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a b s t r a c t

An adaptive control algorithm for open-loop stable, constrained, linear, multiple input multiple output systems is 
presented. The proposed approach can deal with both input and output constraints, as well as measurement noise and 
output disturbances. The adaptive controller consists of an iterative set mem-bership identification algorithm, that 
provides a set of candidate plant models at each time step, and a model predictive controller, that enforces input and 
output constraints for all the plants inside the model set. The algorithm relies only on the solution of standard convex 
optimization problems that are guaran-teed to be recursively feasible. The experimental results obtained by applying the 
proposed controller to a quad-tank testbed are presented.

require that the controlled variables satisfy certain constraints due
to safety reasons or due to physical limitations. However, to derive
an adaptive control approach for systemswith constraints is a non-
trivial task that requires the integration of on-line system iden-
tification and constrained control. Crucial aspects of both fields
interact and give rise to challenging issues, like the need to en-
sure constraint satisfaction while the model of the plant dynamics
is being updated. Finally, despite the fact that a well established
theory for adaptive control has been developed (see e.g. Åström
& Wittenmark, 1995), there are few results on adaptive control of
constrained multiple input multiple output (MIMO) systems
(see Landau, Lozano, M’Saad, & Karimi, 2011). Hence, further re-
search in adaptive control of MIMO systems subject to constraints
r

1. Introduction and motivation

The idea of adaptive control is to carry out real time controller
adjustments, on the basis of input–output data collected on-line.
Adaptive strategies may be used to control time invariant systems
for which the model identification experiments are complex and
expensive, and/or when the control algorithm needs to be applied
to many copies of the system, which are affected by uncertainty
due to production variability. In these cases an adaptive control ap-
proach can reduce or eliminate the need for time-consuming tun-
ing of each produced unit, hence decreasing the production costs.
In addition to uncertainty, most real world systems have control
variables (voltage, current, flow, etc.) that are constrained due to
physical limitations of the actuators. Moreover, many systems also
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could broaden the range of the practical applications in which
adaptive control may be used.

Model predictive control (MPC) is a powerful technique for
controlling constrained MIMO systems (see e.g. Goodwin, Seron,
& De Don, 2005). While the topic of MPC in the presence
of constraints and fixed model uncertainty (i.e. robust MPC)
has received considerable research attention (see e.g. Bempo-
rad & Morari, 1999 and Lee & Kouvaritakis, 2000), the topic
of adaptive MPC for constrained systems has received little at-
tention due to difficulties in guaranteeing constraint satisfac-
tion and recursive feasibility under adaptation (see Kim, 2010
for more details). Adaptive MPC for input-constrained MIMO
systems was considered in Maniar, Shah, Fischer, and Mutha
(1997). In Kim, Yoon, Shim, and Seo (2008) an adaptive MPC al-
gorithm based on model switching was proposed. However, these
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adaptive control approaches cannot deal with hard output con-
straints. In Kim and Sugie (2008), an adaptive MPC algorithm for
a class of single input multiple output linear systems, based on
modified recursive least squares identification and tube-like robust
MPC, was proposed. The algorithm is capable of handling both in-
put and output constraints and it guarantees stability and recur-
sive feasibility, but the state space structure of the plant needs to
be known and noise free measurements of the plant states are re-
quired. In Aswani, Gonzalez, Sastry, and Tomlin (2013), a learning
based MPC algorithm was introduced. It uses statistical learning
techniques in order to improve the control performance over time
and robustly enforces input and output constraints by using an ap-
proximate model of the plant together with a bound on its uncer-
tainty. The approximatemodel and the uncertainty bounds are not
updated over time and therefore, a relatively good initial knowl-
edge of the plant model is required. Nonlinear adaptive MPC for
a specific class of systems was considered in Adetola, DeHan, and
Guay (2011). The idea of using parameter bounding and predictive
control in an adaptive context was presented in Veres and Nor-
ton (1993), where a set of plant models is identified in order to
formulate a min–max finite horizon predictive control problem at
each time step. However, only input constrained SISO systems are
considered and the proposed control algorithm is very compu-
tationally intensive and can be applied to system models of low
dimension only. More recently, set membership (SM) identifi-
cation was used for adaptive MPC of SISO systems subject to
both input and output constraints in Nikolakopoulos, Dritsas, Tzes,
and Lygeros (2006), where an explicit MPC law is repeatedly re-
calculated in an off-line manner, when new information on the
controlled plant becomes available.

We propose here a new adaptive model predictive control ap-
proach for open-loop stable, linear MIMO systems. In contrast to
the previously mentioned contributions, our approach is capable
of dealing with stable MIMO systems in the presence of both input
and hard output constraints, as well as output disturbances and
measurement noise. Moreover, the proposed algorithm is compu-
tationally tractable and suitable for on-line application, as it only
requires the solution of standard convex optimization problems.
The required initial information on the system is given by some
(eventually very loose) bounds on its impulse response coefficients
and by bounds on the magnitudes of the output disturbance and
measurement noise. Unlike the methods in Aswani et al. (2013)
and Kim and Sugie (2008), the proposed approach cannot be used
to control open-loop unstable systems but, on the other hand, it
can handle systems with multiple inputs and measurement noise
and requires a smaller amount of initial knowledge on the plant.
It has to be noted that the requirement for open-loop stability is
quite common in the context of system identification and adaptive
control.

Themain idea underlying the control algorithm is to recursively
identify the set of all the plant models (‘‘model set’’), that are con-
sistent with the initial available information on the plant and with
the input–output data collected during operation. Then, an MPC
approach is used to guarantee satisfaction of input and output con-
straints for all the plants inside themodel set and hence also for the
real system. In addition to robust constraint satisfaction, the ap-
proach guarantees recursive feasibility and, under a convergence
assumption, it exhibits integral action which enables offset-free
tracking. Although not rigorously proved here, thementioned con-
vergence property is met in practice with long enough prediction
horizons, as we show through an experimental testbed. In addi-
tion, we comment on possible extensions of the formulation to
use a model parametrization with basis functions in order to re-
duce the computational complexity of the algorithm, and to in-
clude an exploring strategy, which aims to select the input that
yields a higher amount of information in order to speed-up the
identification of the plant dynamics. In addition to the adaptive
approach and its theoretical properties,we present the experimen-
tal results obtained by applying the method to a non-minimum
phase quad-tank testbed.

The paper is organized as follows. Section 2 describes the
problemwe address. Sections 3 and 4 present the adaptive control
algorithm and its properties, respectively. Possible extensions of
the approach are discussed in Section 5, finally the experimental
results are reported in Section 6 and conclusions are drawn in
Section 7.

2. Problem statement

We consider a MIMO, discrete time, strictly proper, linear time
invariant (LTI) system with nu inputs and ny outputs. The system
is known to be stable, but the exact system’s dynamics are not
known. We denote the vector of control inputs at time step t ∈ Z
by u(t) = [u1(t), . . . , unu(t)]

T , where ui(t) ∈ R, i = 1, . . . , nu
are the individual plant inputs and T stands for the matrix trans-
pose operator. In addition, we denote the vector of plant outputs
by y(t) = [y1(t), . . . , yny(t)]

T , where yj(t) ∈ R, j = 1, . . . , ny are
the individual plant outputs, and we denote the vector of output
disturbances by d(t) = [d1(t), . . . , dny(t)]

T , where dj(t) ∈ R, j =

1, . . . , ny denotes the contribution of the disturbances to the out-
put j. The dynamic relation between each input and output can,
in general, be described by an infinite impulse response. In order
to have a tractable model, we use finite impulse responses (FIR)
of length m, i.e. the influence of the input i to the output j can be
described by the FIR coefficients hji(k), k = 1, . . . ,m. The approx-
imation error induced by the truncated impulse response coeffi-
cients is embedded into the output disturbance vector d(t) (see
also Remark 2.2).

