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Abstract

Hypothesis testing methods that do not rely on exact distribution assumptions have been emerging lately. The method of
sign-perturbed sums (SPS) is capable of characterizing confidence regions with exact confidence levels for linear regression
and linear dynamical systems parameter estimation problems if the noise distribution is symmetric. This paper describes a
general family of hypothesis testing methods that have an exact user chosen confidence level based on finite sample count and
without relying on an assumed noise distribution. It is shown that the SPS method belongs to this family and we provide
another hypothesis test for the case where the symmetry assumption is replaced with exchangeability. In the case of linear
regression problems it is shown that the confidence regions are connected, bounded and possibly non-convex sets in both cases.
To highlight the importance of understanding the structure of confidence regions corresponding to such hypothesis tests it
is shown that confidence sets for linear dynamical systems parameter estimates generated using the SPS method can have

non-connected parts, which have far reaching consequences.
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1 Introduction

We use models to describe a wide range of systems and
phenomena. Such models can be derived from prior
knowledge or inferred from measurement data. Param-
eter estimation aims at extracting models from noisy
measurement data under the assumption that the data
was generated by a process from a considered model
class and measurements are contaminated with noise.
Because of the noise, the extracted model will not
match the nominal one that generated the data, but it
should be close to it in some sense. When estimation
is carried out, quantitative information should also be
delivered along with the extracted model, describing
the reliability of the model.

In the case of linear systems parameter estimation we
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know that the distribution of parameters, estimated in
the least squares sense, converges to a Gaussian dis-
tribution under some mild moment conditions on the
noise and an approximate confidence region can be con-
structed based on the limiting distribution. Of course,
the central limit theorem is in the background of this re-
sult. When the amount of data is relatively large consid-
ering the noise levels and the number of estimated pa-
rameters, then the delivered point estimates are rather
precise, the confidence regions are small and they have
an approximately correct confidence level. However, for
small datasets, all of this breaks down; the sample count
is not large enough for the central limit theorem to
take effect. The Gaussian distribution poorly approxi-
mates the distribution of the estimated parameters and
the generated confidence ellipsoids can have a real con-
fidence level arbitrarily far from the required one ([8],
[10)).

There is a growing interest for developing methods that
do not rely on the central limit theorem or on Gaussian
assumptions about the noise ([3], [4], [5], [6], [7]). The
16" IFAC Symposium on System Identification had a
plenary session dedicated to this topic [2]. These proce-
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dures provide means to test a given model, whether it
is the nominal one or not, accepting the nominal model
with user given exact probability. Seldom do these pro-
vide a description of the whole generated confidence
set. This is a problem when the whole confidence region
needs to be visualized or evaluated. ¢ The current paper
describes a wide family of hypothesis testing algorithms
(methods of perturbed datasets) that are not relying
on conservative distribution assumptions. We show that
the method of sign-perturbed sums (SPS), introduced in
[5] and [6], belongs to this family. These methods pro-
vide a hypothesis test for parameters of linear regression
problems, linear dynamical systems and other non-linear
models. The exact confidence level of the SPS hypothe-
sis test was proven in the previously cited papers. Our
interest is in generalizing this algorithm and character-
izing the structure of confidence sets whose characteris-
tic function is the hypothesis test. In order to do this,
we formulate the steps of the SPS method in the general
framework. This formulation will provide helpful insight
into the nature of perturbed datasets methods.

Perturbed dataset methods generate confidence sets for
arbitrary confidence level based on confidence sets corre-
sponding to confidence level 1/2. Properties of these con-
fidence sets are inherited by the derived confidence sets
with other confidence levels. For this reason, we examine
the properties of the 1/2 confidence sets for both linear
regression problems and linear dynamical systems. We
present the conditions required in order to have bounded
confidence sets in the linear regression case. In the dy-
namical systems case we show that the confidence re-
gions can be disconnected, pointing out the fact that
careful analysis of the structure of confidence sets is
needed.

Our contribution is twofold. The first major contribution
of the paper is that, in the footsteps of the SPS method,
we describe the family of perturbed datasets hypothesis
testing methods, which are distribution-free having ex-
act user prescribed confidence level. We describe a per-
turbed dataset hypothesis test that replaces the symme-
try assumption of the SPS method with exchangeabil-
ity [1]. Our second contribution is the precise structural
analysis of the confidence regions corresponding to both
this algorithm and the SPS hypothesis test. While for
linear regression problems these confidence sets are con-
nected and bounded, for dynamical systems parameter
estimation problems they can become non-connected.

