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Abstract

Controllers are often designed based on a reduced or simplified model of the plant dynamics. In this context, we investigate
whether it is possible to synthesize a stabilizing event-triggered feedback law for networked control systems (NCS) which
have two time-scales, based only on an approximate model of the slow dynamics. We follow an emulation-like approach as
we assume that we know how to solve the problem in the absence of sampling and then we study how to design the event-
triggering rule under communication constraints. The NCS is modeled as a hybrid singularly perturbed system which exhibits
the feature to generate jumps for both the fast variable and the error variable induced by the sampling. The first conclusion
is that a triggering law which guarantees the stability and the existence of a uniform minimum amount of time between two
transmissions for the slow model may not ensure the existence of such a time for the overall system, which makes the controller
not implementable in practice. The objective of this contribution is twofold. We first show that existing event-triggering
conditions can be adapted to singularly perturbed systems and semiglobal practical stability can be ensured in this case.
Second, we propose another technique that combines event-triggered and time-triggered results in the sense that transmissions
are only allowed after a predefined amount of time has elapsed since the last transmission. This technique has the advantage,
under an additional assumption, to ensure a global asymptotic stability property and to allow the user to directly tune the
minimum inter-transmission interval. We believe that this technique is of its own interest independently of the two-time scale
nature of the addressed problem. The results are shown to be applicable to a class of globally Lipschitz systems.
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1 Introduction

The increasing popularity of embedded systems and net-
worked control systems has motivated the development
of new implementation paradigms in order to handle the
resources limitations of these systems. Indeed, although
periodic sampling is appealing from the analysis and im-
plementation point of view, it may yield a conservative
solution as it may unnecessarily use the network. Event-
triggered control has been proposed as an alternative
where it is the occurrence of an event, typically a vari-
ation of the plant state and not a clock, which closes
the feedback loop [2], [5]. This may allow to significantly
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reduce the utilization of the resources compared to the
periodic implementation, see e.g. [9], [22], [14], [16], [20].
Available techniques rely on the knowledge of an accu-
rate model of the plant (which may be affected by un-
certainties or external disturbances). However, the con-
troller is often designed based on a reduced or simplified
model of the plant dynamics. For two time-scale systems
for instance, singular perturbation theory can be used
to approximate the slow and the fast dynamics, see [4],
[6]. In this context, it is possible to design the controller
based only on the slow model, when the origin of the
fast model is asymptotically stable, for stabilizable lin-
ear time-invariant (LTI) systems [6], classes of nonlinear
systems (see Section 5.4 in [4]) and linear time-varying
sampled data systems with periodic sampling [13]. In
this paper, we investigate whether this approach is ap-
plicable for event-triggered control.

We consider the scenario where the controller communi-
cates with a two-time scale nonlinear system via a dig-
ital communication channel. Our objective is to design
a stabilizing event-triggered feedback law based only on
an approximate model of the slow dynamics. This prob-
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lem is motivated by the fact that engineers often neglect
the fast stable dynamics in practice and design the feed-
back law based only on the slow model. To the best of
our knowledge, this is the first paper in that direction.

We cast the overall problem as a hybrid singularly per-
turbed system with the formalism of [3]. The stability
of this type of systems is analysed in [15], [18], [19]. In
this study, we address a design problem as we construct
the flow and jump sets (i.e. the triggering condition) and
we propose different stability analyses under a differ-
ent set of assumptions. We highlight a specific challenge
which arises with the event-triggered implementation:
the state of the fast model experiences a jump at each
transmission due to the change of variables we introduce
to separate the slow and the fast dynamics using singu-
lar perturbation theory. These jumps induce non-trivial
difficulties in the stability analysis. That is a feature of
the problem which is not present in available results on
event-triggered control where only the sampling-induced
error is reset to zero at each transmission, see e.g. [9],
[22], [14], [16], [20].

We follow an emulation-like approach to design the
event-triggered controllers (see [14], [16]). We first syn-
thesize a stabilizing controller for the approximate slow
model obtained by singular perturbation theory, in the
absence of communication constraints. Afterwards, we
take into account the effect of the network and we design
the event-triggering condition. The first observation
we make is that, even if the triggering law guarantees
the asymptotic stability of the origin of the slow model
and the existence of a strictly positive lower bound on
the inter-transmission times, such a time is no longer
guaranteed to exist for the overall system. As a conse-
quence, the controller is not implementable in practice.
We then propose two classes of event-triggered con-
trollers which overcome this issue. The first policy relies
on the event-triggering conditions [9], [7] but it requires
to fully modify the stability analysis to handle the fea-
tures of the problem due to the two-time scale nature
of the system. We show that a semiglobal practical sta-
bility property holds where the adjustable parameter
appears in the event-triggering condition. The second
technique combines the event-triggered implementation
of [16] with the time-triggered results in [11], like in [8],
[12], [17], [21], in the sense that transmissions are only
allowed after a predefined amount of time has elapsed
since the last transmission. This allows us to directly
tune the minimum transmission interval. We show that
a global asymptotic stability property is satisfied in this
case, under an additional assumption. The results are
shown to be applicable to a class of globally Lipschitz
systems, which include stabilizable LTI systems as a
particular case.

The remainder of the paper is organised as follows. The
problem is stated in Section 3. Themain assumptions are
presented in Section 4. In Section 5, we state the main
results. In Section 6, we show that the proposed event-

triggered control strategies are applicable to a class of
globally Lipschitz systems. The proofs are given in the
Appendix.

2 Preliminaries

We denote R = (−∞,∞), R≥0 = [0,∞), Z≥0 =
{0, 1, 2, ..}. The Euclidean norm is denoted as |.|.
We use the notation (x, y) to represent the vector
[xT , yT ]T for x ∈ R

n and y ∈ R
m. A continuous func-

tion γ : [0,∞) → R≥0 is of class K if it is zero at
zero, strictly increasing, and it is of class K∞ if in
addition γ(s) → ∞ as s → ∞. A continuous func-
tion γ : R≥0 × R≥0 → R≥0 is of class KL if for each
t ∈ R≥0, γ(., t) is of class K, and, for each s ∈ R≥0,
γ(s, .) is decreasing to zero. We denote the minimum
and maximum eigenvalues of the symmetric positive
definite matrix A as λmin(A) and λmax(A) respectively.
We will consider locally Lipschitz Lyapunov functions
(that are not necessarily differentiable everywhere),
therefore we will use the generalized directional deriva-
tive of Clarke which is defined as follows. For a locally
Lipschitz function V : Rn → R≥0 and a vector υ ∈ R

n,
V ◦(x; υ) := lim suph→0+, y→x(V (y + hυ) − V (y))/h.

