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Abstract

Recently, a SCHUR method was proposed in [8] to solve the robust pole assignment

problem in state feedback control. It takes the departure from normality of the closed-loop

system matrix Ac as the measure of robustness, and intends to minimize it via the real Schur

form of Ac. The SCHUR method works well for real poles, but when complex conjugate

poles are involved, it does not produce the real Schur form of Ac and can be problematic.

In this paper, we put forward a modified Schur method, which improves the efficiency of

SCHUR when complex conjugate poles are to be assigned. Besides producing the real

Schur form of Ac, our approach also leads to a relatively small departure from normality

of Ac. Numerical examples show that our modified method produces better or at least

comparable results than both place and robpole algorithms, with much less computational

costs.
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1 Introduction

Let the matrix pair (A,B) denotes the dynamic state equation

ẋ(t) = Ax(t) +Bu(t) (1.1)

of the time invariant linear system, where A ∈ Rn×n and B ∈ Rn×m are the open-loop system

matrix and the input matrix, respectively. The dynamic behavior of (1.1) is governed by the

eigen-structure of A, especially the poles (eigenvalues). And in order to change the dynamic

behavior of the open-loop system (1.1) in some desirable way (to achieve stability or to speed

up response), one needs to modify the poles of (1.1). Typically, this may be actualized by the

state-feedback control

u(t) = Fx(t), (1.2)

where the feedback matrix F ∈ Rm×n is to be chosen such that the closed-loop system

ẋ(t) = (A+BF )x(t) ≡ Acx(t) (1.3)

has specified poles.

Mathematically, the state-feedback pole assignment problem can be stated as:

State-Feedback Pole Assignment Problem (SFPA) Given A ∈ Rn×n, B ∈ Rn×m and a set

of n complex numbers L = {λ1, λ2, . . . , λn}, closed under complex conjugation, find an F ∈ Rm×n

such that λ(A +BF ) = L, where λ(A+BF ) is the eigenvalue set of A+BF .

A necessary and sufficient condition for the solvability of the SFPA for any set L of n self-

conjugate complex numbers is that (A,B) is controllable, or equivalently, the controllability

matrix
[

B AB · · · An−1B
]

is of full row rank [25–27]. Many algorithms have been put

forward to solve the SFPA, such as the invariant subspace method [18], the QR-like method

[15, 16], etc.. We refer readers to [3, 4, 7, 10, 12, 17, 20, 24] for some other approaches.

When m > 1, the solution to the SFPA is generally not unique. We may then utilize the

freedom of F to achieve some other desirable properties of the closed-loop system. In applications,

one sympathetic character for system design is that the eigenvalues of the closed-loop system

matrix Ac are insensitive to perturbations, which leads to the following state-feedback robust pole

assignment problem:

State-Feedback Robust Pole Assignment Problem (SFRPA) Find a solution F ∈ Rm×n

to the SFPA, such that the closed-loop system is robust, that is, the eigenvalues of Ac are as

insensitive to perturbations on Ac as possible.
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The key to solve the SFRPA is to choose an appropriate measure of robustness formulated in

quantitative form. Some measures can be found in [5,8,9,13,27], such as the condition number

measurement κF (X) = ‖X‖F‖X−1‖F , where X is the eigenvector matrix of Ac, the departure

from normality ∆F (Ac) =
√

‖Ac‖2F −∑j=n
j=1 |λj |2 and so on. Ramar and Gourishankar [19]

made an early contribution to the SFRPA and since then various optimization methods have

been proposed based on different measures [5,6,8,9,13,14,23]. The most classic methods should

be those proposed by Kautsky, Nichols and Van Dooren in [13], where κF (X) is used as the

measure of robustness of the closed-loop system matrix. However, Method 0 in [13] may fail to

converge, Method 1 may suffer from slow convergence, and Method 2/3 may not perform well

on ill-conditioned problems. Based on Method 0 in [13], Tits and Yang [23] proposed a method

for solving the SFRPA by trying to maximize the absolute value of the determinant of the

eigenvector matrix X . The optimization processes are iterative, and hence generally expensive.

Recently, Chu [8] put forward a Schur-type method for the SFRPA by tending to minimize the

departure from normality of the closed-loop system matrix Ac via the Schur decomposition of Ac.