Remark 2.1. Note that the same FIR length is assumed here for
all the input–output pairs in order to simplify the notation. All
the results can easily be extended to the case when different FIR
lengths are used.

In the described setting, each of the plant outputs yj(t), j =

1, . . . , ny, is given by:

yj(t) =

nu
i=1

m
k=1

ui(t − k)hji(k) + dj(t)

= HT
j ϕ(t) + dj(t), j = 1, . . . , ny, (1)

where ϕ(t) ∈ Rnum is the regressor vector: ϕ(t) .
= [u1(t − 1),

. . . , u1(t − m), . . . , unu(t − 1), . . . , unu(t − m)]T , and each of the
vectors Hj ∈ Rnum, j = 1, . . . , ny contains the impulse response
coefficients needed to describe the influence of all the control in-
puts on the plant output yj: Hj

.
= [hj1(1), . . . , hj1(m), . . . , hjnu(1),

. . . , hjnu(m)]T . By defining the matrix H ∈ Rny×num as H .
=


H1,

. . . ,Hny

T
, the dependence of the plant output on the regressor and

the disturbance vectors can be written as:
y(t) = Hϕ(t) + d(t). (2)
The measured output available for feedback control is corrupted
by noise. In particular, the vector of measured plant outputs is de-
noted by:
ỹ(t) = y(t) + v(t),
where v(t) = [v1(t), . . . , vny(t)]

T and vj(t), j = 1, . . . , ny are the
individual measurement noise terms that affect each of the mea-
sured plant outputs.

Assumption 1. (Prior Assumption on Disturbance and Noise) d and
v are bounded as:

|dj(t)| ≤ ϵdj
|vj(t)| ≤ ϵvj

, ∀t ∈ Z, ∀j = 1, . . . , ny, (3)

where ϵdj and ϵvj are positive scalars.



We also use the noise and disturbance magnitude bounds in the
vector notation as ϵd = [ϵd1 , . . . , ϵdny ]

T and ϵv = [ϵv1 , . . . , ϵvny ]
T .

Assumption 2. (Prior Assumption on the System) The plant belongs
to the following model set: H ∈ F (0), with

F (0) .
=


H ∈ Rny×num : Aj(0)Hj ≤ bj(0), j = 1, . . . , ny


, (4)

where the inequalities in (4) should be interpreted as element-
wise inequalities and each matrix Aj(0) ∈ Rrj(0)×num and vector
bj(0) ∈ Rrj(0) define a closed and convex set, i.e. a polytope with
rj(0) faces.

According to Assumption 2, the initial knowledge about the im-
pulse response coefficients is that the vectors Hj, j = 1, . . . , ny,
which form the rows of thematrixH , belong to polytopic sets. Note
that we initialized the set F (0) in (4) at t = 0 without loss of gen-
erality, just to indicate that this is the information available before
anymeasured data is collected. Hence, these initial polytopes have
to be defined a priori on the basis of the prior information on the
system. If the only available information is the fact that the sys-
tem is stable, a possible approach to define the set F (0) is to im-
pose a maximummagnitude and an exponential decay rate on the
FIR coefficients. This can be done by selecting the following three
variables for each input i and output j: Lji ∈ R, Lji ≥ 0, ρji ∈ R,
ρji ∈ (0, 1) and µji ∈ N, µji ≤ m, and then defining the upper
and lower bounds on the impulse response coefficients for the in-
put–output pair defined by i and j as:

|hji(k)| ≤ Lji if k ∈ [1, µji]

|hji(k)| ≤ Ljiρ
k−µji
ji if k ∈ [µji + 1,m].

(5)

If additional initial knowledge about the system is available, e.g. the
sign of the steady state gain for some of the input–output pairs,
this can be incorporated as additional inequalities defining the set
F (0).

Under Assumptions 1 and 2, the goal is to control the plant in
order to track a desired output reference and reject disturbances
from t = 0 up to some finite time step T , where the time horizon T
can be very large (T ≫ m). Moreover, the controller shall enforce
input and output constraints. Assuming that the control inputs
u(l), l = −m + 1, . . . ,−1 are known, such a control objective
can be formalized by the following optimization problem:

min
u(0),...,u(T )

T
t=0


y(t) − ydes(t)

T
Q


y(t) − ydes(t)


+ u(t)T Su(t) + 1u(t)TR1u(t) (6)

Subject to, ∀t ∈ [0, T ]

Cu(t) ≤ g
L1u(t) ≤ f
Ey(t) ≤ p

(7)

where ydes(t) ∈ Rny is the desired output reference, Q ∈ Rny×ny ,
S ∈ Rnu×nu and R ∈ Rnu×nu are positive semi-definite weighting
matrices selected by the control designer, and 1u(t) = u(t) −

u(t − 1) is the rate of change of the control input. The element-
wise inequalities in (7) define convex sets through the matrices
C ∈ Rni×nu , L ∈ Rn∆u×nu , E ∈ Rno×ny and the vectors g ∈ Rni ,
f ∈ Rn∆u , p ∈ Rno , where ni, n∆u and no are the number of linear
constraints on the inputs, input rates and outputs, respectively.We
assume that the set defining the constraints on 1u(t) contains the
origin and that the constraint set of u(t) is compact. This assump-
tion is satisfied in most practical problems.

Remark 2.2. The facts that the control inputs are bounded and that
the system is stable can be exploited to calculate bounds on the
magnitude of the contribution of the truncated part of the impulse
response for each of the plant outputs. Such a contribution can be
considered as part of the additive output disturbance. For com-
pleteness, theway to calculate these bounds is given inAppendixA.

3. Adaptive control algorithm

Since the true plant is not exactly known and its outputs are
subject to unknownoutput disturbances, the optimal control prob-
lem (6) cannot be solved a priori and a suboptimal approach has
to be sought. Therefore, in order to approximately optimize the
given control objective, while guaranteeing satisfaction of the con-
straints (7), we propose the use of a receding horizon approach,
combined with an adaptive control scheme that aims to improve
the knowledge on the system’s dynamics over time. In this setting,
at each time step a sequence of future control inputs is calculated
and only the first element of this sequence is applied to the plant.
In particular, to guarantee output constraint satisfaction, we aim
to identify, at each time step, the set of all the models that are con-
sistent with the initial assumptions on the real plant and the in-
put–output measurements collected up to that time step (model
set). If the prior assumptions are valid, this set is guaranteed to con-
tain also the true plant’s dynamics. Then, the control computation
is carried out in such a way to ensure that the constraints are satis-
fied for all themodels inside this set, hence also for the actual plant.

In order to accomplish the model set identification and the ro-
bust control computation, we rely on a recursive SM identification
algorithm, and an MPC controller. The identification algorithm is
such that the model set can be refined with each new output mea-
surement. In addition to themodel set, the identification algorithm
also provides a nominal model of the plant at each time step. The
control input is calculated by solving an optimal control problem
that minimizes a weighted quadratic cost penalizing the tracking
error of the nominal model over a finite horizon, while at the same
time satisfying robustly the constraints (7). Algorithm 1 summa-
rizes the proposed adaptive control scheme.

