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Abstract

A sufficient condition for the stability of a system resulting from
the interconnection of dynamical systems is given by the small gain
theorem. Roughly speaking, to apply this theorem, it is required that
the gains composition is continuous, increasing and upper bounded by
the identity function. In this work, an alternative sufficient condition
is presented for the case in which this criterion fails due to either lack
of continuity or the bound of the composed gain is larger than the
identity function. More precisely, the local (resp. non-local) asymp-
totic stability of the origin (resp. global attractivity of a compact
set) is ensured by a region-dependent small gain condition. Under an
additional condition that implies convergence of solutions for almost
all initial conditions in a suitable domain, the almost global asymp-
totic stability of the origin is ensured. Two examples illustrate and
motivate this approach.
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1 Introduction

The use of nonlinear input-output gains for stability analysis was introduced
in [26] by considering a system as an input-output operator. The condition
that ensures stability, called Small Gain Theorem, of interconnected systems
is based on the contraction principle.

The work [22] introduces a new concept of gain relating the input to sys-
tem states. This notion of stability links Zames’ and Lyapunov’s approaches
[23]. Characterizations in terms of dissipation and Lyapunov functions are
given in [24].

In [14], the contraction principle is used in the input-to-state stability
notion to obtain an equivalent Small Gain Theorem. A formulation of this
criterion in terms of Lyapunov functions may be found in [13].

Besides stability analysis, the Small Gain Theorem may also be used
for the design of dynamic feedback laws satisfying robustness constraints.
The interested reader is invited to see [9, 21] and references therein. Other
versions of the Small Gain theorem do exist in the literature, see [4, 5, 11, 12]
for not necessarily ISS systems.

In order to apply the Small Gain Theorem, it is required that the com-
position of the nonlinear gains is smaller than the argument for all of its
positive values. Such a condition, called Small Gain Condition, restricts the
application of the Small Gain Theorem to a composition of well chosen gains.

In this work, an alternative criterion for the stabilization of interconnected
systems is provided when a single Small Gain Condition does not hold glob-
ally. It consists in showing that if the two conditions hold: 1) a local (resp.
non-local) Small Gain Condition holds in a local (resp. non-local) region
of the state space, and the intersection of the local and non-local is empty,
and 2) outside the union of these regions, the set of initial conditions from
which the associated trajectories do not converge to the local region has mea-
sure zero, then the resulting interconnected system is almost asymptotically
stable (this notion is precisely defined below). In this paper, a sufficient con-
dition guaranteeing this property to hold is presented. Moreover, for planar
systems, an extension of the Bendixson’s criterion to regions which are not
simply connected is given. This allows to obtain global asymptotic stability
of the origin.

This approach may be seen as a unification of two small gain conditions
that hold in different regions: a local and a non-local. The use of a unifying
approach for local and non-local properties is well known in the literature see
[2] in the context of control Lyapunov functions, see [6] when uniting iISS
and ISS properties.

This paper is organized as follows. In Section 2, the system under con-



sideration and the problem statement are presented. Section 3 states the
assumptions to solve the problem under consideration and the main results.
Section 4 presents examples that illustrate the assumptions and main results.
In Section 5 the proofs of the main results are presented. Section 6 collects
some concluding remarks.

Notation. Let k ∈ Z>0. Let S be a subset of Rk containing the origin, the

notation S 6=0 stands for S \ {0}. The closure of S is denoted by cl{S}. Let

x ∈ Rk, the notation |x| stands for Euclidean norm of x. An open (resp. closed)

ball centered at x ∈ Rk with radius r > 0 is denoted by B<r(x) (resp. B≤r(x)).

A continuous function f : Rk → R is positive definite if, for every x ∈ Rk \ {0},

f(x) > 0 and f(0) = 0. It is proper if |f(x)| → ∞, as |x| → ∞. By L∞
loc(R,R

k)

the class of functions η : R → Rk that are locally essentially bounded. By Cs

it is denoted the class of s-times continuously differentiable functions, by P it is

denoted the class of positive definite functions, by K it is denoted the class of

continuous, positive definite and strictly increasing functions γ : R≥0 → R≥0; it

is denoted by K∞ if, in addition, they are unbounded. Let c ∈ R>0, the notation

Ω⋄c(f) stands for the subset of Rk defined by {x ∈ Rk : f(x) ⋄ c}, where ⋄ is a

comparison operator (i.e., =, <, ≥ etc). The support of the function f is the set

supp := {x ∈ Rk : f(x) 6= 0}. By L∞
loc(R≥0,R

k) it is denoted the class of functions

g : R≥0 → Rk that are locally essentially bounded. Let x, x̄ ∈ R≥0, the notation

x ր x̄ (resp. x ց x̄) stands for x → x̄ with x < x̄ (resp. x > x̄).

2 Background and problem statement

Consider the system
ẋ(t) = f(x(t), u(t)), (1)

where, for every t ∈ R≥0, x(t) ∈ Rn, and u ∈ L∞
loc(R≥0,R

m), for some
positive integers n and m. Also, f ∈ C1(Rn+m,Rn). A solution of (1) with
initial condition x, and input u at time t is denoted by X(t, x, u). From
now on, arguments t will be omitted, and assume that the origin is input-to-
stable stable (ISS for short) for (1). For further details on this concept, the
interested reader is invited to consult [23] or [25].

A locally Lipschitz function V : Rn → R≥0 for which there exist αx,
αx ∈ K∞ such that, for every x ∈ Rn, αx(|x|) ≤ V (x) ≤ αx(|x|) is called
storage function.

Inspired by [8, 16], the following notion of derivative will be used.

Definition 2.1. Consider the function ξ : [a, b) → R, the limit at t ∈ [a, b)

D+ξ(t) = lim sup
τց0

ξ(t+τ)−ξ(t)
τ



(if it exists) is called Dini derivative. Let k1 and k2 be positive integers,
(y1, y2) ∈ Rk1 × Rk2, functions ϕ : Rk1+k2 → R, h1 : Rk1 → Rk1 and h2 :
Rk2 → Rk2. The limit

D+
h1,h2

ϕ(y1, y2) = lim sup
τց0

ϕ(y1+τh1(y1),y2+τh2(y2))−ϕ(y1,y2)
τ

(if it exists) is called Dini derivative of ϕ in the h1 and h2-directions at
(y1, y2).