The structure of the paper is as follows. We describe the
framework of perturbed datasets methods in Section 2,
where we also show how the SPS method fits into this
framework and what its building blocks are. We high-
light possible modifications in order to create other hy-
pothesis testing algorithms. In Section 3 we illustrate
the potential of the framework by constructing exact
connected confidence sets for linear regression problems
without the symmetry assumption. We illustrate in Sec-

tion 4 that this question is more complex for parameter
estimates of linear dynamical systems by showing that
the SPS method might result in non-connected confi-
dence sets. Concluding remarks are given in Section 5.

2 Perturbed Datasets

The goal of this section is to present a new general frame-
work for hypothesis testing methods similar to the SPS
method. We suppose that the measurements come from
a model

Y = f(6",X,N) (1)
where f is a known mapping, 8* € R™ contains the un-
known parameters of the model, X contains the mea-
sured input, N contains the not measured contaminat-
ing noise and Y contains the measured output values.
Please note, that the dimensions of X, Y and N depend
on the estimation problem at hand.

Assumption 1 (Invertibility with respect to noise)
Based on the selected model parameters 6 and the mea-
surement values X andY , a corresponding noise realiza-
tion is always uniquely determined: 3 f* : Ox X xY —- N
such that

Y = f(6,X,N)= N = f*(6,X,Y)

For ease of notation we introduce the short hand nota-
tion N(0) = f*(0,X,Y).

We want to construct a hypothesis test for a parameter
vector 8 based on values of X and Y.

Let us introduce the common notation D to denote the
input and output dataset. The task is to generate a hy-
pothesis test for a parameter vector 6 without exact
knowledge about the distribution of the disturbances
N. Exact knowledge about the distribution of a ran-
dom variable is needed in order to generate confidence
regions. This random variable will be the ordering of
m independent and identically distributed random vari-
ables Z;, i = 1,...,m defined on an appropriately cho-
sen probability space.

The extra randomness needed to create the variables Z;
is given in a data perturbation setup I.

The abstract steps of the method family are as follows.

i. Generate m different datasets D) (D, ) based on
a random setup I.

ii. Define a performance measure Z and define Z;
as the performance of model 6 on the dataset
DW(D,#).

iii. Create the random variable O which is the (well
defined) ordering of the values Z;.



iv. Define the subset of the m! possible orderings in
which the model 0 is accepted.

If the procedure used to create the datasets D) (D, 6) is
such that there exists a sigma-algebra o for which these
datasets are conditionally independent and identically
distributed conditioned on € = #* and o, then the val-
ues Z; will also be conditionally independent and iden-
tically distributed. If equality between Z; values occurs
with zero probability then every ordering will be equally
probable with probability 1/m!. This allows setting the
confidence level of the confidence set by selecting the
appropriate number of orderings.

The rest of the section consists of two parts. First, we
provide the building blocks of the SPS method in the
perturbed datasets framework (Section 2.1). This helps
to understand the role of these building blocks in the
framework. We continue in Section 2.2 with some general
notes to offer further insight into the capabilities of the
framework.

2.1 Building blocks of the SPS method

In this section we go through the building blocks of
the presented general framework using the SPS method.
The first of these is the procedure used to generate dif-
ferent datasets that are conditionally independent and
identically distributed. The second building block is the
performance measure that is used to evaluate the given
model on these generated datasets. The third one is the
definition of the ordering and the last building block is
the set of accepted orderings.

In case of the SPS method, the data perturbation setup
T" consists of

a) m sign sequences ar(i, k), i = 1,...,m, k =
1,...,n where ar(1l,-) = 1 and ar(i,) = +1 with
equal probability, independently of everything else,
fori=2,...,m.

b) A random permutatlon m of the numbers 1,...,m.
Each permutation is selected with probablhty 1 / m!
and independently of everything else.

i. Generating the perturbed datasets: If § = 0* then
the noise realization N(0) = N(60*) is the actual ran-
dom noise that contaminated the measurements. The
SPS method assumes that the noise has symmetric dis-
tribution around zero. If the sign of these noise values
is changed using a random sign sequence ar(i, k) then
equally probable noise sequences are generated.