Algorithm 1 Adaptive MPC algorithm
1) At time step t , obtain ỹ(t) and update the model set based on

the past applied control inputs and measured plant outputs;
2) Select a nominal model of the plant inside the model set;
3) Calculate a sequence of possible future control inputs by

solving a finite horizon optimal control problem (FHOCP) that
minimizes a weighted quadratic cost involving the tracking
error of the nominal model and enforces input and output
constraints for all the models inside the model set;

4) Apply the first element of the calculated input sequence, set
t = t + 1, go to 1).

In the subsections that follow, each of the components of the
proposed adaptive control algorithm is described in detail.

3.1. Real-time set membership identification

We denote the sequence of the input–output data collected up
to time step t as:

{ϕ(l), ỹ(l)}tl=0, (8)
where ϕ(l) ∈ Rnum is the regressor vector formed by the control
inputs applied from time l − m up to time l − 1, and ỹ(l) ∈ Rny

is the corresponding measured plant output. Then, at a given time
step t , we define the model set F (t) as the set containing all the
matrices H that are consistent with Assumptions 1 and 2 and the
collected input–output data (8):
F (t) .

= {H ∈ F (0) :

− ϵd − ϵv ≤ ỹ(l) − Hϕ(l) ≤ ϵd + ϵv, ∀l ∈ [0, t]

. (9)



Each one of the element-wise inequalities in (9) comes from the
fact that the discrepancy between the measured and the predicted
values of the output cannot exceed the disturbance and noise
bounds (3). Since the initial model setF (0) is defined by polytopic
constraints on each row HT

j of the matrix H , and the constraints
in (9) are linear, the model set F (t) is still defined by polytopic
constraints on HT

j , j = 1, . . . , ny. Each of these polytopes can
be uniquely described by a set of non-redundant inequalities.
Therefore, at a generic time step t , the model set F (t) can be
represented as:

F (t) =

H ∈ Rny×num : Aj(t)Hj ≤ bj(t), j = 1, . . . , ny


,

where Aj(t) ∈ Rrj(t)×num, bj(t) ∈ Rrj(t), and rj(t) is the number
of non-redundant inequalities pertaining to the jth row of the
matrix H .

The matrices Aj(t) and the vectors bj(t) have to be updated at
each time step in order to account for the new measurements. To
this end, let us consider the following polytopes:

Fj(t) = {Hj ∈ Rnum : Aj(t)Hj ≤ bj(t)}, j = 1 . . . ny.

We note that for each j, the polytope Fj(t) can be calculated recur-
sively in time as the intersection of the polytope Fj(t − 1) and the
two half spaces defined by the newlymeasured plant output, ỹj(t):

Fj(t) = Fj(t − 1)

∩ {Hj ∈ Rnum : ϕ(t)THj ≤ ỹj(t) + ϵdj + ϵvj}

∩ {Hj ∈ Rnum : −ϕ(t)THj ≤ −ỹj(t) + ϵdj + ϵvj}. (10)

The matrix Aj(t) and the vector bj(t) can then be calculated by re-
moving any redundant faces of the polytope Fj(t). This can be done
by solving an LP for each face of the polytope, in order to deter-
mine whether it is redundant or not (see e.g. Mattheiss, 1973). A
problem of the described recursive update is that the number of
faces of Fj(t), rj(t), can become arbitrarily large, as in general it
grows linearly with time, and hence the memory needed to store
Aj(t) and bj(t) can become impractical. In order to overcome this
problem, we employ a polytope update algorithm with bounded
complexity, similar to the one proposed in Veres, Messa Oud, and
Norton (1999). In this approach, the polytope Fj(t) is updated by
using (10) as long as the number of its faces is smaller than a pre-
defined maximum limit M1. Once this limit is reached, each new
face that is added to the polytope is parallel to a plane that belongs
to a predefined set ofM2 planes, which makes the total number of
faces bounded byM1 + M2.

In particular, a set D containing a finite number M2 of num-
dimensional vectorswith the samemagnitude, that will determine
the shape of the resulting polytope, has to be defined. Based on this
set, the update of the polytope Fj(t) is given by the following in-
tersection:

Fj(t) = Fj(t − 1)

∩ {Hj ∈ Rnum : ϕ+(t)THj ≤ ỹ(t) + δ+

j (t)}

∩ {Hj ∈ Rnum : ϕ−(t)THj ≤ −ỹ(t) + δ−

j (t)}, (11)

where the vectors ϕ+(t) and ϕ−(t) are taken as elements of D that
are ‘‘closest’’, in the inner product sense, to the vectors ϕ(t) and
−ϕ(t):

ϕ+(t) = argmax
v∈D

ϕ(t)Tv

ϕ−(t) = argmax
v∈D

−ϕ(t)Tv,
(12)

and the scalars δ+

j (t) and δ−

j (t) are selected such that the bounded
complexity polytope includes the polytope that would be obtained
by a normal update (as per (10)). Hence, the values of δ+

j (t) and
δ−

j (t) can be calculated by solving the following linear program
(LP):

δ+

j (t) = max
θ

ϕ+(t)T θ − ỹj(t)

δ−

j (t) = max
θ

ϕ−(t)T θ + ỹj(t)

Subject to:
Aj(t − 1)θ ≤ bj(t − 1)

ϕ(t)T θ ≤ ỹj(t) + ϵdj + ϵvj

−ϕ(t)T θ ≤ −ỹj(t) + ϵdj + ϵvj .

(13)

The setD is a fixed set of vectors that have to be chosen beforehand;
one possibleway to constructD is to take regularly distributed vec-
tors on the unit circle (see e.g. Maraoui & Messaoud, 2001). Algo-
rithm 2 summarizes the above procedure for recursive updating of
the model set F (t) in our adaptive control scheme (see step 1) of
Algorithm 1.

Algorithm 2 Bounded complexity model set update
1) At time step t , compute the regressors vector ϕ(t) andmeasure

the plant output ỹ(t);
2) For j = 1, . . . , ny, if rj(t − 1) ≤ M1 − 2, update Fj(t) by using

(10), otherwise calculate ϕ+(t) and ϕ−(t) as in (12), find the
values of δ+(t) and δ−(t) by solving the LP (13) andupdateFj(t)
according to (11);

3) For j = 1, . . . , ny, calculate Aj(t) and bj(t) by removing any
redundant faces from Fj(t).

The setF (t) obtained by using Algorithm 2 is an outer approxima-
tion of the set defined in (9): by increasing M1 and M2, the tight-
ness of such approximation can be increased, at the cost of higher
complexity. The algorithm guarantees that Fj(t) ⊆ Fj(t − 1), j =

1, . . . , ny and hence F (t) ⊆ F (t − 1), a property that is needed
to obtain recursive feasibility and output constraint satisfaction, as
we show in Section 4.

In SM identification problems, an important issue that has to
be dealt with is whether the considered prior assumptions are
invalidated by the data or not.

Lemma 3.1. Let Assumptions 1 and 2 hold, then the set F (t) ob-
tained by using Algorithm 2 has the following properties: F (t) ≠ ∅

and H ∈ F (t), ∀t, i.e. the model set is never empty and is guaranteed
to contain the true plant’s coefficients.

Proof. We prove the lemma by induction. From Assumption 2 it
holds that H ∈ F (0). Assume now that at a generic time step t , it
holds that F (t) ≠ ∅ and H ∈ F (t). This implies that Hj ∈ Fj(t),
j = 1, . . . , ny. Moreover, from Assumption 1 we have that:

ϕ(t + 1)THj ≤ ỹj(t + 1) + ϵdj + ϵvj

−ϕ(t + 1)THj ≤ −ỹj(t + 1) + ϵdj + ϵvj ,
∀j = 1, . . . , ny.