1 ◦

If, for a given storage function V , there exist a proper function λx ∈
(C0 ∩ P)(Rn,R≥0), and αx ∈ K∞ called ISS-Lyapunov gain such that, for
every (x, u) ∈ Rn × Rm,

|x| ≥ αx(|u|) ⇒ D+
f V (x, u) ≤ −λx(x), (2)

then V is called ISS-Lyapunov function for (1). As in [8], the proof that
the existence of an ISS-Lyapunov implies that (1) is ISS goes along the lines
presented in [24].

Consider the system2

ż = g(v, z), (3)

where v ∈ L∞
loc(R≥0,R

n), z ∈ Rm, and g ∈ C1(Rn+m,Rm). From now on,
assume that W : Rn+m → R≥0 is an ISS-Lyapunov function for (3) with
λz ∈ (C0 ∩ P)(Rm,R≥0), and αz ∈ K∞ satisfying, for every (v, z) ∈ Rn+m,

W (z) ≥ αz(|v|) ⇒ D+
g W (v, z) ≤ −λz(z). (4)

System under consideration. Interconnecting systems (1) and (3)
yields the system {

ẋ = f(x, z),
ż = g(x, z).

(5)

Using the vectorial notation y = (x, z), system (5) is denoted by ẏ = h(y). A
solution initiated from y in Rn+m and evaluated at time t is denoted Y (t, y).
The two ISS-Lyapunov inequalities (2) and (4) can be rephrased as follows.
For every couple (x, z) ∈ Rn+m,

V (x) ≥ γ(W (z)) ⇒ D+
f V (x, z) ≤ −λx(x),

W (z) ≥ δ(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

(6)

1When the Dini derivative is taken in only one direction, the subscript denotes only
such a direction.

2A solution of (3) with initial condition z, and input v at time t is denoted by Z(t, z, v).



with suitable functions γ, δ ∈ K∞.
A sufficient condition that ensures the stability of (5) is given by the

small gain theorem [13]. Roughly speaking if,

∀s ∈ R>0, γ ◦ δ(s) < s, (7)

then the origin is globally asymptotically stable for (5).
Problem statement. At this point, it is possible to explain the problem

under consideration. ISS systems for which (7) does not hold in a bounded
set of R≥0 are considered. This paper shows that by merging small gain
arguments in different regions of the state space and employing some tools
from measure theory, a sufficient condition ensuring almost global asymptotic
stability of the origin is possible to be given. For planar interconnected
systems, by using an extension of Bendixon’s criterion, global asymptotic
stability of the origin may be established.

3 Assumptions and main results

Assumption 3.1. There exist constant values 0 ≤ M < M ≤ ∞ and
0 ≤ N < N ≤ ∞, and class K∞ functions γ and δ such that, for every
(x, z) ∈ S ⊂ Rn × Rm, the implications

V (x) ≥ γ(W (z)) ⇒ D+
f V (x, z) ≤ −λx(x) (8)

W (z) ≥ δ(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z) (9)

hold, where

S := {(x, z) ∈ Rn × Rm : M ≤ V (x) ≤ M,
W (z) ≤ N} ∪ {(x, z) ∈ Rn × Rm :
V (x) ≤ M,N ≤ W (z) ≤ N},

(10)

◦

In other words, Assumption 3.1 states that the set Ω≤M (V )×Ω≤N(W ) is
locally ISS for the x and z-subsystems of (5). To see more details on locally
ISS systems, the interested reader may consult [7].

Assumption 3.2.

if M < ∞, s ∈ [M,M ] \ {0}, γ ◦ δ(s) < s,
if M = ∞, s ∈ [M,M) \ {0}, γ ◦ δ(s) < s.

(11)

◦



Assumption 3.2 states that the small gain condition holds in the interval
corresponding to the value of V , when x is restricted to S.

Proposition 3.3. Under Assumptions 3.1 and 3.2, if

M̃ := max{γ−1(M), N} < min{δ(M), N} =: M̂, (12)

then there exists a proper function U ∈ P(Rn+m,R≥0) that is locally Lipschitz
on Rn+m \ {0} and such that,

∀y ∈ Ω≤M̂
(U) \ Ω≤M̃

(U), lim sup
t→∞

U(Y (t, y)) ≤ M̃.

Moreover, if γ, δ ∈ (C1 ∩ K∞), then a suitable U can be defined, for every
(x, z) ∈ Rn × Rm, by

U(x, z) = max
{

δ(V (x))+γ−1(V (x))
2

,W (z)
}
. (13)

�

Condition (12) implies that Ω≤M̃
(U) ( Ω≤M̂

(U). Proposition 3.3 states
that solutions of (5) starting in Ω≤M̂

(U) will converge to the set Ω≤M̃
(U).

The proof of Proposition 3.3 is provided in Section 5.1.

Corollary 3.4. [Local stabilization] Consider Assumptions 3.1 and 3.2 with
the constant values M = N = 0, Mℓ := M < ∞ or Nℓ := N < ∞. The set
Ω≤M̂ℓ

(Uℓ) is included in the basin of attraction of the origin of (5), where Uℓ

and M̂ℓ are given by Proposition 3.3. �

In other words, Corollary 3.4 states that the set Ω≤M̂ℓ
(Uℓ) is an estimation

of the set of initial conditions from which issuing solution of (5) remain close
and converge to the origin.

Before stating the second corollary, some concepts regarding the asymp-
totic behaviour of solutions are recalled. A set M ⊂ Rn+m is said to be posi-
tively invariant with respect to (5) if, for every t ∈ R≥0, y ∈ M ⇒ Y (t, y) ∈
M (cf. [15, p. 127]). A compact positively invariant set M ⊂ Rn+m is said
to be globally attractive if, for all y ∈ Rn+m, limt→∞ |Y (t, y)|M = 0.