For a C1 function V , V ◦(x; υ) reduces to the standard
directional derivative 〈∇V (x), υ〉, where ∇V (x) is the
(classical) gradient. We will use the following result
which corresponds to Proposition 1.1 in [10].

Lemma 1 Consider two continuously differentiable
functions U1 : R

n → R and U2 : R
n → R. Let

A := {x : U1(x) > U2(x)}, B := {x : U1(x) < U2(x)}
and Γ := {x : U1(x) = U2(x)}. For any υ ∈ R

n, the func-
tion U : x 7→ max{U1(x), U2(x)} satisfies U◦(x; υ) =
〈∇U1(x), υ〉 for all x ∈ A, U◦(x; υ) = 〈∇U2(x), υ〉 for all
x ∈ B and U◦(x; υ) = max{〈∇U1(x), υ〉, 〈∇U2(x), υ〉}
for all x ∈ Γ.

3 Problem statement

Consider the following nonlinear time-invariant singu-
larly perturbed system

ẋ = f(x, z, u), ǫż = g(x, z, u), (1)

where x ∈ R
nx and z ∈ R

nz are the states, u ∈ R
nu is

the control input and ǫ > 0 is a small parameter. We use
singular perturbation theory to approximate the slow
and the fast dynamics.We rely on the following standard
assumption (see (11.3)-(11.4) in [4]).

Assumption 1 The equation g(x, z, u) = 0 has n ≥ 1
isolated real roots

z = hi(x, u), i = 1, 2, ..., n, (2)

where hi is continuously differentiable.

In that way, the substitution of the ith root z = h(x, u)
into the x-system yields the corresponding approximate

2



slow model
ẋ = f(x, h(x, u), u). (3)

To investigate stability, it is more convenient to write
system (1) with the coordinates (x, y) where

y := z − h(x, u) (4)

is introduced to shift the quasi-steady-state of z to the
origin. Then we derive the approximate fast dynamics

dy

dτ
= g(x, y + h(x, u), u), (5)

where τ := (t − t0)/ǫ and x ∈ R
nx is treated as a fixed

parameter.

In this study, we want to stabilize system (1) using a
controller which is implemented over a network. We opt
for an event-triggered implementation in the sense that
transmissions are not triggered by a clock but accord-
ing to a state-dependent criterion, which may reduce the
utilization of the network compared to the periodic ap-
proach. Moreover, we concentrate on the case where the
approximate fast dynamics (5) is stable and we aim at
designing the feedback law based only on the slow model
(3) as explained in Section 1.

We follow an emulation-like approach as we first assume
that the slow model (3) can be stabilized by a controller
of the form u = k(x). Afterwards, we take into account
the effects of the network and we synthesize appropriate
triggering conditions. The controller receives the state
measurements only at the transmission instants ti, i ∈
Z≥0 and we consider zero-order-hold devices. In that
way u(t) = k(x(ti)) for all t ∈ [ti, ti+1). The sequence
of transmission instants ti, i ∈ Z≥0 is defined by the
event-triggering condition we will design. We introduce
the sampling-induced error e ∈ R

nx as in [16], which is
defined by e(t) := x(ti) − x(t) for all t ∈ [ti, ti+1) and
which is reset to zero at each transmission instant. The
state feedback controller is therefore given by

u = k(x+ e). (6)

Hence, in view of (4), the variable y becomes

y = z − h(x, k(x + e)). (7)

As a consequence, the system in the (x, y) coordinates
is, for all t ∈ [ti, ti+1), i ∈ Z≥0

ẋ=f
(
x, y + h(x, k(x+ e)), k(x+ e)

)
=:fx(x, y, e)

(8)

ǫẏ=g
(
x, y+h(x,k(x+e)), k(x+e)

)
−ǫ∂h

∂x
fx(x, y, e)

=: fy(x, y, e), (9)

and at each transmission

x(t+i+1) = x(ti+1) (10)

y(t+i+1) = z(t+i+1)− h
(
x(t+i+1), k(x(t

+
i+1) + e(t+i+1))

)

= z(ti+1)− h
(
x(ti+1), k(x(ti+1))

)

= y(ti+1) + h
(
x(ti+1), k(x(ti+1) + e(ti+1))

)

− h
(
x(ti+1), k(x(ti+1))

)

=: hy(x(ti+1), y(ti+1), e(ti+1)). (11)

It has been shown in [14] that additional variables may
be useful when designing the event-triggering condition.
This will be the case for one of the strategies we propose
in Section 5. We denote these extra variables by a single
vector τ ∈ R

nτ . The problem ismodeled using the hybrid
formalism of [3] (like in [9], [14])

q̇ = F (q) for q ∈ C, q+ = G(q) for q ∈ D, (12)

where q = (x, y, e, τ) ∈ R
nq , nq = 2nx + ny + nτ ,

F (q) :=




fx(x, y, e)

1
ǫ fy(x, y, e)

−fx(x, y, e)
fτ (x, y, e, τ)



, G(q) :=




x

hy(x, y, e)

0

hτ (x, y, e, τ)



,

(13)
and fτ and hτ are designed vector fields which respec-
tively define the dynamics of τ on flows and at jumps.
The flow set C and the jump setD in (12) are defined ac-
cording to the event-triggering condition which we will
synthesize in the following. The system flows onC where
the triggering condition is not satisfied and experiences
a jump on D where the triggering condition is verified.
When q ∈ C ∩ D, the system can either jump or flow,
the latter only if flowing keeps q in C. The flow map F
and the jump map G are assumed to be continuous and
the sets C and D will be closed (which ensures that sys-
tem (12) is well-posed, see Chapter 6 in [3]). We note
that the state variable y experiences a jump on the set
D according to (13).