Therefore, if the polytope Fj(t) is updated according to (10), we
have that Hj ∈ Fj(t + 1). The same holds true also if the bounded
complexity polytopic update is used, since the solution of the LP
(13) guarantees that the faces that are added to the polytope are
such that the bounded complexity polytope contains the one that
would be obtained by (10). Therefore, the setF (t +1) obtained by
using Algorithm 2 is guaranteed to satisfy H ∈ F (t +1) and hence
F (t + 1) ≠ 0. The lemma is then proved by applying this result
recursively from t = 0 to any t ≥ 0. �

The converse of Lemma 3.1 provides a necessary condition for As-
sumptions 1 and 2 to hold: if F (t) ≠ ∅, then the prior information
on F (0), ϵd and ϵv is ‘‘not invalidated’’ by the collected measure-
ments (8). In practice, the initial set and the disturbance and noise



bounds have to be chosen by the designer in order to have non-
empty model set F (t), while at the same time avoiding excessive
conservativeness.

In addition to the model set, the proposed SM identification al-
gorithm also provides a nominal model of the plant (step 2) of Al-
gorithm 1. The latter is given by a matrix Hc(t) ∈ Rny×num, Hc =

[Hc,1, . . . ,Hc,ny ]
T , where Hc,j(t) ∈ Rnum, j = 1, . . . , ny are com-

puted as the centers of the maximum volume 2-norm balls in-
scribed in the polytopes Fj(t). This can be done by solving an LP,
however the solution is not unique in general. Therefore, we intro-
duce a regularization term, that penalizes the deviation of the new
nominal model from the previous one, giving rise to the following
LP:

max
ξj(t),Hc,j(t)

ny
j=1

ξj(t) − α∥Hc,j(t − 1) − Hc,j(t)∥1

Subject to:

aji(t)Hc,j(t) + ξj(t)∥aji(t)∥2 ≤ bji(t),
∀j = 1, . . . , ny
∀i = 1, . . . , nu,

(14)

where ξj(t) ∈ R is the radius of the maximum volume ball in-
scribed in Fj(t), α > 0 is a design variable, and aji(t) and bji(t)
stand for the ith row of the matrix Aj(t) and the vector bj(t). Ini-
tially, at time step t = 0, the matrix Hc(0) can be taken as an arbi-
trary nonzero point inside the set F (0).

3.2. Constrained predictive controller

Let u(k|t), k ∈ [t, t + N − 1], N ≥ m, be the candidate future
control moves, where the notation k|t indicates the prediction at
step k ≥ t given the information at the current step t . For brevity,
we collect these decision variables in vector U .

= [u(t|t)T · · · u(t +
N − 1|t)T ]T . We also define the vectors of future input increments
1u(k|t), k ∈ [t, t + N − 1] as:

1u(k|t) =


u(t|t) − u(t − 1) if k = t
u(k|t) − u(k − 1|t) if t + 1 ≤ k ≤ t + N − 1.

Moreover, we define the future regressor vectors ϕ(k|t) ∈ Rnum,
k ∈ [t + 1, t + N] as:

ϕ(k|t) =


Wϕ(t) + Zu(t|t) if k = t + 1
Wϕ(k − 1|t) + Zu(k − 1|t) if t + 2 ≤ k ≤ t + N,

(15)
whereW ∈ Rnum×num and Z ∈ Rnum×nu are suitablematrices, given
in Appendix B for the sake of completeness. In addition, we define
the current prediction error d̂(t) ∈ Rny as the difference between
the measured plant output and the one predicted by the nominal
model at time step t:

d̂(t) .
= ỹ(t) − Hc(t)ϕ(t). (16)

Then, we consider the following cost function:
J(U, ỹ(t), ϕ(t))

.
=

t+N−1
k=t


ŷ(k + 1|t) − ydes(k + 1|t)

T Q 
ŷ(k + 1|t)

− ydes(k + 1|t)

+ u(k|t)T Su(k|t) + 1u(k|t)TR1u(k|t),

(17)
where:

ŷ(k + 1|t) = Hc(t)ϕ(k + 1|t) + d̂(t). (18)
In (17), ỹ(t) and ϕ(t) are known parameters and ydes(k|t), k ∈

[t+1, t+N], are the predicted values of the desired output. The in-
troduction of the disturbance estimate d̂(t) in the cost function en-
ables offset free tracking under certain conditions (see Section 4).
Satisfaction of input constraints can be enforced by the follow-
ing set of inequalities:

Cu(k|t) ≤ g
L1u(k|t) ≤ f ∀k ∈ [t, t + N − 1]. (19)

And the robust satisfaction of the output constraints can be
achieved by enforcing them for all the plants inside the model set
F (t) and for all disturbance realizations:

EHϕ(k|t) + d ≤ p, ∀H ∈ F (t), ∀k ∈ [t + 1, t + N], (20)

where d = [d1, . . . , dno ]
T , and dl ∈ R, l = 1, . . . , no are given as:

dl =

ny
j=1

|elj|ϵdj ,

where elj stands for the element of the lth row and jth column of
the matrix E. However, using the constraints (20) would result in
an infinite dimensional optimization problem, that is in general
hard to solve. The following result shows how (20) can be equiva-
lently written in the form of linear constraints. Before stating the
result, let us introduce the vector of auxiliary decision variables
Λ

.
=


ΛT

1, . . . , ΛT
no

T
∈ RnoNr(t), where Λl

.
=


λl(t + 1|t)T , . . . ,

λl(t + N|t)T
T

, l = 1, . . . , no, and for each k = t + 1, . . . , t + N ,
λl(k|t) ∈ Rr(t) and r(t) =

ny
j=1 rj(t).

Lemma 3.2. The constraints (20) are satisfied if and only if there exist
ϕ(k|t), k ∈ [t + 1, t + N] and Λ such that the following set of
inequalities is feasible:

A(t)Tλl(k|t) =

 el1ϕ(k|t)
...

elnyϕ(k|t)


b(t)Tλl(k|t) ≤ pl − dl
λl(k|t) ≥ 0


∀l = 1, . . . , no
∀k ∈ [t + 1, t + N]

(21)

with

A(t) =


A1(t) 0 · · · 0
0 A2(t) · · · 0
...

...
. . .

...
0 0 · · · Any(t)



b(t) =

 b1(t)
...

bny(t)

 ,

where 0 represents zero matrices of appropriate dimensions and pl is
the lth element of the vector p.

Proof. We first note that, from the definition of the set F (t), it
follows that constraints (20) are satisfied if andonly if the following
set of inequalities is satisfied:

γl(k) ≤ pl − dl,
∀l = 1, . . . , no
∀k ∈ [t + 1, t + N]

(22)

where

γl(k) = max
Aj(t)Hj≤bj(t)

ny
j=1

eljϕ(k|t)THj. (23)

For each value of l and k and for fixed values of the vectors ϕ(k|t),
k ∈ [t + 1, t + N], by using the fact that the inequalities Aj(t)Hj ≤

bj(t), j = 1, . . . , ny form nonempty (from Lemma 3.1), closed and



bounded convex sets (i.e. polytopes), we can write the dual of the
LP (23) as:

γ̃l(k) = min
λl(k|t)

b(t)Tλl(k|t) (24)

Subject to:

A(t)Tλl(k|t) =

 el1ϕ(k|t)
...

elnyϕ(k|t)

 (25)

λl(k|t) ≥ 0. (26)

According to the strong duality theorem for LPs (see e.g. Bertsi-
mas & Tsitsiklis, 1997), it holds that: γl(k) = γ̃l(k). Therefore,
for any λl(k|t) that satisfies the constraints (25) and (26), it holds
that γl(k) ≤ b(t)Tλl(k|t). Hence the existence of U and Λ that
satisfy the set of constraints (21) guarantees that the constraints
(22) are also satisfied, which implies the satisfaction of the origi-
nal constraints (20). On the other hand if the constraints (20) are
satisfied, then there exists γl(k) satisfying (22). Then, by the strong
duality theorem for LP, γ̃l(k) = γl(k) exists and hence the con-
straints (25) and (26) have to be feasible, which implies the feasi-
bility of (21). �

In order to be able to recursively satisfy the input and output con-
straints (see e.g. Theorem 4.1 below), we introduce an additional
constraint on the terminal stage:

ϕ(t + N|t) = Wϕ(t + N|t) + Zu(t + N − 1|t). (27)

This means that we require the terminal regressor to correspond
to a steady state (i.e. a constant control input is kept for the last m
predicted steps).