Corollary 3.5. [Global attractivity] Consider Assumptions 3.1 and 3.2 with
the constant values Mg := M > 0 or Ng := N > 0, and M = N = ∞. The

set Ω≤M̃g
(Ug) is globally attractive for (5), where Ug and M̃g are given by

Proposition 3.3. �
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Figure 1: Illustration of sets Ω≤Mℓ
(V ) × Ω≤Nℓ

(W ) (blue region), Ω=M̃ℓ
(Uℓ)

(dark blue line), Ω≥M(V )×Ω≥N (W ) (pink region), Ω=M̃g
(Ug) (red line), and

R = cl{Ω≤M̂g
(Ug) \ Ω≤M̃ℓ

(Uℓ)} (pattern filled).

In other words, Corollary 3.5 states that the set Ω≤M̃g
(Ug) is an estimation

of the global attractor of (5).
The proofs of Corollaries 3.4 and 3.5 are not provided and follow from

Proposition 3.3. The interested reader may also consult [8, 7].
Under the assumptions of Corollaries 3.4 and 3.5, if the estimation of

the global attractor Ω≤M̃g
(Ug) is contained in the estimation of the basin

of attraction Ω≤M̂ℓ
(Uℓ), then global asymptotic stability of the origin for

(5) follows trivially. However, when this inclusion does not hold, the set
R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ) is not empty, and solutions of (5) may converge

to positively invariant sets contained in R instead (cf. Birkhoff’s Theorem
[10]). Figure 1 illustrates the region R obtained in this situation.

The next result provides sufficient conditions ensuring that, for almost
every initial condition, issuing solutions remain close and converge to the
origin. For the case in which (5) is planar, global asymptotic stability of the
origin is established.

Before stating the main results, the concept of stability introduced in [3]
is presented. The origin is called almost globally asymptotically stable for (5)
if it is locally stable in the Lyapunov sense and attractive for almost every
initial condition. More precisely, there exists ℵ ⊂ Rn+m, with µ(ℵ) = 0 such
that, for every y ∈ Rn+m \ ℵ, limt→∞ |Y (t, y)| = 0, where µ is the Lebesgue
measure.

Theorem 3.6. Under Assumptions 3.1 and 3.2, if the constant values of
Corollaries 3.4 and 3.5 are such that Mℓ < Mg or Nℓ < Ng, there ex-
ists a function ρ ∈ C1(Rn+m \ {0},R≥0) with supp(ρ) ⊇ R, where R =
cl{Ω≤M̃g

(Ug) \Ω≤M̂ℓ
(Uℓ)}, and if for every y ∈ R, div(hρ)(y) > 0, then the



origin is almost globally asymptotically stable for (5). �

In other words, Theorem 1 states that with an extra assumption on the
vector field of system (4), solutions converge to the origin for almost every
initial condition and the origin is locally asymptotically stable. The proof of
Theorem 3.6 is provided in Section 5.2.

Theorem 3.7. Let n = m = 1. Under Assumptions 3.1 and 3.2, if the
constant values of Corollaries 3.4 and 3.5 are such that Mℓ < Mg or Nℓ < Ng,
and for every y ∈ R = cl{Ω≤M̃g

(Ug)\Ω≤M̂ℓ
(Uℓ)}, divh(y) 6= 0 and h(y) 6= 0,

then the origin is globally asymptotically stable for (5). �

Theorem 3.7 states that, when (5) is planar and under mild conditions on
the vector field, the origin is globally asymptotically stable for (5). In other
words, no ω-limit sets exist in R. The proof of Theorem 3.7 is provided in
Section 5.3.

4 Illustration

Here, the results given in the previous section are illustrated in two examples.
The first concerns the vectorial case, while the second concerns the planar
case.

4.1 A class of systems satisfying an asymptotic small-

gain condition

Recall system (5), and assume that there exist locally Lipschitz and proper
functions V ∈ P(Rn,R≥0) andW ∈ P(Rm,R≥0) satisfying

3, for every (x, z) ∈
Rn × Rm, {

D+
f V (x, z) ≤ −V (x) + γ(W (z)),

D+
g W (x, z) ≤ −W (z) + δ(V (x)),

(14)

where γ, δ ∈ K∞ are such that4

lim
s→0

γ ◦ δ(s)

s
< 1 and lim

s→∞

γ ◦ δ(s)

s
< 1. (15)

In other words, the composition γ ◦ δ satisfies the small-gain condition in the
bi-limit: 0 and ∞. Note that to apply [5] it would be necessary to impose
that, for every b1, b2 ∈ R≥0, and for some ε > 0, γ(b1)δ(b2) ≤ (1− ε)b1b2.

3From Remark 2.4 of [24] Eq. (14) is equivalent to (6).
4Note that, in contrast to [5, 11, 12], no information is given about the behaviour of

the function s 7→ γ ◦ δ(s), in the interval (0,∞).



From (15), there exists a positive constant Mℓ (resp. Mg) that is suf-
ficiently small (resp. large) and such that, for every s ∈ (0,Mℓ] (resp.
s ∈ [Mg,∞)), γ ◦ δ(s) < s. Together with (14) and since W is continu-
ous and proper, Assumptions 3.1 and 3.2 hold locally on the compact set
Ω≤Mℓ

(V )× Ω≤Nℓ
(W ) (resp. non-locally on the set Ω≥Mg

(V )× Ω≥Ng
(W )).

Since condition Eq. (12) is satisfied, as formulated in Corollary 3.4 (resp.
3.5), from this result the set Ω≤M̂ℓ

(Uℓ) ⊂ Rn+m (resp. Ω≤M̃g
(Ug) ⊂ Rn+m) is

an estimation of the basin of attraction of the origin (resp. global attractor)
of (17). Also, Ω≤M̂ℓ

(Uℓ) ⊂ Ω≤M̃g
(Ug).

Let5 {
rV (x, z) := −V (x) + γ(W (z)),
rW (x, z) := −W (z) + δ(V (x)).

