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Abstract

When designing optimal controllers for any system, it is often the case that the true state of the system is unknown to
the controller, for example due to noisy measurements or partially observable states. Incomplete state information must be
taken into account in the controller’s design in order to preserve its optimality. The same is true when performing reachability
calculations. To estimate the probability that the state of a stochastic system reaches, or stays within, some set of interest
in a given time horizon, it is necessary to find a controller (or at least prove one exists) that drives the system to that set
with maximum probability. This controller, however, does not have access to the true state of the system. To date, little
work has been done on stochastic reachability calculations with partially observable states. What work has been done relies
on converting the reachability optimization problem to one with an additive cost function, for which theoretical results are
well known. Our approach is to preserve the multiplicative cost structure when deriving a sufficient statistic that reduces the
problem to one of perfect state information. Our transformation includes a change of measure that simplifies the distribution
of the sufficient statistic conditioned on its previous value. We develop a dynamic programming recursion for the solution of
the equivalent perfect information problem, proving that the recursion is valid, an optimal solution exists, and results in the
same solution as to the original problem. We also show that our results are equivalent to those for the reformulated additive
cost problem, and so such a reformulation is not required.
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1 Introduction

The concept of stochastic reachability enables calcula-
tion of the probability that the state of a dynamical sys-
tem will reach a desired set within a given time horizon.
Alternately, the safety of the system may be considered
by examining the probability that the system remains
within some safe region. This problem has gained partic-
ular attention in the area of stochastic hybrid systems,
which are composed of both continuous and discrete co-
evolving states.

The reachabilty problem has been studied mainly for de-
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terministic hybrid systems. In particular, level set meth-
ods have been used to approximate the solution to an
appropriate Hamilton-Jacobi-Bellman equation, as in
Tomlin et al. (2003), and Mitchell (2008). Interest in
stochastic systems led to developments in the area of
reachability for continuous time hybrid systems whose
dynamics update stochastically. Preliminary results fo-
cused on stochastic differential equations combined with
deterministic jumps between discrete states in Hu et al.
(2000), and was extended to allow for random discrete
jumps as well in Prandini and Hu (2006). More recently,
Bujorianu (2010) examined the continuous time reach-
ability problem as an optimal stopping problem, char-
acterized in terms of variational inequalities. Esfahani
et al. (2011) also considered the reachability problem
as a stochastic optimal control problem with discontin-
uous payoff functions, and developed a weak dynamic
programming principle for its value function. However,
measurability complications that make solution strate-
gies for the reachability problem more difficult to char-
acterize and derive have lead to interest in the discrete
time equivalent, which circumvents many of those issues
(see Abate et al. (2008)).
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The discrete time stochastic hybrid system (DTSHS) is
presented in Abate et al. (2008), and the reachability
problem solved as a stochastic optimal control problem
using dynamic programming, based on the theory and
techniques presented in Bertsekas and Shreve (1996).
Summers and Lygeros (2010) extend Abate et al. (2008)
to the reach-avoid problem, where the objective is to
avoid an unsafe region while ultimately arriving at a tar-
get set, and establishes its solution using the techniques
of Bertsekas and Shreve (1996). Finally, Kamgarpour
et al. (2011) build upon both of the above works to allow
for a disturbance acting in opposition to the controller
(as in a two-player dynamical game).

The goal of our presented work is to extend Abate et al.
(2008), Summers and Lygeros (2010), and Kamgarpour
et al. (2011) to the case of a partially observable system,
where the controller only has access to noisy (possibly
incomplete) measurements of the state. We specifically
examine the reachability problem as presented in Abate
et al. (2008), which focuses on the safety problem of
keeping the state within a known safe region. Imperfect
state information could ultimately lead to suboptimal
control inputs as compared to the case in which the true
state of the system is known. In the case of safety verifi-
cation and reach-avoid set calculations, if the controller
is falsely assumed to have perfect knowledge of the state,
the reachability probability may be overestimated. This
is certainly undesirable in the context of safety verifica-
tion.

There has been extensive work on hybrid estimation
(see for instance Hofbaur and Williams (2004), Liu and
Hwang (2012), Koutsoukos et al. (2003)), but its appli-
cation to the reachability problem for hybrid systems
is limited. In particular, Verma and del Vecchio (2009),
Verma and del Vecchio (2010) examine a continuous time
hybrid system subject to continuous control inputs and
both continuous and discrete disturbance inputs, where
the discrete mode of the system is unknown. Verma and
del Vecchio (2010) assumes separation between state es-
timation and control, and reduces the problem of hidden
discrete modes to one of perfect state information, by
redefining the state. However, in the case of reachability
for hybrid systems, separation between state estimation
and control cannot be assumed optimal, and so state es-
timation cannot be directly applied to the reachability
problem.

Only very recently has there been a surge in work on
the reachability problem for partially observable DT-
SHS (see Ding et al. (2013)). Although the reachability
problem was originally presented in terms of a multi-
plicative cost function (Abate et al. (2008)), Ding et al.
(2013) rewrites it as a terminal cost function, by append-
ing to the state of the hybrid system a binary variable
representing whether the state has remained within the
desired region up to the previous time step. The par-
tially observed control problem can be reformulated in

terms of a sufficient statistic, which encapsulates and
condenses all necessary information for the control of a
system. Thus the problem is recast as one of perfect in-
formation, for which solution strategies are well known.

Ding et al. (2013) make use of the fact that for an addi-
tive cost function, the posterior distribution, or proba-
bility density of the state given all available information
(observations, control inputs) up to the present, provides
sufficient information for control of the system (this re-
sult is derived in, e.g., Bertsekas and Shreve (1996)). In-
deed, inspired by this approach, Tkachev et al. (2013)
reformulate the reachability problem more generally as
an additive cost optimal control problem, although they
do not discuss the partially observed case.

While we examine the same problem as Ding et al.
(2013), our derivations preserve the multiplicative cost
structure of Abate et al. (2008). For a nonadditive cost
function the posterior distribution is no longer sufficient
(see Shiryaev (1964)), and a different sufficient statistic
for reducing the problem to one of perfect information
must be derived. However, we will show that while our
approach differs from that of Ding et al. (2013), our re-
sults are in fact nearly identical. Although we preserve
the multiplicative cost function, leading to a seemingly
more complex problem, the additive cost formulation
effectively moves the complexity from the cost function
to the modified state of the system. The posterior dis-
tribution of the new state is actually the same as the
distribution produced by the sufficient statistic we will
derive, so that ultimately the only advantage to the ad-
ditive cost formulation is its familiar and well-studied
form. Further, we make use of a change of measure in
formulating the sufficient statistic that enables easier
calculation (by simplifying the distribution of the state
of the sufficient statistic conditioned on its previous
value).

