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Abstract

Almost sure asymptotic stabilization of a discrete-timétsied stochastic system is investigated. Informationtendctive operation
mode of the switched system is assumed to be available faratquurposes only at random time instants. We propose dligta
feedback control framework that utilizes the informatidstasned through mode observations. We first consider the whgre stochastic
properties of mode observation instants are fully known. &itain sufficient asymptotic stabilization conditions e closed-loop
switched stochastic system under our proposed control\Wenthen explore the case where exact knowledge of the sticipasperties
of mode observation instants is not available. We preseet afsalternative stabilization conditions for this casheTesults for both cases
are predicated on the analysis of a sequence-valued prtta@Esencapsulates the stochastic nature of the evolutiactfe operation
mode between mode observation instants. Finally, we detraweghe efficacy of our results with numerical examples.

Key words: Switched stochastic systems; almost sure stabilizatamiom mode observations; missing mode observations;
countable-state Markov processes; renewal processes

1 Introduction active operation mode at all times. Note that for numer-
ous applications the active mode describes the operating
conditions of a physical process and is driven by exter-
nal incidents of stochastic nature. The active mode, hence,
may not be directly measurable and it may not be available

The framework developed for switched stochastic systems
provides accurate characterization of numerous complex
real life processes from physics and engineering fields that ; ‘ :
are subject to randomly occurring incidents such as sud- for contrql purposes at all time instants during the course
den environmental variations or sharp dynamical changes®f OPeration. When the controller does not have access to
(Cassandras and Lygeros, 2006; Yin and Zhu, 2010). Stabi-2"Y mode information, for achieving stabilization one can

lization problem for switched stochastic systems has been'esort to adaptlv_e control frameworks (Nassiri-Toussi and
investigated in many studies (e.g., Ghaoui and Rami (1996), Caines, 1991; Caines and Zhang, 1992; Betal, 2009) or

de Fariaset al. (2000), Fang and Loparo (2002), Costa mode-independentcontrol laws (Vargasl., 2006; Boukas,

al. (2004), Sathanantaat al. (2008), Geromet al. (2009) 2006). On the other hand, if mode information can be ob-
and the references therein.). ' ' served at certain time instants (even if rarely), this infar

tion can be utilized in the control framework. In our ear-
lier work (Cetinkaya and Hayakawa, 2012; Cetinkaya and
Hayakawa, 20113), we investigated stabilization of switched
stochastic systems for the case where @dynpledmode
- information is available for control purposes. Under the as
* This research was supported in part by JSPS Grant-in-Aid for sumption that the active mode periodically observed, we
Scientific Research (A) 26249062 and (C) 25420431, the Aihar proposed a stabilizing feedback control framework that uti
Innovative Mathematical Modelling Project (JSPS) undeR&T lizes the available mode information.

program initiated by CSTP, and Japan Science and Technology

Agency under CREST program. The material in this paper was . o . . . .
partially presented at the 52nd IEEE Conference on Decmiwh  |N practical applications, it would be ideal if the mode in-

Control frameworks developed for switched stochastic sys-
tems often require the availability of information on the

Control, 2013, Firenze, Italy. formation of a switched system is available for control pur-
Email addressesahmet@dsl.mei.titech.ac.jp (Ahmet poses at all time instants or at least periodically. However
Cetinkaya) hayakawa@mei.titech.ac.jp (Tomohisa there are cases where mode information is obtainedrat
Hayakawa ). domtime instants. This situation occurs for example when
! Tel.: +81 3 5734 2762; Fax: +81 3 5734 2762 the mode is sampled at all time instants; however, some of
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the mode samples are randomly lost during communication setting, we present alternative sufficient stabilizationdi-
between mode sampling mechanism and the controller. Ontions which can be used for verifying stability even if the
the other hand, in some applications, the mode has to be dedistribution is not exactly known.

tected, but the detected mode information may not always be

accurate. In this case each mode detection has a confidencghe paper is organized as follows. We provide the notation
level. Mode information with low confidence is discarded. and a review of key results Concerning renewal processes in
As a reSUlt, depending on the confidence level of detection, Section 2. In Section 3, we propose our feedback control
the controller may or may not receive the mode information framework for stabilizing discrete-time switched stodfas

at a particular mode detection instant. In addition, we may systems under randomly available mode information. Then
also take advantage of random sampling for certain casesin Section 4, we present sufficient conditions under which
and observe the mode intentionally at random instants, asour proposed control law guarantees almost sure asymptotic
for such cases control under random sampling provides bet-stapilization. In Section 5, we demonstrate the efficacy of

ter results compared to periodic sampling. Note that random oyr results with two illustrative numerical examples. fipa
sampling has also been used for problems such as signal rejm Section 6 we conclude our paper.

construction and has been shown to have advantages over
regular periodic sampling (see Boy al. (2007), Carlen

and Mendes (2009)). 2 Mathematical Preliminaries

In this paper our goal is to explore the feedback stabiliza-

tion problem for the case where the active operation mode In this section, we provide notation and several definitions
which is modeled as a finite-state Markov chain, is Ob_’concernmg discrete-time stochastic processes. Spdlgifica

served atrandomtime instants. We provide an extended we denote positive and nonnegative integerilandNo, re-

discussion based on our preliminary report (Cetinkaya and spectively. MoreoverR denotes the set of real mfngd@
Hayakawa, 2018). Specifically, we assume that the length GENOtes the set of x 1 real column vectors, anid"*™ de-
of intervals between consecutive mode observation irstant "Otes the set af x m real matrices. We write) " for trans-
are identically distributed independent random variat\és pose,|| - || for the Euclldez_:\n vector norm. We usgﬂ“(l.{)
employ a renewal process to characterize the occurrenced!ESP-Amax(£1)) for the minimum (resp., maximum) eigen-
of random mode observations. This characterization allows Y2lue of the Hermitian matrit/. A functionV : R — Ris
us to also explore periodic mode observations (CetinkayaCalled positive definite i’ (z) > 0, « # 0, andV'(0) = 0.

and Hayakawa, 2012; Cetinkaya and Hayakawa, Bpa3 We represent a finite-length sequence of ordered elements
a special case q1,92: -+ qn DY ¢ = (q1,G2, - .., ¢»). The length (number
' of elements) of the sequenges denoted byg|. The no-