For any (x, z) belonging to the sets Ω≤M̂ℓ
(Uℓ) and Ω≥M̃g

(Ug) ⊂ Rn+m either

1. rV (x, z) ≥ 0 and rW (x, z) ≤ 0 or;
2. rV (x, z) ≤ 0 and rW (x, z) ≥ 0 or;
3. rV (x, z) ≤ 0 and rW (x, z) ≤ 0.
While in the compact set R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ), it may happen that

rV (x, z) ≥ 0 and rV (x, z) ≥ 0. In this case, the result given in [4] can not be
applied, because it requires that the union of the regions described by items
1-3 forms a cover of Rn+m.

Note that in contrast to [11], the existence of a Lyapunov function candi-
date for the system (5) whose derivative is definite negative on Rn+m is not
requested.

Let, for every (x, y) ∈ Rn+m, ρ(x, y) = (V (x)+W (z))−1, and assume that
for every (x, z) ∈ R,

(div h(x, z))(V (x) +W (z)) ≥ γ(W (z)) + δ(V (x)). (16)

In such a compact set, note that

div(hρ)(x, z) = ρ(x, z) div h(x, z) + grad ρ(x, z) · h(x, z)

=
div h(x, z)

V (x) +W (z)
−

D+
f V (x, z) +D+

g W (x, z)

(V (x) +W (z))2

≥
div h(x, z) + 1

V (x) +W (z)
−

γ(W (z)) + δ(V (x))

(V (x) +W (z))2

> 0,

where the first inequality is due to (14): for every (x, z) ∈ Rn × Rm,

−D+
f V (x, z)−D+

g W (x, z) ≥ V (x) − γ(W (z))

+W (z) − δ(V (x)),

5Note that, in contrast to [4], here it is not assumed that Ω
≥M̃g

(Ug) ∪ Ω
≤M̂ℓ

(Uℓ) =

Rn+m.



and last inequality is due to (16).
From Theorem 3.6, the origin is almost globally asymptotically stable for

the system (5), as stated below.

Proposition 4.1. Assume that there exist ISS-Lyapunov functions for the
sub-systems of (5) with ISS-Lyapunov gains satisfying (15), assume more-
over that (16) holds, then the origin is almost globally asymptotically stable
for system (5). �

4.2 The planar case

Consider the system
{

ẋ = f(x, z) = −1.5x + 2p(z),
ż = g(x, z) = −z + sin(x2/10),

(17)

where, for every s ∈ R, p(s) := s3/3− 3s2/2+ 2s.
Let, for every x ∈ R (resp. z ∈ R), V (x) = |x| (resp. W (z) = |z|).

Taking its Lie derivative in the f -direction yields, for every (x, z) ∈ R2,

D+
f V (x, z) ≤ −1.5V (x) + 2|p(W (z))|. (18)

Define, for every s ∈ R≥0, γ(s) = max{1.3|p(r)| : 0 ≤ r ≤ s}. From (18),

V (x) ≥ γ(W (z)) ⇒ D+
f V (x, z) ≤ −λx(x) (19)

holds with a suitable λx ∈ (C0 ∩ P)(R,R≥0). The Lie derivative of W in the
g-direction yields, for every (x, z) ∈ R2,

D+
g W (x, z) ≤ −W (z) +

∣∣∣sin
(

V (x)2

10

)∣∣∣ .

which can be rephrased as follows

W (z) ≥ δ(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

with a suitable λz ∈ (C0 ∩ P)(R,R≥0), where δ(s) = max{| sin(r2/10)| : 0 ≤
r ≤ s}.

The composition of the function γ and δ yields

γ ◦ δ(s) = max

{
1.3|p(r)| : 0 ≤ r ≤ max

0≤a≤s

{∣∣∣sin
(

a2

10

)∣∣∣
}}

.

Note that there exist values s̄ > 0 for which γ ◦ δ(s̄) = 1.11. Also,

lim
s→0

γ◦δ(s)
s

< 1, and lim
s→∞

γ◦δ(s)
s

< 1. (20)



From (20), and following the reasoning of the previous example, there
exists Mℓ > 0 small (resp. Mg > 0 large) enough such that, for every s ∈
(0,Mℓ] (resp. s ∈ [Mg,∞)), γ◦δ(s) < s. Also, there exist6 γℓ, δℓ ∈ K∞ (resp.7

γg ∈ K and δg ∈ K∞) satisfying, for every s ∈ [0,Mℓ] (resp. s ∈ [Mg,∞)),
γℓ(s) = γ(s) and γℓ(s) = γ(s) (resp. γg(s) = γ(s) and δg(s) = δ(s)). Thus,
analogously to the reasoning of the previous example, Assumptions 3.1 and
3.2 hold locally on the compact set Ω≤Mℓ

(V )× Ω≤Nℓ
(W ) (resp. non-locally

on the set Ω≥Mg
(V )× Ω≥Ng

(W )).
Since condition Eq. (12) is satisfied, as formulated in Corollary 3.4 (resp.

3.5), from this result the set Ω≤M̂ℓ
(Uℓ) ⊂ Rn+m (resp. Ω≤M̃g

(Ug) ⊂ Rn+m) is

estimation of the basin of attraction of the origin (resp. global attractor) of
(17). Also, Ω≤M̂ℓ

(Uℓ) ⊂ Ω≤M̃g
(Ug).

It now remains to check whether there exist ω-limit sets inR = Ω≤M̃g
(Ug)\

Ω≤M̂ℓ
(Uℓ). Since

∂f

∂x
(x, z) + ∂g

∂z
(x, z) ≡ −2.5 and

f(x, z) = 0 = g(x, z) ⇔ (x, z) = (0, 0),

from Theorem 3.7 the origin is globally asymptotically stable for (17).