To derive a sufficient statistic while preserving the mul-
tiplicative cost formulation of the reachability problem,
we draw mainly upon theoretical work done in the con-
text of partially observable risk-sensitive stochastic op-
timal control problems. The risk-sensitive control prob-
lem minimizes the exponential of a sum of costs, rather
than a sum of costs, so that the cost objective is in fact
nonadditive. In particular, James et al. (1994) derived
a sufficient statistic for a partially observable discrete-
time nonlinear system, which was further analyzed and
extended in the context of a partially observable Markov
decision process (POMDP) in Fernandez-Gaucherand
and Marcus (1997). In the latter, the state, observation,
and control took values from finite, discrete sets, whereas
in the former all values were continuous. As an aside,
this highlights how such problems can be regarded often
interchangeably as a stochastic optimal control prob-
lem or as a Markov decision process (MDP), and results
from one field usually carry over to the other, assum-
ing the system dynamics follow the Markov property.
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We present here the reachability problem using a control
theory framework, and relate the controlled stochastic
hybrid system to an MDP.

Motivated mainly by James et al. (1994), we derive a)
a sufficient statistic for the multiplicative reachability
cost function with hybrid state dynamics, and b) the dy-
namic programming (DP) equations to solve the reach-
ability problem in terms of the sufficient statistic. We
also introduce a change of measure to the hybrid space,
so that the observations are independent of the state of
the system (and are in fact independent and identically
distributed). This makes for simpler dynamic program-
ming equations, and should aid in computation and sim-
ulations. The novelty of this work is therefore 1) preser-
vation of a multiplicative cost function for the reacha-
bility problem to verify the safety of a partially observ-
able DTSHS, 2) introduction of a change of measure to
make the observations independent and identically dis-
tributed 3) derivation of a sufficient statistic to convert
the partially observed problem to a fully observed one,
and 4) validation of a DP recursion to solve the reach-
ability problem in terms of the sufficient statistic. Our
main focus is on the theoretical foundations for solving
the reachability problem for a partially observable DT-
SHS. We note that implementation of our technique will
require further work in approximation strategies as well
as in special classes of systems in which exact solutions
are available.

The paper is organized as follows. First, we review the
characteristics of a DTSHS, then extend it to include
a hybrid observation space in Section 2. We define the
reachability problem, as in Abate et al. (2008), and de-
rive a sufficient statistic, a recursion to update the state
of the sufficient statistic, and DP equations for the reach-
ability problem in Section 3. Here we will also elabo-
rate upon the technique presented in Ding et al. (2013),
and its relation to our own method. In Section 4, we de-
scribe two examples of partially observable discrete time
stochastic hybrid systems, demonstrate how to reformu-
late them in terms of our sufficient statistic, and discuss
some of the computational challenges as well as possi-
ble solution strategies. Concluding remarks are given in
Section 5.

2 Discrete Time Stochastic Hybrid Systems

A hybrid system is characterized by a set of both dis-
crete and continuous states with interacting dynamics.
The discrete state may affect the evolution of the con-
tinuous dynamics, and the continuous dynamics may af-
fect when the discrete state changes. In the case of a dis-
crete time stochastic hybrid system (DTSHS), both the
discrete and continuous dynamics may be characterized
by stochastic kernels, the product of which determines
the stochastic transition kernel governing the combined
discrete/continuous state of the system. We present a

slightly modified definition of a DTSHS first introduced
in Abate et al. (2008).

Definition 1 (Discrete Time Stochastic Hybrid Sys-
tem). A DTSHS is a tuple H = (Q,S,U , Tx, Tq) where

(1) X ⊆ Rn is a set of continuous states
(2) Q = {q1, q2, ...qNq} is a finite set of discrete states

with cardinality Nq, and S = X × Q is the hybrid
state space

(3) U is a compact Borel space which contains all possi-
ble control inputs affecting discrete and continuous
state transitions

(4) Tx : B(Rn) × S × U → [0, 1] is a Borel-measurable
stochastic kernel which assigns a probability mea-
sure to xk+1 given sk = (xk, qk), uk, qk+1 ∀ k:
Tx(dxk+1 ∈ B | qk+1, sk, uk) where B ∈ B(Rn), the
Borel σ-algebra on Rn.

(5) Tq : Q × S × U → [0, 1] is a discrete transition
kernel assigning a probability distribution to qk+1

given xk, qk, uk, ∀ k.

Kernels Tx and Tq can be combined for ease of notation
to produce the hybrid state transition kernel

τ(ds′ | s, u) = Tx(dx′ | x, q, u, q′)Tq(q′ | x, q, u) (1)

The discrete state qk+1 update depends on qk, xk and
uk, and the continuous state xk+1 update depends on
xk, uk, and according to the specific problem may also
be governed by qk, qk+1, or both. For ease of notation
we assume that the discrete state updates first, and the
updated discrete state affects the continuous state, i.e.
that Tx(dxk+1 | xk, uk, qk+1), although modifying Tx to
include qk would not alter any subsequent results. Hence
the hybrid system can also be modeled as an MDP with
state space S, control space U , and transition function
τ(s′ | s, u).

2.1 Partially Observable DTSHS

We assume the hybrid process {xk, qk} is not measured,
but rather that an observation process yk = (yxk , y

q
k) is

available. The observations yxk ∈ Rn of the continuous
state, and observations yqk ∈ Q of the discrete state, are
assumed independent given the true state (xk, qk), so
that

yxk = h(xk, uk−1) + vk (2)

yqk ∼ Qqk,yq (uk−1) (3)

The continuous state observation yxk is subject to addi-
tive noise vk, which is independent and identically dis-
tributed with positive density φ(v) (i.e. Gaussian), and
the function h is assumed bounded and continuous, as in
James et al. (1994). The distribution of the discrete state
observation yqk follows the discrete map Qq,yq (u) : Q ×
Q× U → [0, 1], so that P [yqk = n | qk = q, uk−1 = u] =

3



Qq,n(u). The filtrations Gk and Yk are generated by the
sequences {s0, . . . , sk, y1, . . . , yk−1} and {y1, . . . , yk}, re-
spectively. Denote ik = (y1, . . . , yk, u0, . . . , uk−1) ∈ Yk×
Uk = Ik, with Uk the k-times product space of U , as
the vector of information available at time k. The infor-
mation vector ik is used to make the control decisions
uk through a control policy π = (µ0, . . . , µN−1), where
µk : Ik → U is a function mapping the space of avail-
able information, Ik, into the control space U for all
k = 0, . . . , N − 1.

