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Abstract

This paper focuses on the performance and the robustness analysis of stochastic jump linear systems. The state trajectory
under stochastic jump process becomes random variables, which brings forth the probability distributions in the system state.
Therefore, we need to adopt a proper metric to measure the system performance with respect to stochastic switching. In
this perspective, Wasserstein metric that assesses the distance between probability density functions is applied to provide the
performance and the robustness analysis. Both the transient and steady-state performance of the systems with given initial
state uncertainties can be measured in this framework. Also, we prove that the convergence of this metric implies the mean
square stability. Overall, this study provides a unifying framework for the performance and the robustness analysis of general
stochastic jump linear systems, but not necessarily Markovian jump process that is commonly used for stochastic switching.
The practical usefulness and efficiency of the proposed method are verified through numerical examples.

Key words: Performance and robustness analysis, stochastic jump linear systems, switched linear systems, Wasserstein
distance.

1 Introduction

A jump linear system is defined as a dynamical system
constructed with a family of linear subsystem dynam-
ics and a switching logic that conduct a switching be-
tween linear subsystems. Over decades, jump linear sys-
tems have attracted a wide range of researches due to
its practical implementations. For instance, jump lin-
ear systems are used for power systems, manufacturing
systems, aerospace systems, networked control systems,
etc. In general, a jump linear system can be divided into
two different categories depending on the switching logic.
One branch is a deterministic switching where the jump
process is deterministically given to the system. The uti-
lization of such deterministic jump linear systems stems
from plant stabilization [18], adaptive control [19], sys-
tem performance [15], and resource-constrained schedul-
ing [2]. In most cases, the system stability has been one of
the major issues to investigate since even stable subsys-
tems make the system unstable by the switching. Hence,
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numerous results have been established for the stability
analysis and the recent literature regarding the stability
of deterministic jump linear systems can be found in [15].
In [15], a sufficient condition for the stability of deter-
ministic jump linear systems is guaranteed by solving
certain linear matrix inequalities (LMIs). Also, the nec-
essary and the sufficient conditions for the stability are
shown via a finite tuple, satisfying a certain condition.

Unlike the deterministic jump linear system, a stochas-
tic jump linear system (SJLS) that is another category of
jump linear systems refers to systems with the stochas-
tic switching process. This type of jump linear systems
is commonly used to represent the randomness in the
switching such as communication delays or packet losses
in the networked control systems [9, 25]. In [9], the net-
worked control system with packet loss was modeled as
an asynchronous dynamical system incorporating both
discrete and continuous dynamics, and its stability was
analysed through Lyapunov techniques. Since then, this
problem has been formulated in a more general setting
by representing the various aspects of communication
uncertainties as Markov chains [3, 17, 26–28]. Stability
analysis in the presence of such uncertainty, has been
performed in the Markov jump linear systems (MJLSs)
framework [11, 13, 24, 25, 29, 30]. Further, the stochas-
tic stability for a class of nonlinear stochastic systems
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with semi-Markovian jump parameters is introduced in
[10, 14]. Most previous literatures, however, have only
dealt with steady-state analysis in terms of system sta-
bility.

Beyond the current literature, this paper has a key con-
tribution for the analysis of a SJLS as follows. Based
on the theory of optimal transport [23], we propose new
probabilistic tools for analysing the performance and the
robustness of SJLSs. Compared to the current literatures
that only guarantees asymptotic performance with a de-
terministic arbitrary initial state condition, our contri-
bution is to develop a unifying framework enabling both
transient and asymptotic performance analysis with un-
certain initial state conditions. The main difficulty deal-
ing with analysis of SJLSs is that the system trajectories
differ from every run due to the random switching. More-
over, the system state becomes random variables with a
probability density function (PDF) even with determin-
istic initial state conditions. Consequently, we need to
adopt a proper metric to measure the performance and
the robustness of SJLSs in the distributional sense. In
this paper, the Wasserstein metric that enables quan-
tification of the uncertainty is employed for the perfor-
mance measure. We prove that the convergence of this
metric implies the mean square stability. To sum up,
this paper provides the robustness analysis tools under
the stochastic jumps with given initial state uncertain-
ties without assuming any structure (e.g. Markov) on
the underlying jump process.

The remainder of this paper is organized as follows. In
Section II, we provide a brief review of the preliminaries.
Section III deals with the performance and the robust-
ness analysis of stochastic jump systems and develops
computationally efficient tools for uncertainty quantifi-
cation. Numerical examples are provided in Section IV,
to illustrate the performance and the robustness analy-
sis results developed in this work. Section V concludes
the paper.