5 Proofs

5.1 Proof of Proposition 3.3

Proof. The proof of Proposition 3.3 is based on the proof of [13, Theorem 3.1].
Here, it is divided into 3 parts. Firstly, the function σ ∈ K∞∩C1 is obtained.
In the second part, the Dini derivative of a locally Lipschitz and proper
function U ∈ P(Rn+m,R≥0) is shown to be decreasing in the set S defined
in (10). In the third part, solutions of (5) starting in Ω≤M̂

(U) \Ω≤M̃
(U) are

shown to converge to Ω≤M̃
(U).

First Part. Under Assumptions 3.1 and 3.2, the function γ being of
class K∞ satisfies, for every s ∈ R>0, δ(s) < γ−1(s). Together with the fact
that δ is of class K∞, from [13, Lemma A.1], there exists σ ∈ K∞ ∩C1 whose
derivative is strictly positive and satisfies,

∀s ∈ R>0, δ(s) < σ(s) < γ−1(s). (21)

6Recall that γ and δ are continuous positive definite functions. Thus, they are strictly
increasing in a neighbourhood of the origin. Note also that γ is proper.

7Although γg is of class K, the result of Proposition 3.3 is still applicable. The main
difference in this case would be the construction of the function σ ∈ C1 ∩ K∞ satisfying
(21). The interested reader may consult [13] to check how this is done.



Second Part. Define, for every (x, z) ∈ Rn×Rm, U(x, z) = max{σ(V (x)),W (z)}.
Note that U ∈ (C0 ∩ P)(Rn+m,R≥0) is a proper function. Pick (x, z) ∈
Rn × Rm, one of three cases is possible: σ(V (x)) < W (z), W (z) < σ(V (x))
or W (z) = σ(V (x)). The proof follows by showing that the Dini derivative of
U is negative definite. For each case, assume that (x, z) ∈ S6=0 := S\{(0, 0)},
where S is defined in (10).

Case 1. Assume that σ(V (x)) < W (z). This implies that U(x, z) = W (z)
and D+

f,gU(x, z) = D+
g W (x, z). From (21), δ(V (x)) < σ(V (x)) < W (z).

Since (x, z) ∈ S6=0, the inequality D+
g W (x, z) ≤ −λz(z) follows from (9).

Thus, W (z) > σ(V (x)) ⇒ D+
f,gU(x, z) ≤ −λz(z).

Case 2. Assume that W (z) < σ(V (x)). This implies that U(x, z) =
σ(V (x)) and D+

f,gU(x, z) = σ′(V (x))D+
f V (x, z). Since (x, z) ∈ S6=0, and

from (21),
W (z) < σ(V (x)) < γ−1(V (x)). (22)

From (8), the inequality D+
f V (x, z) ≤ −λx(x) holds.

Case 3. Assume that W (z) = σ(V (x)). Let U∗(x, z) := W (z) = σ(V (x)).
This implies

D+
f,gU

∗(x, z) = lim sup
tց0

1

t
[max{σ(V (X(t, x, z))),

W (Z(t, z, x))} − U∗(x, z)]

= lim sup
tց0

max

{
σ(V (X(t, x, z)))− σ(V (x))

t
,
W (Z(t, z, x))−W (z)

t

}

= max{σ′(V (x))D+
f V (x, z), D+

g W (x, z)}.

The analysis of D+
f,gU

∗ is divided in two sub cases. In the first one, the

function D+
g W is analyzed while in the last the function D+

f V is analyzed.
Case 3.a. The analysis of D+

g W . From (21), and the fact that x 6= 0
and z 6= 0, the inequality δ(V (x)) < σ(V (x)) = W (z) holds. Moreover since
(x, z) ∈ S6=0, the inequality D+

g W (x, z) ≤ −λz(z) follows from (9).
Case 3.b. The analysis of D+

f V . From (21), and the fact that x 6= 0 and
z 6= 0, the inequality W (z) = σ(V (x)) < γ−1(V (x)) holds. Moreover, since
(x, z) ∈ S6=0, the inequality D+

f V (x, z) ≤ −λx(x) follows from (8).

Summing up Case 3, 0 6= W (z) = σ(V (x)) ⇒ D+
f,gU

∗(x, z) ≤ −min{σ′(V (x))λx(x), λz(z)}.

Claim 5.1. There exists c > 0 such that Ω≤c(U) ⊂ Ω≤M(V ) × Ω≤N (W ).

Moreover, the constants M̃ and M̂ are such that

(Ω≤M (V )× Ω≤N(W )) ⊂ Ω≤M̃
(U) ⊂ Ω≤M̂

(U)

⊂ (Ω≤M(V )× Ω≤N (W )).
(23)

�



The proof of Claim 5.1 is provided in Section 5.4.
From the above case study and (23),

M̃ ≤ U(x, z) ≤ M̂ ⇒ D+
f,gU(x, z) ≤ −E(x, z), (24)

where E ∈ (C0∩P)(Rn+m,R) is the proper function defined, for every (x, z) ∈
Rn × Rm, by E(x, z) = min{σ′(V (x))λx(x), λz(z)}.

Third part. The local Lipschitz property of U on Rn × Rm \ {(0, 0)}
is due to the fact that σ(V (·)) (resp. W (·)) is locally Lipschitz on Rn \ {0}
(resp. Rm).

From [20, Theorem 4.3] and (24), for all (x, z) ∈ Rn×Rm, and all t ∈ R≥0,
along solutions of (5),D+U(X(t, x, z), Z(t, z, x)) = D+

f,gU(X(t, x, z), Z(t, z, x)).
Since solutions of (5) are absolutely continuous functions and the right-

hand side of E is a continuous and positive definite function, from [20, Re-

mark 4.4.b], for every (x, z) such that M̃ ≤ U(x, z) ≤ M̂ , and all t ∈ R≥0,
the function

t 7→ U(X(t, x, z), Z(t, z, x)) (25)

is strictly decreasing and satisfies

U∞ := lim
t→∞

U(X(t, x, z), Z(t, z, x)) ≤ M̃.