For fixed values of N , Q , S and R, we can now define the finite
horizon optimal control problem (FHOCP) to be solved at each time
step t (see step 3) of Algorithm 1:

min
U,Λ

J(U, ỹ(t), ϕ(t))

Subject to: (19), (21), (27),
(28)

which is a quadratic program (QP), that can be efficiently solved in
general. The number of decision variables and constrains of the QP
(28) depends on the chosen prediction horizon N and the number
of faces describing the polytopes of the model set F (t). Therefore,
the computational complexity of (28) can be decreased by reducing
the bound M1 + M2 on the faces’ number, at the cost of higher
conservativeness as discussed in Section 3.1.

4. Properties of the proposed adaptive control algorithm

Thedescribed control algorithmguarantees recursive feasibility
and robust satisfaction of both input and output constraints, as
shown by the following result.

Theorem 4.1. Let Assumptions 1–2 hold, and assume that the prob-
lem (28), solved under Algorithm 1, is feasible at time t = 0. Then the
problem (28) is recursively feasible and the closed-loop system ob-
tained by applying Algorithm 1 is guaranteed to satisfy the input and
output constraints ∀t ≥ 0.

Proof. We first prove that if Assumptions 1–2 hold and the prob-
lem (28) is feasible at time t = 0, then the problem (28) solved
under Algorithm 1 remains feasible ∀t ≥ 0. To this end we use
induction.

The problem (28) is feasible for t = 0 by assumption. Assume
that the problem (28) is feasible at a generic time step t and let
the optimal control sequence be U∗(t) = [u∗(t|t)T , . . . , u∗(t +

N −1|t)T ]T , and its corresponding sequence of predicted regressor
vectors be ϕ∗(k|t), k = t + 1, . . . , t + N . Then, a possible feasible
control sequence at t + 1 is U(t + 1) = [u∗(t + 1|t)T , . . . , u∗(t +

N − 1|t)T , u∗(t + N − 1|t)T ]T . This sequence satisfies constraints
(19) and (27). In addition, we note that the predicted regressor vec-
tors ϕ(k|t + 1), k = t + 2, . . . , t + N + 1 that correspond to
the input sequence U(t + 1), by construction satisfy the equali-
ties ϕ(k|t + 1) = ϕ∗(k|t), for k ∈ [t + 2, t + N] and that from
(27) it follows that ϕ(t + N + 1|t + 1) = ϕ∗(t + N|t). Since Al-
gorithm 2 guarantees that F (t + 1) ⊆ F (t), the sequence of in-
putsU(t+1) satisfies the constraints (20). Lemma 3.2 then implies
that also the constraints (21) have a feasible solution and hence the
problem (28) is feasible at t + 1. From this result and Lemma 3.1,
the other claim of the theorem follows directly. �

In practice, feasibility at time t = 0 means that the initial assump-
tions are such that there exists a nonzero (eventually very small)
input sequence that does not violate the input and output con-
straints for all the plants in the initial model set F (0), which is
a reasonable condition. Note that the key property that is needed
for guaranteeing the recursive feasibility is that F (t) ⊆ F (t − 1).
However, in practice, due to faults and outliers it may happen that
noise and/or output disturbances temporarily violate the bounds
(3), which may cause the actual plant model to be outside the
model set, or the model set to be empty (see e.g. Lemma 3.1). In
such cases, normal operation could be recovered by removing the
outliers with techniques such as the ones described in Norton and
Veres (1993) and Pronzato and Walter (1993). Removing the out-
liers might cause the model set to expand, which may lead to in-
feasibility of (28). In such cases, feasibility could be recovered by
temporarily softening the output constraints.

The next result is concerned with offset-free tracking in the
presence of constant disturbance and zero measurement noise.
Before stating the result, the following technical assumption is
needed:

Assumption 3. The steady state gain matrix of the nominal model
obtained by solving (14), that we denote by:

Hc,ss =



m
l=1

hc,11(l) · · ·

m
l=1

hc,1nu(l)

...
. . .

...
m
l=1

hc,ny1(l) · · ·

m
l=1

hc,nynu(l)

 ,

satisfies the condition: rank(Hc,ss) = ny, at each time step.

Remark 4.1. Note that if the steady state gain matrix of the actual
system has rank ny, then (from Lemma 3.1) there is always amodel
inside the model set F (t) with the same property. Although the
algorithm for selecting the nominal model does not guarantee
that the latter has always this property, this does not represent a
problem for the control computation itself. However, the technical
Assumption 3 is needed to prove the offset-free property. In
order to formally satisfy this requirement, the algorithm could be
modified such that the rank of the steady state gain matrix of the
nominal model is checked, and if it were different from ny, the
nominal model could be slightly perturbed in order to satisfy the
rank condition of the steady state gain matrix.

Lemma 4.1. Let Assumption 3 hold and suppose that the tuning ma-
trices in the cost function (17) are selected such that S = 0 and Q and
R are positive definite. In addition, assume that the vector of the out-
put references is constant: ydes(t) = ydes, ∀t, that the output distur-
bances are constant: d(t) = d, ∀t, and that there is no measurement
noise: v(t) = 0, ∀t. Then, if the input and the output of the closed
loop system converge to constant vectors, uss and yss respectively, for
which no constraints are active, it holds that yss = ydes.
Proof. First, we show that if the control input and the output of
the closed loop system converge to constant vectors, the output



disturbances are constant and the measurement noise is equal to
zero, the model set F (t) becomes constant in time and so does
the FHOCP (28). To this end, we note that since the control input
vector converges to a constant value, the applied regressor vector
will also converge to a fixed value, that we denote by ϕss. Since
the output disturbances are constant and the measurement noise
is assumed to be zero, the measured plant outputs correspond
to the actual ones and by assumption they have constant values:
ỹss = yss = [yss,1 . . . yss,ny ]

T . Now, recall that the update of the
polytopes Fj(t), j = 1, . . . , ny under Algorithm 2 has in general
the following form (see Section 3.1):

Fj(t) = Fj(t − 1)

∩ {Hj ∈ Rnum : ϕ′(t)THj ≤ yss,j + δ′(t)}

∩ {Hj ∈ Rnum : ϕ′′(t)THj ≤ −yss,j + δ′′(t)}.

