connecting B(wo, up) € R™ with ﬁ(xT, ur) €
R™ which fulfills Assumption 2. This means that the path has to lie entirely
in the inner approximation ), and has to be parametrized by p(6) € Ck. If one
can obtain a convex inner approximation in step 0 the online path planning is
significantly simplified. It suffices to compute straight lines. If a convex inner
approximation cannot be obtained, or is very conservative, one can still rely
on standard path-planning algorithms, cf. [14]. In step 2 it remains to com-
pute a feasible, not necessarily optimal, solution to OCP (18). To this end

13



one either solves this dynamic optimization problem directly, e.g. via multiple
shooting. ®

Alternatively, one can exploit the fact that the path parameter dynamics (18b)
are a flat system. This allows to convert (18) directly into an finite dimensional
optimization problem, cf. [19-21,25-27]. Finally, the feedforward input to (1)
is obtained by mapping the solution trajectory via (17).

One might argue that the price to pay for the guaranteed feasibility are
conservative solutions due to the restriction of the flat output to the path.
To avoid overly restrictive solutions one can as well think about embedding
parametrized surfaces with a dimension larger than one in the flat output
space. This way one could reduce the conservatism of the proposed approach
without loosing the feasibility guarantees. A detailed investigation on this
issue is, however, beyond the scope of this work.

4 Example: Trajectory Generation for a CSTR

We consider a Van de Vusse reactor described by the dynamics

éa=ralca, V) + (cr — ca)uy (21a)
¢g = rg(ca,cp, V) — cpuy (21b)
0 = h(ca,cp,9) + aluy —0) + (9 — D)uq, (21c)

where

ra=—ki(0)ca — ka(9)%, 1= k1(9)(ca — cB)
h= =0 (k(0) (caHap + csHpe) + ka(0) A Hap)

—E;
kl<19> = kioem, 1= 1,2,

see also [23]. The system states c4 and cp, both in mol/1, refer to the concentra-
tion of substances A and B in the reactor, ¥ in °C is the reactor temperature.
The inputs g, uy are the normalized flow rate through the reactor in 1/h and
the temperature in the cooling jacket in °C. The states and inputs are subject

® One should note that via a suitable time transformation the free end-time problem
(18) can be reformulated as fixed end-time problem that can be solved efficiently.
Details on this can be found in [3,17,29].
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Fig. 3. Inner approximation of Y = h(int(X x U)) N h(S).

to the constraints

ca € [2.0,4.0]2  cp€[0.1,1.2]2%
¥ € [70,200]°C (22)
uy € [3.0,35.0]+ usp € [10.0,150.0°C.

The system parameters can be found in [23]. There it is also shown that

y= (0, (cra—ca)/cp)" (23)

is a flat output of (21).¢ To avoid long and vast expressions we give here only
functional dependencies of the flat parametrizations of states and inputs

cp = ®1,1(y1,y2, Z)z)a CA = (1)1,2(3/173/27 312) (24)

O =y, uia = Py, 2. U1, Yo, Gi2)-
A detailed derivation of these maps can be found in [23].

To obtain an inner approximation ) of ) from (20) a subset of the flat out-
put space (23)—the box [50,150] x [1.65,3.2]—is gridded with 500 sample
points along each dimension. These samples are mapped via (8), which is the
stationary version of (24), to the extended state space (R™ x R™) to check
two conditions: (a) whether a point (y;,y2) corresponds to a physically rea-
sonable steady state, i.e. (z,u) = ®(y1,12) € S, and (b) to verify whether
(z,u) = ®(y1,y2) € int(X x U). The resulting regions are shown in Figure 3.
The light grey area illustrates the image of the set of steady states in the flat
output space, i.e. ZL(S ). The dark grey region depicts the intersection between
h(int(X x U)) and h(S). To get hold of the convex inner approximation ) the

6 Actually, in [23] an extended model is considered where the dynamics of the

cooling jacket are described via an additional first-order linear ODE. However, one
can use exactly the same steps as in [23] to show that (23) is a flat output of (21).
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Fig. 4. Simulation results for Van de Vusse reactor.

boundary of the grey region is approximated by three polynomials g; : R? — R
which are plotted as dashed curves in Figure 3.

Two-stage Trajectory Generation

In order to exemplify the computation of admissible input and state trajecto-
ries we consider two set-point changes: first connecting

(2.9570.98™2110.00 °C)
= (22.74, 106.5 °C)

= (2 2mT°l, 1.1mek 114.2 °C)
ur = (14.73, 113.0 °C)

and second the backward direction from (zr,ur) to (xo,up). In the flat out-
put space (23) this corresponds to the transition from Py = (110C°, 2.2) to
P = (114.21C°, 2.68) and vice versa. The forward part from P, to P; is also
considered in [23], where an intentionally slow transition along two path seg-
ments is used to generate reference and input trajectories. The path segments
considered in [23] are shown as black dash-dot lines in Figure 3. The solution
proposed in [23] takes 1h. Here we use the methods derived in Section 2 & 3
to compute fast transition trajectories. The reference trajectories are obtained
via the solution to the projected OCP (18). We compute the transitions such
that the flat outputs (23) are restricted to the straight line connecting Py and
P,. This situation is also depicted in Figure 3.