To see this claim suppose, for purposes of contradiction, that U∞ > M̃ . From
the continuity of U , there exists ε > 0 such that U∞ − ε > M̃ and U∞ − ε ≤
U(x, z) ≤ U∞ + ε. Since U is proper, the constant ξ = min{E(x, z) > 0 :
U∞−ε ≤ U(x, z) ≤ U∞+ε} exists. Recalling the definition of U , there exists
T > 0 such that, for all t ≥ T , U(X(t, x, z), Z(t, z, x)) − U∞ < ε. Moreover,
from the definition of the constant ξ,

U(X(t, x, z), Z(t, z, x)) − U(X(T, x, z), Z(T, z, x)) =
∫ t

T

D+U(X(s, x, z), Z(s, z, x)) ds ≤ −ξ(t− T ).

Then,

U∞ = lim
t→∞

U(X(t, x, z), Z(t, z, x))

= U(X(T, x, z), Z(T, z, x))

+ lim
t→∞

∫ t

T

D+U(X(s, x, z), Z(s, z, x)) ds ≤ −∞

which contradicts the fact that U is positive definite. Thus, U∞ ≤ M̃ . Hence,
solutions of (5) starting in Ω≤M̂

(U) \ Ω≤M̃
(U) converge towards Ω≤M̃

(U).



To see that U can be given by (13), note that U relies on the computation
of σ. Let, for every s ∈ R≥0, σ(s) = (δ(s) + γ−1(s))/2. Its derivative yields,
for every s > 0, 2σ′(s) = δ′(s) + 1/(γ′ ◦ γ(s)) which is positive, because8

δ′(s) > 0 and γ′ ◦ γ−1(s) > 0. Moreover, such a function σ satisfies (21).
This concludes the proof.

5.2 Proof of Theorem 3.6

This proof is divided into 4 parts. The first one shows that solutions starting
in Ω≥M̃g

(Ug) converge to R. The second part shows that almost all solutions

starting in R converges to Ω≤M̂ℓ
(Uℓ). The third part shows that solutions

starting in the latter set converge to the origin. The fourth part concludes
the almost global asymptotic stability of the origin.

1st part. From Corollary 3.5, the set Ω≤M̃g
(Ug) is globally attractive

for (5), where M̃g = max{γ−1
g (Mg), Ng}, Mg and Ng are defined in Corollary

3.5, and γg is given by Assumption 3.1.
2nd part. From the proof of Proposition 3.3, there exist proper functions

Ug, Eg ∈ (C0 ∩ P)(Rn+m,R≥0) (resp. Uℓ, Eℓ ∈ (C0 ∩ P)(Rn+m,R≥0)) with Ug

(resp. Uℓ) being also locally Lipschitz and such that, for every y ∈ Ω≥M̃g
(Ug),

D+
h Ug(y) ≤ −Eg(y) (resp. for every y ∈ Ω≤M̂ℓ

(Uℓ), D
+
h Uℓ(y) ≤ −Eℓ(y)).

To see that Ω≤M̂ℓ
(Uℓ) ( Ω≤M̃g

(Ug). From the proof of Claim 5.1, Uℓ(x, z) ≤

M̂ℓ ⇒ max{V (x),W (z)} ≤ min{Mℓ, Nℓ}. Analogously, Ug(x, z) ≥ M̃g ⇒
min{V (x),W (z)} ≥ max{Mg, Ng}. Since min{Mℓ, Nℓ} < max{Mg, Ng},
Ω≤M̂ℓ

(Uℓ) ( Ω≤M̃g
(Ug).

The proof proceeds by showing that, for almost every initial condition
staring in R = Ω≤M̃g

(Ug) \ Ω≤M̂ℓ
(Uℓ), issuing solutions of (5) converge to

Ω≤M̂ℓ
(Uℓ). To do so, the same lines as in [19, Theorem 1] and [3, Theorem

3] are followed. However, here a less conservative condition is required, since
a set that is only positively invariant, and the divergence to be positive only
in a compact set are needed.

Let Z ⊂ Rn a set given by9

Z =

∞⋂

l=1

{y ∈ Ω≤M̃g
(Ug) : Uℓ(Y (t, y)) > M̂ℓ, t > l}.

For every t ∈ R, let Y (t,Z) = {Y (t, z) : z ∈ Z, t ∈ dom(z)}, where
dom(z) is the maximum time interval where Y (t, z) exists. Since Ω≤M̃g

(Ug)

8Recall that δ, γ ∈ (C1 ∩ K∞).
9Note that Z is the set of all initial conditions belonging to Ω

≤M̃g
(Ug) from which

issuing solutions do not converge to Ω
≤M̂ℓ

(Uℓ).



is positively invariant, Z is also positively invariant. Thus, given a fixed
τ ∈ R>0, for all t ≥ τ , Y (t,Z) ⊂ Y (τ,Z). Hence, for all t ∈ R≥0,

∫
Y (t,Z)

ρ(y) dy −
∫
Z
ρ(y) dy ≤ 0, (26)

where ρ ∈ C1(Rn+m \ {0},R≥0) and supp(ρ) ⊇ R.
From Liouville’s Theorem (see [19, Lemma A.1]), for every t ∈ R≥0,

∫ t

0

∫
Y (s,Z)

div(hρ)(y) dyds =
∫
Y (t,Z)

ρ(y) dy −
∫
Z
ρ(y) dy.

Since Z ⊂ R, for every t ∈ R≥0, the inequality

t
∫

Y (t,Z)

div(hρ)(y) dy ≤
∫ t

0

∫
Y (s,Z)

div(hρ)(y) dyds

≤
∫
Y (t,Z)

ρ(y) dy −
∫
Z
ρ(y) dy

holds. From (26), for every t ∈ R≥0,
∫
Y (t,Z)

div(hρ)(y) dy ≤ 0. Together with

the fact that, for every y ∈ R, div(hρ)(y) > 0, it yields
∫
Y (t,Z)

div(hρ)(y) dy =

0, for every t ∈ R≥0. Thus, for every t ∈ R≥0, Y (t,Z) has Lebesgue measure
zero. In particular, Z has also Lebesgue measure zero. Consequently, for
almost every y ∈ R, lim supt→∞ Uℓ(Y (t, y)) ≤ M̂ℓ.