We propose a linear feedback control law with a piecewise- tationsP[] andE[] respectively denote the probability and

constant gain matrix that is switched depending on the value €XPectation on a probability spacg, 7, ) with filtration

of a randomly sampled version of the mode signal. In or- {Fr}ren,- Furthermore, we writé ) : 2 — {0, 1} for the
der to investigate the evolution of the active mode together indicator of the setz € 7, that is, 1j)(w) = 1, w € G,
with its randomly sampled version, we construct a stocbasti andlg(w) =0,w ¢ G.

process that represents sequences of values the mode takes

between random mode observation instants. This sequences 1  piscrete-Time Renewal Processes

valued stochastic process turns out to be a countable-state

Markov chain defined over a set that is composed of all ) ) )
possible mode sequences of finite length. We first analyzeA discrete-time renewal proceqsV (k) € No}ren, With
the probabilistic dynamics of this sequence-valued Markov initial value N (0) = 0 is an.Fy-adapted stochastic counting
chain. Then based on our analysis, we obtain sufficient sta-process defined by (k) £ >, 11, <), Wheret; € Ny,
bilization conditions for the closed-loop switched stostia i € Ny, are random time instants such thgt= 0 andr; £
system under our proposed control framework. These sta-¢;, —¢,_; € N, i € N, are identically distributed independent
bilization conditions let us assess whether the closed-loo random variables with finite expectation (i.&r;] < oo,
system is stable for a given probability distribution foeth  ; ¢ N). Note thatr;, i € N, denote the lengths of intervals
length of intervals between consecutive mode observationi  petween time instants, i € Ny. Furthermore, we usg :
stants. As this probability distribution is not assumeddeéen N — [0, 1] to denote the common distribution of the random
a certain structure, the result presented in this paperlsan a variablesr;, i € N, such that

be considered as a generalization of the result provided in

Cetinkaya and Hayakawa (2011), where stabilization prob- Plr; =1] = p reN. ieN 1)
lem is discussed in continuous time and the random intervals = = * T ’ ’
between mode sampling instants are specifically assumed to
be exponentially disr'zrib%ted. In this pa%er we a)lllso explore where ur € [0,1]. Note thaty . oy ur = 1. Now, let

the case where perfect information regarding the protigbili 7 = >, cny7i- = E[ni](= E[ri], i € N). It follows as
distribution for the length of intervals between conseeuti @ consequence of strong law of large ”Uwgﬁrs f?r renewal

mode observation instants is not available. For this prable processes (see Serfozo (2009)) that;, .., —— = =.



Note that in Section 3, we employ a renewal process to

characterize the occurrences of random mode observations.

2.2 Almost Sure Asymptotic Stability

The zero solutior:(k) = 0 of a stochastic system &most
surely stablef, for all e > 0 andp > 0, there exist®) =
d(e, p) > 0 such that if||z(0)|| < 4, then
Plsup [[z(k)]| > €] < p. ()
keNp

Furthermore, the zero solution(k) = 0 of a stochastic

system isasymptotically stable almost surdfyit is almost

surely stable and

P[lim [l2(k)
—00

0] = 1. 3)

Figure 1. Mode transition diagram fér-(k) € M = {1,2}}ren,

using a transition diagram, which shows possible transstio
between the operation modes of the switched system. Mode
transition diagram for a switched system with two modes is
shown in Figure 1.

In this paper, we assume that the mode signal is an aperiodic,
irreducible Markov chain and has the invariant distribatio
M —[0,1].

3.1 Feedback Control Under Randomly Observed Mode
Information

In this paper, active mode of the switched stochastic system
(4) is assumed to be observed only at random time instants,

In Sections 3 and 4, we investigate almost sure asymptoticwhich we denote byt; € Ny, i € Ny. We assume that

stabilization of a switched stochastic system.

3 Stabilizing Switched Stochastic Systems with Ran-
domly Available Mode Information

In this section, we propose a feedback control framework
for stabilizing a switched stochastic system by using only
the randomly available mode information. Specifically, we
consider the discrete-time switched linear stochastitegys
with M € N number of modes given by

k € N, 4

with the initial conditionsz(0) = zo, 7(0) = rp € M =
{1,2,..., M}, wherez(k) € R" andu(k) € R™ respec-
tively denote the state vector and the control input; furthe
more,A; € R"*" B, € R"*™ ¢ & M, are the subsystem
matrices. The mode signét(k) € M}en, IS assumed to
be anF;-adapted) -state discrete-time Markov chain with
the initial distribution denoted by : M — [0, 1] such that
vr, = landy; =0, i # ro.

We use the matrix® € RM>*M to characterize probability

of transitions between the modes of the switched system.
Specifically,p; ; € [0, 1], which is the(z, j)th entry of the
matrix P, denotes the probability of a transition from made

to modej. Note thaty ~ ;.\, pi,; = 1, i € M. Furthermore,

we usepgf; to denote(i, j)th entry of the matrixP'. Note

thatpgf; € [0,1] is in fact thel-step transition probability
from modei to modej, that is,

p(l) A P

4,J

[r(k+1)=jlr(k)=1], l€No, i,jeM, (5)

1,1 € M, pl(-?j) = 0, 7 # j. Furthermore,

() i,j € M. The mode signal can be represented

Dij = Pij»

to =0and7; £t;, —t;_, € N, i € N, are independent
random variables that are distributed according to a common
distribution i : N — [0,1] for all i € N such that? £

> -enTHr < oo. In this problem setting, the initial mode
informationrq is assumed to be available to the controller,
and a renewal proceqsV(k) € No}ren, is employed for
counting the number of mode observations that are obtained
after the initial time. We assume that the renewal process
{N(k) € No}ken, and the mode signdlr(k) € M}ien,

are mutually independent.

Following our approach in Cetinkaya and Hayakawa (2011),
Cetinkaya and Hayakawa (2012), Cetinkaya and Hayakawa
(2013%), we employ a linear feedback control law with a
‘piecewise-constant’ feedback gain matrix that dependis on
on the obtained mode information. Specifically, we consider
the control law

u(k) = KU(k)x(k), k € Ny, (6)

where{c (k) € M}1en, is the sampled version of the mode
signal defined by

o(k) £ r(tnwy), k€ No. (7)

Note that the sampled mode sighal(k) € M}en, acts as

a switching mechanism for the linear feedback gain, which
remains constant between two consecutive mode observation

instants, that isK, ) = K, for k € [t;, tiy1).

