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Abstract

Almost sure asymptotic stabilization of a discrete-time switched stochastic system is investigated. Information on the active operation
mode of the switched system is assumed to be available for control purposes only at random time instants. We propose a stabilizing
feedback control framework that utilizes the information obtained through mode observations. We first consider the case where stochastic
properties of mode observation instants are fully known. Weobtain sufficient asymptotic stabilization conditions forthe closed-loop
switched stochastic system under our proposed control law.We then explore the case where exact knowledge of the stochastic properties
of mode observation instants is not available. We present a set of alternative stabilization conditions for this case. The results for both cases
are predicated on the analysis of a sequence-valued processthat encapsulates the stochastic nature of the evolution ofactive operation
mode between mode observation instants. Finally, we demonstrate the efficacy of our results with numerical examples.

Key words: Switched stochastic systems; almost sure stabilization; random mode observations; missing mode observations;
countable-state Markov processes; renewal processes

1 Introduction

The framework developed for switched stochastic systems
provides accurate characterization of numerous complex
real life processes from physics and engineering fields that
are subject to randomly occurring incidents such as sud-
den environmental variations or sharp dynamical changes
(Cassandras and Lygeros, 2006; Yin and Zhu, 2010). Stabi-
lization problem for switched stochastic systems has been
investigated in many studies (e.g., Ghaoui and Rami (1996),
de Fariaset al. (2000), Fang and Loparo (2002), Costaet
al. (2004), Sathanantanet al. (2008), Geromelet al. (2009)
and the references therein).

Control frameworks developed for switched stochastic sys-
tems often require the availability of information on the
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active operation mode at all times. Note that for numer-
ous applications the active mode describes the operating
conditions of a physical process and is driven by exter-
nal incidents of stochastic nature. The active mode, hence,
may not be directly measurable and it may not be available
for control purposes at all time instants during the course
of operation. When the controller does not have access to
any mode information, for achieving stabilization one can
resort to adaptive control frameworks (Nassiri-Toussi and
Caines, 1991; Caines and Zhang, 1992; Bercuet al., 2009) or
mode-independentcontrol laws (Vargaset al., 2006; Boukas,
2006). On the other hand, if mode information can be ob-
served at certain time instants (even if rarely), this informa-
tion can be utilized in the control framework. In our ear-
lier work (Cetinkaya and Hayakawa, 2012; Cetinkaya and
Hayakawa, 2013b), we investigated stabilization of switched
stochastic systems for the case where onlysampledmode
information is available for control purposes. Under the as-
sumption that the active mode isperiodicallyobserved, we
proposed a stabilizing feedback control framework that uti-
lizes the available mode information.

In practical applications, it would be ideal if the mode in-
formation of a switched system is available for control pur-
poses at all time instants or at least periodically. However,
there are cases where mode information is obtained atran-
dom time instants. This situation occurs for example when
the mode is sampled at all time instants; however, some of
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the mode samples are randomly lost during communication
between mode sampling mechanism and the controller. On
the other hand, in some applications, the mode has to be de-
tected, but the detected mode information may not always be
accurate. In this case each mode detection has a confidence
level. Mode information with low confidence is discarded.
As a result, depending on the confidence level of detection,
the controller may or may not receive the mode information
at a particular mode detection instant. In addition, we may
also take advantage of random sampling for certain cases
and observe the mode intentionally at random instants, as
for such cases control under random sampling provides bet-
ter results compared to periodic sampling. Note that random
sampling has also been used for problems such as signal re-
construction and has been shown to have advantages over
regular periodic sampling (see Boyleet al. (2007), Carlen
and Mendes (2009)).

In this paper our goal is to explore the feedback stabiliza-
tion problem for the case where the active operation mode,
which is modeled as a finite-state Markov chain, is ob-
served atrandom time instants. We provide an extended
discussion based on our preliminary report (Cetinkaya and
Hayakawa, 2013a). Specifically, we assume that the length
of intervals between consecutive mode observation instants
are identically distributed independent random variables. We
employ a renewal process to characterize the occurrences
of random mode observations. This characterization allows
us to also explore periodic mode observations (Cetinkaya
and Hayakawa, 2012; Cetinkaya and Hayakawa, 2013b) as
a special case.

We propose a linear feedback control law with a piecewise-
constant gain matrix that is switched depending on the value
of a randomly sampled version of the mode signal. In or-
der to investigate the evolution of the active mode together
with its randomly sampled version, we construct a stochastic
process that represents sequences of values the mode takes
between random mode observation instants. This sequence-
valued stochastic process turns out to be a countable-state
Markov chain defined over a set that is composed of all
possible mode sequences of finite length. We first analyze
the probabilistic dynamics of this sequence-valued Markov
chain. Then based on our analysis, we obtain sufficient sta-
bilization conditions for the closed-loop switched stochastic
system under our proposed control framework. These sta-
bilization conditions let us assess whether the closed-loop
system is stable for a given probability distribution for the
length of intervals between consecutive mode observation in-
stants. As this probability distribution is not assumed to have
a certain structure, the result presented in this paper can also
be considered as a generalization of the result provided in
Cetinkaya and Hayakawa (2011), where stabilization prob-
lem is discussed in continuous time and the random intervals
between mode sampling instants are specifically assumed to
be exponentially distributed. In this paper we also explore
the case where perfect information regarding the probability
distribution for the length of intervals between consecutive
mode observation instants is not available. For this problem

setting, we present alternative sufficient stabilization condi-
tions which can be used for verifying stability even if the
distribution is not exactly known.

The paper is organized as follows. We provide the notation
and a review of key results concerning renewal processes in
Section 2. In Section 3, we propose our feedback control
framework for stabilizing discrete-time switched stochastic
systems under randomly available mode information. Then
in Section 4, we present sufficient conditions under which
our proposed control law guarantees almost sure asymptotic
stabilization. In Section 5, we demonstrate the efficacy of
our results with two illustrative numerical examples. Finally,
in Section 6 we conclude our paper.

2 Mathematical Preliminaries

In this section, we provide notation and several definitions
concerning discrete-time stochastic processes. Specifically,
we denote positive and nonnegative integers byN andN0, re-
spectively. Moreover,R denotes the set of real numbers,R

n

denotes the set ofn× 1 real column vectors, andRn×m de-
notes the set ofn×m real matrices. We write(·)T for trans-
pose,‖ · ‖ for the Euclidean vector norm. We useλmin(H)
(resp.,λmax(H)) for the minimum (resp., maximum) eigen-
value of the Hermitian matrixH . A functionV : Rn → R is
called positive definite ifV (x) > 0, x 6= 0, andV (0) = 0.
We represent a finite-length sequence of ordered elements
q1, q2, . . . , qn by q = (q1, q2, . . . , qn). The length (number
of elements) of the sequenceq is denoted by|q|. The no-
tationsP[·] andE[·] respectively denote the probability and
expectation on a probability space(Ω,F ,P) with filtration
{Fk}k∈N0 . Furthermore, we write1[G] : Ω → {0, 1} for the
indicator of the setG ∈ F , that is,1[G](ω) = 1, ω ∈ G,
and1[G](ω) = 0, ω /∈ G.