We briefly recall some basics about the hybrid formalism
of [3]. A set E ⊂ R≥0 × Z≥0 is called a compact hybrid
time domain if E = ∪

j∈{0,...,J}
([tj , tj+1], j) for some finite

sequence of times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is a hybrid
time domain if for all (T, J) ∈ E,E∩([0, T ]×{0, 1, ..., J})
is a compact hybrid time domain. A function φ : E →
R
nq is a hybrid arc ifE is a hybrid time domain and if for

each j ∈ Z≥0, t 7→ φ(t, j) is locally absolutely continuous
on Ij := {t : (t, j) ∈ E}. A hybrid arc φ is a solution
to (12) if: (i) φ(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z≥0,

φ(t, j) ∈ C and φ̇(t, j) = F (φ(t, j)) for almost all t ∈ Ij ;
(iii) for every (t, j) ∈ domφ such that (t, j+1) ∈ domφ,
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it holds that φ(t, j) ∈ D and φ(t, j + 1) = G(φ(t, j)).
A solution φ to (12) is maximal if there does not exist
another solution ψ to (12) such that φ is a truncation of
ψ to some proper subset of domψ.

Our objective is to design event-triggering conditions for
system (12), which is equivalent to defining the sets C
and D, to guarantee stability properties for system (12)
and the existence of a uniform amount of time between
two jumps, which is essential in practice as the hardware
cannot generate transmissions that are arbitrarily close
in time. Moreover, we want to ignore the fast dynamics,
which will be assumed to be stable, and design triggering
conditions based only on the slow variables, i.e. the state
x, and the sampling-induced error e and potentially an
additional designed variable τ .

4 Assumptions

We present the assumptions made on system (12). We
will show in Section 6 that all the conditions are satisfied
by a class of globally Lipschitz systems. The approximate
slow and fast models (3) and (5) are now in view of (8)
and (9)

ẋ=f
(
x, h(x, k(x + e)), k(x+ e)

)
=:fs(x, e) (14)

dy

dτ
=g

(
x, y+h(x,k(x+e)), k(x+e)

)
=:gf(x, y, e). (15)

First, we assume that the slow system (14) is input-to-
state stable (ISS) with respect to e.

Assumption 2 There exist a continuously differen-
tiable function Vx : Rnx → R≥0 and class K∞ functions
αx, αx, γ1 with γ1 continuously differentiable and α1 > 0
such that for all (x, e) ∈ R

2nx the following is satisfied

αx(|x|) ≤ Vx(x) ≤ αx(|x|)
∂Vx

∂x fs(x, e) ≤ −α1Vx(x) + γ1(|e|).
(16)

Since we design the triggering condition based only on
the slow dynamics, to guarantee the overall stability of
the closed-loop system, we need to make some assump-
tions on the stability of the approximate fast model (15)
on flows. In particular, we assume that the following sta-
bility property holds for the approximate fast dynamics
like in [4].

Assumption 3 There exist a continuously differen-
tiable function Vy : Rny → R≥0 and class K∞ functions
αy, αy and α2 > 0 such that for all (x, y, e) ∈ R

2nx+ny

αy(|y|) ≤ Vy(x, y) ≤ αy(|y|)
∂Vy

∂y gf(x, y, e) ≤ −α2Vy(x, y).
(17)

Assumption 3 implies that the origin of the approxi-
mate fast dynamics (15) is globally asymptotically sta-
ble. Note that Assumption 3 does not imply that the
origin of the fast dynamics (15) is globally exponentially
stable as the functions αy, αy can be nonlinear. We im-
pose the following conditions on the interconnections be-
tween the slow and fast dynamics (14), (15).

Assumption 4 There exist a class K∞ function γ2 and
β1, β2, β3 > 0 such that for all (x, y, e) ∈ R

2nx+ny the
following hold

∂Vx

∂x [fx(x, y, e)− fs(x, e)] ≤ β1
√
Vx(x)Vy(x, y)[

∂Vy

∂x − ∂Vy

∂y
∂h
∂x

]
fx(x,y,e) ≤ β2

√
Vx(x)Vy(x,y)+β3Vy(x,y)

+γ2(|e|),
(18)

where Vx and Vy come from Assumptions 2 and 3 respec-
tively. In addition, there exists L > 0 such that, for all
s ≥ 0

γ2 ◦ γ−1
1 (s) ≤ Ls, (19)

where γ1 comes from Assumption 2.

Conditions (18) represent the effect of the deviation of
the original system (12) from the slow and fast models
(14), (15) respectively and are related to (11.43) and
(11.44) in [4].

Finally, we assume that the dynamics of Vy along jumps
of system (12) satisfies the following condition.

Assumption 5 There exist λ1, λ2 > 0 such that for all
(x, y, e) ∈ R

2nx+ny

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1γ1(|e|)
+ λ2

√
γ1(|e|)Vy(x, y), (20)

where Vx, γ1 and Vy come from Assumptions 2 and 3
respectively.

Assumption 5 is an algebraic condition which only re-
quires the knowledge of hy (which is defined in (11)) and
γ1 and Vy from Assumptions 2 and 3 respectively: we do
not need to know the triggering condition to check it.

Remark 1 Assumptions 3, 4 may require (17), (18) to
hold regardless the magnitude of the sampling-induced
error e. We show in Section 6 that all these conditions
are satisfied by a class of globally Lipschitz systems which
encompasses LTI systems as a particular case and for
which these results are new.

5 Main results

First, we show that the design of triggering conditions of
the same form as in [16] for the slow model may not en-
sure the existence of a strictly positive minimum amount
of time between two jumps for the overall system. We
then present our main results.
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5.1 A first observation

In view of Assumption 2, a first attempt would
be to define a triggering condition of the form
γ1(|e|) ≥ σα1Vx(x) where σ ∈ (0, 1) like in [16]. The
flow and jump sets are in this case

C = {q : γ1(|e|) ≤ σα1Vx(x)}
D = {q : γ1(|e|) = σα1Vx(x)}. (21)

The results in [16] guarantee the global asymptotic sta-
bility of the origin of the slow model (14) and the exis-
tence of a uniform (semiglobal) amount of time between
two jumps (under some conditions). However, this trig-
gering rule no longer ensures a minimum time of flow
between two jumps for system (12). Indeed G(D)∩D =
{q : x = e = 0} 6= ∅. Thus, any solution in G(D) ∩ D
may jump an infinite number of times, which makes the
controller not realizable in practice. In the sequel, we first
apply existing strategies in order to overcome this issue
and we investigate how to modify the stability analysis
and what kind of stability property one may expect. We
also propose another strategy that allows to guarantee
global asymptotic stability.

5.2 Semiglobal practical stabilization

The most straightforward approach to enforce a lower
bound on the inter-jumps for system (12) is to add a
dead-zone to the triggering condition in Section 5.1, i.e.