Between two consecutive mode observation instants, the
feedback gairi(, ., stays constant, whereas the active mode
r(-) of the dynamical system (4) may change its value. Sta-
bilization performance under the control law (6) hence de-
pends not only on the length of the intervals between ran-
dom mode observation instants, but also on how the active
mode switches during the intervals.
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Figure 2. Actual mode:(k) and its sampled version(k)

r(-) and its sampled version(-) for a switched stochastic
system withM = 2 modes. In this example, active mode is
observed at time instantg = 0, t; = 2, to = 5, t3 = 6,

ts = 8, .... Note that at mode observation instants actual
mode signatk(-) and its sampled versiar(-) have the same

valued

of the sequence-—

Markov chain

Figure 3.  Transition
discrete-time

diagram
countable-state
{s(i) € S & {(1),(2),(1,1),...}}ien, Over the set of mode

In Figure 2, we show sample paths of the active mode signal Sequences of variable length
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Figure 4. Transition diagram of the sequence-valued dis¢mme

value. However, at the other time instants, sampled modeMarkov chain{s(i) € S £ {(1,1),(1,2), (2,1), (2,2)} }ieno

signal may differ from the actual mode, since between mode

observation instants, system mode may switch.

In order to investigate the evolution of the active mode be-

closed-loop switched stochastic control system (4), (6).

3.2 Probabilistic Dynamics of Mode Sequences

tween consecutive mode observation instants, we construct

a new stochastic proce$s(i) }icn, that takes values from a

The possible values of sequence that the stochastic process

countable set of mode sequences of variable length. Specif-{s(i) },cn, May take are characterized by the set

ically, we define{s(i)}ien, by

S(Z) £ (T‘(ti),T(ti =+ 1), .. 7T(ti+1 — 1)), i € Np, (8)

with ¢;, 4 € Ny, being the random mode observation instants.

By the definition given in (8)s(i) represents the sequence
of values that the active mod¢-) takes between the mode
observation instants andt; ;. Hence s, (), which denotes
the nth element of the sequencéi), represents the value
of the active mode-(-) at time¢; + n — 1. Furthermore,
the value of the sampled mode signsgl) between time
instantst; andt;; is represented by, (i) = r(¢;). Note

Sé{(qlv(IQv"'
gn EM,ne{l,...,7}; ur >0}

2 07)  Pgnignis > 0,me{L, ..., —1};
)

Note that the sequence-valued stochastic profgss};cn,

is a discrete-time Markov chain on the countable state space
represented byS, which contains all possible mode se-
guences for all possible lengths of intervals between anse
utive mode observation instants. For example, consider the
case where the switched system (4) has two modes. Further-
more, suppose that, > 0 for all = € N. In other words,
lengths of intervals between mode observation instants may

that the active mode is observed and becomes available fortake any positive integer value. In this case, the stateespac

control purposes only at time instants i € Ny. Thus,

S = {(1),(2),(1,1),(1,2),...} contains all finite-length

the controller has access only to the observed mode datamode sequences composed of elements flaim= {1,2}.

o(t;) = r(t:), 7 € Ng, which correspond to the first elements
of the sequences(i), i € Ny.

For the sample paths of active mode sign@) and its sam-
pled versionos(-) shown in Figure 2, mode sequences be-
tween mode observation instarits= 0, t; = 2, to = 5,

ts = 6, t4 = 8, are given as(0) = (1,2), s(1) = (2,1, 2),
s(2) = (2), s(3) = (2,1). The key property of the stochas-
tic process{s(i) }.en, is that, a given mode sequene@)
indicates full information of the active mode as well as the
information the controller has during the time interval be-
tween consecutive mode observation instanendt; .

In what follows, we explain the probabilistic dynamics of
the stochastic process(i)};cn, and provide key results
that we will use in Section 4 for analyzing stability of the

See Figure 3 for the transition diagram of countable-state
Markov chain{s(i) € S}en, Of this example.

It is important to note that if the sdtr € N : p, > 0}

has finite number of elements, then sewill also contain
finite number of sequences. In other words, if the lengths
of intervals between mode observation instants have finite
number of possible values, then the number of possible se-
guences is also finite. For example, consider the case where
the operation mode of the switched system, which takes
values from the index seM = {1,2}, is observed pe-
riodically with period 2, that is, u» = 1. In this case,

S ={(1,1),(1,2),(2,1), (2.2)} (see Figure 4).

We now characterize the initial distribution and the state-
transition probabilities of the discrete-time Markov ahai



{s(i) € S}ien, as functions of the initial distribution and
the state-transition probabilities of the mode sighdk) €
M}ren,- Specifically, the initial distributionk : S — [0, 1]
of the Markov chain{s(i) € S}ien, is given by

Ag :Pb@) q)
[UZM|()—mwuﬂﬂﬂ—U:%M
ti=lq| | r(0) =q,....7(lg| = 1) = qiq]]
IP’[T( )=qi,-- (gl =1) =qql, ¢€S.  (10)

Since the mode signdl(k) € M}en, and the mode ob-
servation counting proceg§sV (k) € No}ren, are mutually

by the last element of sequenggto the mode represented

by the first element of the sequengd-urthermore, the ex-
pression]_[lnqlgllpqmqn+1 denotes the joint probability that
the active mode takes the values denoted by the elements of
the sequence until the next mode observation instant.

Since the mode signdlr(k) € M}ren, is aperiodic and
irreducible, mode sequences may start with any of the pos-
sible modes indicated by the index skt = {1,...,M}.
Furthermore, it is possible to reach from any mode sequence
to another mode sequence in a finite number of mode ob-
servations. Hence, the discrete-time Markov ch@gifi) €

S}ien, Is irreducible. In Lemma 3.1 below, we provide the

independent, mode transitions and mode observations occufnyariant distribution for the countable-state discreee

independently. Hence; = 7 is independent of(n) for
everyn € Ny. As a consequence,
Ag = Plts = |ql| P[r(0) = qu, ...,

= P[t1 = |¢]] P[r(0) = 1]
lg|—1

-IIPwm

— {,LLq Hn 1 an n+1> if g1 =70, g€ S,

(gl = 1) = gy

= qnta|r(n —1) = gz]

. (11)
0 otherwise.

Note thats; (0), which is the first element of the first mode
sequencea(0), is equal to the initial mode.