Let W; € R™™"™ be defined as the diagonal matrix con-
taining the signs ar(i, k) and let the perturbed noise se-
quences be defined as

N (6,T) = W;N(6) (2)

Note that N(V(9,T) = N () and N(6*) = N
Perturbed datasets can be created using the perturbed
noise realizations as

YO =f0,X,N9) i=1,....m (3)

This means that m independent sign sequences define m
conditionally independent noise sequences. The sigma-
algebra o is generated by the input values X and the
absolute values of the real noise |[Ni|. It is a technical
but important detail that if one of the sign sequences is
chosen to be all-one then the conditional independence
conditioned on o still holds. So the m different datasets
in the case of the SPS method are generated using ran-
dom signs. D (D, 0) contains the input X and the per-
turbed outputs Y (@),

1. The performance measure that is used to evaluate
the model 6 on the generated datasets: In the original
publications [5] [6] this is chosen to be some weighted
norm of the gradient of the quadratic cost function at
model 6§ = 6. The cost function is

T (6) = % [f* (é, X,Y@)rf* (é, X,Y@) (4)

Either the norm of the gradient is taken as it is, or the

estimated covariance matrix is used as the weighting

matrix [5]

0 @ |I?
o (0)

s
where S is either the identity matrix or the estimate of
the covariance matrix belonging to the original problem.

5. Creation of the random ordering O: As the random
sign sequences are discrete random variables, there can
be equal values Z; with non zero probability. In case of
the SPS method the ordering is defined as the order of
the indices corresponding to the decreasing ordering of
the values Z;. If Z; = Z; for some i # j, so the ordering
is not uniquely defined, then their relation is defined by
the position of 7 and j in the random permutation m
given in the setup I'.

We note that the original papers ([5] [6]) describe a dif-
ferent procedure to resolve ties but it is not difficult to
show that the two tie resolution schemes are equivalent.

w. Accepted orderings: Every possible outcome of the
random variable O has probability 1/m!. For a hypothe-
sis test with confidence level ¢ = k/m! we have to select
k different permutations as accepted permutations. If O
turns out to be one of these accepted permutations than
the test accepts 6.



The set of accepted orderings by the SPS method is de-
termined by the rank of Z;, that is the position of 1 in the
ordering O. Since only the position of Z; is used, the res-
olution of the confidence levels is only 1/m. This means
that confidence regions with confidence level 1 — 1/m,
1—-2/m,...,...,1—(m—1)/m are generated. We note
that the resolution can be increased from 1/m to 1/m!
by selecting the accepted orderings individually not just
based on the rank of 1.

2.2  General considerations for the building blocks

This section tries to offer some insight into the possibili-
ties and restrictions offered by hypothesis testing meth-
ods belonging to the perturbed datasets class. We go
through the four building blocks one-by-one comment-
ing on them.

i. Generating the perturbed datasets: Randomness in the
data comes from the noise realization that contaminates
the measurements. In order to generate identically dis-
tributed datasets, a perturbation procedure is needed
that leaves the joint distribution of the noise sequence in-
variant. The more assumptions we have about the noise,
the more possibilities are available for these transforms.
In the case of the SPS method symmetry is assumed,
thus any sign-perturbation is a suitable transformation.
If it is assumed that the noise samples are exchangeable
random variables [1] (i.i.d. for example) then permuta-
tions are suitable transformations. Based on this obser-
vation we present a method in Section 3 which replaces
the symmetry assumption of SPS with exchangeability.
If both symmetry and exchangeability are assumed then
sign-perturbed permutations can be used. The class of
perturbation methods to create identically distributed
datasets grows with the amount of assumptions.

1. The performance measure used to evaluate the given
model # on the generated perturbed datasets presents
an inner controversy of all perturbed datasets methods.
We illustrate this controversy on the SPS method, but
it is easy to see that the same issue is present for every
method belonging to this class.

Remark 2 In order to produce meaningful random vari-
ables Z;, the selected performance measure Z should be
such that it is not invariant under the perturbing trans-
formation used to create the perturbed datasets.

The SPS method assumes symmetry of the noise. When
a point estimate is sought, in such a case, the sensible
choices of cost functions to be minimized are symmetric.
If we think of the least squares method or the predic-
tion error method, these methods minimize a quadratic
function of the errors. Although different cost functions

Jo(i) (+) correspond to each perturbed dataset, these cost
functions have the same value at model 0 that was used

to generate the datasets.

IO =090  vij=1,....m (6)
Of course, the identity Jéi)(e’) = Jg(j)(ﬁ') will usually
not hold if " # 6.

This controversy is inherently part of the perturbed
datasets framework.