We also assume an initial Borel-measurable density on
s0 = (x0, q0), s0 ∼ ρ(x, q) ∈ P (S), i.e. that ρ lies in the
space of all probability measures on S. Finally, based
on ρ, τ , φ, and Q(u), we obtain a probability measure
Pπ induced by the control policy π defined over the full
state space Ω, which includes sk and yk for all k. We can
therefore model the hybrid system with observations as
a POMDP.

3 Reachability Control Problem

3.1 Cost Function

We wish to find a control policy that maximizes the
probability that the true state of the system stays within
some safe or desired set for a finite time horizon. As in
Abate et al. (2008), this problem can be formulated as a
stochastic optimal control problem. For a Borel set K,
terminal timeN , and predefined policy π, define the cost
function as

rK(π) = Pπ[si ∈ K ∀ i = 0, . . . , N ] (4)

Since for a random variable X, P[x ∈ A] = E[1A(x)],
with E denoting expected value and indicator function
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise, (4) is
rewritten as in Abate et al. (2008):

rK(π) = Eπ
[
N∏
i=0

1K(si)

]
(5)

The expected value is taken with respect to the measure
Pπ, hence the notation Eπ. We want to maximize rK(π)
with respect to the control policy π. The set Π of admis-
sible policies will be restricted to non-randomized poli-
cies, i.e. in which µk(ik) generates one control input uk
with probability 1. The optimal policy π∗ is then given
by

π∗ = arg sup
π∈Π
{rK(π)} (6)

We can now formally define the partially observable
reachability problem we wish to solve.

Definition 2 (Problem Statement) Consider a DTSHS
(defined in Definition 1) with observations (2) - (3) and
initial distribution ρ(x, q) ∈ P (S). Given a safe set K
and time horizon N we would like to

(1) Find the maximal probability of remaining within K
for N time steps, given by maxπ rK(π).

(2) Find the optimal policy π∗ such that maxπ rK(π) =
rK(π∗).

In the case of perfect state information, where the con-
trol uk is a function of sk rather than ik, Definition 2
can be solved via dynamic programming as presented
in Abate et al. (2008). When only an observation pro-
cess is available, however, the standard approach is to
reformulate the problem as one with perfect information
by redefining the state of the system in terms of a suf-
ficient statistic (see, e.g. Bertsekas and Shreve (1996),
Aoki (1989)) and then solving the equivalent problem
using dynamic programming.

The difficulty in solving Definition 2 is twofold. First,
since the cost function is multiplicative, standard suffi-
cient statistics are not valid (i.e. the sufficient statistic
cannot be the posterior distribution of the state at time
k given all available information up to time k). Second,
the hybrid nature of the dynamics complicates the prob-
ability space our problem is defined on. A new sufficient
statistic must be derived, and its corresponding theoret-
ical results carefully extended.

3.2 Sufficient Statistic

We will first formally define a sufficient statistic in re-
lation to the multiplicative optimal control problem of
Definition 2, which is modified from Definition 10.6 in
Bertsekas and Shreve (1996).

Definition 3 A statistic for Definition 2 is a sequence
of Borel-measurable functions (η0, η1, . . . , ηN ) with ηk :
P (S)×Ik → Σk where Σk is a nonempty Borel space, for
all k = 0, . . . , N . The sequence (η0, . . . ηN ) is a statistic
sufficient for control if

(1) There exist Borel-measurable stochastic kernels
τ̂k(dσk+1 | σk, uk) on Σk+1 given Σk, U such that

Pπ[ηk+1(ρ, ik+1) ∈ Σk+1 | ηk(ρ, ik) = σk, uk = uk]

= τ̂k(Σk+1 | σk, uk)

for Pπ almost every (σk, uk) (i.e. up to a set of mea-
sure zero with respect to measure Pπ).

(2) There exist functions gk : Σk → [0,∞) such that for
all ρ ∈ P (S), k = 1, . . . , N , and π ∈ Π

Eπ
[

k∏
i=1

1K(si)

∣∣∣∣∣ ηk(ρ, ik) = σk

]
= gk(σk)

for Pπ almost every σk.

In other words, the distribution of σk = ηk(ρ, ik) (a spe-
cific value of the sufficient statistic which we refer to as
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the information state) must follow the Markov property,
and therefore be updated recursively according to σk−1

and uk−1. There also must exist an equivalent cost func-
tion whose argument is σk, so that the cost correspond-
ing to a specific policy can be determined solely through
the distribution of the information state. The problem
presented in Definition 2 can then be redefined accord-
ing to the information state σ, which itself is defined
according to the sufficient statistic η.

We now propose a sufficient statistic for the partially
observable reachability problem, and demonstrate that
it obeys Definition 3. First, we introduce the concept of
a change of measure, which is used in the derivation of
our sufficient statistic to facilitate the analysis and sub-
sequent computation. The ability to change probability
measures stems from the Radon-Nikodym Theorem.

Definition 4 The Radon-Nikodym Theorem (see Stein
and Shakarchi (2005)) states that given two σ-finite mea-
sures ν and µ on a measurable space (Ω,M), if µ and ν
are absolutely continuous, then there exists a µ-integrable
function f on Ω such that

ν(E) =

∫
E

f(ω) dµ(ω)

The function f is referred to as the Radon-Nikodym
derivative, and is written as dν

dµ .

Essentially, for two probability measures ν and µ, defined
on the same space (Ω,M) and that satisfy ν(E) = 0
whenever µ(E) = 0 for all E ∈M, we know that

Eν [h(ω)] = Eµ[f(ω)h(ω)]

for any M-measurable function h. We can define a
change of measure P† from the existing measure Pπ
on our space Ω, with M being the Borel σ-algebra
on Ω, so long as the continuous observation process is
nowhere zero, and the discrete observation is nowhere
zero on Q×Q×U (which would occur if certain discrete
states were perfectly observable). Following James et al.
(1994) and Elliot (1993), we define the Radon-Nikodym
derivative Λk as

dPπ

dP†

∣∣∣∣
Gk

= Λk (7)

where

Λk =

k∏
l=1

φ(yxl − h(xl, ul−1))Qql,yql (ul−1)

φ(yxl ) 1
Nq

However, in contrast to James et al. (1994), we must
contend with two separate observation processes, one
continuous and one discrete. Note that in (7) we restrict
the derivative to the filtration Gk rather than the full
state space Ω, which allows us to update the derivative
as the hybrid process evolves.