2.1 Discrete-Time Renewal Processes

A discrete-time renewal process{N(k) ∈ N0}k∈N0 with
initial valueN(0) = 0 is anFk-adapted stochastic counting
process defined byN(k) ,

∑

i∈N
1[ti≤k], whereti ∈ N0,

i ∈ N0, are random time instants such thatt0 = 0 andτi ,
ti− ti−1 ∈ N, i ∈ N, are identically distributed independent
random variables with finite expectation (i.e.,E[τi] < ∞,
i ∈ N). Note thatτi, i ∈ N, denote the lengths of intervals
between time instantsti, i ∈ N0. Furthermore, we useµ :
N → [0, 1] to denote the common distribution of the random
variablesτi, i ∈ N, such that

P[τi = τ ] = µτ , τ ∈ N, i ∈ N, (1)

where µτ ∈ [0, 1]. Note that
∑

τ∈N
µτ = 1. Now, let

τ̂ ,
∑

τ∈N
τµτ = E[τ1](= E[τi], i ∈ N). It follows as

a consequence of strong law of large numbers for renewal
processes (see Serfozo (2009)) thatlimk→∞

N(k)
k

= 1
τ̂

.
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Note that in Section 3, we employ a renewal process to
characterize the occurrences of random mode observations.

2.2 Almost Sure Asymptotic Stability

The zero solutionx(k) ≡ 0 of a stochastic system isalmost
surely stableif, for all ǫ > 0 andρ > 0, there existsδ =
δ(ǫ, ρ) > 0 such that if‖x(0)‖ < δ, then

P[ sup
k∈N0

‖x(k)‖ > ǫ] < ρ. (2)

Furthermore, the zero solutionx(k) ≡ 0 of a stochastic
system isasymptotically stable almost surelyif it is almost
surely stable and

P[ lim
k→∞

‖x(k)‖ = 0] = 1. (3)

In Sections 3 and 4, we investigate almost sure asymptotic
stabilization of a switched stochastic system.

3 Stabilizing Switched Stochastic Systems with Ran-
domly Available Mode Information

In this section, we propose a feedback control framework
for stabilizing a switched stochastic system by using only
the randomly available mode information. Specifically, we
consider the discrete-time switched linear stochastic system
with M ∈ N number of modes given by

x(k + 1) = Ar(k)x(k) +Br(k)u(k), k ∈ N0, (4)

with the initial conditionsx(0) = x0, r(0) = r0 ∈ M ,

{1, 2, . . . ,M}, wherex(k) ∈ R
n andu(k) ∈ R

m respec-
tively denote the state vector and the control input; further-
more,Ai ∈ R

n×n, Bi ∈ R
n×m, i ∈ M, are the subsystem

matrices. The mode signal{r(k) ∈ M}k∈N0 is assumed to
be anFk-adapted,M -state discrete-time Markov chain with
the initial distribution denoted byν : M → [0, 1] such that
νr0 = 1 andνi = 0, i 6= r0.

We use the matrixP ∈ R
M×M to characterize probability

of transitions between the modes of the switched system.
Specifically,pi,j ∈ [0, 1], which is the(i, j)th entry of the
matrixP , denotes the probability of a transition from modei
to modej. Note that

∑

j∈M pi,j = 1, i ∈ M. Furthermore,

we usep(l)i,j to denote(i, j)th entry of the matrixP l. Note

that p(l)i,j ∈ [0, 1] is in fact thel-step transition probability
from modei to modej, that is,

p
(l)
i,j , P[r(k + l) = j|r(k) = i], l ∈ N0, i, j ∈ M, (5)

with p
(0)
i,i = 1, i ∈ M, p(0)i,j = 0, i 6= j. Furthermore,

p
(1)
i,j = pi,j, i, j ∈ M. The mode signal can be represented

Figure 1. Mode transition diagram for{r(k) ∈ M , {1, 2}}k∈N0

using a transition diagram, which shows possible transitions
between the operation modes of the switched system. Mode
transition diagram for a switched system with two modes is
shown in Figure 1.

In this paper, we assume that the mode signal is an aperiodic,
irreducible Markov chain and has the invariant distribution
π : M → [0, 1].

3.1 Feedback Control Under Randomly Observed Mode
Information

In this paper, active mode of the switched stochastic system
(4) is assumed to be observed only at random time instants,
which we denote byti ∈ N0, i ∈ N0. We assume that
t0 = 0 and τi , ti − ti−1 ∈ N, i ∈ N, are independent
random variables that are distributed according to a common
distributionµ : N → [0, 1] for all i ∈ N such thatτ̂ ,
∑

τ∈N
τµτ < ∞. In this problem setting, the initial mode

informationr0 is assumed to be available to the controller,
and a renewal process{N(k) ∈ N0}k∈N0 is employed for
counting the number of mode observations that are obtained
after the initial time. We assume that the renewal process
{N(k) ∈ N0}k∈N0 and the mode signal{r(k) ∈ M}k∈N0

are mutually independent.

Following our approach in Cetinkaya and Hayakawa (2011),
Cetinkaya and Hayakawa (2012), Cetinkaya and Hayakawa
(2013b), we employ a linear feedback control law with a
‘piecewise-constant’ feedback gain matrix that depends only
on the obtained mode information. Specifically, we consider
the control law

u(k) = Kσ(k)x(k), k ∈ N0, (6)

where{σ(k) ∈ M}k∈N0 is the sampled version of the mode
signal defined by

σ(k) , r(tN(k)), k ∈ N0. (7)

Note that the sampled mode signal{σ(k) ∈ M}k∈N0 acts as
a switching mechanism for the linear feedback gain, which
remains constant between two consecutive mode observation
instants, that is,Kσ(k) = Kr(ti) for k ∈ [ti, ti+1).

Between two consecutive mode observation instants, the
feedback gainKσ(·) stays constant, whereas the active mode
r(·) of the dynamical system (4) may change its value. Sta-
bilization performance under the control law (6) hence de-
pends not only on the length of the intervals between ran-
dom mode observation instants, but also on how the active
mode switches during the intervals.

3



Figure 2. Actual moder(k) and its sampled versionσ(k)

In Figure 2, we show sample paths of the active mode signal
r(·) and its sampled versionσ(·) for a switched stochastic
system withM = 2 modes. In this example, active mode is
observed at time instantst0 = 0, t1 = 2, t2 = 5, t3 = 6,
t4 = 8, . . .. Note that at mode observation instants actual
mode signalr(·) and its sampled versionσ(·) have the same
value. However, at the other time instants, sampled mode
signal may differ from the actual mode, since between mode
observation instants, system mode may switch.

In order to investigate the evolution of the active mode be-
tween consecutive mode observation instants, we construct
a new stochastic process{s(i)}i∈N0 that takes values from a
countable set of mode sequences of variable length. Specif-
ically, we define{s(i)}i∈N0 by

s(i) ,
(

r(ti), r(ti + 1), . . . , r(ti+1 − 1)
)

, i ∈ N0, (8)

with ti, i ∈ N0, being the random mode observation instants.
By the definition given in (8),s(i) represents the sequence
of values that the active moder(·) takes between the mode
observation instantsti andti+1. Hence,sn(i), which denotes
the nth element of the sequences(i), represents the value
of the active moder(·) at time ti + n − 1. Furthermore,
the value of the sampled mode signalσ(·) between time
instantsti and ti+1 is represented bys1(i) = r(ti). Note
that the active mode is observed and becomes available for
control purposes only at time instantsti, i ∈ N0. Thus,
the controller has access only to the observed mode data
σ(ti) = r(ti), i ∈ N0, which correspond to the first elements
of the sequencess(i), i ∈ N0.