γ1(|e|) ≥ max{σα1Vx(x), ρ}, (22)

where ρ > 0 is a design parameter. The flow and jump
sets in (12) are then

C = {q : γ1(|e|) ≤ max{σα1Vx(x), ρ}}
D = {q : γ1(|e|) = max{σα1Vx(x), ρ}} (23)

and we do not need to introduce an extra variable τ , i.e.
q = (x, y, e). Although this type of triggering conditions
has already been used in [9], [7] for example, the fact
that the state y experiences jumps and that we rely on
different assumptions require to fully modify the stabil-
ity analysis and leads to the following result.

Theorem 1 Consider system (12) with the flow and
jump sets defined in (23). Suppose that Assumptions 1-
5 hold. Then, for any ∆, ρ > 0, there exist β ∈ KL,
κ ∈ K∞ and ǫ∗ > 0 such that for any ǫ ∈ (0, ǫ∗) and any
solution φ = (φx, φy, φe) with |φ(0, 0)| ≤ ∆,

|φ(t, j)| ≤ β(|φ(0, 0)|, t+ j) + κ(ρ) ∀(t, j) ∈ dom φ,
(24)

and all inter-transmission times are lower-bounded by a
strictly positive constant ρ

ξ(∆) , where ξ : R≥0 → R>0

is a continuous increasing function, i.e. for all j ∈ Z≥0

sup Ij − inf Ij ≥ ρ
ξ(∆) , where I

j = {t : (t, j) ∈ dom φ}.
Furthermore, all maximal solutions to (12) are complete.

Theorem 1 ensures a semiglobal practical stability prop-
erty for system (12). Indeed, given an arbitrary (large)
ball of initial conditions centered at the origin and of
radius ∆ and any constant ρ, there exists ǫ sufficiently
small such that solutions to (12), (23) converge towards
a neighbourhood of the origin whose ‘size’ can be ren-
dered arbitrarily small by reducing ρ (at the price of
shorter inter-transmission intervals).

5.3 Global asymptotic stabilization

We propose another strategy to design the event-
triggering condition to ensure a global asymptotic sta-
bility property under an extra assumption. The idea is
to combine the event-triggered technique of [16] with
the time-triggered results of [11] such that we allow
transmissions only after a fixed amount of time T ∗ has
elapsed since the last one.

We suppose that Assumptions 1-5 are satisfied with
γ1(s) = γ̄1s

2 and γ2(s) = γ̄2s
2 for some γ̄1, γ̄2 ≥ 0

and for s ≥ 0. We introduce an extra variable τ ∈ R≥0

to model the elapsed time between two successive
jumps. Hence, τ̇ = 1 on flows and τ+ = 0 at jumps.
Consequently, q = (x, y, e, τ) and fτ (x, y, e, τ) = 1,
hτ (x, y, e, τ) = 0 in (13). We define the flow and jump
sets as follows

C := {q : γ̄1|e|2 ≤ σα1Vx(x) or τ ∈ [0, T ∗]}
D :=

{
q :

(
γ̄1|e|2 = σα1Vx(x) and τ ≥ T ∗

)
or(

γ̄1|e|2 ≥ σα1Vx(x) and τ = T ∗
)}
.

(25)

While the idea of merging event-triggered and time-
triggered techniques is intuitive, the stability analysis is
non-trivial as we need to build a common hybrid Lya-
punov function for the two approaches. It has to be em-
phasized that the constant T ∗ allows us to directly tune
the minimum inter-transmission interval provided it is
smaller than the bound given below.

Inspired by [11], we make the following additional as-
sumption on system (12).

Assumption 6 There existM,N ≥ 0 such that, for all
(x, y) ∈ R

nx+ny and for almost all e ∈ R
nx

〈∇|e|,−fx(x, y, e)〉 ≤M |e|+N(
√
Vx(x) +

√
Vy(x, y)),

where Vx and Vy come from Assumptions 2 and 3 respec-
tively.

The constant T ∗ in (25) is selected such that T ∗ < T ,
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like in [11], where

T :=





1
Mr arctan(r) M2 < γ̄1N

2

α1

1
M M2 = γ̄1N

2

α1

1
Mr arctanh(r) M2 > γ̄1N

2

α1

(26)

with r :=

√∣∣∣ γ̄1N2

α1M2 − 1
∣∣∣, where M,N come from As-

sumption 6 and α1, γ̄1 come from Assumption 2. We ob-
tain the following result.

Theorem 2 Consider system (12) with the flow and
jump sets defined in (25) and suppose the following hold.

(1) Assumptions 1-6 hold with γ1(s) = γ̄1s
2 and

γ2(s) = γ̄2s
2 with γ̄1, γ̄2 ≥ 0, for s ≥ 0.

(2) The constant T ∗ in (25) is such that T ∗ ∈ (0, T ).

Then there exist β ∈ KL and ǭ > 0 such that for any
ǫ ∈ (0, ǭ) and any solution φ = (φx, φy , φe, φτ )

|(φx(t, j), φy(t, j))| ≤ β(|φ(0, 0)|, t+j) ∀(t, j) ∈ dom φ.
(27)

Moreover, all maximal solutions to (12) are complete.

We see that Theorem 2 ensures a global asymptotic sta-
bility property and that it requires an additional condi-
tion to hold, namely Assumption 6, compared to Section
5.2.

6 The case of globally Lipschitz systems

In this section, we show that all the conditions of Sec-
tion 4 are verified by a class of globally Lipschitz sys-
tems, which includes LTI systems as a particular case.
We assume that the vector fields f, g and k are globally
Lipschitz and that the stability of the slow and the fast
model can be verified using quadratic functions Vx and
Vy. Under these conditions, the proposition below states
that Assumptions 1-6 hold. Hence, the triggering rules
presented in Sections 5.2 and 5.3 can be applied.

Proposition 1 Consider system (1), (6). Suppose the
following hold

(1) The functions f, g and k are globally Lipschitz.

(2) Assumption 1 is verified with h globally Lipschitz.

(3) There exist positive definite and symmetric real ma-
trices P1, P2 such that the functions Vx : x 7→ xTP1x
and Vy : y 7→ yTP2y satisfy for all (x, y, e) ∈
R

2nx+ny

∂Vx
∂x

fs(x, 0) ≤ −ᾱ1Vx(x) (28)

∂Vy
∂y

gf (x, y, e) ≤ −α2Vy(x, y), (29)

where ᾱ1, α2 > 0. Then, Assumptions 2-6 are satisfied.