Lemma 5 Under P†, the processes {yxk} are independent
and identically distributed (i.i.d.) with density φ, and the
processes {yqk} are i.i.d. with uniform density 1

Nq
.

The proof of Lemma 5 is in the Appendix. We claim that
under the measure P† we can define a sufficient statistic
for the reachability control problem.

ηk(ρ, ik) = E†
[

1q(qk)1x(xk)

k−1∏
i=1

1K(si)Λk

∣∣∣∣∣ ik
]

(8)

The sufficient statistic (η0, η1, . . . , ηN ) generates a se-
quece of unnormalized probability densities on the state
sk, condtioned on the information vector ik, and where
the dependence on ρ is implicitly defined in the measure
P†. The information state σk is therefore a modification
of the posterior distribution, and represents an unnor-
malized conditional density of the current state joined
with the probability that all previous states are in K,
given a specific ik. In order to show that our sufficient
statistic (8) satisfies conditions (1) and (2) of Definition
3, we refer explicitly to the informations state σk rather
than the sufficient statistic ηk, noting that although the
sufficient statistic is a function of ρ and ik, the infor-
mation state itself is a function of the state sk, and its
dependence on ρ and ik is not explicitly stated. We first
show that σk can be defined recursively via a bounded
linear operator Tu,y[σ], and therefore satisfies (1) of Def-
inition 3. The proof can be found in the Appendix.

Lemma 6 There exists a bounded linear operator T :
L1(S)→ L1(S) such that σ is defined recursively as:{

σ0 = ρ

σk = Tuk−1,yk [σk−1]
(9)

where Tu,y[σ] is given by

Tu,y[σ] =
∑
q−∈Q

NqQq,yq (u)

∫
Rn

1K(x−, q−)

× φ(yx − h(x, u))

φ(yx)
τ(x, q | x−, q−, u)σ(x−, q−) dx−

(10)

In addition, σk ∈ L1(S) for all k since σ0 = ρ ∈ L1(S)
and T maps L1 into L1.

The stochastic kernel τ̂k for the distribution of σk+1

given σk and uk can be written in terms of the new mea-
sure P†:

τ̂k(Σk+1 | σk, uk) =
∑
yq∈Y q

∫
Y x

1

Nq
φ(yx) dyx (11)

with Y q × Y x = {(yq, yx) : Tuk,yx,yq [σk] ∈ Σk+1}.

5



Next, we rewrite the cost function (5) in terms of the
information state σ, for part (2) of Definition 3. Since
the indicator function 1K(s) is in the space L∞(S), the
inner product of σ and 1K is a well defined bounded
linear operator, given by

〈σ,1K〉 =
∑
q∈Q

∫
Rn
σ(x, q)1K(x, q) dx

The functions gk in Definition 3 can be defined as

gk(σk) =Eπ
[

k∏
i=1

1K(si)

∣∣∣∣∣ ηk(ρ, ik) = σk

]

=E†
[

1K(sk)

k−1∏
i=1

1K(si)Λk

∣∣∣∣∣ ik
]

=〈σk,1K〉 (12)

3.3 Equivalence to Perfect State Information Problem

Under the measure P†, we can rewrite the cost function

(5) as rK(π) = E†
[
ΛN

∏N
i=0 1K(xi)

]
. We define

rK(π) = E† [〈σN ,1K〉] (13)

as the equivalent cost function for the reachability prob-
lem in terms of σ, using π to denote a policy in terms
of σ (whereas π denotes a policy for the partially ob-
served case in terms of ik). Note that for a fixed vector
of control inputs (i.e. open loop), u = [u0, . . . , uN−1],
rK(u) = rK(u):

rK(u) = E†
[

ΛN

N∏
i=0

1K(si)

]

= E†
[
E†
[

ΛN

N∏
i=0

1K(si)

∣∣∣∣∣ iN
]]

= E† [〈σN ,1K〉]
= rK(u)

where the third line follows from (12). A recursion for
rK(π) is given as in James et al. (1994) by{

V πN (σ) = 〈σ,1K〉
V πk (σ) = E†

[
V πk+1(Tµk(σ),yk+1

[σ])
] (14)

where

E†
[
V πk+1(Tµk(σ),yk+1

[σ])
]

=

∫
Σ

Vk+1(σ′)τ̂(σ′ | σ, µk(σ)) dσ′ (15)

=
∑
Q

∫
Rn
Vk+1(Tµk(σ),yk+1

[σ])
1

Nq
φ(yxk+1) dyx

(16)

so that V π0 (ρ) = rK(π). Next, we provide two theorems:
1) a dynamic programming algorithm to find the optimal
solution to supπ rK(π), and the optimal policy π∗ =
arg supπ rK(π) as a function of the information state
σ, and 2) proof that this optimal policy has the same
value as the optimal policy for the partially observed
case. The proofs of Theorems 7 and 8 are provided in
the Appendix.

Theorem 7 Using the recursion (14), the dynamic pro-
gramming equations{

V ∗N (σ) = 〈σ,1K〉
V ∗k (σ) = supu∈U E†

[
V ∗k+1(Tu,yk+1

[σ])
] (17)

produce V ∗0 (ρ) = supπ∈ΠrK(π), where Vk : Σk → [0,∞).
For σ normalized, we have Vk : Σk → [0, 1]. Furthermore,
setting

µ∗k(σ) = arg sup
u∈U

E†
[
V ∗k+1(Tu,yk+1

[σ])
]

(18)

for all k = 0, . . . , N − 1 gives the optimal policy π∗ =
(µ∗0, µ

∗
1, . . . , µ

∗
N−1), where µk : Σk → U .

Theorem 8 If u∗k = µ∗k(σk) is optimal as defined in
Theorem 7, then u∗k is also optimal for the partially
observable problem of Definition 2, and can be written
as u∗k = µ∗k(ik) = µ∗k(η(ρ, ik)) = µ∗k(σk). For π∗ =
(µ∗0, µ

∗
1, . . . , µ

∗
N−1), rK(π∗) = supπ rK(π) = rK(π∗).