Probability of a transition from a mode sequence S to
another mode sequenges S is given by

pq,q—P[ (2+1)_Q| (i) = Q]a
Plris1 = gl 7(tiv1) = @1, -,
r(tiv1 + gl — 1) = qq | 7 = lal,

r(t) = gyt + g — 1) = q], (12)

fori € Ny. Note thatr; ; is independent of the random vari-
ablesr(n), n € Ny, andr;. Furthermore, given(t;+7,—1),
the random variable(t; ) is conditionally independent of
r(t;),...,r(t; + 7, — 2), andr;. It follows that

Plriy1 = @), r(tiv) =@, - - -,
r(tiy1 +1ql — 1) = qq ‘T(ti +lql —1)= (J|q|}

Pq.q =

=Plr(tiv1) = @ | r(ti + gl — 1) = qq)]P[Tir1 = |q]]
lg|—1
H ]P) z+1 + n - Qn+1|r( i+1 +n— 1) (jn]
lgl—1
= Pqiq, @1 Mg H Pan,an+1s i € Nop. (13)
n=1

Note thatu 4 in (13) represents the probability that length of
L)etween two mode observation instants is equal

the interval
to the length of the sequengewhereag, 4 € [0, 1] rep-
resents the transition probability from the mode represgnt

Markov chain{s(i) € S}ien,. Note that the distribution
¢ : S —[0,1 : 5 — ¢, is calledinvariant distribution

of the Markov chain{s(i) € S}ien, If ¢ = > °,c5 Pipij

j € 8. The invariant distribution for the case whef$econ-
tains only sequences of fixed lendthe N is provided in
Serfozo (2009). In Lemma 3.1, we consider the more gen-
eral case wher& may contain countably infinite number of
sequences of all possible lengths.

Lemma 3.1. Discrete-time Markov chaids(i) € St}ien,
has invariant distributiony : S — [0, 1] : ¢ — ¢4 given by

lgl—1
A
Pq = Tqu g H Pan.ani1r 4E€ S,

n=1

(14)

wherew : M — [0,1] and p; ;, i, € M, respectively
denote the invariant distribution and transition probatids
of the finite-state Markov chaifr (k) € M }xen, -

Proof. We prove this result by showing thap; =
>_qes Papq.q forall g € S. First, by (13) and (14)

lal -1
Z¢qpqq = Zﬂ'qu\q\ H DPan,an+1 pq\q\ ql)
qES qeS
lal -1

Mg H Pan,qny1s
n=1

Now letS, 2 {¢ € S : |¢| = 7}, 7 € N. Note that the set
S, contains all mode sequences of lengthWe rewrite the
sum in (15) to obtain

qES. (15)

lgl—1
Zﬂ-‘h/'b'ﬂ H an7Qn+1 pq\q\,q1
qES
- Z Hr Z T ( H pqn-,qnﬂ)qu.,ql
TEN qES, n=1
- ZMT Z Z 7qu HPQn7‘Zn+1 Par,q- (16)
TEN qrEM q1EM



Note that sincer : M — [0,1] is the invariant distribu-
tion of the finite-state Markov chaifir(k) € M}ren,, it
follows that} ;.\, mip;; = 7, i,j € M. Thus, we have

aneM T4nPan,gnii = Tgnp1r M € {17"'7T - 1}1 and
>, em Ta-Parq = Tg, - As aresult, from (16) we obtain

lg|—1

Zﬂqlu\tﬂ H Pgn gni1 pq\q\ @ ZHTW%

qES TEN

Finally, substituting (17) into (15) yields

lg|—1
Z PqPq,q = Tg: Hq| H Pgn,qnt1 = bg, q€S, (18)
qeS n=1
which completes the proof. O

then the control law (6) with the feedback gain matrix
Ko = Loy R, (21)
guarantees that the zero solutio(k) = 0 of the closed-loop
system (4) and (6) is asymptotically stable almost surely.
Proof. First, we definé/(z) 2 2T Rz, whereR £ R~'. It

follows from (4) and (6) that fok € Ny,

V(z(k+1)) =" (k)(Arg) + BrinyKor) "R

(A ey + Bre)y Kory)z (k). (22)

We setL;, = K;R™', j € M, and use (19) and (22) to

obtain

V(e(k+1)) < Gmy.omV(@(k) < n(k)V(x(0),  (23)

We have now established that the countable-state Markov

chain {s(k) € S}ken, is irreducible and has the invari-
ant distribution¢ : S — [0,1] presented in Lemma 3.1.
Note that the strong law of large numbers (also called
ergodic theorem; see Norris (2009), Serfozo (2009), Dur-
rett (2010)) for discrete-time Markov chains states that
P[limy,— o0 nZk Ogs(k) Yies ®i&i] = 1, for any

& € R, i e S, suchthaty ¢ ¢:]&| < oo. This result for
the countable-state Markov chdin(k) € S}ken, Is crucial

to obtain the main results of Section 4 below. Specifically, By using the definitions of stochastic proces$@s(k)
in our stability analysis we utilize the ergodic theorem for No} and{s(i) € S} we obtain

Markov chains. In the literature, for the stability anatysi 2 *&Mo i€No»
of finite-mode (Bolzerret al,, 2004) and infinite-mode (Li

for & € No, wheren(k) 2 [15_o Crn).o(m): k € N. We will
first show that)(k) — 0 almost surely aé — oo. Note that
n(k) > 0, k € Ny. Then, it follows that

k
= Z In <r(n),cr(n) . (24)
n=0

et al, 2012) discrete-time switched stochastic systems, re- i k

searchers employed ergodic theorem for the Markov chain Inn(k) = Z 0 G (n),o(n) + Z G (n),o(n)

that characterizes the mode signal. In the next section, we n=0 nN=tN (k)

use ergodic theorem for the Markov chain that characterizes N(k)-1 k

the sequence of mode values between consecutive mode Z &y + Z 10 Go(n),0(n)s (25)
observation instants. =0 Nt ()

4 Sufficient Conditions for Almost Sure Asymptotic

A gl
Stabilization whereg, =377 In¢y, 4, ¢ € S.