The choice of the triggering condition between Section
5.2 and 5.3 has to be done on a case-by-case basis accord-
ing to the desired specifications. The technique in Sec-
tion 5.3 offers stronger a priori guarantees on the mini-
mum inter-event times, however the strategy in Section
5.2 may lead to less transmissions in average, see for sim-
ulation results on the autopilot event-triggered control
of an F-8 aircraft [1].

7 Conclusion

We have investigated the event-triggered stabilization
of nonlinear singularly perturbed systems based only
on the slow dynamics. Two classes of controllers have
been developed which ensure different asymptotic sta-
bility properties. We believe that this work can be ex-
tended along two important directions. First, the design
of event-triggered controllers for singularly perturbed
systems with potentially unstable fast dynamics can be
pursued based on the model (12). Second, it would be
interesting to use similar ideas as in this paper for the
event-triggered control of systems based on a simplified
model of the plant dynamics obtained by other means
like model reduction.
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Appendix

Proof of Theorem 1. We define the function (like in
the proof of Theorem 1 in [15])

V (q) := Vx(x) +
√
ǫVy(x, y) ∀q ∈ R

nq (30)

with ǫ ∈ (0, ǫ∗) where ǫ∗ > 0 will be defined in the
following. Let q ∈ C, it holds that, in view of (8) and (9)
(we omit the arguments of fx, g, Vx, Vy in the following
for space reasons)

〈∇V (q), F (q)〉 = ∂Vx

∂x fx +
√
ǫ
∂Vy

∂x fx +
√
ǫ
ǫ
∂Vy

∂y fy

= ∂Vx

∂x fs +
∂Vx

∂x [fx − fxs
] +

√
ǫ
−1 ∂Vy

∂y gf

+
√
ǫ
[
∂Vy

∂x − ∂Vy

∂y
∂h
∂x

]
fx.

(31)
In view of the definition of the set C, γ1(|e|) ≤
max{σα1Vx(x), ρ} and γ2(|e|) ≤ γ2◦γ−1

1

(
max{σα1Vx(x),

ρ}
)
. The condition (19) ensures that γ2(|e|) ≤

Lmax{σα1Vx(x), ρ}. Using Assumptions 2-5, we derive
that

〈∇V (q), F (q)〉 ≤ −χTAχ+ (1 +
√
ǫL)ρ (32)

where χ := (
√
Vx(x),

√
Vy(x, y)) and

A :=

[
α1(1 − σ(1 +

√
ǫL)) −(β1 +

√
ǫβ2)/2

−(β1 +
√
ǫβ2)/2 α2

√
ǫ
−1 −√

ǫβ3

]
. (33)

Let µ ∈ (0, α1(1 − σ)). The following conditions ensure
thatA ≥ µdiag(1,

√
ǫ), where diag(1,

√
ǫ) is the diagonal

matrix with elements (1,
√
ǫ) on the diagonal





α1(1− σ(1 +
√
ǫL)) ≥ µ(

α1(1− σ(1 +
√
ǫL))− µ

)(
α2

√
ǫ
−1−√

ǫβ3 −
√
ǫµ

)

≥(β1+
√
ǫβ2)

2/4

(34)
The inequalities in (34) are always satisfied by selecting
ǫ∗ > 0 (and so ǫ) sufficiently small. Consequently

〈∇V (q), F (q)〉 ≤ −µχTdiag(1,√ǫ)χ+ (1 +
√
ǫL)ρ

= −µV (q) + (1 +
√
ǫL)ρ,

(35)

from which we deduce that V (q) ≥ 2 (1+
√
ǫL)

µ ρ implies

〈∇V (q), F (q)〉 ≤ −µ
2V (q). (36)

Let q ∈ D, V (G(q)) = Vx(x) +
√
ǫVy(x, hy(x, y, e)).

In view of Assumption 5 and the definition of the
set D, Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1γ1(|e|) +

λ2
√
γ1(|e|)Vy(x, y) = Vy(x, y)+λ1 max{σα1Vx(x), ρ}+

λ2
√
max{σα1Vx(x), ρ}Vy(x, y) ≤ Vy(x, y)+λ1σα1Vx(x)+

λ1ρ+ λ2
√
(σα1Vx(x) + ρ)Vy(x, y). Using that√

max{σα1Vx(x), ρ}Vy(x, y) ≤ ǫ−
1
4 max{σα1Vx(x), ρ}+

ǫ
1
4 Vy(x, y), we deduce that Vy(x, hy(x, y, e)) ≤ Vy(x, y)+

λ1σα1Vx(x) + λ1ρ + λ2ǫ
− 1

4 max{σα1Vx(x), ρ} +
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λ2ǫ
1
4Vy(x, y). As a consequence, by taking ǫ∗ sufficiently

small: ǫ
1
2 ≤ ǫ

1
4 and V (G(q)) ≤ V (q) + ǫ

1
4λ1σα1Vx(x) +

ǫ
1
4 λ1ρ + ǫ

1
4 λ2 max{σα1Vx(x), ρ} + ǫ

1
4 λ2

√
ǫVy(x, y). Af-

ter some direct computations, we derive that V (G(q)) ≤
(1+ǫ

1
4 λ)V (q)+ǫ

1
4λρ where λ := (λ1+λ2)max{σα1, 1}.

As a consequence

V (G(q)) ≤ (1 + 2ǫ
1
4λ)max{V (q), ρ}. (37)

Let∆ > 0 and φ = (φx, φy, φe) be a solution to (12), (23)
such that |φ(0, 0)| ≤ ∆. Assume without loss of general-
ity 1 that φe(0, 0) = 0. By invoking standard comparison
principles, we obtain from (36), for all (t, 0) ∈ domφ,

V (φ(t, 0)) ≤ max
{
e−

µ
2 tV (φ(0, 0)), 2 (1+

√
ǫL)

µ ρ}
≤ max

{
V (φ(0, 0)), θρ}

(38)

with θ := (1 + 2λ)max{2 (1+L)
µ , 1

}
(where we have

used the fact ǫ∗ is sufficiently small such that ǫ∗ ≤ 1).
The length of the inter-jump interval is lower bounded
by the time it takes for γ1(|φe|) to grow from 0 to
ρ in view of (23). We aim at establishing a lower
bound of the latter time, which we denote τ(∆).
In view of (38), (φx(t, 0), φy(t, 0)) lie in the com-
pact set {(x, y) : V (x, y, 0) ≤ max