These results guarantee that we can solve (18) as a fully
observed problem for each k in terms of the new state σ,
and generate a policy π in which the optimal action at
each time step k is given as a function only of the infor-
mation state at time k. Calculating the optimal policy
π∗ and optimal value rK(π∗) gives us the optimal policy
π∗ and optimal value rK(π∗).

3.4 Relationship to Additive Cost Formulation

The sufficient statistic (8) modifies the posterior distri-
bution to include the probability of all previous states
being in the set K. Were the sufficient statistic (8) de-
rived without the change of measure (7), it would be
identical (aside from a normalizing constant) to the suf-
ficient statistic for the additive cost function formula-
tion in Ding et al. (2013) (see equation (14)). In Ding
et al. (2013), by extending the state to include a binary
variable that represents whether or not the system has
remained within K up to the previous time step, the

6



posterior distribution is also the distribution of the cur-
rent state sk, coupled with the distribution of all pre-
vious states being in K. The transition kernel for the
modified state in Ding et al. (2013), equation (5), incor-
porates an indicator function that signals whether the
state remained within the safe set at the previous time
step. The prediction and update steps for a Bayesian fil-
ter (see equations (11) - (13) of Ding et al. (2013)) are
used to express the sufficient statistic (14), which, aside
from the change of measure and normalization, is the
same as (8).

Next, the terminal payoff (15) of Ding et al. (2013) ex-
presses the probability that the final state is within set
K, and that all previous states are within set K, given
the probability distribution of all previous states being
in K as well as the current distribution of the final state.
Were the terminal payoff written in terms of the original
state, it would be identical to (12) for k = N . Prop. 3
in Ding et al. (2013), which describes the solution of the
terminal payoff, iteratively evaluates the expected value
as in Theorem 7 here (although integrating the expected
value over τ̂k(σk+1 | σk, uk) does not reduce to (16) as
ours does). Thus, formulating the cost function as either
multiplicative or additive ultimately does not alter the
end result.

4 Case Studies and Computational Issues

We provide two examples of partially observable hybrid
systems to demonstrate the use of the sufficient statistic
in their solution, then discuss computational challenges.
Since solving (17) requires looping over all functions σ ∈
L1(S), an infinite space, we can only hope to use (17) as
a practical solution method for special cases in which σ
can be defined over a finite subspace of L1.

4.1 Temperature Regulation

A stochastic version of the benchmark temperature reg-
ulation problem with perfect state information is pre-
sented in Abate et al. (2007). We consider the case of one
heater, which can either be turned off, or turned on to
heat one of n rooms. The average temperature of room i
at time k is given by the continuous variable xi(k), and
the discrete state q(k) = i indicates room i ∈ {1, . . . , n}
is heated at time k, and q(k) = 0 denotes the heater
is off. The stochastic difference equation governing the
average temperature for room i is given by

xi(k + 1) = (1− bi)xi(k) +
∑
i6=j

ai,j(xj(k)− xi(k))

+ cihi + bixa + vi(k)

with constants ai,j , bi, ci, and xa, vi(k) that are i.i.d.
normally distributed random variables with mean zero
and variance v2, and hi = 1 for q(k) = i and hi = 0

otherwise. The control input is given by u(k) ∈ U with
U = {0, 1, . . . , n}, but the chosen control is not always
implemented with probability 1. Instead, q(k) is updated
probabilistically, dependent on u(k−1) and q(k−1), with
transition function Tq(q(k + 1) | q(k), u(k)). So while
function µk(σk) deterministically returns a single control
input, control input u(k) = µk(σk) may not always be
implemented.

The exact average temperature in each room is unknown,
and only a noisy measurement of each room’s temper-
ature is available to the controller. The controller does,
however, know which room is being heated at time k
(i.e. q(k) is perfectly observed). Then the observation
y(k) = (yx(k), yq(k)) with yx(k) = [yx1 (k) . . . yxn(k)]T is
given by

yxi (k) = xi(k) + wi(k)

yq(k) = q(k)

with wi(k) i.i.d. normally distributed with mean zero
and variance w2 (so that the distribution φ(w) is Gaus-
sian). The transition matrix Q(u) is the identity matrix
for all u, so that Qq,yq (u) = 1q(y

q). Because the discrete
state is perfectly observed, we do not keep track of a dis-
crete observation, and it is not included in the sufficient
statistic.

It is desirable to keep the temperature of each room
between 17.5 and 22 degrees celsius at all times, pro-
ducing the safe region K = [17.5, 22] × . . . × [17.5, 22],
which does not depend on the discrete state q(k) (so
1K(s) = 1K(x)). To find the maximum probability that
each room stays within the desired temperature range
given that the controller only has access to the observa-
tions y(k) we reformulate the problem in terms of the
information state σk. We then use the dynamic program-
ming equations (17) given in Theorem 7, so that

V ∗N (σ) =

n∑
q=0

∫
Rn

1K(x)σ(x, q) dx

V ∗k (σ) = sup
u∈U

∫
Rn
V ∗k+1(Tu,y[σ])φ(yx) dyx

With xi(0) ∼ N (µi, s
2) for each i = 1, . . . , n and q(0) =

0, then

σ0(x, q) = 10(q)

n∏
i=1

ρi(xi)

for ρi(x) Gaussian with mean µi and variance s2.

However, even for the trivial case of n = 1 (e.g. a one
room system), updating σk becomes complicated very
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quickly. Using Lemma 6, we obtain

σ1(x, q) =
φ(yx1 − x)

φ(yx1 )
Tq(q | q(0) = 0, u(0))

×
∫
K

Tx(x | x(0), q, u(0))σ0(x(0), q(0)) dx(0)

The main difficulty with solving for σ1 is the fact that
the integral is evaluated over K, as opposed to over R.
Because of the bounds on the integral, we cannot claim
σk is Gaussian given that σk−1 is. However, because the
expression does quite closely resemble a Gaussian dis-
tribution, it may be possible to approximate σk by an
un-normalized Gaussian distribution without losing sig-
nificant accuracy. We intend to explore this possibility
in future works. Further, we note that there may be
classes of systems for which such straightforward suffi-
cient statistics may be found.