. 1
In this section, we employ the results presented in Section 3N€Xt in order to evaluatehmkﬁoo % n7(k), note that

to obtain sufficient conditions for almost sure asymptotic limy, o + T Zn Ex In Gy (n),0(n) = 0. Consequently,
stabilization of the closed-loop system (4) under the adntr
law (6). N(k)—
Theorem 4.1. Consider the syvitched linear stochastic sys- klggo k lnn( Z
tem (4). If there exist matriceR > 0, L; € R™*", i € M, =0 N
and scalars(; ; € (0,00), 7, j € M, such that — lim (k) 1
M S @

0> (A;R+ B;L;)"R™!
(AR + BiLy) = G R,

ZMT i Z mpﬁf{” Ing;; <0, (20)

TEN I=114,jeM

i,j €M, (19) It follows from strong law of large numbers for re-

newal processes (Section 2.1) tHaty . % =1
where7 = __y7u-. Furthermore, by the ergodic the—

orem for countable state Markov chains, it follows that



limy, o0 = >0, 55(1 = > ,es Pqéq- Using the invariant
distribution¢ : S — [0, 1] given by (14), we get

. 1
Jim 2 Inn(k)

lq]—1 lq]

== Z Tq1 Mg H Pan,gn+1 Z nCg.q1-

qES

(27)

LetS, £ {g €S : |¢| =7}, 7 € N. Note thatS, contains
all mode sequences of length It follows from (27) that

Jim ()
lgl—1 lq|

== Z Z Ta1 H|q| H Par g1 Z In¢,qu
TGNqGS

= ; Z Hr Z 7TQ1(H an7‘Zn+1) Z In <qm7q1
TEN qeES,

==z Z/‘T Z Z Ty H Pananr1) M Cqpar- (28)
TEN m=1qeS,

Furthermore, letS?] £ {q € S, : q1 = i,q1 = j}. i,j €
M, le{l2,...,

7 — 1}. The setS" contains all mode

sequences of length that have; € M andj € M as the
1st and thdth elements, respectively. We use (5) to obtain

E:ﬂ—ih

T—1
(H an7q”+1) 1n thql
n=1

qES,
Z Z Tqy Hpqn ans1) 10 Cq 0,
i,jEM qGSl ¥
= Z U 1n<77 Z Hp(Zn;Qn+1
i,jEM gesiy n=1
l 1
i,jEM

Substituting (29) into (28) yields

)= 23 d Y wl g (30)

reN  I=11ijEM

1:”;0%1“”

Now, sincer = .\ Tu, < oo, as a result of (20), we
havelimy_, o %ln n(k) < 0. Thus,limg_,o Inn(k) = —oc0
almost surely; furthermoré[lim_,.. n(k) = 0] = 1. In
the following, we first show that the zero solution a&
most surely stableTo this end first note that for ad > 0,
lim,, 00 Psupy,, 7(k) > €] = 0, which implies that for
all e > 0 andp > 0, there exists a positive integé¥ (e, p)

such thafP[sup;~.,, n(k) > €2] < pforn > N(e, p). Equiv-
alently, -

Plsupn(k — 1) > €
k>n

] <p, n>N(ep)+1. (31)

By the definition ofV( ) and (23), we obtaim(k — 1) >

V(z(k)) Amin (R) ||z(k
Va0 2 (@ Tz (O)HQ for all k¥ € N. Hence, it follows
from (31) that, for alk > 0 andp > 0, there exists a positive

integerN (e, p) such that

Amax(R)
Amin(R)
9 Amax (R

Amin (R)

Plsup [lz(k)|| > €
k>n

~—

= Plsup [|lz(k)[|* > ¢
k>n

Amin(R) [lz(k)|*
Amax (R) [|(0)[]?

1) > <p,

= P[sup
k>n

< Plsupn(k
k>n

>e]

n> N(ep)+1. (32)

)\mm

Letd; = T If |z(0)|| < 61, then

Plsup [lz(k)]| > €]

Amax(]:i)
/\min (R)
n > N(e p) + 1.

< Plsup [|z(k)[| > €
k>n

[l2(0)]]

< ps (33)
Now let ¢ £ max{l, max; jeam (i ;}. It follows from
(23) that V(z(k)) < ¢*1V(2(0)) < (VP =IV (x(0))
for all k& € {0,1,...,N(e,p)}. Therefore,|z(k)|? <
N =1 2mxl12(0) 2, and hence, we havgr (k)| <

mm(R
N ()1 532l 1(0) |, for all k € {0,1,..., N(e, p)}.

Furthermore, letd, = e\/E*N(€=P)+1’\;“]i+®. Con-

sequently, if [[z(0)|| < d2, then ||z(k)| < € k €

{0,1,...,N(e p)}, which implies

P k)|| > € =0. 34
[ke{07lrf{§>1<v(€)p)}l\w( ) > ¢ (34)

It follows from (33) and (34) that for ak > 0, p > 0,

Blsup a()| > ¢ = P[{

z(k)|| > €
IO

(k)| > €}]

k)| >
Kel01m N (e.0)} (k)| > €]

+ P (k)| > €]

max
ke{0,1,....N
u { sup
>N (e,p)+1

<P

sup
k>N (e,p)+1

< p, (35)



whenevel|z(0)|| < § £ min(d1, §2), which implies almost
sure stability. As a final step of proving almost sure asymp-
totic stability of the zero solution, we now show (3). First,
note that by (23), we hav® (z(k + 1)) < n(k)V(z(0)),

k € N. Now, sinceP[limy_, . n(k) = 0] = 1, it follows
that P[limy_,oc V(z(k)) = 0] = 1, which implies (3), and
hence the zero solution of the closed-loop system (4), (6) is
asymptotically stable almost surely. O

Theorem 4.1 provides sufficient conditions for almost sure
asymptotic stability of the closed-loop system (4) and (6).
Conditions (19) and (20) of Theorem 4.1 indicate depen-
dence of stabilization performance on subsystem dynam-
ics, mode transition probabilities, and random mode ob-
servations. The effect of mode transitions on the stabiliza
tion is reflected in (19) through the limiting distribution

T : M — [0,1] as well asl-step transition probabilities

pz(ls i,j € M. Furthermore, the effect of random mode ob-
servations is indicated in condition (19) ly: N — [0, 1],
which represents the distribution of the lengths of inteyva

between consecutive mode observation instants.