It computes the matrices X and T column by column, where Ac = XTX−1, X,T are real and T

is upper quasi-triangular, such that the strictly block upper triangular elements of matrix T are

minimized in each step. If λ1, . . . , λn are all real, SCHUR [8] will generate an orthogonal matrix

X , that is, Ac = XTX−1 is the Schur decomposition of Ac. This implies that the departures

from normality of Ac and T are the same. Hence the strategy aiming to minimize the departure

from normality of T is also pliable to Ac. However, in case of complex conjugate poles, it cannot

produce an orthogonal X , suggesting that the departure from normality of Ac is generally not

identical to that of T . Hence, although it attempts to optimize the departure from normality of

T , that of Ac may still be large.

In this paper, we propose a modified Schur method upon SCHUR [8], where poles are assigned

via the real Schur decomposition of Ac = XTX⊤, with X being real orthogonal and T being real

upper quasi-triangular. In each step (assigning a real pole or a pair of conjugate poles), one

optimization problem arises for purpose of minimizing the departure from normality of T . When

assigning a real pole, we improve the efficiency of SCHUR by computing the SVD of a matrix,

instead of computing the GSVD of a matrix pencil. When assigning a pair of conjugate poles, by

exploring the properties of the posed optimization problem, we provide a polished way to obtain

its suboptimal solution. Numerical examples show that our method outperforms SCHUR when

complex conjugate poles are involved. We also compare our method with the MATLAB functions

place (an implementation of Method 1 in [13]), robpole (an implementation of the method

3



in [23]) and the O-SCHUR algorithm (an implementation of an optimization method in [8]) on

some benchmark examples and randomly generated examples, where numerical results show that

our method is comparable in accuracy and robustness, while with lower computational costs.

The paper is organized as follows. In Section 2, we give some preliminaries which will be

used in subsequent sections. Our method is developed in Section 3, including both the real case

and the complex conjugate case. Numerical results are presented in Section 4. Some concluding

remarks are finally drawn in Section 5.

2 Preliminaries

In this section, we briefly review the parametric solutions to the SFPA, and the departure from

normality.

2.1 Solutions to the SFPA

The parametric solutions to the SFPA can be expressed in several ways. In this paper, as in [8],

we formulate it by using the real Schur decomposition of Ac = A + BF . Assume that the real

Schur decomposition of A+BF is

A+BF = XTX⊤, (2.1)

where X ∈ Rn×n is orthogonal, T ∈ Rn×n is upper quasi-triangular with only 1 × 1 and 2 × 2

diagonal blocks.

Without loss of generality, we may assume that B is of full column rank. Let

B = Q

[

R
0

]

= [Q1 Q2]

[

R
0

]

= Q1R (2.2)

be the QR decomposition of B, where Q ∈ Rn×n is orthogonal, Q1 ∈ Rn×m, and R ∈ Rm×m is

nonsingular and upper triangular.

It follows from (2.1) that

AX +BFX −XT = 0. (2.3)

Pre-multiplying (2.3) by diag(R−1, In−m) [Q1 Q2]
⊤

on both sides gives

{

R−1Q⊤
1 AX + FX −R−1Q⊤

1 XT = 0,
Q⊤

2 (AX −XT ) = 0.
(2.4)

Consequently, if we get an orthogonal matrix X and an upper quasi-triangular matrix T from

the second equation of (2.4), then a solution F to the SFPA will be obtained immediately from
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the first equation of (2.4) as

F = R−1Q⊤
1 (XTX⊤ −A). (2.5)

2.2 Departure from normality

In this paper, we adopt the departure from normality of Ac = A+BF as a measure of robustness

of the closed-loop system matrix as in [8], which is defined as ( [11, 22])

∆F (Ac) =

√

√

√

√‖Ac‖2F −
n
∑

j=1

|λj |2,

where λ1, . . . , λn are the poles to be assigned, and hence eigenvalues of Ac. Now let D be the

block diagonal part of T with only 1× 1 and 2× 2 blocks on its diagonal. Each 1× 1 block of D

admits a real eigenvalue λj of T , while each 2×2 block of D admits a pair of conjugate eigenvalues

λj = αj + iβj , λj+1 = λ̄j and is of the form Dj =

[

αj δjβj

− βj
δj

αj

]

∈ R2×2 with δjβj 6= 0, where δj

is some real number. Let N = T −D = [v̆1 v̆2 · · · v̆n] be the strictly upper quasi-triangular

part of T with v̆k =
[

v⊤k 0
]⊤

, vk ∈ Rk−1or Rk−2. Direct calculations give rise to

∆2
F (Ac) = ∆2

F (T ) = ‖N‖2F +
∑

j

(δj −
1

δj
)2β2

j , (2.6)

where the summation is over all 2× 2 blocks of D.