1. Creation of the random ordering O: If the perfor-
mance measure and the perturbed datasets guarantee
that P(Z; = Z;) = 0 for i # j then simple ordering of
the Z; values is sufficient. Otherwise a tie resolution is
needed similar to what is shown earlier in the case of the
SPS method.

w. Accepted orderings: Having discussed the other build-
ing blocks, we turn our attention to the selection of ap-
propriate orderings of the Z; variables that we accept. If
the order of the Z;(D, 6) variables turns out to be from
the selected ones, we accept the model 6 to be in the
confidence set. Finding a distribution invariant transfor-
mation and a performance measure that is not invariant
under this transform is usually easy. If we only aim for
the confidence level of the created hypothesis test then
we can select the acceptable orderings any way we want.
If any r = m! — g(m — 1)! orderings are selected, then
the confidence level of the corresponding hypothesis test
will be r/m! =1 — g/m.

If we think about confidence regions for the expected
value of Gaussian random variables with known variance
but unknown mean value, an infinite choice of confidence
regions can be constructed. However, we prefer symmet-
ric confidence regions centred around the average in-
stead of confidence regions of the form (—oo, a] U [b, 00).
The difficult part of all perturbed dataset methods is the
choice of the accepted permutations in a way that the
corresponding confidence regions will be useful.

Among others, hypothesis tests are used in two funda-
mental ways. The first one is when a particular hypothe-
sis is tested and a yes or no answer is expected about the
acceptance. The second one is when the entire confidence
set needs to be evaluated somehow. It is important that
when we judge the level of uncertainty based on a given
set then we should have guarantees that no point outside
that set will pass the hypothesis test. Interval analytic
methods can be used to find arbitrary fine approxima-
tions of the confidence set inside a given initial box (as
given in [9] for the linear regression SPS method). If this
initial box does not contain all components of the confi-
dence region then the resulting approximation will con-
tain no information about this fact, resulting in a bad
approximation of the confidence set. This is why rigor-
ous analysis of the structure of confidence sets belonging
to a given hypothesis test is so important.



3 Dropping the symmetry condition

The SPS method constructs confidence regions for mod-
els assuming that the disturbing noise samples have sym-
metric distribution, not necessary identical. We present
a different method that belongs to the class of perturbed
datasets methods that handles the case where the dis-
turbing noise is an exchangeable sequence of random
variables. Independent and identically distributed vari-
ables belong to this class. Note that the symmetry con-
dition is not needed; it is replaced with exchangeabil-
ity. We only present the method for the linear regression
problem, but it generalizes in a straightforward way to
dynamical systems as well.

The linear regression problem in this situation can be
formalized as
Y =XT0* + N (7)

where X € R™*" ig the matrix of regressors, Y € R" is
the vector of observations and N € R" is a vector of in-
dependent and identically distributed random variables.
It should be emphasized that no moment, symmetry or
centrality conditions are imposed on this distribution.

We consider the linear regression problem (7) with the
assumption that the noise sequence N is a sequence of
exchangeable random variables. Based on this assump-
tion we construct bounded connected confidence regions
for parameter 0. Note, that no moment or symmetry
conditions are imposed on the noise sequence.

3.1 Perturbed dataset building blocks

The SPS method used m random sign sequences to cre-
ate the perturbed noise realizations. In case of exchange-
able noise sequences we use m random permutations of
the noise samples to perturb the data. These m permuta-
tions for generating the noise realizations are denoted by
mi, t = 1,...,m. m is chosen to be the identity permu-
tation, the others are uniformly selected, independently
of everything else. Let P; denote the permutation ma-
trix corresponding to the permutation 7;, so P; is the n
dimensional identity matrix.

The performance measure of model 6 on the perturbed
dataset D (D, ) will be a weighted distance between
0 and the least squares estimate corresponding to
DW(D,h).

If H(i)ldenotes the least squares estimate corresponding

to D (D, #), then

00 = [xxT] 7 xv® = 8)
— [xXT] 7' X(XT0+ B(Y — X76)) = 9)
=0+ [XXT]7' XP(Y — X70) (10)

If the performance measure is defined as the weighted
distance between # and 6V with weighting matrix X X7
then it can be written as

Zi(0,T) = (Y = XT0)TPTXT [XXxT] " X P,(Y — X76)

Note that this weighting is a natural choice as X X7
is the inverse of the estimated covariance matrix corre-
sponding to the estimate 6(*).

The ordering O and the accepted permutations for the
model f are determined the same way as it is done for the
SPS method. For the prescribed confidence level r/m!,
r permutations are chosen such that the position of 1 in
them is as big as possible.