Remark 4.2. We investigate the stability of the closed-loop
system through the Lyapunov-like function(z) £ 7 Rx
with R = R~!, whereR is a positive-definite matrix that
satisfy (19). The scalag; ; € (0,00) in (19) characterizes
an upper bound on the growth of the Lyapunov-like func-
tion, when the switched system evolves according to dy-
namics of thaeth subsystem and thigh feedback gain. Note
that if ; ; € (0,1) for all 4,5 € M, it is guaranteed that
the Lyapunov-like function will decrease at each time step.
However, we do not requirg; ; € (0,1) for all 7,5 € M.
There may be pairs,j € M such that(; ; > 1, hence
Lyapunov-like functionV(-) may grow whenith subsys-
tem and thejth feedback gain is active. As long &s;,

i,j € M, satisfy (20) the Lyapunov-like is guaranteed to
converge to zero in the long-run (even if it may grow at cer-
tain instants). Note that even though the conditions (29), (

i,j € M, that satisfy (20) and at each iteration we look
for feasible solutions to the linear matrix inequalitie$).3

In Section 5 below, we employ this method and find values
for matricesR € R"*", L; € R™*" i ¢ M, and scalars
G, € (0,00),4,5 € M, that satisfy (19), (20) for a given
discrete-time switched linear system. It is important tteno
that the scalars; ; € (0,),%,j € M, that satisfy (20)
form an unbounded set. Note that this set is smaller than
the entire nonnegative orthant ®M”. However, we still
need to reduce the search spaceof,i,j € M. To this
end, first note that it is harder to find feasible solutions to
linear matrix inequalities given by (36) when the scalars
Gi,j» 4,7 € M, are close to zero. Note also that if there exist a
feasible solution to (36) for certain values®f;,,j € M,

then it is guaranteed that feasible solutions to (36) exist
also forlarger values of¢; ;,,j € M. Therefore, we can
restrict our search space and iterate over large values of
Gi.j» 1, j € M, that satisfy (20), and check feasible solutions
to (36). Specifically, we only iterate ove ;,i,j € M,

that is close to the search space’s boundary identified by

D et D=1 2 jem mpgf;” In ¢;,; = 0. Now note that

in order for (20) to be satisfied, there must exist at least a
pairi, j € M such that}; ; < 1. Since the scalag; ; repre-
sents the stability/instability margin for the dynamicsach
acterized by théth subsystem and thigh feedback gain, we
expect(; ; < 1 for stabilizable modes € M. This further

reduces the search space for our numerical method.

Remark 4.4. Note that conditions (19) and (20) presented
in Theorem 4.1 can also be used for determining almost
sure asymptotic stability of the switched stochastic aantr
system (4), (6) with periodically observed mode informa-
tion. The renewal process characterization presentedsn th
paper in fact encompasses periodic mode observations (ex-
plored previously in Cetinkaya and Hayakawa (2012) and
Cetinkaya and Hayakawa (204)3 as a special case. Specif-
ically, suppose that the mode observation instants arengive
by t; = iT, i € Ny, whereT € N denotes the mode ob-
servation period. Our present framework allows us to char-

allow unstable subsystem-feedback gain pairs, some conseracterize periodic mode observations by setting the distri-

vativeness may still arise due the characterization witblsi
Lyapunov-like function. This conservatism may be reduced
with an alternative approach with multiple Lyapunov-like
functions assigned for each subsystem-feedback gain pairs

Remark 4.3. In order to verify conditions (19) and (20) of
Theorem 4.1, we take an approach similar to the one pre-
sented in Cetinkaya and Hayakawa (2Bl Specifically, we
use Schur complements (see Bernstein (2009)) to transfor
condition (19) into the matrix inequalities

G R AT
Al,] R

0< i,j € M, (36)

)

whereA; ; £ (A;R + B;L;), i,j € M. Note that the in-
equalities (36) are linear iR and L;, i € M. In our nu-
merical method, we iterate over a set of the values; gf

bution 4 : N — [0,1] such thatur = 1 and u, = 0,
7 # T. Note that condition (20) of Theorem 4.1 for this

case reduces ., 3, /v mpy Y In Gji < 0. Further-
more, if the controller has perfect mode information at all
time instants " = 1, henceo (k) = r(k), k € Ny), condi-

tion (20) takes even a simpler form given by the inequality

YiemTilnG i <0.

MRemark 4.5. Condition (20) of Theorem 4.1 has a simpler

form also for the case where the length of intervals between
consecutive mode observation instants are uniformly dis-
tributed over the sefr,, 7, + 1,...,7a} with 7,74 € N
such thaty, < 7. Inthis case the distributign: N — [0, 1]

is given by

1
TH—TL+1’

t

if re{m,n+1,...,7u},
otherwise.

fir 2 (37)

)
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Figure 5. Uniform distribution given by (37) with, = 2 and Figure 6. Distribution given by (38) with = 0.3 for the length
7y = 5 for the length of intervals between consecutive mode of intervals between consecutive mode observation instant

observation instants
(1 —6)!=L. Therefore,
Figure 5 shows the distribution (37) for an example case
1—
Y Y G,

with 71, = 2 andmg = 5.

With (37), condition (20) of Theorem 4.1 reduces to the 7€ I=léjeM

. : T T -1 ©

inequality -7 ST Y, e miply Gy < 0. =Y mmga) Y ol -0) (40)
i,jeM =1

Remark 4.6. Note that our probabilistic characterization of

mode observation instants also allows us to explore the feed | ot 7 2 Y Pl — )71, where P € RM*M

back control problem under missing mode samples. Specif- yanotes the transition probability matrix for the mode
ically, consider the case where the mode is sampled at a”signal {r(k) € M}uen,. Note that the infinite sum
o

time instants; however, some of the mode samples are l0S,"the definition of Z converges, because the eigenval-
during communication between mode sampling mechanismes of the matrix(1 — )P are strictly inside the unit
and the controller. Suppose that the controller receives agicle of the complex plane. By using the formula for

sampled mode data at each time step N with probabil-  geometric series of matrices (Bernstein, 2009), we ob-
ity & € (0,1). In other words, the mode data is lost with {5iy 7 — (I — (1 — 6)P)~'. Furthermore, it follows
probability1 — 6. We investigate this problem by setting ’

from (40) thatd" _ypr D211 > jem Wipz(-,l;l) Ing; =
ZmeM mi(In¢j )z ;, and therefore, wheny : N —
[0,1] is given by (38), condition (20) takes the form
Yijem minGi)zi; < 0, wherez; ; is the (i, j)th entry
of the matrix~.

w2 (1-6)719, reN (38)
Figure 6 shows the distribution (38) with= 0.3.