For the sample paths of active mode signalr(·) and its sam-
pled versionσ(·) shown in Figure 2, mode sequences be-
tween mode observation instantst0 = 0, t1 = 2, t2 = 5,
t3 = 6, t4 = 8, are given ass(0) = (1, 2), s(1) = (2, 1, 2),
s(2) = (2), s(3) = (2, 1). The key property of the stochas-
tic process{s(i)}i∈N0 is that, a given mode sequences(i)
indicates full information of the active mode as well as the
information the controller has during the time interval be-
tween consecutive mode observation instantsti andti+1.

In what follows, we explain the probabilistic dynamics of
the stochastic process{s(i)}i∈N0 and provide key results
that we will use in Section 4 for analyzing stability of the

Figure 3. Transition diagram of the sequence–
valued discrete-time countable-state Markov chain
{s(i) ∈ S , {(1), (2), (1, 1), . . .}}i∈N0 over the set of mode
sequences of variable length

Figure 4. Transition diagram of the sequence-valued discrete-time
Markov chain{s(i) ∈ S , {(1, 1), (1, 2), (2, 1), (2, 2)}}i∈N0

closed-loop switched stochastic control system (4), (6).

3.2 Probabilistic Dynamics of Mode Sequences

The possible values of sequence that the stochastic process
{s(i)}i∈N0 may take are characterized by the set

S , {(q1, q2, . . . , qτ ) : pqn,qn+1 > 0, n ∈ {1, . . . , τ − 1};

qn ∈ M, n ∈ {1, . . . , τ}; µτ > 0}. (9)

Note that the sequence-valued stochastic process{s(i)}i∈N0

is a discrete-time Markov chain on the countable state space
represented byS, which contains all possible mode se-
quences for all possible lengths of intervals between consec-
utive mode observation instants. For example, consider the
case where the switched system (4) has two modes. Further-
more, suppose thatµτ > 0 for all τ ∈ N. In other words,
lengths of intervals between mode observation instants may
take any positive integer value. In this case, the state space
S = {(1), (2), (1, 1), (1, 2), . . .} contains all finite-length
mode sequences composed of elements fromM = {1, 2}.
See Figure 3 for the transition diagram of countable-state
Markov chain{s(i) ∈ S}i∈N0 of this example.

It is important to note that if the set{τ ∈ N : µτ > 0}
has finite number of elements, then setS will also contain
finite number of sequences. In other words, if the lengths
of intervals between mode observation instants have finite
number of possible values, then the number of possible se-
quences is also finite. For example, consider the case where
the operation mode of the switched system, which takes
values from the index setM = {1, 2}, is observed pe-
riodically with period 2, that is, µ2 = 1. In this case,
S = {(1, 1), (1, 2), (2, 1), (2, 2)} (see Figure 4).

We now characterize the initial distribution and the state-
transition probabilities of the discrete-time Markov chain

4



{s(i) ∈ S}i∈N0 as functions of the initial distribution and
the state-transition probabilities of the mode signal{r(k) ∈
M}k∈N0 . Specifically, the initial distributionλ : S → [0, 1]
of the Markov chain{s(i) ∈ S}i∈N0 is given by

λq = P[s(0) = q]

= P[t1 = |q|, r(0) = q1, . . . , r(|q| − 1) = q|q|]

= P[t1 = |q|
∣

∣ r(0) = q1, . . . , r(|q| − 1) = q|q|]

· P[r(0) = q1, . . . , r(|q| − 1) = q|q|], q ∈ S. (10)

Since the mode signal{r(k) ∈ M}k∈N0 and the mode ob-
servation counting process{N(k) ∈ N0}k∈N0 are mutually
independent, mode transitions and mode observations occur
independently. Hence,t1 = τ1 is independent ofr(n) for
everyn ∈ N0. As a consequence,

λq = P[t1 = |q|]P[r(0) = q1, . . . , r(|q| − 1) = q|q|]

= P[t1 = |q|]P[r(0) = q1]

·

|q|−1
∏

n=1

P[r(n) = qn+1|r(n − 1) = qn]

=

{

µ|q|

∏|q|−1
n=1 pqn,qn+1 , if q1 = r0, q ∈ S,

0, otherwise.
(11)

Note thats1(0), which is the first element of the first mode
sequences(0), is equal to the initial moder0.

Probability of a transition from a mode sequenceq ∈ S to
another mode sequenceq̄ ∈ S is given by

ρq,q̄ = P[s(i+ 1) = q̄|s(i) = q],

= P
[

τi+1 = |q̄|, r(ti+1) = q̄1, . . . ,

r(ti+1 + |q̄| − 1) = q̄|q̄|
∣

∣ τi = |q|,

r(ti) = q1, . . . , r(ti + |q| − 1) = q|q|
]

, (12)

for i ∈ N0. Note thatτi+1 is independent of the random vari-
ablesr(n), n ∈ N0, andτi. Furthermore, givenr(ti+τi−1),
the random variabler(ti+1) is conditionally independent of
r(ti), . . . , r(ti + τi − 2), andτi. It follows that

ρq,q̄ = P
[

τi+1 = |q̄|, r(ti+1) = q̄1, . . . ,

r(ti+1 + |q̄| − 1) = q̄|q̄|
∣

∣ r(ti + |q| − 1) = q|q|
]

= P[r(ti+1) = q̄1 | r(ti + |q| − 1) = q|q|]P[τi+1 = |q̄|]

·

|q̄|−1
∏

n=1

P[r(ti+1 + n) = q̄n+1|r(ti+1 + n− 1) = q̄n]

= pq|q|,q̄1 µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1 , i ∈ N0. (13)

Note thatµ|q̄| in (13) represents the probability that length of
the interval between two mode observation instants is equal
to the length of the sequenceq̄, whereaspq|q|,q̄1 ∈ [0, 1] rep-
resents the transition probability from the mode represented

by the last element of sequenceq, to the mode represented
by the first element of the sequenceq̄. Furthermore, the ex-
pression

∏|q̄|−1
n=1 pq̄n,q̄n+1 denotes the joint probability that

the active mode takes the values denoted by the elements of
the sequencēq until the next mode observation instant.

Since the mode signal{r(k) ∈ M}k∈N0 is aperiodic and
irreducible, mode sequences may start with any of the pos-
sible modes indicated by the index setM = {1, . . . ,M}.
Furthermore, it is possible to reach from any mode sequence
to another mode sequence in a finite number of mode ob-
servations. Hence, the discrete-time Markov chain{s(i) ∈
S}i∈N0 is irreducible. In Lemma 3.1 below, we provide the
invariant distribution for the countable-state discrete-time
Markov chain{s(i) ∈ S}i∈N0 . Note that the distribution
φ : S → [0, 1] : j 7→ φj is called invariant distribution
of the Markov chain{s(i) ∈ S}i∈N0 if φj =

∑

i∈S φiρi,j ,
j ∈ S. The invariant distribution for the case whereS con-
tains only sequences of fixed lengthT ∈ N is provided in
Serfozo (2009). In Lemma 3.1, we consider the more gen-
eral case whereS may contain countably infinite number of
sequences of all possible lengths.

Lemma 3.1. Discrete-time Markov chain{s(i) ∈ S}i∈N0

has invariant distributionφ : S → [0, 1] : q 7→ φq given by

φq , πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1 , q ∈ S, (14)

whereπ : M → [0, 1] and pi,j , i, j ∈ M, respectively
denote the invariant distribution and transition probabilities
of the finite-state Markov chain{r(k) ∈ M}k∈N0 .