If the number of faces of the polytope Fj(t − 1) is smaller than
M1 − 2, then the polytope is updated according to (10) and there-
fore ϕ′(t) = ϕss, ϕ′′(t) = −ϕss and δ′(t) = δ′′(t) = ϵdj +ϵvj . In this
case, the faces that are added to the polytope Fj(t) are the same at
each time step, and therefore the polytope remains unchanged. If
the number of faces of the polytope Fj(t −1) is larger thanM1 −2,
then ϕ′(t) and ϕ′′(t) are calculated as (see Algorithm 2):

ϕ′(t) = argmax
v∈D

ϕT
ssv

ϕ′′(t) = argmax
v∈D

−ϕT
ssv,

which means that also in this case the directions of the faces that
are added to the polytope Fj(t), j = 1, . . . , ny remain the same.
The solutions of the LP (13) are constant over time, too, resulting
in δ′(t − 1) = δ′(t) = δ′ and δ′′(t − 1) = δ′′(t) = δ′′. There-
fore, the faces added to the polytopes Fj(t), j = 1, . . . , ny under
Algorithm 2 are the same at each time step, resulting in a constant
model set F (t). Thus, the nominal model of the plant obtained by
solving (14) converges to a fixed value, that we denote by Hc , and
the FHOCP (28) becomes time invariant.

Next, we show that the FIR plant model with constant predic-
tion error term that is used to formulate the FHOCP (28) is equiva-
lent to a velocity form state spacemodel. To this end, we introduce
a differential form of the predicted regressor vectors as:1ϕ(k|t) =

ϕ(k|t) − ϕ(k − 1|t), k = t + 2, . . . , t + N and 1ϕ(t + 1|t) =

ϕ(t + 1|t) − ϕ(t). From (16) and (18) it holds that:

ŷ(t + 1|t) = Hc1ϕ(t + 1|t) + ỹ(t). (29)

Moreover, from (18) it follows that:

ŷ(k + 1|t) = Hc1ϕ(k + 1|t) + ŷ(k|t), k = t + 1, . . . , t + N − 1.
(30)

In addition, if we define the predicted tracking error as e(k|t) .
=

ŷ(k|t)− ydes, k ∈ [t + 1, t +N] and e(t|t) .
= ỹ(t)− ydes, from (18)

and (29) it holds that:

e(k + 1|t) = Hc1ϕ(k + 1|t) + e(k|t), k ∈ [t, t + N − 1]. (31)

From (31) it follows that the cost function (17) is equivalent to:

J(U, ỹ(t), 1ϕ(t))

.
=

t+N−1
k=t

e(k + 1|t)TQe(k + 1|t) + 1u(k|t)TR1u(k|t),

Subject to:
1ϕ(k + 1|t)
e(k + 1|t)


=


W 0

HcW I

 
1ϕ(k|t)
e(k|t)


+


Z

HcZ


1u(k|t)

e(k|t) =

0 I

 
1ϕ(k|t)
e(k|t)


,

(32)
where 0 and I denote the matrix of all zeros and an identity matrix
of appropriate dimensions. The form (32) corresponds to a velocity
form state space model as in Prett and Garcia (1988).

From Assumption 3, it follows that the linear system in (32) is
controllable (see e.g. Betti, Farina, & Scattolini, 2013). Since, by as-
sumption, control inputs and outputs converge to constant values
and no constraints are active in the steady state, we can consider
the solution of the optimization problem given by the cost function
(32) with the underlying velocity state space model and the con-
straint (27), without considering the input and output constraints.
In this case, the MPC control law can be derived explicitly, and it
has the form: 1u(t) = Ke(t|t), where K ∈ Rnu×ny has rank equal
to ny, since the system in (32) is controllable and Q and R are posi-
tive definite (see Wang, 2004). Therefore, since by assumption the
system reaches a steady state, we have 1u(t) = 0, which implies
that the tracking error satisfies e(t|t) = yss − ydes = 0. �

Note that the condition for having a zero tracking error is
that the reference ydes is feasible with respect to the input and
output constraints. If this is not the case, a closest possible feasible
reference could be calculated by solving a QP. Another possibility
would be to follow the approach in Limon, Alvarado, Alamo, and
Camacho (2008) and reformulate the cost function of the problem
(28) such that the output reference value would be an additional
optimization parameter.

5. Possible extensions of the algorithm

In this section, we comment on possible extensions of the
described adaptive control approach. These include the possibility
of using basis functions instead of an FIR parametrization of the
underlying plant model, in order to reduce the computational
requirements of the algorithm, and the possibility of introducing
an ‘‘exploring’’ property in order to speed up the identification of
the plant dynamics, while retaining the guarantees for satisfaction
of the input and output constraints. For the sake of brevity, we will
describe only themain concepts here, referring to other documents
for the technical details.

5.1. Model parametrization with orthonormal basis functions

FIR models have the advantage of being simple and straight-
forward to use, however, depending on the specific application,
the required number of coefficients can be quite large, which can
make the proposed adaptive control algorithm computationally
demanding. It is reasonable to expect that if some additional in-
formation on the system to be controlled is available, such as the
approximate location of the dominant poles, the number of coef-
ficients that are needed to model the system can be significantly
reduced. This kind of information can be captured well by using
model representations given by orthonormal basis functions, like
Laguerre (see e.g.Wahlberg, 1991), Kautz (see e.g.Wahlberg, 1994)
or generalized orthonormal basis functions (see e.g. Van den Hof,
Heuberger, & Bokor, 1995).

By using the basis function model, each of the plant outputs
yj(t), j = 1, . . . , ny can be written as:

yj(t) =

nu
i=1

m
k=1

hji(k)ζ (Lk(a, q), ui(t)) + dj(t) = HT
j ϕ(t) + dj(t),

whereLk(a, q) are the basis transfer functions defined by parame-
ter a that is selected by the control designer, q is the time shift oper-
ator (qu(t) .

= u(t+1)) and the operator ζ (Lk(a, q), ui(t)) denotes
the output of the linear system representedby the transfer function
Lk(a, q) at time step t , when the signal u is applied as its input. The



value of a should be chosen such that it captures the dominant dy-
namic behavior of the plant (see e.g. Wahlberg, 1991, 1994 for de-
tails), while the functional form of the (stable and strictly proper)
functions Lk, k = 1, . . . ,m depend on the chosen basis function
family. Hence, in this case the dependence of the plant output on
the regressor vector and the disturbance can still be written as in
(2), the only difference being that the regressor vector now con-
tains the outputs of the individual basis transfer functions and is
given by: ϕ(t) .

= [ζ (L1(a, q)u1(t)) , . . . , ζ (Lm(a, q)u1(t)) , . . . ,
ζ


L1(a, q)unu(t)


, . . . , ζ


Lm(a, q)unu(t)


]
T . The evolution of the

regressor vector can be described by the following recursive equa-
tion:

ϕ(t + 1) = WLϕ(t) + ZLu(t), (33)

where the matrices WL ∈ Rnum×num and ZL ∈ Rnum×nu depend on
the selected type of the basis functions and the parameter a.

In this framework, by using Eq. (33) to update the regressor
vector ϕ(t), the already described SM identification algorithm can
be used with minor modifications to recursively update the model
set F (t) and calculate the nominal model of the plant Hc(t). The
control computation part of the adaptive algorithm has the same
form as before, with the only difference that WL and ZL are used
instead of W and Z in (15) and (27). All the results presented in
Section 4 still hold.

The main challenge when using a basis function parametriza-
tion is the computation of the initial model set F (0) and of the
bounds on the contribution of the truncated part of the basis
function sequence to the plant output. To this end we propose a
tractable approach in Section 3 of Tanaskovic, Fagiano, Smith, and
Morari (2013).