It turns out that foru, : N — [0, 1] given by (38), the left-  Remark 4.7. Note that in order to check condition (20) of
hand side of condition (20) has a closed-form expression. Theorem 4.1, one needs to have perfect information regard-
Note that by changing the order of summations and using jng the distributiory, : N — [0, 1], according to which the
(38), we can rewrite the left-hand side of (20) as lengths of intervals between consecutive mode observation
instants are distributed. In Theorem 4.8 below, we present

T (1) alternative sufficient stabilization conditions, which dot
Z Hr Z Z TPy NG require exact knowledge @f : N — [0, 1]. Specifically, we
TEN  I=14,jeM consider the case where theode observation instants,
T 3 1 € Ny, satisfy
= > mlnGa) Doy opiy
LIEM TEN =1 Pltiz1 —t; <7] =1, i€ Ny, (41)
o0 o0
= Z mi(InGji) Zp’gfj ! Z Hr where7 € N is a known constant. In this case time instants
i,jEM =1 =l of consecutive mode observations are assumed to be at most
> -1 7 € N steps apart. In other words, if (41) is satisfied, it is
= Z mi(Ingjq) Zpl(-f;l)(l - Z Lr) guaranteed that the length of intervals between consecutiv
i,jEM =1 =1 mode observation instants cannot be larger thanN. It is
) -1 important to note that (41) characterizes a requirement on
= Z mi(In¢; ;) Zpl(fj*” (1- Z(l —-6)7719). the intervals betweemode observation instangd it is not
iGem = = related to mode switches.
(39)
Theorem 4.8. Consider the switched linear stochastic sys-
1 tem (4). Suppose that the mode-transition probability ma-
Note that(1 — 3>} (1 - 0)""10) = (1 9%) = trix P € RM*M possesses only positive real eigenvalues.



If there exist matrices? > 0, L; € R™*" i € M, and As a consequence, for atl < 7 it follows that
scalars7 € N, (; ; € (0,00), i, € M, such that (19), (41),

O<<j,‘_<iia i1j6M7 (42)

(1-1) 17(1— -1 ...
Z Z mip; ;- InG, <0, (43) - D, i, t# G, 4,5 € M. (50)
I=114,jeM T ; . ; o

hold, then the control law (6) with the feedback gain ma-
trix (21) guarantees that the zero solutiaik) = 0 of the

closed-loop system is asymptotically stable almost surely Next, we show that (41)—(43) together with (50) imply (20).
First, letx? 2 1 VI Y i e M.

Proof. The mode signa{r(k) € M}en, is an irreducible It follows that rLim P F s P

and aperiodic Markov chain; therefore, the invariant dis-

tribution 7 : M — [0,1] is also the limiting distribution

(Norris, 2009). Thus, for all, j € M andk € Ny,

o _ N
ol = J P D = =1 =m0 13 S g,
=114,5eM
Now, let p{") € [0,1]*M i € M, denote the row vector _ Z milng 1 Z (-1
3 N 4]

with thejth element given by thestep transition probability
(l) . Note thatp() is the unique solution of the difference

equatlon = Z mi(Ingj )k + Z Z mpz 111@,

i,jEM l 1i4,7e M

pY =p'P, 1eN,, (45) =Y mmGa+ Y S mng
- 7 1,7 j’L

ieEM iEM jeEM, j#i

i,jeEM l 1

with the initial conditionp’) = 1 andp!”) = 0, i # j, L
j € M. Since all the e|genvalues of the mode-transition : =D e 51
probability matrle € RMxM are positive real numbers, tz Z Z TP G (1)

the solutlonp of the difference equation (45) does not
comprise any oscillatory components, arstep transition

probab|I|t|eSp() i,j € M, converge towards their limiting

7.9

valuesmonotonlcallythat is,

=1 4,jEM

Note that by (50), we havel:’. < 0,7 < 7,i # j. It follows

-~
z(l+1) < pz(l27 1€ M, | €Ny, (46) from (42) that, forr < 7,

pz(,l;rl) = pz(lz’ i#7j, i,j €M, leN. (47)

Now note thatfor all,/ M, andr € 1, (In Gy < (nGia)wyhs, 74, i,j € M. (52)

1 (-1 _ 1
- p” —T+1(Z N Z . (48)

=1 =1

Now, since) pz(l) =1,1€ Ny, i € M, we have
By (47), we have)'"") < p7 1€ {1,2,...,7},i,j € M, JEMELI
i # j. Hence, it follows from (48) that

1
Z b 1)§T+1(Z = Zm (-1 D)
F;/ = pl = l
ll () JEZ/\/I jezf\/( =1 7 jGZJ\/ITl 1 J
:T+1Zpl :_ZZ (=1 _ ZZ (=)
1 741 (l . ' . = 17]6./\/1 l 1jeM
:T——|—1 p , TEN, i#]. (49) :g_;zo’ ie M. (53)

10



We use (51)—(53) to obtain

Y Y maling,

I=11,jeM
< Zﬂ'l lngl +Z Z 1n€zz
ieM ieEM jeEM, j#i
+ 3 m(ing) _Z (=1)
i,j€EM =1
= Z T an,i Z HT’J—.
iEM JEM
1< o
+ 3 mlnga)= Y pl Y
i,jEM =
— iz Z wipl(»’lj_l) Ingj:, 77 (54)
T 1=114,jEM
Finally, it follows from (41) and (54) that
S >0 Y mpl Vg
TEN 1=114,jEM
= ZMT Z Z szgl Y Ing,)
TEN l 1i4,57e M
< Z/L‘r Z Z szz(l Y thj,i)- (55)
TN l 14,7 M

Note that (43) and (55) imply (20). Hence, the result follows
from Theorem 4.1. O

Conditions of Theorem 4.8 can be utilized for assessing
stability of a switched stochastic control system, even if
exact knowledge of the distribution : N — [0, 1] is not
available. Note that the requirement on the knowledge of
w: N — [0,1] is relaxed in Theorem 4.8 by imposing
other conditions on the mode-transition probability matri
P e RM*M and the scalarg; ; € (0,00), i,5 € M.

5 lllustrative Numerical Examples

In this section we provide numerical examples to demon-
strate the results presented in this paper.