Proof. We prove this result by showing thatφq̄ =
∑

q∈S φqρq,q̄, for all q̄ ∈ S. First, by (13) and (14)

∑

q∈S

φqρq,q̄ =
(

∑

q∈S

πq1µ|q|

(

|q|−1
∏

n=1

pqn,qn+1

)

pq|q|,q̄1
)

· µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1 , q̄ ∈ S. (15)

Now let Sτ , {q ∈ S : |q| = τ}, τ ∈ N. Note that the set
Sτ contains all mode sequences of lengthτ . We rewrite the
sum in (15) to obtain

∑

q∈S

πq1µ|q|

(

|q|−1
∏

n=1

pqn,qn+1

)

pq|q|,q̄1

=
∑

τ∈N

µτ

∑

q∈Sτ

πq1

(

τ−1
∏

n=1

pqn,qn+1

)

pqτ ,q̄1

=
∑

τ∈N

µτ

∑

qτ∈M

· · ·
∑

q1∈M

πq1

(

τ−1
∏

n=1

pqn,qn+1

)

pqτ ,q̄1 . (16)
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Note that sinceπ : M → [0, 1] is the invariant distribu-
tion of the finite-state Markov chain{r(k) ∈ M}k∈N0 , it
follows that

∑

i∈M πipi,j = πj , i, j ∈ M. Thus, we have
∑

qn∈M πqnpqn,qn+1 = πqn+1 , n ∈ {1, . . . , τ − 1}, and
∑

qτ∈M πqτ pqτ ,q̄1 = πq̄1 . As a result, from (16) we obtain

∑

q∈S

πq1µ|q|

(

|q|−1
∏

n=1

pqn,qn+1

)

pq|q| ,q̄1 =
∑

τ∈N

µτπq̄1

= πq̄1 . (17)

Finally, substituting (17) into (15) yields

∑

q∈S

φqρq,q̄ = πq̄1µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1 = φq̄, q̄ ∈ S, (18)

which completes the proof.

We have now established that the countable-state Markov
chain {s(k) ∈ S}k∈N0 is irreducible and has the invari-
ant distributionφ : S → [0, 1] presented in Lemma 3.1.
Note that the strong law of large numbers (also called
ergodic theorem; see Norris (2009), Serfozo (2009), Dur-
rett (2010)) for discrete-time Markov chains states that
P[limn→∞

1
n

∑n−1
k=0 ξs(k) =

∑

i∈S φiξi] = 1, for any
ξi ∈ R, i ∈ S, such that

∑

i∈S φi|ξi| < ∞. This result for
the countable-state Markov chain{s(k) ∈ S}k∈N0 is crucial
to obtain the main results of Section 4 below. Specifically,
in our stability analysis we utilize the ergodic theorem for
Markov chains. In the literature, for the stability analysis
of finite-mode (Bolzernet al., 2004) and infinite-mode (Li
et al., 2012) discrete-time switched stochastic systems, re-
searchers employed ergodic theorem for the Markov chain
that characterizes the mode signal. In the next section, we
use ergodic theorem for the Markov chain that characterizes
the sequence of mode values between consecutive mode
observation instants.

4 Sufficient Conditions for Almost Sure Asymptotic
Stabilization

In this section, we employ the results presented in Section 3
to obtain sufficient conditions for almost sure asymptotic
stabilization of the closed-loop system (4) under the control
law (6).

Theorem 4.1. Consider the switched linear stochastic sys-
tem (4). If there exist matrices̃R > 0, Li ∈ R

m×n, i ∈ M,
and scalarsζi,j ∈ (0,∞), i, j ∈ M, such that

0 ≥ (AiR̃+BiLj)
TR̃−1

· (AiR̃+BiLj)− ζi,jR̃, i, j ∈ M, (19)
∑

τ∈N

µτ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0, (20)

then the control law (6) with the feedback gain matrix

Kσ(k) = Lσ(k)R̃
−1, (21)

guarantees that the zero solutionx(k) ≡ 0 of the closed-loop
system (4) and (6) is asymptotically stable almost surely.

Proof. First, we defineV (x) , xTRx, whereR , R̃−1. It
follows from (4) and (6) that fork ∈ N0,

V (x(k + 1)) = xT(k)(Ar(k) +Br(k)Kσ(k))
TR

· (Ar(k) +Br(k)Kσ(k))x(k). (22)

We setLj = KjR
−1, j ∈ M, and use (19) and (22) to

obtain

V (x(k + 1)) ≤ ζr(k),σ(k)V (x(k)) ≤ η(k)V (x(0)), (23)

for k ∈ N0, whereη(k) ,
∏k

n=0 ζr(n),σ(n), k ∈ N. We will
first show thatη(k) → 0 almost surely ask → ∞. Note that
η(k) > 0, k ∈ N0. Then, it follows that

ln η(k) =

k
∑

n=0

ln ζr(n),σ(n). (24)

By using the definitions of stochastic processes{N(k) ∈
N0}k∈N0 and{s(i) ∈ S}i∈N0 , we obtain

ln η(k) =

tN(k)−1
∑

n=0

ln ζr(n),σ(n) +

k
∑

n=tN(k)

ln ζr(n),σ(n)

=

N(k)−1
∑

i=0

ξs(i) +

k
∑

n=tN(k)

ln ζr(n),σ(n), (25)

whereξq ,
∑|q|

n=1 ln ζqn,q1 , q ∈ S.

Next, in order to evaluatelimk→∞
1
k
ln η(k), note that

limk→∞
1
k

∑k
n=tN(k)

ln ζr(n),σ(n) = 0. Consequently,

lim
k→∞

1

k
ln η(k) = lim

k→∞

1

k

N(k)−1
∑

i=0

ξs(i)

= lim
k→∞

N(k)

k

1

N(k)

N(k)−1
∑

i=0

ξs(i). (26)

It follows from strong law of large numbers for re-
newal processes (Section 2.1) thatlimk→∞

N(k)
k

= 1
τ̂

,
where τ̂ =

∑

τ∈N
τµτ . Furthermore, by the ergodic the-

orem for countable-state Markov chains, it follows that
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limn→∞
1
n

∑n−1
i=0 ξs(i) =

∑

q∈S φqξq. Using the invariant
distributionφ : S → [0, 1] given by (14), we get

lim
k→∞

1

k
ln η(k)

=
1

τ̂

∑

q∈S

(

πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1

)

|q|
∑

m=1

ln ζqm,q1 . (27)

Let Sτ , {q ∈ S : |q| = τ}, τ ∈ N. Note thatSτ contains
all mode sequences of lengthτ . It follows from (27) that

lim
k→∞

1

k
ln η(k)

=
1

τ̂

∑

τ∈N

∑

q∈Sτ

(

πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1

)

|q|
∑

m=1

ln ζqm,q1

=
1

τ̂

∑

τ∈N

µτ

∑

q∈Sτ

πq1(

τ−1
∏

n=1

pqn,qn+1)

τ
∑

m=1

ln ζqm,q1

=
1

τ̂

∑

τ∈N

µτ

τ
∑

m=1

∑

q∈Sτ

πq1(

τ−1
∏

n=1

pqn,qn+1) ln ζqm,q1 . (28)

Furthermore, letSi,j
τ,l , {q ∈ Sτ : q1 = i, ql = j}, i, j ∈

M, l ∈ {1, 2, . . . , τ − 1}. The setSi,j
τ,l contains all mode

sequences of lengthτ that havei ∈ M andj ∈ M as the
1st and thelth elements, respectively. We use (5) to obtain