Notation: The set of real and natural numbers are de-
noted by R and N, respectively. Further, N0 , N ∪ {0}.
The symbols tr (·), ⊗, and vec denote the trace of a
square matrix, Kronecker product, and vectorization op-
erators, respectively. The abbreviation m.s. stands for
the convergence in mean-square sense. The notations
P(·) and X ∼ ρ (x) denote the probability and the ran-
dom variable X with PDF ρ (x), respectively. The sym-
bol N (µ,Σ) is used to denote the PDF of a Gaussian
random vector with mean µ and covariance Σ.

2 Preliminaries

Consider a discrete-time jump linear system as follows.

x(k + 1) = Aσk
x(k), k ∈ N0 (1)

where x(k) is the state vector and Aσk
denotes the sys-

tem matrices. σk ∈ M , {1, 2, . . . ,m} stands for the
stochastic jump process, governing the switching among
m different modes of (1).

In this paper, we will consider general stochastic jump
processes σk, and hence σk can be any arbitrary random
process. Then, the resulting dynamics becomes a SJLS
as defined next.

Definition 1 (Stochastic jump linear system) Tu-
ples of the form (π(k), Aσk

(x(k)),M) is termed as a
SJLS, provided the mode dynamics are given by (1); π(k)
denote the time-varying occupation probability vectors for
prescribed stochastic processes σk.

Remark 1 A SJLS, as defined above, is a collection of
modal vector fields and a sequence of mode-occupation
probability vectors. If the jump processes σk is deter-
ministic, then at each time, π(k) will have integral co-
ordinates (single 1 and remaining m− 1 zeroes), result-
ing in a deterministic switching sequence. If, however,
σk is stochastic jump processes, then π(k) will contain
proper fractional co-ordinates, resulting in a randomized
switching sequence where at each time, exactly one out
of m modes will be chosen according to probability π(k).
Thus, starting from a deterministic initial condition,
each execution of the SJLS may result in different switch-
ing sequences corresponding to random sample paths of
σk overM. Every realization of these random switching
sequences results in a trajectory realization on the state
space, and hence repeated the SJLS executions, even with
a fixed initial condition, yields a spatio-temporal evolu-
tion of joint state PDF: ρ (x (k)).

According to the structure that governs the temporal
evolution of π(k), some subsets of the stochastic jump
processes can be listed as follows.

1) i.i.d. jump process:
A SJLS switching sequence is called stationary, if
the occupation probability vector π (k) remains
stationary in time. In particular, a stationary de-
terministic switching sequence implies execution of
a single mode (no switching). A stationary random-
ized switching sequence implies i.i.d. jump process.

2) Markov jump process:
Consider a discrete-time discrete state Markov
chain with mode transition probabilities given by

pij = P (σk+1 = j | σk = i) (2)

where pij ≥ 0, ∀i, j ∈ M. Hence, for k ≥ 0, the
probability distribution π (k) ∈ Rm of the modes
of (1), is governed by

π(k + 1) = π(k)P, π(0) = [π1(0) · · · πm(0)] (3)
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where the transition probability matrix P ∈
Rm×m is a right stochastic matrix with row sum∑m
j=1 pij = 1, ∀i ∈M.

3) semi-Markov jump process:
For a homogeneous and discrete-time semi-Markov
chain, semi-Markov kernel q is defined by

qij(k) = P(σn+1 = j,Xn+1 = k|σn = i) (4)

where Xn denotes the sojourn time in state σn = i.
Note that the transition probability pij in Markov
chain can be expressed in terms of the semi-Markov
kernel by pij =

∑∞
k=0 qij(k).

A SJLS refers to the jump linear system for which jump
process σk is governed by any stochastic probability dis-
tribution π(k). Consequently, a SJLS implies the jump
linear system, where the jump probability distribution
π(k) forms proper fractional numbers with any arbitrary
updating rules for π(k).

3 Performance and Robustness Analysis using
Wasserstein metric

Uncertainties in a SJLS appear at the execution level
due to random switching sequence. Additional uncer-
tainties may stem from imprecise setting of initial con-
ditions and parameter values. These uncertainties man-
ifest as the evolution of ρ (x (k)). Thus, a natural way to
quantify the uncertainty in the performance of a SJLS,
is to compute the “distance” of the instantaneous state
PDF from a reference measure. In particular, if we fix
the reference PDF as Dirac delta function at the origin,
denoted as δ (x), then the time-history of this “distance”
would reveal the rate of convergence (divergence) for the
stable (unstable) SJLS in the distributional sense.

For meaningful inference, the notion of “distance”
must define a metric, and should be computationally
tractable. The choice of the metric is very important as
it must be able to highlight properties of density func-
tions that are important from a dynamical system point
of view. We propose that the shape of the density func-
tions characterizes the dynamics of the system. Regions
of high probability density correspond to high likelihood
of finding the state there, which corresponds to higher
concentration of trajectories. Higher concentration oc-
curs in regions with low time scale dynamics or time
invariance. For example, for a stable system, all trajec-
tories accumulate at the origin and the corresponding
PDF is the Dirac delta function at the origin. Similarly,
low concentration areas indicate fast-scale dynamics or
instability, and the corresponding steady-state density
function is zero in the unstable manifold. Therefore,
behavior of two dynamical systems are identical in the
distribution sense if their state PDFs have identical
shapes. In order to properly capture the above aspects

in dynamical systems, we adopt Wasserstein distance
and details are introduced in the following subsection.