4.2 Skid-Steered Vehicle

A skid-steered vehicle (SSV), modeled as a switched sys-
tem, is presented in Caldwell and Murphy (2011). The
SSV moves according to lateral sticking and sliding of its
four wheels. Caldwell and Murphy (2011) identify four
modes associated with the vehicle: In mode 1, front and
rear wheels stick laterally; in mode 2, front wheels stick
and rear wheels skid laterally; in mode 3, front wheels
skid and rear wheels stick; in mode 4, both front and rear
wheels skid laterally. For each mode, the vehicle’s con-
tinuous statesX, Y , and θ are governed by a different set
of second order ordinary differential equations (ODEs).
The states X and Y represent the cartesian coordinates
for the vehicle’s center of geometry, and θ gives the head-
ing of the vehicle. We can represent the continuous state
of the system by x = (X, Ẋ, Y, Ẏ , θ, θ̇), such that ẋ =
fq(x) = f(x, q), with discrete state q ∈ Q = {1, 2, 3, 4}.
See Caldwell and Murphy (2011) for the actual expres-
sions for fq, which are too lengthy to reproduce here.
We discretize the ODEs using an Euler approximation
method to produce an equivalent discrete time system.

The control input can be expressed as a command in-
forming the vehicle of what mode it should be in. If
the vehicle responded perfectly, we would have qk = uk
for the mode at time k. Instead, let us assume that the
mode changes behave similarly to the temperature regu-
lation problem above, where the control command is im-
plemented with a certain probability, dependent on the
current mode: Tq(qk+1 | qk, uk+1). The continuous state
is assumed to be deterministic given the mode, so that
Tx(xk+1 | xk, qk, uk) = 1f(xk,qk)(xk+1). Finally, assume
we have a noisy observation of the continuous state, and
have an observation of the mode which is not completely
reliable:

yxk = xk + wk

yqk ∼ Qq,yq

The vector wk ∈ R6 is an i.i.d. sequence of multivari-
ate Gaussians with wk ∼ N (0,W). The matrix Qq,yq is
given by

Qq,yq =


.9 .033 .033 .033

.033 .9 .033 .033

.033 .033 .9 .033

.033 .033 .033 .9


Each row corresponds to a given value of q, and the
probability that yq takes on each value one to four. Thus,
the probability that the observed mode equals the true
mode is 0.9, and if it is not the true mode, is equally
likely to be any of the other three modes.

The safe regionK can be defined as a path we would like
the vehicle to stay on, which will be defined in terms of
bounds on X and Y . For instance, we could define K as
a rectangular strip K = {X,Y : −1 ≤ X ≤ 1, −10 ≤
Y ≤ 10}. Assuming the initial position of the vehicle,
x0, is known and equal to x̂0 ∈ K, and the initial mode
is independent of x0, uniformly distributed, and repre-
sented by ρ(q0), σ0 is given by

σ0(x, q) = 1x̂0(x)ρ(q) =
1

4
1x̂0(x)

In this case σ1 is easily calculated:

σ1(x, q) =

4∑
q0=1

∫
K

4Qq,yq1Tq(q | q0, u0)
φ(yx1 − x)

φ(yx1 )

× 1f(x0,q0)(x)σ0(x0, q0) dx0

=

4∑
q0=1

Qq,yq1Tq(q | q0, u0)
φ(yx1 − f(x̂0, q0))

φ(yx1 )

× 1f(x̂0,q0)(x)

Thus there are four possible values of x for which σ1(x, q)
is nonzero. Similarly, given an xk value, σk+1(x, q) will
only be nonzero for four values of x.

σk+1(x, q) =

4∑
qk=1

∫
K

4Qq,yq
k+1

Tq(q | qk, uk)

×
φ(yxk+1 − f(xk, qk))

φ(yxk+1)
1f(xk,qk)(x)σk(xk, qk) dxk

Even when σk takes the above seemingly simple form,
there is no immediately obvious way to avoid evaluating
the value functions for all σ ∈ L1 in order to solve (17).
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4.3 Computational Challenges

Because of the complexity of the hybrid dynamics and
cost function, the sufficient statistic and DP equations
are computationally intensive. The DP equations require
looping over an infinite state space. No computational
work has yet been done on the reachability problem for
partially observable DTSHS, and the applicability of
current computational work on general DTSHS seems
limited. For instance, discretization procedures for con-
tinuous state processes, like those presented in Soud-
jani and Abate (2013) are not immediately applicable
because it is much more difficult to grid a continuous
function of a continuous state (like our sufficient statis-
tic). Other methods involve reformulating the reachabil-
ity problem using chance-constrained optimization, so
that the safety constraint is enforced with some proba-
bility. These chance constraints are often evaluated using
sampling-based methods (see, e.g., Vrakopoulou et al.
(2013)). Unfortunately, such methods run into the same
problems as DP (curse of dimensionality) if formulated
as multistage stochastic programs, and it is again not
obvious how to extend such methods to the partialy ob-
served case, where dimensionality is an even greater is-
sue.

For the two examples presented here, one major chal-
lenge is circumventing the evaluation of the value func-
tions for all σ ∈ L1(S) to solve (17). One possible al-
ternative is using approximate DP to estimate the value
functions Vk by sampling from yk for each k to get sam-
ple trajectories of the σk. Since via our change of mea-
sure the yk are i.i.d, such sampling should be straight-
forward. Each yxk is sampled from φ(·), and each yqk is
sampled from the uniform distribution on {1, . . . , Nq}.
Some work has explored approximate dynamic program-
ming for DTSHS (see Kariotoglou et al. (2013)), in which
the value function is approximated using a linear com-
bination of basis functions, and constraints on the value
function are evaluated by sampling from the state space.
It is possible a similar approach could be applied to the
partially observed case, where we must sample from the
observation space to obtain instances of σ.

In addition, some work has been done on approximat-
ing continuous state POMDPs using point-based value
iteration (see Porta et al. (2006)), albeit in the context
of additive cost functions with the belief state as a suffi-
cient statistic. The method exploits the structure of the
value function, and uses Monte Carlo methods to gen-
erate a set of samples from the belief space, in order to
approximate the value function at a given starting be-
lief state. Further, Brunskill et al. (2008) have applied
this to a system with hybrid dynamics. More recently,
there has been a greater focus on solving continuous state
POMDPs through approximation and sampling, includ-
ing a Monte Carlo technique that samples both from the
belief space and the state space (Bai et al. (2011)). Al-
though our cost function and sufficient statistic are dif-

ferent, we are currently working to extend these meth-
ods to solve the reachability problem.