∑

q∈Sτ

πq1 (

τ−1
∏

n=1

pqn,qn+1) ln ζql,q1

=
∑

i,j∈M

∑

q∈Si,j

τ,l

πq1(
τ−1
∏

n=1

pqn,qn+1) ln ζql,q1

=
∑

i,j∈M

πi(ln ζj,i)
∑

q∈Si,j

τ,l

(

τ−1
∏

n=1

pqn,qn+1)

=
∑

i,j∈M

πi(ln ζj,i)p
(l−1)
i,j . (29)

Substituting (29) into (28) yields

lim
k→∞

1

k
ln η(k) =

1

τ̂

∑

τ∈N

µτ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i. (30)

Now, sinceτ̂ =
∑

τ∈N
τµτ < ∞, as a result of (20), we

havelimk→∞
1
k
ln η(k) < 0. Thus,limk→∞ ln η(k) = −∞

almost surely; furthermore,P[limk→∞ η(k) = 0] = 1. In
the following, we first show that the zero solution isal-
most surely stable. To this end first note that for allǫ > 0,
limn→∞ P[supk≥n η(k) > ǫ2] = 0, which implies that for
all ǫ > 0 andρ > 0, there exists a positive integerN(ǫ, ρ)

such thatP[supk≥n η(k) > ǫ2] < ρ for n ≥ N(ǫ, ρ). Equiv-
alently,

P[sup
k≥n

η(k − 1) > ǫ2] < ρ, n ≥ N(ǫ, ρ) + 1. (31)

By the definition ofV (·) and (23), we obtainη(k − 1) ≥
V (x(k))
V (x(0)) ≥ λmin(R)

λmax(R)
‖x(k)‖2

‖x(0)‖2 for all k ∈ N. Hence, it follows
from (31) that, for allǫ > 0 andρ > 0, there exists a positive
integerN(ǫ, ρ) such that

P[sup
k≥n

‖x(k)‖ > ǫ

√

λmax(R)

λmin(R)
‖x(0)‖]

= P[sup
k≥n

‖x(k)‖2 > ǫ2
λmax(R)

λmin(R)
‖x(0)‖2]

= P[sup
k≥n

λmin(R)

λmax(R)

‖x(k)‖2

‖x(0)‖2
> ǫ2]

≤ P[sup
k≥n

η(k − 1) > ǫ2] < ρ, n ≥ N(ǫ, ρ) + 1. (32)

Let δ1 ,

√

λmin(R)
λmax(R) . If ‖x(0)‖ ≤ δ1, then

P[sup
k≥n

‖x(k)‖ > ǫ]

≤ P[sup
k≥n

‖x(k)‖ > ǫ

√

λmax(R)

λmin(R)
‖x(0)‖]

< ρ, n ≥ N(ǫ, ρ) + 1. (33)

Now let ζ̄ , max{1,maxi,j∈M ζi,j}. It follows from
(23) thatV (x(k)) ≤ ζ̄k−1V (x(0)) ≤ ζ̄N(ǫ,ρ)−1V (x(0))
for all k ∈ {0, 1, . . . , N(ǫ, ρ)}. Therefore,‖x(k)‖2 ≤

ζ̄N(ǫ,ρ)−1 λmax(R)
λmin(R) ‖x(0)‖

2, and hence, we have‖x(k)‖ ≤
√

ζ̄N(ǫ,ρ)−1 λmax(R)
λmin(R) ‖x(0)‖, for all k ∈ {0, 1, . . . , N(ǫ, ρ)}.

Furthermore, let δ2 , ǫ
√

ζ̄−N(ǫ,ρ)+1 λmin(R)
λmax(R) . Con-

sequently, if ‖x(0)‖ ≤ δ2, then ‖x(k)‖ ≤ ǫ, k ∈
{0, 1, . . . , N(ǫ, ρ)}, which implies

P[ max
k∈{0,1,...,N(ǫ,ρ)}

‖x(k)‖ > ǫ] = 0. (34)

It follows from (33) and (34) that for allǫ > 0, ρ > 0,

P[ sup
k∈N0

‖x(k)‖ > ǫ] = P[{ max
k∈{0,1,...,N(ǫ,ρ)}

‖x(k)‖ > ǫ}

∪ { sup
k≥N(ǫ,ρ)+1

‖x(k)‖ > ǫ}]

≤ P[ max
k∈{0,1,...,N(ǫ,ρ)}

‖x(k)‖ > ǫ]

+ P[ sup
k≥N(ǫ,ρ)+1

‖x(k)‖ > ǫ]

< ρ, (35)
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whenever‖x(0)‖ < δ , min(δ1, δ2), which implies almost
sure stability. As a final step of proving almost sure asymp-
totic stability of the zero solution, we now show (3). First,
note that by (23), we haveV (x(k + 1)) ≤ η(k)V (x(0)),
k ∈ N. Now, sinceP[limk→∞ η(k) = 0] = 1, it follows
thatP[limk→∞ V (x(k)) = 0] = 1, which implies (3), and
hence the zero solution of the closed-loop system (4), (6) is
asymptotically stable almost surely.

Theorem 4.1 provides sufficient conditions for almost sure
asymptotic stability of the closed-loop system (4) and (6).
Conditions (19) and (20) of Theorem 4.1 indicate depen-
dence of stabilization performance on subsystem dynam-
ics, mode transition probabilities, and random mode ob-
servations. The effect of mode transitions on the stabiliza-
tion is reflected in (19) through the limiting distribution
π : M → [0, 1] as well asl-step transition probabilities

p
(l)
i,j , i, j ∈ M. Furthermore, the effect of random mode ob-

servations is indicated in condition (19) byµ : N → [0, 1],
which represents the distribution of the lengths of intervals
between consecutive mode observation instants.

Remark 4.2. We investigate the stability of the closed-loop
system through the Lyapunov-like functionV (x) , xTRx

with R = R̃−1, whereR̃ is a positive-definite matrix that
satisfy (19). The scalarζi,j ∈ (0,∞) in (19) characterizes
an upper bound on the growth of the Lyapunov-like func-
tion, when the switched system evolves according to dy-
namics of theith subsystem and thejth feedback gain. Note
that if ζi,j ∈ (0, 1) for all i, j ∈ M, it is guaranteed that
the Lyapunov-like function will decrease at each time step.
However, we do not requireζi,j ∈ (0, 1) for all i, j ∈ M.
There may be pairsi, j ∈ M such thatζi,j > 1, hence
Lyapunov-like functionV (·) may grow whenith subsys-
tem and thejth feedback gain is active. As long asζi,j ,
i, j ∈ M, satisfy (20) the Lyapunov-like is guaranteed to
converge to zero in the long-run (even if it may grow at cer-
tain instants). Note that even though the conditions (19), (20)
allow unstable subsystem-feedback gain pairs, some conser-
vativeness may still arise due the characterization with single
Lyapunov-like function. This conservatism may be reduced
with an alternative approach with multiple Lyapunov-like
functions assigned for each subsystem-feedback gain pairs.