3.2 Structure of confidence sets

This section contains the structural analysis of the con-
fidence regions corresponding to the hypothesis test de-
fined in the previous section.

Definition 3 (Sufficiently exciting input) We say
that the problem input X is sufficiently exciting with
respect to a permutation matriz P if Q > 0 holds, where

Q=xXxX"-xPTX" [xX"]" xPXx"

For the input X to be exciting enough is more restrictive
than in usual linear regression problems. The constant
input X =1,k =1,...,nis not sufficiently exciting for
any permutation matrix as @ = 0 in every case. There
are no permutations that can sufficiently mix this input
matrix. From the perspective of the permutations there
is no input that is sufficiently exciting with respect to
the identity permutation. This condition can be inter-
preted as the input X should be sufficiently exciting in
the regular sense (X X7 is invertible), but additionally
it also required that mixing the regressors along the time
axes should result in a significantly different excitation.

Theorem 4 Let the perturbed noise sequences N (6)
be generated as

NO@,T) = P,N(9) = P(Y — XT0)
and the performance measure be the weighted norm
Zi(0,T) = (Y = XT0)TPIXT [Xx X" X P,(Y — X76)

Out of the m! possible permutations let the r acceptable
permutations be chosen in decreasing order of the position
of 1 until r/m! = .



Under these conditions, the confidence regions charac-
terized by the corresponding perturbed dataset method are
connected, containing the least squares estimate. If the
input X is sufficiently exciting with respect to the m per-
mutations then the confidence regions are also bounded.

Before we prove the theorem, we formalize the ran-
domization property of permutations. The statement
of Lemma 5 immediately follows from the definition of
independence of random variables.

Lemma 5 Let w1 be a fized permutation and 7 be a
uniformly chosen random permutation. Let w3 = mimo
be the permutation obtained by first applying w1 and then
. Under these assumptions ms = 717 s also a uniform
random permutation and it is independent from 7.

Proof. The proof of the exact confidence level goes the
same way as it is done for the SPS method in [6]. The
only difference is that in the case of SPS a key element of
the proof is the randomization property of random signs.
This is exchanged with the randomization property of
random permutations given in Lemma 5.

In order to show that the characterized confidence re-
gions are bounded and connected we prove this for con-
fidence regions with confidence level /2. Sets for general
confidence level are created as a union of intersections
of such sets, preserving this structure. We need to prove
that Z; will outgrow Z; as ||0* — 6|| — oo and we do this
by showing that the difference Z; — Z; — oo. The values
Z; can be written as

Z,= (Y = XT6*)" PTXT [XXT] 7' XP, (Y — XT6*) +
+2(Y — xT09)" PTXT [XXT] 7' XP,XT(0° - 0) +
+ (0" —0)"XPTXT [XxXT] T XPXT(0" - 0)

This means that the limit Z; — Z; — oo as ||0* —0|| — oo
holds if @ > 0, where @ is defined as

Q=xXx7-xP'XT[xx"]7' xPxT  (11)

Using the fact that P, P! = I for all permutation matri-
ces

Q=X (I — PIXT [XPPIXT]) ! XPi) xT  (12)

The term in the middle is the difference of the identity
matrix and a projection matrix defined by P! X7 show-
ing that the eigenvalues of the middle term are 0 or 1.
This shows that ¢ > 0. If the input is sufficiently excit-
ing with respect to P; then @ > 0 also holds.

As the level 1/2 confidence set is characterized by a lower
level set of a convex quadratic function it is always con-
nected and convex.

The least squares estimate is always contained in the
confidence region as Z;(0%,T) = 0, thus it is always
smaller or equal than the other Z; values. O

We note that by appropriately defining sufficient excita-
tion with respect to a random sign sequence a theorem
similar to Theorem 4 can be proven for the SPS method
as well (both with and without using the weighting ma-
trix in the performance measure).

4 Dynamical Systems with SPS

In the previous section we focused our attention on
the structure of confidence sets generated for linear re-
gression problems. We carry out similar analysis of the
method for dynamical systems. A negative result is pre-
sented showing that in case of dynamical systems the
SPS method characterizes non-connected confidence
regions.

Using the derivative of the quadratic cost function as
performance measure proved to be useful in the linear
regression case. That was mainly due to the convexity
of the cost function. We illustrate what kind of prob-
lems can appear if the gradient of a more complex cost
function is used as performance measure. Namely, the
generated confidence regions can become disconnected.