{
α(∆), θρ}} for

all (t, 0) ∈ domφ, where α(|(φx(t, j), φy(t, j))|) =
αx(|φx(t, j)|) + αy(|φy(t, j)|) (we use again the fact
that ǫ∗ ≤ 1 as well as (16) and (17)). As φe(t, 0) =
φx(0, 0)−φx(t, 0), we deduce that φ(t, 0) lie in a compact
set S(∆) for all (t, 0) ∈ domφ. Since γ1 is continuously
differentiable by assumption, φ is continuous between
two jump instants, fx is continuous and S(∆) is compact

d
dtγ1(|φe(t, 0)|) ≤ ∂γ1(|φe(t, 0)|)|fx(φ(t, 0))|

≤ sup
q∈S(∆)

{∂γ1(|e|)|fx(x, y, e)|}

< ξ(∆),

(39)

for some ξ(∆) > 0, which ensures the property on the
inter-jump intervals stated below (24). Hence τ(∆) ≥
ρ

ξ(∆) . To compensate the potential increase of V at jumps

in view of (37), we will use the following condition

τ(∆) > 4
µ ln

(
1 + 2ǫ

1
4λ

)
(40)

which is always satisfied by selecting ǫ∗ sufficiently small
such that 4

µ ln
(
1 + 2(ǫ∗)

1
4 λ

)
≤ ρ

ξ(∆) ≤ τ(∆). The in-

1 If that is not the case, the inequality obtained later in (42)
will hold for any (t, j) ∈ domφ with j ≥ 1. A bound on V (φ)
on the interval [0, t1] can then be derived using (36) and (37)
to upper-bound on V (φ) on the whole domain domφ. Note
that if φ never jumps, the bound on the inter-jump times
used in (40) trivially holds and (42) will be verified.

equality (40) ensures e−
µ

2 t1(1 + 2ǫ
1
4 λ) < 1 where t1

is such that (t1, 0), (t1, 1) ∈ domφ (and verifies t1 ≥
τ(∆)). As a consequence, from (37) and (38), we deduce
that

V (φ(t1, 1)) ≤ (1 + 2ǫ
1
4 λ)max{V (φ(t1, 0)), ρ}

≤ (1 + 2ǫ
1
4 λ)max

{
e−

µ
2 t1V (φ(0, 0)),

2 (1+
√
ǫL)

µ ρ, ρ
}

≤ max
{
V (φ(0, 0)), θρ}

(41)
which is the same right hand-side as in (38). Hence,
we apply the same arguments as above to derive that
t2 − t1 ≥ τ(∆), where (t2, 1), (t2, 2) ∈ domφ. Conse-
quently, by induction t ≥ τ(∆)j for any (t, j) ∈ domφ.
By using the comparison principle and the fact that
(1 + 2ǫ

1
4λ)e−

µ

2 τ(∆) ≤ 1, we obtain in view of (36) and
(37), for any (t, j) ∈ domφ

V (φ(t, j)) ≤ max
{
e−

µ
2 t(1 + 2λǫ

1
4 )jV (φ(0, 0)), θρ}.

(42)
The condition (40) ensures, since t ≥ τ(∆)j for any

(t, j) ∈ domφ, that e−
µ

2 t(1 + 2ǫ
1
4 λ)j ≤ e−γ(t+j) with

γ ∈
(
0,

µ

2 −ln(1+2ǫ
1
4 λ) 1

τ(∆)

1+ 1
τ(∆)

)
. As a consequence, for any

(t, j) ∈ domφ,

V (φ(t, j)) ≤ max
{
e−γ(t+j)V (φ(0, 0)), θρ}. (43)

In view of (16) and (17), for any (t, j) ∈ domφ,

αx(|φx(t, j)|) ≤ max
{
e−γ(t+j)α(φ(0, 0)), θρ}

|φx(t, j)| ≤ α−1
x

(
max

{
e−γ(t+j)α(|φ(0, 0)|), θρ}

)
,

(44)
Using that γ1(|e|) ≤ max{σα1V (x), ρ} for any q ∈ C ∪
D ∪G(D), we deduce that for any (t, j) ∈ domφ

|φe(t, j)| ≤ max
{
βe(|φ(0, 0)|, t+ j), ϑe(ρ)} (45)

for some βe ∈ KL and θe ∈ K∞. We are left with the
y-component of φ. In view of Assumptions 3-4, it holds
that

〈∇Vy(x, y), (fx, fy)〉 = 1
ǫ
∂Vy

∂y g +
[
∂Vy

∂x − ∂Vy

∂y
∂h
∂x

]
fx

≤ −α2

ǫ Vy(x, y) + β2
√
Vx(x)Vy(x, y)

+β3Vy(x, y) + γ2(|e|)
≤−(α2

ǫ −β2−β3)Vy(x, y) + β2Vx(x)

+γ2(|e|)
(46)
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and, as shown before,

Vy(x,hy(x,y,e)) ≤ Vy(x,y)+λ1γ1(|e|)+λ2
√
γ1(|e|)Vy(x,y)

≤ (1 + ǫ
1
4 λ2)Vy(x, y) + (λ1 + ǫ−

1
4 λ2)γ1(|e|)

(47)
By following similar lines as above, we deduce that, by
taking ǫ∗ sufficiently small, the y-system is ISS with re-
spect to x and e. As a consequence, in view of (44), (46)
and (47) we derive that

|φy(t, j)| ≤ max
{
βy(|φ(0, 0)|, t+ j), ϑy(ρ)} (48)

for some βy ∈ KL and θy ∈ K∞. The property (24) then
follows from (44), (45) and (48). Equations (44), (45)
and (48) ensure that φ cannot explode in finite time,
neither it can flow out of C ∪D since G(D) ⊂ C. Noting
that system (12), (23) does not admit trivial solution 2 ,
we conclude that maximal solutions to (12), (23) are
complete according to Proposition 6.10 in [3]. ✷

Proof of Theorem 2. Like in the proof of Theorem 1
in [11], we introduce the solution ζ to

ζ̇ = −1− 2Mζ − µ−
(
µζ(τ) + γ̄1

α1−µ (Nζ)
2
)

=: fζ(τ)
(49)

with ζ(0) = ϑ−1, ϑ ∈ (0, 1) and µ ∈ (0, α1). We denote

T̃ (µ, ϑ) the time it takes for ζ to decrease from ϑ−1 to

ϑ. This time T̃ (µ, ϑ) is a continuous function of µ, ϑ
which is decreasing in µ, ϑ (by invoking the comparison

principle). On the other hand, we note that T̃ (µ, ϑ) → T
as (µ, ϑ) tends to (0, 0) by following similar lines as in
the proof of Claim 1 in [11], where T is defined in (26).
As a consequence, since T ∗ < T , there exist µ, ϑ such

that T ∗ ≤ T̃ (µ, ϑ) which we fix.