3.1 Wasserstein distance

Definition 2 (Wasserstein distance) Consider the
vectors x1, x2 ∈ Rn. LetP2(ς1, ς2) denote the collection of
all probability measures ς supported on the product space
R2n, having finite second moment, with first marginal ς1
and second marginal ς2. Then the Wasserstein distance of
order 2, denoted asW, between two probability measures
ς1, ς2, is defined as

W(ς1, ς2) , (5)(
inf

ς∈P2(ς1,ς2)

∫
R2n

‖ x1 − x2 ‖2`2(Rn) dς(x1, x2)

) 1
2

.

Remark 2 Intuitively, Wasserstein distance equals the
least amount of work needed to morph one distributional
shape to the other, and can be interpreted as the cost
for Monge-Kantorovich optimal transportation plan [22].
The particular choice of `2 norm with order 2 is moti-
vated in [7]. Further, one can prove (p. 208, [22]) thatW
defines a metric on the manifold of PDFs.

Next, we present new results for system stability in terms
of W and simplifications in its computation.

Proposition 1 If we fix Dirac distribution as the refer-
ence measure, then distributional convergence in Wasser-
stein metric is necessary and sufficient for convergence
in m.s. sense.

Proof. Consider a sequence of n-dimensional joint
PDFs {ρj (x)}∞j=1, that converges to δ (x) in distribu-
tion, i.e., lim

j→∞
W (ρj(x), δ(x)) = 0. From (5), we have

W2 (ρj(x), δ(x)) = inf
ς∈P2(ρj(x),δ(x))

E
[
‖ Xj − 0 ‖2`2(Rn)

]
(6)

= E
[
‖ Xj ‖2`2(Rn)

]
where the random variable Xj ∼ ρj (x), and the last
equality follows from the fact that P2(ρj(x), δ(x)) =
{ρj(x)} ∀ j, thus obviating the infimum. From (6),

lim
j→∞

W (ρj(x), δ(x)) = 0 ⇒ lim
j→∞

E
[
‖ Xj ‖2`2

]
= 0, es-

tablishing distributional convergence to δ(x) ⇒ m.s.
convergence. Conversely, m.s. convergence ⇒ distri-
butional convergence, is well-known [6] and unlike the
other direction, holds for arbitrary reference measure.

�

Proposition 2 (W between multivariate Gaus-
sians [5]) The Wasserstein distance between two multi-
variate Gaussians supported on Rn, with respective joint
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PDFs N (µ1,Σ1) and N (µ2,Σ2), is given by

W (N (µ1,Σ1) ,N (µ2,Σ2)) = (7)√
‖ µ1 − µ2 ‖2`2(Rn) + tr

(
Σ1 + Σ2 − 2

[√
Σ1Σ2

√
Σ1

] 1
2

)
.

Corollary 1 (W between Gaussian and Dirac
PDF) Since we can write δ (x) = lim

µ,Σ→0
N (µ,Σ) (see

e.g., p. 160-161, [8]), it follows from (7) that

W (N (µ,Σ) , δ (x)) =
√
‖ µ ‖2`2(Rn) + tr (Σ). (8)

3.2 Performance and Robustness Analysis for SJLSs

The performance and robustness analysis problem
for the SJLS is stated as follows: given a SJLS
(π (k) , Aσk

(x(k)) ,M), compute and analyse the perfor-

mance history, quantified byW (k) ,W (ρ (x(k)) , δ(x)).
Comparison of W (k) of uncertain systems with that of
a nominal system, quantifies the degradation in system
performance due to system uncertainty.

3.2.1 Uncertainty propagation in SJLSs

The key difficulty here is the propagation of state PDFs
under the stochastic switching and we present a new
algorithm for such computations.

Proposition 3 Given m absolutely continuous random
variables X1, . . . , Xm, with respective cumulative distri-
bution functions (CDFs) Fi (x), and PDFs ρi (x), ∀i ∈

M. Let X , Xi, with probability αi ∈ [0, 1],

m∑
i=1

αi = 1.

Then, the CDF and PDF of X are given by F (x) =
m∑
i=1

αiFi (x), and ρ (x) =

m∑
i=1

αiρi (x).