Remark 4.3. In order to verify conditions (19) and (20) of
Theorem 4.1, we take an approach similar to the one pre-
sented in Cetinkaya and Hayakawa (2013b). Specifically, we
use Schur complements (see Bernstein (2009)) to transform
condition (19) into the matrix inequalities

0 ≤

[

ζi,jR̃ ÂT
i,j

Âi,j R̃

]

, i, j ∈ M, (36)

whereÂi,j , (AiR̃ + BiLj), i, j ∈ M. Note that the in-
equalities (36) are linear iñR andLi, i ∈ M. In our nu-
merical method, we iterate over a set of the values ofζi,j ,

i, j ∈ M, that satisfy (20) and at each iteration we look
for feasible solutions to the linear matrix inequalities (36).
In Section 5 below, we employ this method and find values
for matricesR̃ ∈ R

n×n, Li ∈ R
m×n, i ∈ M, and scalars

ζi,j ∈ (0,∞), i, j ∈ M, that satisfy (19), (20) for a given
discrete-time switched linear system. It is important to note
that the scalarsζi,j ∈ (0,∞), i, j ∈ M, that satisfy (20)
form an unbounded set. Note that this set is smaller than
the entire nonnegative orthant inRM2

. However, we still
need to reduce the search space ofζi,j , i, j ∈ M. To this
end, first note that it is harder to find feasible solutions to
linear matrix inequalities given by (36) when the scalars
ζi,j , i, j ∈ M, are close to zero. Note also that if there exist a
feasible solution to (36) for certain values ofζi,j , i, j ∈ M,
then it is guaranteed that feasible solutions to (36) exist
also for larger values ofζi,j , i, j ∈ M. Therefore, we can
restrict our search space and iterate over large values of
ζi,j , i, j ∈ M, that satisfy (20), and check feasible solutions
to (36). Specifically, we only iterate overζi,j , i, j ∈ M,
that is close to the search space’s boundary identified by
∑

τ∈N
µτ

∑τ
l=1

∑

i,j∈M πip
(l−1)
i,j ln ζj,i = 0. Now note that

in order for (20) to be satisfied, there must exist at least a
pair i, j ∈ M such thatζi,j < 1. Since the scalarζi,j repre-
sents the stability/instability margin for the dynamics char-
acterized by theith subsystem and thejth feedback gain, we
expectζi,i < 1 for stabilizable modesi ∈ M. This further
reduces the search space for our numerical method.

Remark 4.4. Note that conditions (19) and (20) presented
in Theorem 4.1 can also be used for determining almost
sure asymptotic stability of the switched stochastic control
system (4), (6) with periodically observed mode informa-
tion. The renewal process characterization presented in this
paper in fact encompasses periodic mode observations (ex-
plored previously in Cetinkaya and Hayakawa (2012) and
Cetinkaya and Hayakawa (2013b)) as a special case. Specif-
ically, suppose that the mode observation instants are given
by ti = iT , i ∈ N0, whereT ∈ N denotes the mode ob-
servation period. Our present framework allows us to char-
acterize periodic mode observations by setting the distri-
bution µ : N → [0, 1] such thatµT = 1 and µτ = 0,
τ 6= T . Note that condition (20) of Theorem 4.1 for this
case reduces to

∑T

l=1

∑

i,j∈M πip
(l−1)
i,j ln ζj,i < 0. Further-

more, if the controller has perfect mode information at all
time instants (T = 1, henceσ(k) = r(k), k ∈ N0), condi-
tion (20) takes even a simpler form given by the inequality
∑

i∈M πi ln ζi,i < 0.

Remark 4.5. Condition (20) of Theorem 4.1 has a simpler
form also for the case where the length of intervals between
consecutive mode observation instants are uniformly dis-
tributed over the set{τL, τL + 1, . . . , τH} with τL, τH ∈ N

such thatτL ≤ τH. In this case the distributionµ : N → [0, 1]
is given by

µτ ,

{

1
τH−τL+1 , if τ ∈ {τL, τL + 1, . . . , τH},

0, otherwise.
(37)
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Figure 5. Uniform distribution given by (37) withτL = 2 and
τH = 5 for the length of intervals between consecutive mode
observation instants

Figure 5 shows the distribution (37) for an example case
with τL = 2 andτH = 5.

With (37), condition (20) of Theorem 4.1 reduces to the
inequality

∑τH
τ=τL

∑τ

l=1

∑

i,j∈M πip
(l−1)
i,j ln ζj,i < 0.

Remark 4.6. Note that our probabilistic characterization of
mode observation instants also allows us to explore the feed-
back control problem under missing mode samples. Specif-
ically, consider the case where the mode is sampled at all
time instants; however, some of the mode samples are lost
during communication between mode sampling mechanism
and the controller. Suppose that the controller receives a
sampled mode data at each time stepk ∈ N with probabil-
ity θ ∈ (0, 1). In other words, the mode data is lost with
probability1− θ. We investigate this problem by setting

µτ , (1− θ)τ−1θ, τ ∈ N. (38)

Figure 6 shows the distribution (38) withθ = 0.3.

It turns out that forµτ : N → [0, 1] given by (38), the left-
hand side of condition (20) has a closed-form expression.
Note that by changing the order of summations and using
(38), we can rewrite the left-hand side of (20) as

∑

τ∈N

µτ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

i,j∈M

πi(ln ζj,i)
∑

τ∈N

µτ

τ
∑

l=1

p
(l−1)
i,j

=
∑

i,j∈M

πi(ln ζj,i)

∞
∑

l=1

p
(l−1)
i,j

∞
∑

τ=l

µτ

=
∑

i,j∈M

πi(ln ζj,i)

∞
∑

l=1

p
(l−1)
i,j (1−

l−1
∑

τ=1

µτ )

=
∑

i,j∈M

πi(ln ζj,i)

∞
∑

l=1

p
(l−1)
i,j

(

1−

l−1
∑

τ=1

(1− θ)τ−1θ
)

.

(39)

Note that
(

1−
∑l−1

τ=1(1− θ)τ−1θ
)

=
(

1− θ 1−(1−θ)l−1

1−(1−θ)

)

=

Figure 6. Distribution given by (38) withθ = 0.3 for the length
of intervals between consecutive mode observation instants

(1− θ)l−1. Therefore,

∑

τ∈N

µτ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

i,j∈M

πi(ln ζj,i)

∞
∑

l=1

p
(l−1)
i,j (1− θ)l−1. (40)

Let Z ,
∑∞

l=1 P
l−1(1 − θ)l−1, where P ∈ R

M×M

denotes the transition probability matrix for the mode
signal {r(k) ∈ M}k∈N0 . Note that the infinite sum
in the definition of Z converges, because the eigenval-
ues of the matrix(1 − θ)P are strictly inside the unit
circle of the complex plane. By using the formula for
geometric series of matrices (Bernstein, 2009), we ob-
tain Z =

(

I − (1 − θ)P )−1. Furthermore, it follows

from (40) that
∑

τ∈N
µτ

∑τ
l=1

∑

i,j∈M πip
(l−1)
i,j ln ζj,i =

∑

i,j∈M πi(ln ζj,i)zi,j , and therefore, whenµ : N →

[0, 1] is given by (38), condition (20) takes the form
∑

i,j∈M πi(ln ζj,i)zi,j < 0, wherezi,j is the(i, j)th entry
of the matrixZ.