5.2. Adding an exploring property to the control algorithm

The proposed adaptive control algorithm relies on the idea that
the discrepancy between the nominal and the actual models of
the plant results in control inputs that are informative, such that
over time the collected input–output data will reduce the size of
the model set F (t) and therefore improve the accuracy of the
identified plant model. Formally, the approach does not require a
persistence of excitation assumption to avoid numerical problems,
unlike other approaches based on least squares (Goodwin & Sin,
1984). Nevertheless, in order to achieve good performance, the
applied control inputs should be informative enough such that the
model set F (t) becomes small as quickly as possible.

Following the idea of dual control (see Feldbaum, 1961a,b)
that a good balance between identification and control should be
achieved by an adaptive controller, we propose a method to add
an exploring property to the proposed algorithm. In the context of
MPC, the need of enforcing the persistence of excitation has been
addressed by introducing additional constraints (see e.g. Genceli
& Nikolaou, 1998 and Marafioti, Bitmead, & Hovd, 2014). Our ap-
proach is different as it relies on splitting the calculation of the con-
trol input into two stages. In the first stage, the FHOCP (28) is solved
as usual. The computed optimal input and output sequences and
the knowledge of themodel setF (t) are then used to calculate the
upper bounds, along the chosenpredictionhorizon, on the absolute
difference between all the possible future outputs of the plant and
the nominal optimal output trajectory. In the second stage, by al-
lowing these bounds to be inflated by a factor selected by the con-
trol designer, the sequence of control inputs can be recalculated in
order to improve the reduction in size of themodel set while at the
same time enforcing the input and output constraints.

With this approach, the relative importance of reference track-
ing and identification is automatically linked to the amount of in-
formation available on the system,which is represented by the size
of themodel set. In fact, if themodel setF (t) is large, the input and
output trajectories computed at the second stage will be allowed
to significantly deviate from the ones calculated in the first stage,
in order to generate a control input that is informative and reduces
the size of the model set F (t). On the other hand, if the uncer-
tainty is small, the future plant output will be allowed to change
only slightly from the first to the second stage.

To be more specific, let us consider the solution of the FHOCP
(28), which constitutes the first stage of the described approach.
We denote the predicted regressor vectors and plant outputs ob-
tained by solving (28) by ϕ∗(k|t) and ŷ∗(k|t), k ∈ [t + 1, t + N].
Then for the second stage, we compute the following quantities:

ϵ j(k|t) = max

yj(k|t) − ŷ∗

j (k|t), ŷ∗

j (k|t) − y
j
(k|t)


,

k ∈ [t + 1, t + N], j = 1, . . . , ny, (34)

where ϵ(k|t) = [ϵ1(k|t), . . . , ϵny(k|t)]
T , ϵ j(k|t) ≥ 0 denotes the

maximal possible difference between the future output of the plant
and the predicted output of the nominal model at time step k, and

yj(k|t) = max
Aj(t)Hj≤bj(t)

HT
j ϕ∗(k|t)

y
j
(k|t) = min

Aj(t)Hj≤bj(t)
HT

j ϕ∗(k|t).

In addition, we define the matrix Φ(t + 1|t) ∈ Rnum×num that de-
pends on the num past regressor vectors and the first future regres-
sor vector as:

Φ(t + 1|t) =

ϕ(t − num + 1) · · · ϕ(t) ϕ(t + 1|t)


.

This matrix can be indirectly related to the size of the polytopes
that will form the model set at the next time step F (t + 1), as in-
dicated by the following result.

Lemma 5.1 (Theorem 3.2 in Bai, Tempo, & Cho, 1995). Each of the
polytopes Fj(t + 1), j = 1, . . . , ny obtained by using the polytopic
update of the form (10) for a sequence of regressor vectors forming
the matrix Φ(t + 1|t) is guaranteed to have volume smaller than
2(ϵdj+ϵvj )

num
|det(Φ(t+1|t))| .

The input to be applied to the plant is then selectedwithin the set of
all the control inputs that satisfy the input and output constraints
and that keep all of the possible predicted output trajectories inside
an interval obtained by scaling up the values of ϵ(k|t), centered
at the trajectory ŷ∗(k|t), k ∈ [t + 1, t + N]. In order to improve
the knowledge on the system, we need a suitable criterion that
is linked to the size of the model set. Considering Lemma 5.1, we
choose to use | det(Φ(t+1|t))| as an indicator andwe compute an
input aimed at increasing its value (hence decreasing the volume
of themodel set). Therefore, the optimization problem to be solved
at the second stage of the control input calculation is given as:

max
U

|detΦ(t + 1|t)|

Subject to:
(19), (27),

Hϕ(k|t) ≤ ŷ∗(k|t) + βϵ(k|t)
Hϕ(k|t) ≥ ŷ∗(k|t) − βϵ(k|t)

EHϕ(k|t) + d ≤ p

 ∀H ∈ F (t)
∀k ∈ [t + 1, t + N]

(35)

where β ∈ R, β ≥ 1 is a design parameter that indicates by how
much the bounds (34) are allowed to be inflated. Problem (35) is
a non convex, infinite dimensional program that is in general dif-
ficult to solve. However, in this specific case the problem can be
solved by solving two additional LPs. For more details, the inter-
ested reader is referred to Tanaskovic et al. (2013) (Section 5).



Fig. 1. Quad tank system consisting of 4 water tanks that are mutually connected
by a network of pipes and valves. Water is injected into the system from a reservoir
by two pumps.

6. Experimental results

The performance of the proposed adaptive control algorithm is
illustrated by experiments on a quad-tank testbed.

The experimental setup consists of four identical, mutually con-
nected water tanks as in Fig. 1. The water level of each of the tanks
is denoted by τi, i = 1, . . . , 4 and can be measured by a pressure
sensor located at the bottom of the tank. Each tank has a water
inlet on top and an outlet at the bottom. We denote the cross sec-
tion of the tanks by Aa and the cross section of the outlets by Ao.
Water from the reservoir is injected into the tanks by a system of
pumps, valves and pipes as in Fig. 1. The water flows generated by
the pumps P1 and P2 are proportional to the voltages v1 and v2 ap-
plied to the pumpswith a constant factor that we denote by kp. The
valves V1 and V2 distribute the water injected by the pumps to the
upper and lower tanks. They can be modeled by introducing con-
stants γ1 and γ2 that denote the ratio of the flow that is directed
into the lower tanks. The numerical values of the quad-tank phys-
ical parameters are listed in Table 1.

Thedescribedplant is a nonlinear system.However,we regulate
it in proximity of a steady state, whose corresponding water levels
are denoted by τ i, i = 1, . . . , 4. As plant outputs, we take the dif-
ferences between the water levels of the two lower tanks with re-
spect to their steady state values: y(t) = [τ1(t) − τ 1, τ2(t) − τ 2]

T .
Similarly, the control inputs are defined as the differences of the
pump voltage levels from the steady state values, denoted by v1
and v2: u(t) = [v1(t)−v1, v2(t)−v2]

T . In all the experiments the
operating point was the one that corresponds to the pump steady
state voltages v1 = 8 V and v2 = 7.25 V. Note that for the selected
values of γ1 and γ2, the plant is MIMO non-minimum phase (see
e.g. Johansson, 2000). Therefore, the plant that is being controlled
exhibits both nonlinear and non-minimumphase behaviors, which
make it a challenging testbed for an adaptive control algorithm.