Proof. F (x) , P (X ≤ x) =

m∑
i=1

P (X = Xi)P (Xi ≤ x)

=

m∑
i=1

αiFi (x), where we have used the law of total

probability. Since each Xi and hence X, is absolutely

continuous, we have ρ (x) =

m∑
i=1

αiρi (x). �

Note that any continuous PDF can be approximated by
a Gaussian mixture PDF in weak sense [20, 21]. There-
fore, we assume the initial PDF for the SJLS to be
m0 components mixture of Gaussian (MoG), given by

ρ0 =

m0∑
j0=1

αj0 N (µj0 ,Σj0),

m0∑
j0=1

αj0 = 1. Then, we have

the following results.

Theorem 1 (A SJLS preserves MoG) Consider
a SJLS

(
π (k) , {Aj}mj=1,M

)
with initial PDF ρ0 =

m0∑
j0=1

αj0 N (µj0 ,Σj0). Then the state PDF at time k,

denoted by ρ (x(k)), is given by

ρ (x(k)) =

m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr (r)

)
αj0N (µjk ,Σjk) (9)

where µjk = A∗jkµj0 , Σjk = A∗jkΣj0A
∗>
jk

and A∗jk ,
1∏
r=k

Ajr = AjkAjk−1
. . . Aj2Aj1 .

Proof. Starting from ρ0 at k = 0, the modal PDF at
time k = 1, is given by

ρj1(x(1)) =

m0∑
j0=1

αj0 N (µj1 ,Σj1) (10)

where j1 = 1, · · · ,m, µj1 = Aj1µj0 , and Σj1 =
Aj1Σj0A

>
j1

, which follows from the fact that linear trans-
formation of an MoG is an equal component MoG with
linearly transformed component means and congruently
transformed component covariances (see Theorem 6
and Corollary 7 in [1]). From Proposition 3, it follows
that the state PDF at k = 1, is

ρ(x(1)) =

m∑
j1=1

m0∑
j0=1

πj1(1)αj0 N (µj1 ,Σj1) (11)

where πj1(1) is the occupation probability for mode j1 at
time k = 1. Notice that (11) is an MoG with mm0 com-
ponent Gaussians. Proceeding likewise from this ρ(x(1)),
we obtain

ρj2(x(2)) =

m∑
j1=1

m0∑
j0=1

πj1(1)αj0 N
(
µj2 ,Σj2

)
(12)

where j2 = 1, . . . ,m, µj2 = (Aj2Aj1)µj0 ,

Σj2 = (Aj2Aj1)Σj0(Aj2Aj1)>,

ρ(x(2)) =

m∑
j2=1

m∑
j1=1

m0∑
j0=1

πj2(2)πj1(1)αj0 N
(
µj2 ,Σj2

)
.

(13)

Continuing with this recursion till time k, we arrive
at (9), which is an MoG with mkm0 components. We
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comment that the expression simplifies for m0 = 1, i.e.
when the initial PDF is Gaussian. �

Remark 3 (Computational complexity) Given an
initial MoG and a SJLS, from Theorem 1, one can in
principle compute the state PDF at any finite time, in
closed form (i.e., an analytical form with a finite num-
ber of well-defined functions). However, since the num-
ber of component Gaussians grows exponentially in time,
the computational complexity in evaluating (9), grows
exponentially, and hence the computation becomes in-
tractable. In the following, we show that the Wasser-
stein based performance analysis can still be performed in
closed form while keeping the computational complexity
constant in time.

3.2.2 Wasserstein computation in SJLSs

For a SJLS, there are no known results to represent the
W distance in closed form. The main computational is-
sue is that even with Gaussian initial PDF, the instanta-
neous state PDF remains no longer Gaussian but rather
MoG, as shown in Theorem 1. This brings forth concerns
for the exponential growth of computational complexity
to obtain ρ(x(k)). To address these concerns, we firstly
introduce a following theorem that enables the Wasser-
stein computation in an analytical form. Then, we fur-
ther show that the exponential growth can be obviated
by the proposed algorihm.

Theorem 2 (W for an m-mode SJLS with Dirac
reference PDF) At any given time k, let the state PDF

for a SJLS be ρ(x) =

m∑
j=1

αjρj(x), x ∈ Rn where ρj(x),

αj, and m are the instantaneous modal PDF, time-
varying occupation probability of mode j, and the number
of individual mixture components, respectively. If we de-
fine W , W

(
ρ (x) , δ(x)

)
, and Wj , W

(
ρj (x) , δ(x)

)
,

then

W =

 m∑
j=1

αjW
2
j

1/2

. (14)

Proof. From (5) and Proposition 3, we have

W 2 =

∫
Rn

‖ x ‖2`2(Rn) ρ(x)dx

=

∫
Rn

‖ x ‖2`2(Rn)

m∑
j=1

αjρj(x)dx

=

m∑
j=1

αj

∫
Rn

‖ x ‖2`2(Rn) ρj(x)dx

=

m∑
j=1

αjW
2
j . (15)

⇒W =

 m∑
j=1

αjW
2
j

1/2

. (16)

�

Theorem 2 provides an analytical solution to compute
the performance and the robustness of the SJLS in terms
of Wasserstein distance. However, expression in (14) still
includes the component-wiseW computation, and hence
the computation becomes intractable shortly due to the
exponential growth of Gaussian components in the state
PDF ρ(x). In order to cope with this problem, we intro-
duce a “Split-and-Merge” algorithm as follows.