Remark 4.7. Note that in order to check condition (20) of
Theorem 4.1, one needs to have perfect information regard-
ing the distributionµ : N → [0, 1], according to which the
lengths of intervals between consecutive mode observation
instants are distributed. In Theorem 4.8 below, we present
alternative sufficient stabilization conditions, which donot
require exact knowledge ofµ : N → [0, 1]. Specifically, we
consider the case where themode observation instantsti,
i ∈ N0, satisfy

P[ti+1 − ti ≤ τ̄ ] = 1, i ∈ N0, (41)

whereτ̄ ∈ N is a known constant. In this case time instants
of consecutive mode observations are assumed to be at most
τ̄ ∈ N steps apart. In other words, if (41) is satisfied, it is
guaranteed that the length of intervals between consecutive
mode observation instants cannot be larger thanτ̄ ∈ N. It is
important to note that (41) characterizes a requirement on
the intervals betweenmode observation instantsand it is not
related to mode switches.

Theorem 4.8. Consider the switched linear stochastic sys-
tem (4). Suppose that the mode-transition probability ma-
trix P ∈ R

M×M possesses only positive real eigenvalues.
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If there exist matrices̃R > 0, Li ∈ R
m×n, i ∈ M, and

scalarsτ̄ ∈ N, ζi,j ∈ (0,∞), i, j ∈ M, such that (19), (41),

0 ≤ ζj,i − ζi,i, i, j ∈ M, (42)
τ̄

∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0, (43)

hold, then the control law (6) with the feedback gain ma-
trix (21) guarantees that the zero solutionx(k) ≡ 0 of the
closed-loop system is asymptotically stable almost surely.

Proof. The mode signal{r(k) ∈ M}k∈N0 is an irreducible
and aperiodic Markov chain; therefore, the invariant dis-
tribution π : M → [0, 1] is also the limiting distribution
(Norris, 2009). Thus, for alli, j ∈ M andk ∈ N0,

lim
l→∞

p
(l)
i,j = lim

l→∞
P[r(k + l) = j|r(k) = i] = πj . (44)

Now, let p(l)i ∈ [0, 1]1×M ,i ∈ M, denote the row vector
with thejth element given by thel-step transition probability
p
(l)
i,j . Note thatp(·)i is the unique solution of the difference

equation

p
(l+1)
i = p

(l)
i P, l ∈ N0, (45)

with the initial conditionp(0)i,i = 1 and p
(0)
i,j = 0, i 6= j,

j ∈ M. Since all the eigenvalues of the mode-transition
probability matrixP ∈ R

M×M are positive real numbers,
the solutionp(·)i of the difference equation (45) does not
comprise any oscillatory components, andl-step transition
probabilitiesp(l)i,j , i, j ∈ M, converge towards their limiting
valuesmonotonically, that is,

p
(l+1)
i,i ≤ p

(l)
i,i , i ∈ M, l ∈ N0, (46)

p
(l+1)
i,j ≥ p

(l)
i,j , i 6= j, i, j ∈ M, l ∈ N0. (47)

Now note that for alli, j ∈ M, andτ ∈ N,

1

τ

τ
∑

l=1

p
(l−1)
i,j =

1

τ + 1

(

τ
∑

l=1

p
(l−1)
i,j +

1

τ

τ
∑

l=1

p
(l−1)
i,j

)

. (48)

By (47), we havep(l−1)
i,j ≤ pτi,j , l ∈ {1, 2, . . . , τ}, i, j ∈ M,

i 6= j. Hence, it follows from (48) that

1

τ

τ
∑

l=1

p
(l−1)
i,j ≤

1

τ + 1

(

τ
∑

l=1

p
(l−1)
i,j +

1

τ

τ
∑

l=1

p
(τ)
i,j

)

=
1

τ + 1

(

τ
∑

l=1

p
(l−1)
i,j + p

(τ)
i,j

)

=
1

τ + 1

τ+1
∑

l=1

p
(l−1)
i,j , τ ∈ N, i 6= j. (49)

As a consequence, for allτ ≤ τ̄ it follows that

1

τ

τ
∑

l=1

p
(l−1)
i,j ≤

1

τ̄

τ̄
∑

l=1

p
(l−1)
i,j , i 6= j, i, j ∈ M. (50)

Next, we show that (41)–(43) together with (50) imply (20).
First, letκi,j

τ,τ̄ , 1
τ

∑τ
l=1 p

(l−1)
i,j − 1

τ̄

∑τ̄
l=1 p

(l−1)
i,j , i, j ∈ M.

It follows that

1

τ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

i,j∈M

πi ln ζj,i
1

τ

τ
∑

l=1

p
(l−1)
i,j

=
∑

i,j∈M

πi(ln ζj,i)κ
i,j
τ,τ̄ +

1

τ̄

τ̄
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

i∈M

πi(ln ζi,i)κ
i,i
τ,τ̄ +

∑

i∈M

∑

j∈M,j 6=i

πi(ln ζj,i)κ
i,j
τ,τ̄

+
1

τ̄

τ̄
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i. (51)

Note that by (50), we haveκi,j
τ,τ̄ ≤ 0, τ ≤ τ̄ , i 6= j. It follows

from (42) that, forτ ≤ τ̄ ,

(ln ζj,i)κ
i,j
τ,τ̄ ≤ (ln ζi,i)κ

i,j
τ,τ̄ , i 6= j, i, j ∈ M. (52)

Now, since
∑

j∈M p
(l)
i,j = 1, l ∈ N0, i ∈ M, we have

∑

j∈M

κi,j
τ,τ̄ =

∑

j∈M

1

τ

τ
∑

l=1

p
(l−1)
i,j −

∑

j∈M

1

τ̄

τ̄
∑

l=1

p
(l−1)
i,j

=
1

τ

τ
∑

l=1

∑

j∈M

p
(l−1)
i,j −

1

τ̄

τ̄
∑

l=1

∑

j∈M

p
(l−1)
i,j

=
τ

τ
−

τ̄

τ̄
= 0, i ∈ M. (53)
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We use (51)–(53) to obtain

1

τ

τ
∑

l=1

∑

i,j∈M

πip
(l)
i,j ln ζj,i

≤
∑

i∈M

πi(ln ζi,i)κ
i,j
τ,τ̄ +

∑

i∈M

∑

j∈M,j 6=i

πi(ln ζi,i)κ
i,j
τ,τ̄

+
∑

i,j∈M

πi(ln ζj,i)
1

τ̄

τ̄
∑

l=1

p
(l−1)
i,j

=
∑

i∈M

πi(ln ζi,i)
∑

j∈M

κi,j
τ,τ̄

+
∑

i,j∈M

πi(ln ζj,i)
1

τ̄

τ̄
∑

l=1

p
(l−1)
i,j

=
1

τ̄

τ̄
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i, τ ≤ τ̄ . (54)

Finally, it follows from (41) and (54) that

∑

τ∈N

µτ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

τ∈N

µττ
( 1

τ

τ
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

)

≤
∑

τ∈N

µττ
( 1

τ̄

τ̄
∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

)

. (55)

Note that (43) and (55) imply (20). Hence, the result follows
from Theorem 4.1.

Conditions of Theorem 4.8 can be utilized for assessing
stability of a switched stochastic control system, even if
exact knowledge of the distributionµ : N → [0, 1] is not
available. Note that the requirement on the knowledge of
µ : N → [0, 1] is relaxed in Theorem 4.8 by imposing
other conditions on the mode-transition probability matrix
P ∈ R

M×M and the scalarsζi,j ∈ (0,∞), i, j ∈ M.

5 Illustrative Numerical Examples

In this section we provide numerical examples to demon-
strate the results presented in this paper.