A sampling time of 8 s was used to control the system. In order
to comply with the physical limitations imposed by the water
pumps, the input amplitude is required to satisfy the following
constraints:
−u
−u


≤ u(t) ≤


u
u


, ∀t,

where u = 2.5V. In addition, in order to prevent any damage to the
setup that may be caused by overflowing the tanks, the following
output constraints are required to be satisfied during the control
experiment:

y(t) ≤


y
y


, ∀t,

where y = 5.2 cm.
Table 1
Physical parameters of the quad-tank system.

Aa (cm2) Ao (cm2) kp (cm3/s V) γ1 γ2

15.52 0.178 3.3 0.3 0.32

Table 2
Design parameters of the controller.

ϵv (cm) ϵd (cm) L µ ρ m α N

0.25 0.35 1.8 2 0.78 12 0.01 18

The initialmodel setF (0) is formedby assuming anupper and a
lower bound on each impulse response coefficient. From the struc-
ture of the system model, it is reasonable to assume the lower
bound on each of the impulse response coefficients to be 0. The
upper bounds are constructed by selecting the same values of the
parameters L, µ and ρ for each input–output pair (see Section 2).
The bounds on the measurement noise and output disturbance are
selected to be equal for both outputs. Table 2 lists the values of
the chosen design parameters. The employed values are identical
for all the input–output pairs. The weighting matrix R is selected
as an identity matrix, Q is selected as 2 times the identity matrix
and S is taken to be a zero matrix. The ratio between the weights
in Q and R reflects the balance between aggressiveness of the con-
trol action, and saving of input energy, as increasing Q results in
a more aggressive control. The bound on the measurement noise
ϵv was determined from sensor readings for constant tank water
levels. The selection of the output disturbance bound ϵd is not so
straightforward, however, unless taken too small or overly conser-
vative, it was not observed to have a significant influence on the
controller performance. The initial plant model was formed by se-
lecting a random nonzero point inside the set F (0).

The model set F (t) is updated according to Algorithm 2, where
the face number limits where chosen as M1 = 200 and M2 = 48.
The set of predefined face directions Dwas constructed by the vec-
tors that form an∞-normball. The adaptive control algorithmwas
implemented in Matlab and run on a laptop with Intel i7-36667U
processor. The Gurobi solver (see Inc Gurobi Optimization, 2013)
was used in order to solve the LPs and the QP required by the algo-
rithm. With this configuration, the maximal execution time of the
algorithm, at each sampling instant, was not greater than 4 s.

The set F (0) was selected quite conservatively, which is illus-
trated in Fig. 2 that compares the initialmodel setwith the impulse
response coefficient values of the nominal model at the end of a
typical experiment. Despite this, the experimental results of Fig. 3
show that good reference tracking is obtained. As predicted by the
theoretical analysis, output constraints are satisfied, also during
the adaptation transient. In addition, the control performance im-
proves over time as more information is gathered and the model
set is reduced. The contraction of the model set over time is illus-
trated by the fact that the gap between the maximal and minimal
values of the outputs, computed by considering all possible plants
in the model set, decreases over time (see e.g. Fig. 3, gray lines).

In order to illustrate the effectiveness of the proposed approach
in satisfying the output constraints, we compare the performance
of the proposed controller with that of a certainty equivalence
adaptive controller, which uses recursive least squares to identify
the nominal model of the plant and a receding horizon optimal
control algorithm similar to (28) in order to control the systemout-
puts. Since this modified algorithm uses only a point estimate of
the plant model, instead of robustly enforcing output constraints,
soft output constraints are used in order to avoid feasibility prob-
lems. Apart from this difference, the same tuning parameters and
initial guess for the plant model were used. The experimental re-
sults obtained with this adaptive controller are shown in Fig. 4. As



Fig. 2. Initial model set F (0) (gray area) compared with the impulse response
coefficients of the nominal model at the end of the experiment. The top left plot
shows the transfer function from u1 to y1 , the top right plot from u2 to y1 , the bottom
left from u1 to y2 and the bottom right from u2 to y2 .

Fig. 3. Experimental results obtained by applying the proposed adaptive control
algorithm to the quad-tank testbed. The desired output references ydes (dashed
black lines) are compared with the measured plant outputs ỹ(t) (solid black lines),
for output y1 (upper plot) and y2 (lower plot). The uncertainty intervals of the
outputs for all the plants in the model set (solid gray lines) are also shown, as well
as the output constraints (solid black lines with ×).

it can be seen, the output constraints are violated during the adap-
tation transient in this case. However, due to a more aggressive
control action in the initial phase, which results in a more infor-
mative collection of input/output data, the adaptation is faster.

On the other hand, in order to robustly satisfy the output con-
straints, the newly proposed adaptive control algorithm introduces
conservativeness during the adaptation transient, since it makes
sure that the outputs of all the plants inside the model set sat-
isfy output constraints. This results in quite cautious control at the
beginning, when the model uncertainty is large. However, as the
uncertainty is reduced, the tracking performance of the controller
improves, as it can be seen in Fig. 3.

7. Conclusion

We proposed an adaptive model predictive control algorithm
for open-loop stable, linear, time invariant MIMO systems subject
to both input and output constraints. The method relies on real-
time SM identification to provide guaranteed bounds on any lin-
ear combination of predicted system outputs. These bounds are
used to design a receding horizon controller able to robustly sat-
isfy output constraints. The proposed adaptive control algorithm
exhibits integral action. It requires the solution of standard convex
programs (LPs andQPs)which are guaranteed to be recursively fea-
sible. We also described the possibility to consider various model
Fig. 4. Experiment results obtained by applying a controller that uses a recursive
least squares point estimate of the plant model to the quad-tank testbed. The
desired output references ydes (dashed black lines) are compared to the measured
plant output ỹ(t) (solid black lines) and the maximal allowed values of the plant
outputs (solid black lines with ×), for output y1 (upper plot) and y2 (lower plot).

parameterizations and to add an active exploring capability.We re-
ported the experimental results obtained by testing the approach
on a non-minimum phase quad-tank system.

Appendix A. Bounds on the unmodeled dynamics

Wedenote the contribution of the unmodeled dynamics to each
of the outputs j by ηj(t), j = 1, . . . , ny, where:

ηj(t) =

nu
i=1

∞
k=m+1

hji(k)ui(t − k).

Since the constraint set of the control input magnitudes is
bounded, the upper bound and the lower bound on each of the con-
trol inputs i = 1, . . . , nu are given by:

ui = max
Cu≤g

ui

ui = min
Cu≤g

ui,
i = 1, . . . , nu.

If, in addition we assume that the bounds on the impulse response
coefficients, given by (5), can be extended to the case of an infinite
impulse response, then the upper bound on the contribution of the
truncated part of the impulse response, |ηj(t)| ≤ ηj, ∀t , is given
by:

ηj =

nu
i=1

max(|ui|, |ui|)Ljiρ
m−µji
ji

ρji

1 − ρji
, j = 1, . . . , ny.

This formula can be used to calculate the joint bounds on the con-
tribution of the output disturbances and the unmodeled dynamics
to the plant outputs in (3).

Appendix B. Definition of the matrices in (15)

We first define thematrixw ∈ Rnu×nu with the following struc-
ture:

w =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ Rm×m.

Based on this, the matrixW is given by:

W =


w 0 · · · 0
0 w · · · 0
...

...
. . .

...
0 0 · · · w

 ∈ Rnum×num,



where 0 denotes the matrix of all zeros with appropriate dimen-
sion. In addition, let z = [1, 0, . . . , 0]T ∈ Rm, the matrix Z is given
as:

Z =


z 0 · · · 0
0 z · · · 0
...

...
. . .

...
0 0 · · · z

 ∈ Rnum×nu .
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