1) Merge Step:
For a given MoG ρ(x) at any time k, we can compute the

mean µ̂ and covariance Σ̂ of an MoG by the following
lemma.

Lemma 1 (Mean and covariance of a mixture

PDF) Consider any mixture PDF ρ(x) =

m∑
j=1

αjρj(x),

with component mean-covariance pairs (µj ,Σj), j =

1, . . . ,m. Then, the mean-covariance pair
(
µ̂, Σ̂

)
for the

mixture PDF ρ(x), is given by

µ̂ =

m∑
j=1

αjµj , Σ̂ =

m∑
j=1

αj

(
Σj + (µj − µ̂) (µj − µ̂)

>
)
.

(17)

Proof. We have µ̂ ,
∫
Rn

xρ(x)dx =

∫
Rn

x

m∑
j=1

αj

ρj(x)dx =

m∑
j=1

αj

∫
Rn

xρj(x)dx =

m∑
j=1

αjµj .

On the other hand, Σ̂ , E
[
(x− µ̂) (x− µ̂)

>
]

=

E
[
xx>

]
− µ̂µ̂> =

∫
Rn

xx>
m∑
j=1

αjρj(x)dx − µ̂µ̂> =

m∑
j=1

αj

∫
Rn

(x− µ̂+ µ̂) (x− µ̂+ µ̂)
>
ρj (x) dx − µ̂µ̂> =

m∑
j=1

αj

(
Σj + (µj − µ̂) (µj − µ̂)

>
)

. �

Lemma 1 proves that for any mixture PDF, we can com-

pute the mean µ̂ and covariance Σ̂. From the computed

µ̂(k) and Σ̂(k) at time k, we construct a synthetic Gaus-

sian N (µ̂(k), Σ̂(k)) to merge the state PDF of an MoG
form into a single Gaussian PDF.

5



Fig. 1. Schematic of PDFs propagation for SJLS. Initially, an MoG PDF was given; Upper one shows the exponential growth of
MoG components; Bottom one shows “Split-and-Merge” algorithm and the number of Gaussian components remains constatnt,
which is m modes at most. In this figure, m = 2.

2) Split Step:

Once the synthetic Gaussian N (µ̂(k), Σ̂(k)) is obtained
at time k from “Merge step”, we proceed the propa-
gation of the modal PDF for the next time step along
mode dynamics {Aj}mj=1. Consequently, we havem num-

bers of Gaussian components N (Aj µ̂(k), AjΣ̂(k)A>j ),
j = 1, 2, . . . ,m at time k + 1.

Repeating “Split-and-Merge” algorithm at every time
step as depicted by Fig. 1, linear modal dynamics results
inmmodal Gaussian PDFs (“Split step”). Then, instead
of computing the non-Gaussian SJLS state PDF in an
MoG form, one would construct a synthetic Gaussian

N (µ̂, Σ̂) (“Merge step”) and repeat thereafter.

Although the “Split-and-Merge” algorithm obviate the
need to compute the state PDF ρ(x) where Gaussian
components grow exponentially, the synthetic Gaussian

PDF N (µ̂, Σ̂) does not imply that it can replace ρ(x).
Since ρ(x) expressed in an MoG form have higher mo-
ments other than first and second, the distance between

ρ(x) and δ(x) may differ from that between N (µ̂, Σ̂)
and δ(x). However, most importantly, we address that

W(ρ(x), δ(x)) and W(N (µ̂, Σ̂), δ(x)) are equidistant at
any time k by the following theorem.

Theorem 3 (Equidistance between W and Ŵ )
At any given time k, let the state PDF for an m-

mode SJLS ρ(x(k)), be of the form (9), which we

rewrite as ρ (x(k)) =

m∑
jk=1

m0∑
j0=1

αj0βjkN (µjk ,Σjk),

where βjk ,
m∑

jk−1=1

. . .

m∑
j1=1

(
k∏
r=1

πjr (r)

)
, µjk = A∗jkµj0 ,

Σjk = A∗jkΣj0A
∗>
jk

, and A∗jk ,
1∏
r=k

Ajr . Let the instanta-

neous mean and covariance of the mixture PDF ρ(x(k))

be µ̂(k) and Σ̂(k), respectively. Then, we have

Ŵ (k) = W (k) =

 m∑
jk=1

m0∑
j0=1

αj0βjkW
2
jk

(k)

1/2

,∀k ∈ N0

(18)

where

Ŵ (k) ,W
(
N
(
µ̂(k), Σ̂(k)

)
, δ(x)

)
,

W (k) ,W (ρ (x(k)) , δ(x)) ,

Wjk(k) ,W (N (µjk ,Σjk) , δ(x)) ,

µjk = A∗jkµj0 , Σjk = A∗jkΣj0A
∗>
jk
, ∀k ≥ 1.