5 Conclusion

We have presented a statistic sufficient for the control
of a partially observable discrete time stochastic hybrid
system, when the objective is to maximize the probabil-
ity of remaining within a safe set for some finite time
horizon. By redefining the partially observed optimal
control problem as one that is fully observed, with state
variable σ (the information state generate by the suffi-
cient statistic), we are able to define an optimal control
policy as a function of σ. This control policy is equiva-
lent to the policy defined as a function of the informa-
tion vector, and leads to the same maximal safety prob-
ability. Further, we showed the equivalence between our
approach and one that uses an additive cost function.

The major disadvantage of the sufficient statistic is that
the dynamic programming equations must be solved for
every possible σ ∈ L1 at every time step. As a direct
solution method, it is seemingly impractical. However,
there may be cases where σ can be limited to a subset of
L1 so that the dynamic programming equations can be
solved. Further, our choice of measure in defining the suf-
ficient statistic may lend itself well to approximate dy-
namic programming techniques that avoid looping over
all possible states.

We hope to investigate ways in which these and other
partially observable hybrid systems may be solved using
our sufficient statistic, via practical solution strategies.
While such approximate results would still be subopti-
mal, they may be more informative and accurate than
a suboptimal controller that results from a separation
between state estimation and control, or from using the
belief state given the observations as an (in)sufficient
statistic. We intend to explore approximate solution
methods using our sufficient statistic, and compare
them to other suboptimal schemes, in future work.
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6 Appendix

6.1 Proof of Lemma 5

PROOF. The proof follows that of Elliot (1993).

P† [yxk ∈ A, y
q
k = q | Gk] = E†

[
1A(yxk)1{q}(y

q
k) | Gk

]
=

E†
[
1A(yxk)1{q}(y

q
k)Λ−1

k | Gk
]

E†
[
Λ−1
k | Gk

]
Pulling Λ−1

k−1 outside the expected value from both the
numerator and denominator and canceling, since Λk−1

is Gk measurable, the numerator reduces to

∫
A

φ(y) 1
Nq

φ(y − h(xk, uk−1))Qqk,q(uk−1)

× P† [yxk = y, yqk = q|sk, uk−1] dy

=
1

Nq

∫
A

φ(y)dy = P† [yqk = q]P† [yxk ∈ A]

and the denominator becomes

Nq∑
q=1

∫
Rn

φ(y) 1
Nq

φ(y − h(xk, uk−1))Qqk,q(uk−1)

× P† [yxk = y, yqk = q|sk, uk−1] dy

=

Nq∑
q=1

1

Nq

∫
Rn
φ(y)dy = 1

Hence,

P† [yxk ∈ A, y
q
k = q | Gk] = P† [yqk = q]P† [yxk ∈ A]

�

6.2 Proof of Lemma 6

PROOF. We first show that T is a bounded linear op-
erator mapping L1 into itself. We then show that σk can
be defined recursively using T . Linearity follows obvi-
ously from the properties of integrals. For any function
ν ∈ L1(S), u ∈ U , y ∈ Y,

‖Tu,y[ν]‖L1 =
∑
q∈Q

∫
Rn

∣∣∣∣φ(yx − h(x, u))

φ(yx)
NqQq,yq (u)

×

 ∑
q−∈Q

∫
Rn

1K(x−, q−)τ(x, q | x−, q−, u)

× ν(x−, q−) dx−

∣∣∣∣∣∣ dx
‖Tu,y[ν]‖L1 ≤

∑
q∈Q

NqQq,yq (u)

|φ(yx)|

∫
Rn
|φ(yx − h(x, u))| dx

×

 ∑
q−∈Q

∫
Rn
|ν(x−, q−)| dx−

 (19)

≤
∑
q∈Q

NqQq,yq (u)

|φ(yx)|
∑
q−∈Q

∫
Rn
|ν(x−, q−)| dx−

(20)

=M‖ν‖L1

Equation (19) follows because 1K(x−, q−)τ(x, q |
x−, q−, u) ≤ 1 for all x, q, x−, q−, and (20) follows be-
cause φ is a distribution, and

∫
φ(x) dx = 1, therefore∫

φ(y − h(x)) dx ≤ 1 for h a bounded continuous func-
tion. Hence for any ν ∈ L1(S), T is a bounded linear
operator, with Tu,y[ν] ∈ L1(S).

Induction shows that σk = Tuk−1,yk [σk−1]. Given σ0 =
ρ,

Tu0,y1 [ρ](x, q) =
∑
q0∈Q

∫
Rn

1K(x0, q0)
φ(yx1 − h(x, u0))

φ(yx1 )

×NqQq,yq1 (u0)τ(x, q | x0, q0, u0)ρ(x0, q0) dx0

= E† [1q(q1)1x(x1)1K(x0, q0)Λ1 | i1]

= σ1(x, q)

Given σl = Tul−1,yl [σl−1]∀ l = 1, . . . , k,

Tuk,yk+1
[σk](x, q) =

∑
qk∈Q

∫
Rn

1K(xk, qk)

×
φ(yxk+1 − h(x, uk))

φ(yxk+1)
NqQq,yq

k+1
(uk)

× τ(x, q | xk, qk, uk)σk(xk, qk) dxk

=
∑
qk∈Q

∫
Rn

1K(xk, qk)
φ(yxk+1 − h(x, uk))

φ(yxk+1)

×NqQq,yq
k+1

(uk)τ(x, q | xk, qk, uk)

×

 ∑
q0,...,qk−1

∫
Rn×...×Rn

k−1∏
i=1

1K(xi, qi)

× τ(xi, qi | xi−1, qi−1, ui−1)1K(x0, q0)

× ρ(x0, q0)Λk−1 dx0, . . . , dxk−1

 dxk
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= E†
[
1q(qk+1)1x(xk+1)

k∏
i=1

1K(xi, qi)

× Λk+1

∣∣∣∣∣ ik+1

]
= σk+1(x, q)

�

6.3 Proof of Theorem 7

The following proofs are based on those appearing in
Bertsekas and Shreve (1996), chapters 6 and 11. To fa-
cilitate the connection between these proofs and those
appearing in Bertsekas and Shreve (1996) we first refor-
mulate the recursion (17) as a minimization

sup
π
V π0 (σ0) = − inf

π
−V π0 = − inf

π
Jπ0

Let Jπk (σ) = −V πk (σ) and Π = {π = (µ0, µ1, . . . ) :
µi(σi) ∈ U ∀ i}. In the following we drop the bar no-
tation over π, and use π to denote a policy with re-
spect to the sufficient statistic. The recursion for J∗k (σ)
is identical to that of V ∗k (σ) in (17) except that J∗N (σ) =
−〈σ,1K〉.