It remains to check if the initial conditions belonging to Ω≥M̃g
(Ug) from

which issuing solutions converge to Z have also measure zero. Since Z is
positively invariant, for all t1 < t2 ≤ 0, Y (t2,Z) ⊂ Y (t1,Z). This inclusion
implies that Y := ∪t≤0{Y (t,Z)} = ∪l∈Z<0

{Y (l,Z)}. Hence, the set Y is a
countable union of images of Z by the flow. Since Z is measurable and, for
every t ∈ dom(y), the map Z ∋ y 7→ Y (t, y) is a diffeomorphism10, Y is also
measurable.

For every t ∈ dom(Z),
∫
Y (t,Z)

dz ≤
∫
Z
| gradY (t, y)| dy = 0, because Z

has measure zero. This implies that, for all t ∈ dom(Z), the set Y (t,Z) has
measure zero. Since Y is the countable union of sets of measure zero, it has
also measure zero.11 Hence the set of solutions starting in Ω≥M̃g

(Ug) that
converge to Z have also measure zero.

3rd part. From Corollary 3.4, the set Ω≤M̂ℓ
(Uℓ) is contained in the

basin of attraction of the origin, where M̂ℓ = min{δℓ(Mℓ), Nℓ}, Mℓ and Nℓ

are defined in Corollary 3.4, and γℓ is given by Assumption 3.1.
4th part. From the above discussion, the origin is locally stable and

almost globally attractive for (5). Thus, it is almost globally asymptotically
stable for (5). This concludes the proof. �

10Because (5) is of class C1 and solutions are unique.
11Recall thatY is the set of initial conditions from which issuing solutions of (5) converge

Z.



5.3 Proof of Theorem 3.7

Before proving Theorem 3.7, some concepts regarding the asymptotic be-
havior of solutions of planar systems are recalled. A point p is said to be a
positive limit point of Y (·, y) if there exists a sequence {tn}n∈N, with tn → ∞
as n → ∞, such that Y (tn, y) → p as n → ∞ (cf. [15, p. 127]). The set
ω(y) of all positive limit points of Y (·, y) is called ω-limit set of y (cf. [10,
p. 517]). For planar systems, a closed curve C ⊂ R2 is called closed orbit if
C is not an equilibrium point and there exists a time T < ∞ such that, for
each y ∈ C, Y (nT, y) = y, ∀n ∈ Z (cf. [21, Definition 2.6]).

Proof. The proof of Theorem 3.7 follows the same line as the proof of Theo-
rem 3.6. The difference here consists in the second and fourth parts.

1st part. Recall that from Corollary 3.5, the set Ω≤M̃g
(Ug) is globally

attractive for (5), where M̃g = max{γ−1
g (Mg), Ng}, Mg and Ng are defined in

Corollary 3.5, and γg is given by Assumption 3.1.
2nd part (Bendixson’s criterion for non simply connected regions). From

the proof of Proposition 3.3, there exist proper functions Ug, Eg ∈ (C0 ∩
P)(R2,R≥0) (resp. Uℓ, Eℓ ∈ (C0 ∩P)(R2,R≥0)) with Ug (resp. Uℓ) being also
locally Lipschitz and such that, for every y ∈ Ω≥M̃g

(Ug), D
+
h Ug(y) ≤ −Eg(y)

(resp. for every y ∈ Ω≤M̂ℓ
(Uℓ), D

+
h Uℓ(y) ≤ −Eℓ(y)).

Since the set R = cl{Ω≤M̃g
(Ug) \ Ω≤M̂ℓ

(Uℓ)} is compact, and for each

y ∈ R, Ug(y) 6= 0, from [1, Theorem 2.5]
• The set Ω=M̃g

(Ug) has finite perimeter;

• The function Ug is almost every where differentiable on Ω=M̃g
(Ug);

• Let Ng ⊂ Ω=M̃g
(Ug) be set in which Ug is not differentiable. There exists a

Lipschitz parametrization pg : [ag, bg] ⊂ R → Ω=M̃g
(Ug) that is injective and

satisfies, for almost every s ∈ [ag, bg], pg(s) /∈ Ng and p′g(s) is perpendicular
to ∇Ug(pg(s)).

Recall that by assumption, for every y ∈ R, h(y) 6= 0. Together with the
fact that h ∈ C1(R2), and almost each sublevel set of Ug has finite perimeter.
From the generalized divergence theorem [17, Theorem 1.7] (see also [18])

∫∫
Ω

≤M̃g
(Ug)

divh(y) dy =
∮

Ω
=M̃g

(Ug)

h(y) · ng(y) dxdz. (27)

Together with the above discussions and the existence of the parametrization
pg, for almost every s ∈ [ag, bg], h(pg(s)) · ng(pg(s)) < 0, where for almost
every s ∈ [ag, bg], ng(pg(s)) = ∇Ug(pg(s))/|∇Ug(pg(s))|,

∫∫
Ω

≤M̃g
(Ug)

div h(y) dy=
∫

[ag,bg]

h(pg(s)) ·ng(pg(s)) ds < 0. (28)



Analogously to the above, and by letting pℓ : [aℓ, bℓ] → Ω=M̂ℓ
(Uℓ) be a

parametrization of Ω=M̂ℓ
(Uℓ) with outward unit normal nℓ, based on Equa-

tion (27),

∫∫
Ω

≤M̂ℓ
(Uℓ)

divh(y) dy =
∫

[aℓ,bℓ]

h(pℓ(s)) · nℓ(pℓ(s)) ds < 0. (29)

Suppose, for purposes of contradiction, that there exists a closed orbit
C ∈ R2, parametrized by p : [a, b] → C and with outward unit normal n, and
contained in R. From the generalized divergence theorem,