Proof. The rightmost equality in (18), follows directly

6



from Theorem 2. Thus, it suffices to prove that Ŵ (k) =(∑m
jk=1

∑m0

j0=1 αj0βjkW
2
jk

(k)
)1/2

.

At time k = 0, the mean and covariance pair (µ̂0, Σ̂0)

of an initial MoG can be computed by (µ̂0, Σ̂0) =(∑m0

j0=1 αj0µj0 ,
∑m0

j0=1(Σj0 + (µj0 − µ̂0)(µj0 − µ̂0)>)
)

from Lemma 1. If we construct a synthetic Gaussian

N (µ̂0, Σ̂0), Wasserstein distance Ŵ at time k = 0 can
be computed by (8) as follows.

Ŵ 2(0)
(8)
=‖ µ̂0 ‖2`2(Rn) +tr(Σ̂0)

(17)
= µ̂>0 µ̂0+

tr

 m0∑
j0=1

αj0

(
Σj0 + (µj0 − µ̂0)(µj0 − µ̂0)>

) . (19)

Since tr(·) is a linear operator, we can expand (19) as

Ŵ 2(0) = µ̂>0 µ̂0 +

m0∑
j0=1

αj0tr (Σj0) + tr

 m0∑
j0=1

αj0µj0µ
>
j0


− tr

 m0∑
j0=1

αj0µj0

 µ̂>0

− tr

µ̂0

 m0∑
j0=1

αj0µj0

>


+ tr
(
µ̂0µ̂

>
0

)
. (20)

Recalling that µ̂0 =
∑m0

j0=1 αj0µj0 and µ̂>0 µ̂0 =

tr
(
µ̂>0 µ̂0

)
= tr

(
µ̂0µ̂

>
0

)
, the first, fourth, fifth and sixth

term in the right-hand-side of (20) cancel out, resulting
in

Ŵ 2(0) =

m0∑
j0=1

αj0 tr
(
µj0µ

>
j0

)
+

m0∑
j0=1

αj0tr (Σj0)

=

m0∑
j0=1

αj0

(
‖ µj0 ‖2`2(Rn) + tr (Σj0)

)
=

m0∑
j0=1

αj0W2
(
N (µj0 ,Σj0), δ(x)

)
=

m0∑
j0=1

αj0W
2
j0(0)

(14)
= W 2(0). (21)

Hence, Ŵ (0) is equidistant with W (0).

At time k = 1, we propagate the modal PDFs

from a synthetic Gaussian N (µ̂0, Σ̂0), which re-

sults in m modal Gaussians N (Aj1 µ̂0, Aj1Σ̂0A
>
j1

),
j1 = 1, 2, . . . ,m during “Split step”, followed by
“Merge step” to obtain a new synthetic Gaussian

N (µ̂1, Σ̂1), where µ̂1 =
∑m
j1=1 πj1(1)Aj1 µ̂0 and Σ̂1 =∑m

j1=1 πj1(1)

(
Aj1Σ̂0A

>
j1

+ (Aj1 µ̂0− µ̂1)(Aj1 µ̂0− µ̂1)>
)

from Lemma 1. Then, Ŵ (1) can be computed by

Ŵ 2(1)
(8)
=‖ µ̂1 ‖2`2(Rn) +tr

(
Σ̂1

)
= µ̂>1 µ̂1 + tr

(
m∑
j1=1

πj1(1)
(
Aj1Σ̂0A

>
j1 +

(
Aj1 µ̂0 − µ̂1)(Aj1 µ̂0 − µ̂1

)>))
.

(22)

By exactly the same procedure in (20), and the term
cancellation, we arrive at

Ŵ 2(1) =

m∑
j1=1

πj1(1)

(
tr
(
Aj1 µ̂0µ̂

>
0 A
>
j1 +Aj1Σ̂0A

>
j1

))
(17)
=

m∑
j1=1

πj1(1)

(
tr

(
Aj1

( m0∑
j0=1

αj0
(
µj0µ

>
j0 + Σj0

))
A>j1

))

=

m∑
j1=1

m0∑
j0=1

πj1(1)αj0

(
‖ µj1 ‖2`2(Rn) +tr

(
Σj1
))

=

m∑
j1=1

m0∑
j0=1

πj1(1)αj0W
2
j1(1)

(14)
= W 2(1) (23)

where µj1 = Aj1µj0 and Σj1 = Aj1Σj0A
>
j1

.

Continuing in this manner, finally we obtain a following
result for any time k.