Let us present a situation where the SPS method pro-
duces a non-connected confidence region. The consid-
ered problem is a two parameter output error problem
[10]. The problem is defined with nominal system

912_1

=Ty ¢=09- 01" (13)

G(z71,0)

unit step input starting at ¢ = 0 for n = 7 samples and
noise values

T
N =102 [—2.1 —0.8 —0.3 —0.4 1.0 0.7 1.5} (14)

The used SPS setup is a 1/2 confidence level one, with
the second sign sequence

a(2,.):[1—11—111—1r (15)

and tie order = [1 2].

Fig. 1 shows the connected component of the confidence
region around the prediction error estimate. The interior



of the marked polygon was tested for membership. It is
really tempting to think that the located region is the
entire confidence region.
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Fig. 1. Connected component of the confidence region around
the pem estimate.

It is easy to show that the quadratic prediction error cost
function has an inflection point on the line 5 = 0. By
finding this inflection point and checking its neighbour-
hood, another connected component of the confidence
region can be discovered. The two found connected com-
ponents of the confidence set are presented in Fig. 2.
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Fig. 2. Two connected components of the confidence set.

If we know nothing about the distribution of the noise,
this second connected component cannot be discarded.
Also the models from this second component has noth-
ing to do with the nominal model. This is due to the
fact that every zero of the gradient of the cost function
will be included in the confidence set (local extrema and
inflection points).

This example shows that confidence regions for dynami-
cal systems generated using the SPS method can be dis-
connected, this is an observations that has far reaching
consequences.

First and foremost, we have no guaranties that there are
no other components left undiscovered. Questions about
the volume of the confidence set cannot be answered
without guaranties that the entire set is discovered.

A confidence region should be a concise description of the
possible models so it can be used later on without the en-
tire data record. Without the whole original data record
we are not able to say that the big area around the in-
flection point is negligible. Exploring only the connected
component around the prediction error estimate will re-
sult in a set with confidence level less than what was
prescribed. Suppose that the noise realization is drawn
from Gaussian distribution with variance 0.0004. The
total probability of the noise realizations corresponding
the models in the connected region around the inflection
point is negligible. This can only be seen if the original
dataset is still available.

5 Concluding Remarks

We have presented a general framework that can be used
to generate hypothesis testing methods with exact prob-
ability. Depending on prior assumptions about the noise
distribution, different methods can be defined. If this
prior assumption is symmetry, then the SPS method fits
into the presented frame. To illustrate how other as-
sumptions can be used, we presented a method that re-
lies on the exchangeability property of the noise distri-
bution.

In general, it is not difficult to create hypotheses tests
in the presented framework that have a user prescribed
exact confidence level. The challenging part is to ensure
that the created method will result in confidence regions
that satisfy our needs. We illustrated that the magnitude
of the gradient is not a good choice as a performance
measure when the whole set needs to be discovered, as
it generates disconnected confidence regions. If we want
to create connected approximate confidence regions for
dynamical systems with the SPS method, the connected
component around the prediction error estimate might
be a good choice. It will have lower confidence than the
prescribed level, but usually the difference will be neg-
ligible. For short data records this difference might be
significantly smaller than what would be caused by us-
ing an asymptotic confidence region.

As we used it in Section 3, the appropriately weighted
norm of the difference between the model # and the min-
imizer () of the cost function J;" () corresponding to
the perturbed dataset is also a possible choice to measure
model performance. In the linear regression case this can
always be transformed into a measure using the deriva-
tive of the cost function, but this is no longer true when
the cost function is not quadratic in the parameters. For
parameter estimation of dynamical systems, this mea-
sure is intrinsically different from the measure used in



the SPS method. Analysing the behaviour of this perfor-
mance measure is an intriguing prospect. The member-
ship test in this case would require solution of the estima-
tion problems corresponding to the perturbed datasets,
which is computationally expensive. Also analysing the
structure of the corresponding confidence regions be-
comes much more difficult.

The assumed properties of the noise pretty much deter-
mine the range of possible perturbations (for the two
presented cases there are no other options than the ones
used). As a direct consequence the only really tunable
point of the framework is the performance measure.

Finally, maybe the most important takeaway message of
the presented analysis is that thorough analysis should
be carried out regarding the structure of the confidence
regions corresponding to the chosen performance mea-
sure and the selected orderings that are accepted. If con-
fidence regions are visualized, guaranties are required
that the entire region is shown, otherwise the visual-
ized subset might not have the required exact confidence
level.
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