Example 5.1. Consider the switched stochastic system (4)
with M = 2 modes described by the subsystems matrices

0 1 0 1
Al = A2 = 3
1.6 —0.3 —-0.514
B; = [0, 1]7, andB; = [0, —1]*. The mode signdr(k) €

M £ {1,2}}ren, Of the switched system is assumed to

11
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Figure 7. State trajectory versus time

be an aperiodic and irreducible Markov chain character-
ized by the transition probabilities; » = ps 1 = 0.3 and

p1,1 = p2,2 = 0.7. The invariant distribution fo{r(k) €

M = {1,2}}en, is given bym; = m = 0.5. Moreover,

u : N — [0,1], according to which the lengths of inter-
vals between consecutive mode observation instants are dis
tributed, is assumed to be givenpy = (1-60)""%6, 7 € N,

with 8 = 0.3. In this case, at each time st N, the mode
may be observed with probability= 0.3 (see Remark 4.6).

Note that

- 3.0143 —0.1485

R= , (56)
—0.1485 1.5280

Ly = [-3.5326 0.9608], Ly = [—3.0029 1.8284], and the
scalars¢i 1 = 0.7, (12 = 1.8, (21 = 2, and(a2 = 0.8
satisfy (19) and (20). Now, it follows from Theorem 4.1 that
the proposed control law (6) with feedback gain matrices

Ky = LR~ =[-1.1465 0.5174],
Ky = LyR™ = [-0.9718 1.1021],

(57)
(58)

guarantees almost sure asymptotic stability of the closed-
loop switched stochastic system (4), (6).

Sample paths of the statgk) and the control input(k)
(obtained with initial conditionsz(0) = [1, —1]* and

r(0) = 1) are shown in Figures 7 and 8. Furthermore, Fig-
ure 9 shows a sample path of the actual mode sig(fal

and its sampled version(k). Figures 7-9 indicate that our
proposed control framework guarantees stabilization even
for the case where operation mode of the switched system
is observed only at random time instants.

The control law (6) with feedback gain matrices (57) and
(58) guarantee stabilization of the closed-loop systerh wit
random mode observations characterized by distribution
pr = (1 —6)710 with § = 0.3. Note that for each time
step,d represents the probability of mode information being
available for control purposes. In order to investigate-con
servativeness of our results, we search all values of parame
ter 6 for which the control law (6) with feedback gains (57)
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and (58) achieve stabilization. To this end, first, we search
values off such that there exist a positive-definite matrix
R, and scalars;; ;, i, € M that satisfy conditions (19)
and (20) of Theorem 4.1 with, = K, R and L, = K, R,
where K; and K, are given by (57) and (58). We find that
for parameter value8 < [0.2, 1], conditions (19) and (20)
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._ I I I — - Mode switching instants
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Figure 10. State trajectory versus time

Note that for this example the mode observation instgnts
1 € Ny, satisfy (41) with7 = 5.

In this example, we will utilize Theorem 4.8 for the case
where the upper-bounding constant 5 is known, but the
exact knowledge of the distribution : N — [0,1] is not
available (see Remark 4.8). Specifically, note that

- 2.6465 —0.7851

R= : (59)
—0.7851 1.2568

L; = [-3.5858 0.1413], Ly = [—4.7066 — 0.3329],

Ls = [-3.2532 —0.3601], and the scalarg;; = 0.6,

CLQ = 17, 6173 = 15, <271 = 16, <2_’2 = 07'

Go3 = 2, (31 = 2, (32 = 2, and (33 = 0.5 satisfy

f (19), (42), and (43). Therefore, it follows f_rom Theo-
the case where parameteis inside the rangf).2,1]. On rem 4.8 that the proposed 1contr0| law (6) with feedback
the other hand, through repetitive numerical simulatiops w 9ain matrices LiR [-1.6222 —0.9009)],

observe that the states of the closed-loop system convergdfz = LoR™' = [-2.2794 —1.6888], K3 = LsR~' =
to the origin in fact for a larger range of parameter values [—1.6132 —1.2942], guarantees almost sure asymptotic

are satisfied. Hence Theorem 4.1 guarantees stabilization

(6 € [0.12,1]), which indicate some conservativeness in the
conditions of Theorem 4.1 (see Remark 4.2).

Example 5.2. Consider the switched stochastic system (4)
with M = 3 modes described by the subsystems matrices

0 1 01 0 —1

Al - ) A2 = ) A3 = )
1.5 0.5 105 1.11.2

B, = [O, 1]T, By = [0, O.Q]T, and B; = [O, 07]T The

mode signalr(k) € M = {1,2,3}}ren, Of the switched
system is assumed to be an aperiodic and irreducible Marko
chain characterized by the transition matfxwith entries
Piyi = 0.6, 7 € M, andpm- =0.2,1 }é j, Z,j e M.
The invariant distribution fofr(k) € M £ {1,2,3} }xen,

is given bym = 1y = w3 = % Furthermore, note that
the transition matrixP possesses positive real eigenvalues
0.4 (with algebraic multiplicity2) and 1. The lengths of
intervals between consecutive mode observation instaats a
assumed to be uniformly distributed over the §&t3, 4, 5}
(see Remark 4.5). In other words, the distributionN —

[0, 1] is assumed to be given by (37) with = 2 andry = 5.

12

stability of the closed-loop system (4), (6).

Figures 10 and 11 respectively show sample paths of the state
z(k) and the control input(k) obtained with initial condi-
tionsz(0) = [1, —1]" andr(0) = 1. Furthermore, a sample
path of the actual mode signalk) and its sampled version
o(k) are shownin Figure 12. Asitis indicated in Figures 10—
12, the proposed control framework (6) achieves asymptotic
stabilization of the zero solution. It is important to notet

the feedback gain&’;, K>, and K5 are designed by utiliz-
ing Theorem 4.8 without using information on the distribu-
tion © : N — [0, 1]. Note that Theorem 4.8 requires only
the knowledge of an upper-bounding constamt N for the

Vlength of intervals between consecutive mode observation

instants, instead of the exact knowledgeuafN — [0, 1].

6 Conclusion

We proposed a feedback control framework for stabilization
of switched linear stochastic systems under randomly-avail
able mode information. In this problem setting, informatio
on the active operation mode of the switched system is as-
sumed to be available for control purposes only at random
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Figure 12. Actual mode (k) and sampled mode (k)

time instants. We presented a probabilistic analysis aonce

ing a sequence-valued stochastic process that captures the
evolution of active operation mode between mode observa-
tion instants. We then used the results of this analysis to

obtain sufficient almost sure asymptotic stability corudis
for the zero solution of the closed-loop system.
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