Ŵ 2(k) =

m∑
jk=1

· · ·
m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr (r)

)
αj0(

‖ µjk ‖2`2(Rn) +tr
(
Σjk
))

=

m∑
jk=1

· · ·
m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr (r)

)
αj0W

2
jk

(k)

(14)
= W 2(k) (24)

where µjk = AjkAjk−1
· · ·Aj1µj0 = A∗jkµj0 ,

Σjk =
(
AjkAjk−1

· · ·Aj1
)
Σj0
(
AjkAjk−1

· · ·Aj1
)>

=

A∗jkΣj0A
∗>
jk

. �

According to Theorem 3, it is unnecessary to propa-
gate the state PDF ρ(x) and to compute W , which is
intractable due to the exponential growth of Gaussian
components. Instead, we can analyse the performance

of the SJLS through Ŵ , since Ŵ is equidistant with W
at all time k. The major advantages of the “Split-and-

Merge” algorithm with Ŵ computation for the perfor-
mance and the robustness analysis can be summarized in

the following sense. Ŵ computation using (8) provides
an analytical solution, which is computationally concise
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and efficient enough. In addition, at any time step, we
only have m mean vectors and covariance matrices to
work with, and hence the scalability problem with an
exponential growth can be avoided.

Remark 4 (Applicability of performance and ro-
bustness measure to general SJLSs) Since the
switching probability π(k) is an independent variable

with regard to Ŵ (k) as described in Theorem 3, we can

compute Ŵ (k) for any SJLSs regardless of the updat-
ing rule for π(k). Once π(k) is computed at time k by
governing recursion equation (i.e., i.i.d., Markov, or
semi-Markov jump process, etc.), the performance and

the robustness for SJLSs are measured by Ŵ (k). As a
consequence, the proposed method for the performance
and robustness measure can be applied to any SJLSs.

4 Numerical Example

Consider the inverted pendulum on cart in Fig. 2 with
parameters described in Table 1. Originally, this example
was introduced in [25] with single communication delay
term τk between sensor and controller.

Table 1
Nomenclature for Inverted Pendulum Dynamics.

Symbol definition Symbol definition

m1 cart mass m2 pendulum mass

L pendulum length x cart position

θ pendulum angle u input force

The system states are x1 = x, x2 = ẋ, x3 = θ, and
x4 = θ̇. We assume that m1 = 1kg, m2 = 0.5kg, L = 1m
with friction-free floor. Later, this example was further
exploited by [29] with two random delays τk and dk
which are sensor-to-controller and controller-to-actuator
delays, respectively. The sets of mode are M(τk) =
{0, 1, 2} and M(dk) = {0, 1}. When the control action
is taken at time k, the controller-to-actuator delay dk is
unknown, but τk and dk−1 are found. Accordingly, con-
troller gain F is dependent on τk and dk−1. Hence, the
linearized closed-loop system model with sampling time
Ts = 0.1 is denoted by

x(k + 1) = Ax(k) +BF (τk, dk−1)x(k − τk − dk)

where

A =


1 0.1 −0.0166 −0.0005

0 1 −0.3374 −0.0166

0 0 1.0996 0.1033

0 0 2.0247 1.0996

 , B =


0.0045

0.0896

−0.0068

−0.1377



Fig. 2. Inverted Pendulum on Cart.

with the controller gain F ’s given in [29]:

F (0, 0) =
[
0.1690 0.8824 19.5824 4.3966

]
F (0, 1) =

[
0.5625 0.6259 24.8814 5.1886

]
F (1, 0) =

[
−0.3076 0.9370 12.0069 5.9910

]
F (1, 1) =

[
−0.0097 0.7109 15.2518 7.3154

]
F (2, 0) =

[
−0.3212 1.0528 11.9330 6.3809

]
F (2, 1) =

[
0.0427 0.8640 16.0874 7.8361

]
.

Therefore, this system has total 6 numbers of closed-loop
dynamics Aσk

with σk ∈ {1, 2, . . . , 6}.

1) Markovian Communication Delays:
We denote the transition probability of sensor-to-
controller and controller-to-actuator delays as λij and
ωrs, respectively. Then, λij and ωrs are defined by

λij = P(τk+1 = j|τk = i), ωrs = P(ωk+1 = s|ωk = r)

where λij , ωrs ≥ 0 and
∑2
j=0 λij = 1,

∑1
s=0 ωrs = 1.

Given individual Markov transition probability matrices

Λ =


0.5 0.5 0

0.3 0.6 0.1

0.3 0.6 0.1

 , Ω =

[
0.2 0.8

0.5 0.5

]

corresponding to λij and ωrs, the Markov transition
probability matrix P for 6 modes MJLS is obtained from
P = Λ ⊗ Ω as in [25]. The switching probability distri-
bution π(k) is updated by the linear recursion equation
π(k + 1) = π(k)P with initial probability distribution
π(0) = [1, 0, 0, 0, 0, 0].