We define

R(q) := Vx(x)+dVy(x, y)+max{0, γ̄1ζ(τ)|e|2} ∀q ∈ R
nq

(50)

where d ∈
(
0,min{ γ̄1γ̄2µ,

1−σ
σ

γ̄1
γ̄2
, ϑ2

(λ1+λ2)2
, (e

µT∗−1)2

λ2 , 1}
)

and λ := max{λ2, (λ1+λ2)σα1}. Let q ∈ C and consider
the case where ζ(τ) > 0. In view of Assumptions 2-6 and
Lemma 1

R◦(q;F (q)) ≤ −(χ, |e|)TA1(χ, |e|), (51)

where χ := (
√
Vx(x),

√
Vy(x, y)),

A1 :=

[
α1 − 1

2 (β1+dβ2) −γ̄1Nζ(τ)
∗ d

ǫ
α2−dβ3 −γ̄1Nζ(τ)

∗ ∗ υ(τ)

]
, υ(τ) := −γ̄1 − dγ̄2 −

2 This comes from the fact that C\D is the interior of C.
Hence, the tangent cone (see definition 5.12 in [3]) is Rn and
(VC) in Proposition 6.10 in [3] holds for any point in C\D

γ̄1fζ(τ) − 2γ̄1Mζ(τ) and ∗ stands for the symmetric
components of A1. The following conditions ensure that
A1 ≥ µdiag(1, d, γ̄1ζ(τ)) according to Sylvester’s crite-
rion, where diag(1, d, γ̄1ζ(τ)) is the diagonal matrix with
elements (1, d, γ̄1ζ(τ)) on the diagonal







































































0 ≤ α1 − µ

0 ≤ (α1 − µ)d( 1
ǫ
α2 − β3 − µ) ≥ 1

4
(β1 + dβ2)

2

0 ≤ (α1 − µ)

×
{

d( 1
ǫ
α2 − β3 − µ)(υ(τ )− µγ̄1ζ(τ ))− (γ̄1ζ(τ )N)2

}

+ 1

2
(β1 + dβ2)

×
{

− 1

2
(β1 + dβ2)(υ(τ )− µγ̄1ζ(τ ))− (γ̄1ζ(τ )N)2

}

−γ̄1Nζ(τ )

×
{

1

2
(β1 + dβ2)γ̄1ζ(τ )N + γ̄1Nζ(τ )d( 1

ǫ
α2 − β3 − µ)

}

.

(52)
The first two inequalities above are respectively

verified by definition of µ and by taking ǫ suffi-
ciently small. For the last inequality to hold, it
suffices to select ǫ sufficiently small provided that
d
ǫα2

(
(α1 − µ)(υ − µγ̄1ζ(τ)) − (γ̄1Nζ(τ))

2
)
> 0 which

is equivalent to, by definition of υ and definition of fζ in
(49), (α1 − µ)(γ̄1µ− dγ̄2) > 0 which holds by definition
of d and µ. Consequently, by selecting ǫ sufficiently small

R◦(q;F (q)) ≤ −µR(q). (53)

Suppose now that ζ(τ) < 0, hence γ̄1|e|2 ≤ σα1Vx(x) in
view of the definition of the set C. Using Assumptions
2-6 and Lemma 1,

R◦(q;F (q)) ≤ −χTA2χ, (54)

where A2 :=

[
α1(1−σ(1+dγ̄2γ̄−1

1 )) − 1
2 (β1+dβ2)

− 1
2 (β1+dβ2)

d
ǫ
α2−dβ3

]
. By fol-

lowing similar arguments as above and since d < 1−σ
σ

γ̄1
γ̄2

and R(q) = Vx(x) + dVy(x, y) in this case, we derive
that (53) holds by selecting ǫ sufficiently small. When
ζ(τ) = 0, (53) is verified in view of Lemma 1 and the re-
sults obtained for the cases where ζ(τ) > 0 and ζ(τ) < 0.

Let q ∈ D. Suppose that τ = T ∗ (note that γ̄1|e|2 ≥
σα1Vx(x) in this case). In view of Assumption 5
R(G(q)) = Vx(x) + dVy(x, hy(x, y, e)) ≤ Vx(x) +

d
(
Vy(x, y) + λ1γ̄1|e|2 + λ2

√
γ̄1|e|2Vy(x, y)

)
. Us-

ing that
√
γ̄1|e|2Vy(x, y) ≤ 1√

d
γ̄1|e|2 +

√
dVy(x, y)

and since d ≤
√
d ≤ 1, it holds that R(G(q)) ≤

Vx(x)+dVy(x, y)+
√
d(λ1+λ2)γ̄1|e|2+dλ2

√
dVy(x, y) ≤

Vx(x) + dVy(x, y) +
√
d(λ1 + λ2)γ̄1|e|2 + λ2

√
d(Vx(x) +

dVy(x, y)). We take d sufficiently small such that√
d(λ1 + λ2)γ̄1|e|2 ≤ γ̄1ζ(T̃ (µ, ϑ))|e|2 = γ̄1ϑ|e|2

(since ζ(T̃ (µ,ϑ)) = ϑ). As a consequence R(G(q)) ≤
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(1 + λ2
√
d)(Vx(x) + dVy(x, y) + γ̄1ζ(T̃ (µ, ϑ))|e|2). Since

in this case we transmit at τ = T ∗ ≤ T̃ (µ, ϑ), then

ζ(τ) ≥ ζ(T̃ (µ, ϑ)), as ζ(τ) is a decreasing function, and

we obtain R(G(q)) ≤ (1 + λ2
√
d)R(q). When τ > T ∗, it

holds that γ̄1|e|2 = σα1Vx(x) in view of (25). Hence, by
following similar lines as above, we deduce that

R(G(q)) ≤ (1 + λ
√
d)R(q), (55)

where λ = max{λ2, (λ1 + λ2)σα1}. Thus, (55) holds for
all q ∈ D (since λ2 ≤ λ).