∫∫
DC

divh(x, z) dxdz =
∫

[a,b]

h(p(s)) · n(p(s)) ds = 0, (30)

where DC is the simply connected region bounded by C.
Note that,

∫∫
Ω

≤M̃g
(Ug)\DC

divh(y) dy =
∫∫

Ω
≤M̃g

(Ug)

div h(y) dy −
∫∫
DC

divh(y) dy

=
∫∫

Ω
≤M̃g

(Ug)

divh(y) dy,

where the last equality is due to (30). From (28),

∫∫
Ω

≤M̃g
(Ug)\DC

divh(y) dy < 0. (31)

On the other hand,
∫∫

DC\Ω
≤M̂ℓ

(Uℓ)

div h(y) dy =
∫∫
DC

div h(y) dy −
∫∫

Ω
≤M̂ℓ

(Uℓ)

divh(y) dy

= −
∫∫

Ω
≤M̂ℓ

(Uℓ)

divh(y) dy,

where the last equality is due to (30). From (29),

∫∫
DC\Ω

≤M̂ℓ
(Uℓ)

divh(x, z) dxdz > 0. (32)

From (31), (32) and the continuity of div h, the function divh changes
sign in R. Thus, there exists ȳ ∈ R such that divh(ȳ) = 0 which is a
contradiction with the hypothesis div(y) 6= 0, for every y ∈ R. Thus, there
exist no closed orbits C contained in R.

From the Poincaré-Bendixson Theorem [21, Theorem 2.15], the ω-limit
set of a solution starting inR is a closed orbit or equilibrium. Since equilibria



are impossible by assumption, and from above analysis there exist no ω-limit
sets in R, all solutions starting in R will converge to Ω≤M̂ℓ

(Uℓ).
3rd part. Recall that from Corollary 3.4, the set Ω≤M̂ℓ

(Uℓ) is contained

in the basin of attraction of the origin, where M̂ℓ = min{δℓ(Mℓ), Nℓ}, Mℓ and
Nℓ are defined in Corollary 3.4, and γℓ is given by Assumption 3.1.

4th part. From the above discussion, the origin is locally stable and
globally attractive for (5). Thus, it is globally asymptotically stable for (5).
This concludes the proof.

Remark 5.2. Note that, if Ω≤M̂ℓ
(Uℓ) = {0}, then R = Ω≤M̃g

(Ug) is a simply
connected region, and the second part of the proof of Theorem 3.7 can be
reduced to the proof of the known Bendixson’s criterion. ◦

5.4 Proof of Claim 5.1

Let c be a positive real number12 such that Ω≤c(U) ⊂ Ω≤M(V )× Ω≤N (W ).
In the first part, it will be shown that, for all (x, z) ∈ S,

U(x, z) ≤ M̂ ⇒ max{V (x),W (z)} ≤ min{M,N}. (33)

In the second part, it will be shown that, for all (x, z) ∈ S,

M̃ ≤ U(x, z) ⇒ max{M,N} ≤ min{V (x),W (z)}. (34)

Part 1. U(x, z) ≤ M̂ . This implies U(x, z) =

max{σ(V (x)),W (z)} ≤ M̂ = min{δ(M), N}.
Assume that max{σ(V (x)),W (z)} = σ(V (x)) and min{δ(M), N} = δ(M).

This implies σ(V (x)) ≤ δ(M). From (21), V (x) ≤ σ−1 ◦ δ(M) < M . Assume
now that max{σ(V (x)),W (z)} = W (z) and min{δ(M), N} = δ(M). This
implies W (z) ≤ δ(M) ≤ N . The other two cases are straightforward. Thus,
(33) holds. Hence, Ω≤M̂

(U) ⊂ (Ω≤M(V )× Ω≤N(W ));

Part 2. M̃ ≤ U(x, z). This implies M̃ = max{γ−1(M), N} ≤ U(x, z) =
max{σ(V (x)),W (z)}.

Assume that, max{γ−1(M), N} = γ−1(M) and max{σ(V (x)),W (z)} =
σ(V (x)). This implies γ−1(M) ≤ σ(V (x)). From (21), M ≤ γ ◦ σ(V (x)) <

12Such a positive real number always exist. Otherwise, for all n ≥ N, there exists yn
such that yn ∈ Ω≤1/n(U) and yn /∈ Ω

≤M (V )× Ω
≤N (W ). Since U is proper, Ω≤1/n(U) ⊂

Ω≤1(U) is compact. Hence, there exists {ynj
}j∈N ⊂ {yn}n∈N such that ynj

j→∞
−−−→ y∗ and

U(y∗) = 0. From the positive definiteness of U , y∗ = 0. Consequently, ynj
is a sequence

converging to zero and outside Ω≤M (V )× Ω≤N (W ). This is impossible since this set is a
neighborhood of the origin.



V (x). Assume now that, max{γ−1(M), N} = γ−1(M) and max{σ(V (x)),W (z)} =
W (z). This implies N ≤ γ−1(M) ≤ W (z). The other two cases are straight-
forward. Thus, (34) holds. Hence, (Ω≤M (V )× Ω≤N(W )) ⊂ Ω≤M̃

(U);
Since (12) is a strict inequality, from the continuity and surjectivity of U ,

there exists (x, z) ∈ S such that M̃ ≤ U(x, z) ≤ M̂ . From (33) and (34), M̃ ≤

U(x, z) ≤ M̂ ⇒ max{M,N} ≤ min{V (x),W (z)} ≤ max{V (x),W (z)} ≤
min{M,N}. Thus, the inclusion (23) holds. This concludes the proof. �

6 Conclusion

Systems for which the small gain theorem cannot be used, a sufficient condi-
tion for the stability of the resulting interconnected system is proposed. The
approach consists in verifying if the small gain condition holds in two different
regions of the state space: a local and a non-local. In the gap between both
regions, assuming mild properties on the vector field, a sufficient condition
ensuring the convergence of solutions, for almost every initial condition, is
provided. An approach is proposed for planar system for which Bendixson’s
criterion does not hold. Two examples illustrate the results.

The authors plan to extend the proposed approach for the case in which,
in a countable number of intervals, the small gain condition holds and, be-
tween such intervals, a condition ensuring the absence of ω-limit set holds.

Acknowledgements. The authors thank the anonymous reviewers for
suggestions and fruitful discussions.
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