2) i.i.d. Communication Delays:
Although the previous examples in [25,29] assumed that
the communication delays are governed by Markov pro-
cess, we adopt an i.i.d. jump process to manifestly show
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that the proposed methods are also applicable to other
types of SJLSs. In case of i.i.d. jump process, the switch-
ing probability distribution π(k) is stationary, and hence
it does not change over time. We assume that the switch-
ing probabilities πsc and πca are given by

πsc = [0.7, 0.2, 0.1], πca = [0.5, 0.5]

where πsc and πca stand for the switching probabil-
ity distribution with respect to sensor-to-controller and
controller-to-actuator, respectively. Then, the switching
probability π for this inverted pendulum system is given
by π = πsc ⊗ πca.

Differently from [29] where the initial state is deter-
ministically given, we assume that the system con-
tains initial state uncertainties as Gaussian distribu-

tion N (µ(0),Σ(0)) with µ(0) =
[
0, 0, 0.1, 0

]>
and

Σ(0) = 0.252I4×4, where I4×4 denotes 4 × 4 identity
matrix. Moreover, we tested the performance and ro-
bustness of this inverted pendulum system with an
initial MoG PDF, which is given by a bimodal Gaussian
in the following form

ρ(0) =

2∑
j=1

αj(0)N (µj(0),Σj(0))

where α1(0) = 0.5 and α2(0) = 0.5. Mean and covari-
ance for each Gaussian component are given by

µ1(0) =
[
0.5, 0.25, −0.12, 0.05

]>
, Σ1(0) = 0.252I4×4,

µ2(0) =
[
−0.4, 0.35, 0.07, −0.1

]>
, Σ2(0) = 0.32I4×4.

These types of multimodal uncertainties are caused by
various factors such as sensing under interference [4], dis-
tributed sensor networks [12], multitaget tracking prob-
lems [16] and so forth. The bivariate marginal distribu-
tion associated with state x and θ for these Gaussian
and MoG PDF are shown in Fig. 3(a) and Fig. 3(b), re-
spectively.

In Fig. 3(c), the performance and the robustness of
this inverted pendulum system with different stochastic
jump processes and initial state uncertainties are de-

picted via Ŵ computation. For all cases, we know that

the system is m.s. stable from the convergence of Ŵ .
However, the rate of convergence and the performance
show different aspects in the transient time. Among all

cases, Ŵ for i.i.d. jump process with initial MoG PDF

converges fast with small bounce, whereas Ŵ for MJLS
with initial Gaussian PDF slowly converges with large
bounce.

At every time step, the “Split-and-Merge” algorithm,
presented in Section 3.2.2 is used to propagate the state

θ x

(a) Gaussian marginal distr.

θ x

(b) MoG marginal distr.

k

W(k)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2 MJLS, Gaussian
MJLS, MoG
i.i.d., Gaussian
i.i.d., MoG

(c) Wasserstein distance with different stochastic jump
processes and initial PDFs; MJLS with Gaussian (blue
solid), MJLS with MoG (red dashed), i.i.d. with Gaussian
(green triangle), and i.i.d. with MoG (purple cross).

Fig. 3. Simulation Result for Performance and Robustness
Analysis of Inverted Pendulum system with the existence of
both random communication delays and initial state uncer-
tainties.

PDFs. Without using these techniques, it is practically
impossible to propagate density functions and calculate
W (i.e., the Wasserstein distance between actual state
PDF ρ(x) and δ(x)) even for a finite switching modes.
The number of Gaussian components that represents the
state PDF after N time steps is 6N , which soon becomes
computationally intractable. For an m-mode SJLS, the
growth rate ismN . With the implementation of the pro-

posed “Split-and-Merge” algorithm, Ŵ that is equidis-
tant with W was computed effectively and efficiently.
From this example, it is clearly shown that the perfor-
mance and the robustness for general SJLSs can be mea-

sured via Ŵ distance which quantifies the uncertainties.

5 Conclusion

In this paper, we proposed new tools for the performance
and the robustness analysis of stochastic jump linear sys-
tems. With given initial state uncertainties, Wasserstein
distance that compares shapes of PDFs provides a way
to quantify the uncertainties. Since the growth of PDF
components in stochastic jumps is exponential in time,
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we presented a new “Split-and-Merge” algorithm for un-
certainty propagation that scales linearly with the num-
ber of modes in the jump system. This method provides
analytical solutions, while avoiding exponential growth
of PDF components. The proposed methods are appli-
cable not only to Markovian jumps, which is commonly
assumed in the analysis of jump systems, but also to gen-
eral stochastic jump linear systems. We also proved that
mean square stability can be shown with regard to con-
vergence of Wasserstein distance. These results address
both transient and steady-state behavior of stochastic
jump linear systems. The practical usefulness and effi-
ciency of the proposed method are verified by examples.
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