Next we define the operators

Hµ[J ] = E†
[
J(Tµ(σ),y[σ])

]
=
∑
yq

∫
Rn
J(Tµ(σ),y[σ])φ(yx)

1

Nq
dyx

H[J ] = inf
µ(σ)∈U

Hµ[J ]

The operator Hµ[J ] preserves the linearity and bound-
edness of value function J(σ) for all σ in L1, which can
be seen from a straightforward induction argument. Be-
cause JπN (σ) is a bounded linear functional, this then
implies that Jπk (σ) is a bounded linear functional for all
k = 0, . . . , N and for all σ in L1.

Lemma 9 For all bounded linear functionals J , σ ∈ L1,
π ∈ Π, and r ∈ R+

Hµ[J ] ≤ Hµ[J + r] ≤ Hµ[J ] + r

PROOF. Because J ≤ J + r when r ≥ 0, we get the

following:

Hµ[J ](y) =
∑
yq

∫
Rn
J(Tµ(σ),y[σ])

1

Nq
φ(yx)dyx

≤
∑
yq

∫
Rn

(J(Tµ(σ),y[σ]) + r)
1

Nq
φ(yx)dyx

= Hµ[J + r](y)

=
∑
yq

∫
Rn
J(Tµ(σ),y[σ])

1

Nq
φ(yx)dyx + r

= Hµ[J ] + r

�

Proposition 10 For any M ∈ N, where J∗0 (σ) =
infπ∈Π J

π
0 (σ),

J∗0 (σ) = HM [J∗M (σ)]

Further, for any ε > 0 there exists an M-stage ε-optimal
policy πε, defined as

J∗0 ≤ J
πε
0 ≤ J∗0 + ε

PROOF. (By backwards induction on M)

For M = N ,
J∗N (σ) = H0[J∗N (σ)]

(sinceH0[J ] = J). Also, because JN does not depend on
a control input, J∗N (σ) = JπN (σ) for any policy π ∈ Π.
Therefore, for any ε > 0, JπεN (σ) = J∗N (σ) ≤ J∗N (σ) + ε.

Assume for M = k + 1 that J∗k+1(σ) = HN−k−1[J∗N (σ)]
and that for all ε > 0 there exists a policy πε such that
Jπεk+1(σ) ≤ J∗k+1(σ)+ε. Then by Lemma 9, for any µ ∈ Π

Hµ[Jπεk+1] ≤ Hµ[J∗k+1 + ε] ≤ Hµ[J∗k+1] + ε

By aggregating µ with the control function πε to get
π̂ε = (µ, πε), we then have

inf
π
Jπk (σ) ≤ J π̂εk (σ) = Hµ[Jπεk+1]

≤ Hµ[J∗k ] + ε

Since the above holds for any µ ∈ Π,

inf
π
Jπk (σ) ≤ H[J∗k+1(σ)]

= H[HN−k−1[J∗N (σ)]] = HN−k[J∗N (σ)]

By definition HN−k[J∗N (σ)] ≤ J∗k (σ), hence
HN−k[J∗N (σ)] = J∗k (σ).
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Next, by the induction argument, for any ε̂ > 0, let π̂ be
such that

J π̂k+1(σ) ≤ J∗k+1(σ) +
ε̂

2

Let µ̂ ∈ Π be such that

Hµ̂[J∗k+1] ≤ H[J∗k+1] +
ε

2

Define π̂ε = (µ̂, π̂). Then

J π̂εk = Hµ̂[J π̂k+1] ≤ Hµ̂[J∗k+1] +
ε̂

2

≤ H[J∗k+1] +
ε̂

2
+
ε̂

2
= J∗k + ε̂

It follows from induction that J∗0 ≤ J
πε
0 ≤ J∗0 + ε for any

M . �

We also use the result from Bertsekas and Shreve (1996)
on the existence of a uniformly N-stage optimal policy
π∗ = (µ∗0, µ

∗
1, ...), which we give without proof (see Ch.

6), since the proof does not change in our context.

Proposition 11 A policy is uniformly N-stage optimal
if and only if Hµ∗

k
[HN−k−1[J∗N ]] = HN−k[J∗N ] for all

k = 0, . . . , N , and this policy exists if and only if the
infimum of

HN−k[J∗N ] = inf
u∈U

Hu

[
HN−k−1[J∗N ]

]
is attained for all σ ∈ L1 and k = 0, . . . , N . A sufficient
condition for the infimum to be attained is that

Uk(σ, λ) =
{
u ∈ U : Hu

[
HN−k−1[J∗N ]

]
≤ λ

}
is compact for all σ ∈ L1, λ ∈ R, and k = 0, . . . , N .

Substituting V ∗k = −J∗k , it is clear that Prop. 10 val-
idates the dynamic programming algorithm (17), and
proves the existence of at least an ε-optimal policy,
and so the first part of Theorem 7 is proved. Finally,
using Prop. 11, because U is defined as a compact
(i.e. closed and bounded) Borel set, and Jk (and so
Vk) is bounded for all σ ∈ L1 and for each u ∈ U ,
then there exists some u ∈ U such that the infimum
in infu∈U Hu

[
HN−k−1[J∗N ]

]
= infu∈U E[Jk(Tu,y[σ])] is

attained for all k (and likewise the supremum of Vk is
achieved for all k). Therefore, for (17), there always
exists an optimal policy π given by (18).

6.4 Proof of Theorem 8

PROOF. For a vector u = [u0, u1, . . . uN−1] with each
ui ∈ U , we have by definition that

rK(u) = rK(u) ∀u ∈ UN

Since σk = ηk(ρ, ik), the control policy π =
(µ0(σ0), µ1(σ1), . . . ) can be rewritten as a function of the
information vector ik, where µk(σk) = µk(ηk(ρ, ik)) =
µk(ik). Then by defining the policy π in terms of µ, we
have that rK(π) = rK(π) for all π ∈ Π. If π∗ is optimal
for rK(π), it then must be optimal for rK(π) as well, and
further,

rK(π∗) = rK(π∗)

�
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