Example 5.1. Consider the switched stochastic system (4)
with M = 2 modes described by the subsystems matrices

A1 =

[

0 1

1.6 −0.3

]

, A2 =

[

0 1

−0.5 1.4

]

,

B1 = [0, 1]T, andB2 = [0, −1]T. The mode signal{r(k) ∈
M , {1, 2}}k∈N0 of the switched system is assumed to

0 10 20 30 40 50 60 70

−1.0

−0.5

0.0

0.5

1.0

x
1
(k
)

Mode switching instants

0 10 20 30 40 50 60 70

Time [k]

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2

x
2
(k
)

Figure 7. State trajectory versus time

be an aperiodic and irreducible Markov chain character-
ized by the transition probabilitiesp1,2 = p2,1 = 0.3 and
p1,1 = p2,2 = 0.7. The invariant distribution for{r(k) ∈

M , {1, 2}}k∈N0 is given byπ1 = π2 = 0.5. Moreover,
µ : N → [0, 1], according to which the lengths of inter-
vals between consecutive mode observation instants are dis-
tributed, is assumed to be given byµτ = (1−θ)τ−1θ, τ ∈ N,
with θ = 0.3. In this case, at each time stepk ∈ N, the mode
may be observed with probabilityθ = 0.3 (see Remark 4.6).

Note that

R̃ =

[

3.0143 −0.1485

−0.1485 1.5280

]

, (56)

L1 = [−3.5326 0.9608], L2 = [−3.0029 1.8284], and the
scalarsζ1,1 = 0.7, ζ1,2 = 1.8, ζ2,1 = 2, and ζ2,2 = 0.8
satisfy (19) and (20). Now, it follows from Theorem 4.1 that
the proposed control law (6) with feedback gain matrices

K1 = L1R̃
−1 = [−1.1465 0.5174] , (57)

K2 = L2R̃
−1 = [−0.9718 1.1021] , (58)

guarantees almost sure asymptotic stability of the closed-
loop switched stochastic system (4), (6).

Sample paths of the statex(k) and the control inputu(k)
(obtained with initial conditionsx(0) = [1, −1]

T and
r(0) = 1) are shown in Figures 7 and 8. Furthermore, Fig-
ure 9 shows a sample path of the actual mode signalr(k)
and its sampled versionσ(k). Figures 7–9 indicate that our
proposed control framework guarantees stabilization even
for the case where operation mode of the switched system
is observed only at random time instants.

The control law (6) with feedback gain matrices (57) and
(58) guarantee stabilization of the closed-loop system with
random mode observations characterized by distribution
µτ = (1 − θ)τ−1θ with θ = 0.3. Note that for each time
step,θ represents the probability of mode information being
available for control purposes. In order to investigate con-
servativeness of our results, we search all values of parame-
ter θ for which the control law (6) with feedback gains (57)

11
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Figure 9. Actual moder(k) and sampled modeσ(k)

and (58) achieve stabilization. To this end, first, we search
values ofθ such that there exist a positive-definite matrix
R̃, and scalarsζi,j , i, j ∈ M that satisfy conditions (19)
and (20) of Theorem 4.1 withL1 = K1R̃ andL2 = K2R̃,
whereK1 andK2 are given by (57) and (58). We find that
for parameter valuesθ ∈ [0.2, 1], conditions (19) and (20)
are satisfied. Hence Theorem 4.1 guarantees stabilization for
the case where parameterθ is inside the range[0.2, 1]. On
the other hand, through repetitive numerical simulations we
observe that the states of the closed-loop system converge
to the origin in fact for a larger range of parameter values
(θ ∈ [0.12, 1]), which indicate some conservativeness in the
conditions of Theorem 4.1 (see Remark 4.2).

Example 5.2. Consider the switched stochastic system (4)
with M = 3 modes described by the subsystems matrices

A1 =

[

0 1

1.5 0.5

]

, A2 =

[

0 1

1 0.5

]

, A3 =

[

0 −1

1.1 1.2

]

,

B1 = [0, 1]T, B2 = [0, 0.2]T, andB3 = [0, 0.7]T. The
mode signal{r(k) ∈ M , {1, 2, 3}}k∈N0 of the switched
system is assumed to be an aperiodic and irreducible Markov
chain characterized by the transition matrixP with entries
pi,i = 0.6, i ∈ M, and pi,j = 0.2, i 6= j, i, j ∈ M.
The invariant distribution for{r(k) ∈ M , {1, 2, 3}}k∈N0

is given byπ1 = π2 = π3 = 1
3 . Furthermore, note that

the transition matrixP possesses positive real eigenvalues
0.4 (with algebraic multiplicity2) and 1. The lengths of
intervals between consecutive mode observation instants are
assumed to be uniformly distributed over the set{2, 3, 4, 5}
(see Remark 4.5). In other words, the distributionµ : N →
[0, 1] is assumed to be given by (37) withτL = 2 andτH = 5.
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0.2
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Figure 10. State trajectory versus time

Note that for this example the mode observation instantsti,
i ∈ N0, satisfy (41) withτ̄ = 5.

In this example, we will utilize Theorem 4.8 for the case
where the upper-bounding constantτ̄ = 5 is known, but the
exact knowledge of the distributionµ : N → [0, 1] is not
available (see Remark 4.8). Specifically, note that

R̃ =

[

2.6465 −0.7851

−0.7851 1.2568

]

, (59)

L1 = [−3.5858 0.1413], L2 = [−4.7066 − 0.3329],
L3 = [−3.2532 − 0.3601], and the scalarsζ1,1 = 0.6,
ζ1,2 = 1.7, ζ1,3 = 1.5, ζ2,1 = 1.6, ζ2,2 = 0.7,
ζ2,3 = 2, ζ3,1 = 2, ζ3,2 = 2, and ζ3,3 = 0.5 satisfy
(19), (42), and (43). Therefore, it follows from Theo-
rem 4.8 that the proposed control law (6) with feedback
gain matricesK1 = L1R̃

−1 = [−1.6222 − 0.9009],
K2 = L2R̃

−1 = [−2.2794 − 1.6888], K3 = L3R̃
−1 =

[−1.6132 − 1.2942] , guarantees almost sure asymptotic
stability of the closed-loop system (4), (6).

Figures 10 and 11 respectively show sample paths of the state
x(k) and the control inputu(k) obtained with initial condi-
tionsx(0) = [1, −1]T andr(0) = 1. Furthermore, a sample
path of the actual mode signalr(k) and its sampled version
σ(k) are shown in Figure 12. As it is indicated in Figures 10–
12, the proposed control framework (6) achieves asymptotic
stabilization of the zero solution. It is important to note that
the feedback gainsK1, K2, andK3 are designed by utiliz-
ing Theorem 4.8 without using information on the distribu-
tion µ : N → [0, 1]. Note that Theorem 4.8 requires only
the knowledge of an upper-bounding constantτ̄ ∈ N for the
length of intervals between consecutive mode observation
instants, instead of the exact knowledge ofµ : N → [0, 1].

6 Conclusion

We proposed a feedback control framework for stabilization
of switched linear stochastic systems under randomly avail-
able mode information. In this problem setting, information
on the active operation mode of the switched system is as-
sumed to be available for control purposes only at random
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Figure 12. Actual moder(k) and sampled modeσ(k)

time instants. We presented a probabilistic analysis concern-
ing a sequence-valued stochastic process that captures the
evolution of active operation mode between mode observa-
tion instants. We then used the results of this analysis to
obtain sufficient almost sure asymptotic stability conditions
for the zero solution of the closed-loop system.
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