The considered path parameter dynamics (18b) are an integrator chain of
length three, since the highest derivative appearing in the (dynamic) flat input
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parametrization is s in us = Po2(y1, 1, Y2, Yo, §J2). We solve OCP (18) under
consideration of the constraints of the original CSTR model (22) using a direct
multiple shooting implementation [12].

The solutions are presented in Figure 4. Part (a) of this figures shows from
top to bottom the obtained trajectories of the states z;—23 of (18b) and the
corresponding virtual input v : [0,7] — R, which is computed as a scalar,
piecewise constant function. As one can see the forward transition from Py
to P; is performed in =~ 0.11h. The backward transition from P; to Fj is
performed faster in ~ 0.07h. The state and input trajectories of the CSTR
(21) which correspond to this solution of the z-dynamics through (17) are
plotted in part (b) of Figure 4. Comparing the optimal virtual input v from
part (a) it is clear that the small inputs for 0.02 < ¢ < 0.07 correspond to the
active constraints for u;, cg and c4 in that time span. One should also note
that the computed inputs of the real system—u; (t), ug(t)—are rather smooth
without aggressive bang-bang behavior. One reason for this is that the decision
variable v : [0, 7] — V acts on 6 (¢) = v(t) while the highest time-derivative
of O(t) appearing in (24) is of order 2. Thus aggressive solutions in terms of
the virtual input v(¢) are softened due to the integration 0©)(t) = v(t).

5 Discussion & Conclusions

In the present contribution we investigate constrained reachability of differ-
entially flat systems. By combining our findings with path-following concepts
we can give finite-time reachability guarantees. Based on this we show how to
compute admissible reference trajectories and inputs via a small dimensional
optimal control problem with guaranteed feasibility. Finally, this leads to a
two-stage approach to trajectory generation for constrained differentially flat
systems.
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A Technical Lemma

Lemma 4
Given a regular path P C R™ from (11) and its k-times continuously differ-
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entiable parametrization 6 — p(6). Suppose that the time evolution t — 6(t)
15 also k-times continuously differentiable.

Then the map A : RF1 — Rmx(k+1)
A (6’,6",...,9(’“)) — (p,p,...,p(k)>

given by p(0(t)) and its time derivatives is locally invertible on open sets for
all values of (p,p, ..., p")T which are contained in the image of A.

The proof of this lemma is given in [5,6].

B Proof of Lemma 3

First, we will show that Assumptions 1 & 2 ensure the existence of feasible
solutions to the OCP (18). Second, we draw upon a classical result on the
existence of solutions to optimal control problems to establish the statement
of Lemma 3, cf. [15].

Step 1: Consider the composition of maps ®op, whereby @ is from (8) and p is

the path parametrization (11). Note that Pop(6) = (®1.p(0,0,...,0),Py5(6,0,...

Assumptions 1 & 2 ensure that Pop: [0, 0] — R™ x R™ is continuous. Fur-
thermore, ® o p maps the output path P to a continuous path 7

7 _ {(@w)" | 0 € [06.61] > (x,0)" = & (p(6))}

in the extended space R™ x R™ such that each point on 7 corresponds to a
steady state. Additionally, Assumption 2 ensures that 7 C int(X x U), cf.
Figure 1. Thus there exists a tubular e-neighborhood of T—denoted by N—
such that 7 C N C int(X x U). Due to the continuity of ®;5p we can find

trajectories z(t) = (6(t),0(t), ... 0B ()T such that 2(0) = (z,0,...,0)7,
Z(t) = 0(t) > 0, 0(t) € C*! and

VE>0: (P p(2(t), Pap(2(t))T € N Cint(X x U).

Among these trajectories we can find solutions which are such that 37" €
[0,00) : Z2(T) = (07,0,...,0)T. Consequently, v(t) = dzg—t(t) is an admissible
input to OCP (18). Thus we have established feasibility of OCP (18) and the

existence of a finite transition time 7.

Step 2: The existence of an optimal solution to (18) can be deduced from
two properties [15, Thm. 4, p. 259]: The existence of at least one admissible
solution to the problem and the convexity and compactness of the extended
velocity set W := {v € V — (Az + Bv,1)T € R*2} for all fixed z. It is easy
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to see that linearity of (18b) and convexity and compactness of V C R imply
compactness and convexity of W.

In step 1 of the proof we have constructed an admissible input o(¢) for (18).
Hence we can conclude from the existence of an admissible solution to the
existence of an optimal solution to problem (18). O
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