Finally, we use similar arguments as in Proposition 3.29
in [3] to conclude. In view of (53) and (55), the property
(3.10) in Proposition 3.29 holds with λc = −µ and eλd =

(1 + λ
√
d). Let ψ > 0 and (t, j) ∈ domφ. To satisfy the

last condition of Proposition 3.29, we need to show that
ln(1 + λ

√
d)j − µt ≤ −ψ(t+ j). Since j ≤ t

T∗ in view of

(25), it suffices to show that ln(1+λ
√
d) t
T∗−µt ≤ −ψ(t+

t
T∗ ) which is equivalent to (ln(1 + λ

√
d) + ψ) t

T∗ ≤ (µ−
ψ)t, i.e. ψ( 1

T∗ +1) ≤ µ− ln(1+λ
√
d) 1
T∗ . Hence, we take

d ≤ ( e
µT∗−1
λ )2 which ensures that µ−ln(1+λ

√
d) 1
T∗ > 0

(it then suffices to take ψ ∈ (0,
µ−ln(1+λ

√
d) 1

T∗

1
T∗ +1

) > 0). As

a result, like in the proof of Proposition 3.29 in [3], we
obtain, for all (t, j) ∈ domφ

R(φ(t, j)) ≤ e−ψ(t+j)R(φ(0, 0)). (56)

By using Assumptions 2-3 and the fact that ζ(τ) ∈
[ϑ, ϑ−1], we deduce from (56) that (27) holds. Let φ =
(φx, φy , φe, φτ ) be a maximal solution to (12)-(25). We
note that φ is non-trivial by using similar arguments as in
the proof of Theorem 1. In view of (56), φx and φy cannot
explode in finite time. Since φe(t, j) = φx(tj , j)−φx(t, j)
for any (tj , j), (t, j) ∈ domφ and j ≥ 1, φe cannot ex-
plode in finite time. The same conclusion holds for φτ in
view of its dynamics, see (12). Hence, φ cannot explode
in finite-time. In addition,G(D) ⊂ C. As a consequence,
φ is complete according to Proposition 6.10 in [3]. ✷

Proof of Proposition 1. Let L̄ be a common Lipschitz
constant for the functions f, g, k and h, which exists in
view of items (1), (2) of Proposition 1.

• Assumption 2: In view of (14) and item (3) of
Proposition 1, we have, for all (x, e) ∈ R

2nx ,
∂Vx

∂x fs(x, e) ≤ −ᾱ1Vx(x)+2|x||P1||fs(x, e)−fs(x, 0)|.
Since f is globally Lipschitz, |fs(x, e) − fs(x, 0)| ≤
L̄|e|. As a consequence, ∂Vx

∂x fs(x, e) ≤ −ᾱ1Vx(x) +

2L̄|P1||x||e|. Using the fact that 2L̄|P1||x||e| ≤
1
2 ᾱ1λmin(P1)|x|2 + 2(ᾱ1λmin(P1))

−1L̄2|P1|2|e|2 and

the fact that λmin(P1)|x|2 ≤ Vx(x) ≤ λmax(P1)|x|2,
since P1 is positive definite and symmetric, it holds
that

∂Vx
∂x

fs(x, e)≤− ᾱ1

2 Vx(x)+2L̄2|P1|2(ᾱ1λmin(P1))
−1|e|2.

Hence Assumption 2 holds with α1 = ᾱ1

2 and γ1(s) =

2L̄2|P1|2(ᾱ1λmin(P1))
−1s2 for s ≥ 0.

• Assumption 3 follows directly from item (3) of Propo-
sition 1.

• Assumption 4: In view of items (1), (3) of Proposition
1 and since λmin(P1)|x|2 ≤ Vx(x) and λmin(P2)|y|2 ≤
Vy(x, y), it holds that, for all (x, y, e) ∈ R

2nx+ny

∂Vx
∂x

[fx(x,y,e)−fs(x,e)] ≤ 2L̄|P1||x||y|. (57)

Thus, the first condition of Assumption 4 is verified
with β1 = 2L̄|P1|(λmin(P1)λmin(P2))

−1/2. On the
other hand, in view of items (1), (3) of Proposition 1
and using the fact that |e||y| ≤ |y|2 + |e|2 and using
that fx(0, 0, 0) = 0 since the origin of system (14) is
asymptotically stable in view of (28), it holds that,
for all (x, y, e) ∈ R

2nx+ny

[
∂Vy
∂x

− ∂Vy
∂y

∂h

∂x

]
fx(x, y, e) ≤ 2|P2||y||

∂h

∂x
||fx(x, y, e)|

≤ β2

√
Vx(x)Vy(x, y)+β3Vy(x, y) + 2L̄2|P2||e|2,

where β2 = 2L̄2|P2|(λmin(P1)λmin(P2))
−1/2 and

β3 = 4L̄2|P2|(λmin(P2))
−1. Hence, the second condi-

tion of Assumption 4 holds with γ2(s) = 2L̄2|P2|s2
for s ≥ 0. The third condition is satisfied with
L = ᾱ1λmin(P1)|P2||P1|−2.

• Assumption 5: We denote hxe(x, e) := h(x, k(x + e))
and hx(x) := h(x, k(x)). In view of (11) and the defi-
nition of Vy ,

Vy(x, hy(x, y, e)) = hTy (x, y, e)P2hy(x, y, e)

≤ Vy(x, y) + |P2||hxe(x, e)− hx(x)|2
+ 2|P2||y||hxe(x, e)− hx(x)|. (58)

Since h is globally Lipschitz, it holds that |hxe(x, e)−
hx(x)| ≤ L̄|e|. As a consequence,

Vy(x, hy(x, y, e))≤Vy(x, y)+L̄2|P2||e|2+2L̄|P2||y||e|

andAssumption 5 is satisfiedwith λ1 = 1
2 ᾱ1λmin(P1)×

|P2||P1|−2 and λ2 = (ᾱ1λmin(P1)|P2|2)1/2×
(λmin(P2)|P1|2)−1/2.

• Assumption 6: In view of (12)-(13) and item (1) of
Proposition 1 and using that fx(0, 0, 0) = 0, it holds
that, for all (x, y) ∈ R

nx+ny and for almost all e ∈ R
nx

〈∇|e|,−fx(x, y, e)〉 ≤ L̄(|x|+ |y|+ |e|). (59)

Hence, Assumption 6 is verified withM = L̄ andN =
L̄max{(λmin(P1))

−1/2, (λmin(P2))
−1/2}. ✷
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