When all poles λ1, . . . , λn are real, the second part of ∆2
F (Ac) in (2.6) will vanish. However,

when some poles are non-real, not only the strictly block upper triangular part N contributes to

the departure from normality, but also the block diagonal part D. When some |δj | is large or

close to zero, the second term can be pretty large, which means that it is not negligible.

3 Solving the SFRPA via the real Schur form

In this section, we solve the SFRPA by finding an orthogonal matrix X = [x1 x2 · · · xn]

and an upper quasi-triangular matrix T = D + N satisfying the second equation of (2.4), such

that ∆2
F (Ac) in (2.6) is minimized. Obtaining a global optimization solution to the problem

min{∆2
F (Ac)} is rather difficult. In this paper, we propose an efficient method to get a suboptimal

solution, which balances the contributions of N and D to the departure from normality. As in [8],

we compute the matrices X and T column by column.

For any matrix S, we denote its range space and null space by R(S) and N (S), respectively.
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Assume that we have already obtained Xj = [x1 x2 · · · xj ] ∈ Rn×j and Tj ∈ Rj×j satisfying

Q⊤
2 (AXj −XjTj) = 0, X⊤

j Xj = Ij , (3.1)

where Tj is upper quasi-triangular and λ(Tj) = {λk}k=j
k=1. We then are to assign the pole λj+1 (if

λj+1 is real) or poles λj+1, λ̄j+1 (if λj+1 is non-real) to get xj+1, v̆j+1 or xj+1, xj+2, v̆j+1, v̆j+2,

such that the departure from normality of Ac is optimized in some sense. This procedure is

repeated until all columns of X and T are acquired, and eventually a solution F to the SFRPA

would be computed from (2.5). In the following subsections we will distinguish two different cases

when λj+1 is real or non-real.

Before this, we shall show how to get the first one (two) column(s) of X and T . If λ1 is real,

the first column of T is then λ1e1, or T1 = λ1, and the first column x1 of X must satisfy

Q⊤
2 (A− λ1In)x1 = 0, (3.2)

and ‖x1‖2 = 1. Let the columns of S ∈ Rn×r be an orthonormal basis of N (Q⊤
2 (A−λ1In)), then

x1 can be chosen to be any unit vector in R(S). We take

x1 = (S [1 . . . 1]
⊤
)/‖S [1 . . . 1]

⊤ ‖2 (3.3)

in our algorithm as in [8], and then initially set X1 = x1, T1 = λ1.

If λ1 = α1+ iβ1 is non-real, to get the real Schur form, we should place λ̄1 = α1− iβ1 together

with λ1. Notice that T2 is of the form T2 =
[

α1 δ1β1

−β1/δ1 α1

]

with 0 6= δ1 ∈ R, then the first two

columns x1, x2 ∈ Rn of X should be chosen to satisfy

Q⊤
2 (A [x1 x2]− [x1 x2]T2) = 0, x⊤

1 x2 = 0, ‖x1‖2 = ‖x2‖2 = 1, (3.4)

so that (δ1 − 1
δ1
)2β2

1 is minimized, which obviously achieves its minimum when δ1 = 1. Let the

columns of S ∈ Cn×r be an orthonormal basis of N (Q⊤
2 (A−λ1In)), and SR = Re(S), SI = Im(S).

Direct calculations show that such x1, x2 satisfying (3.4) with δ1 = 1 can be obtained by

x1 = [SR −SI ] [γ1 . . . γr ζ1 . . . ζr]
⊤
, x2 = [SI SR] [γ1 . . . γr ζ1 . . . ζr]

⊤
,

(3.5)
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with x⊤
1 x2 = 0 and ‖x1‖2 = ‖x2‖2 = 1. Clearly,

x⊤
1 x2 + x⊤

2 x1

= [γ1 . . . γr ζ1 . . . ζr]

[

S⊤
RSI + S⊤

I SR S⊤
RSR − S⊤

I SI

S⊤
RSR − S⊤

I SI −(S⊤
RSI + S⊤

I SR)

]

[γ1 . . . γr ζ1 . . . ζr]
⊤
,

x⊤
1 x1 − x⊤

2 x2

= [γ1 . . . γr ζ1 . . . ζr]

[

S⊤
RSR − S⊤

I SI −(S⊤
RSI + S⊤

I SR)
−(S⊤

RSI + S⊤
I SR) S⊤

I SI − S⊤
RSR

]

[γ1 . . . γr ζ1 . . . ζr]
⊤
.

(3.6)

Note that the two matrices in the above two equations are symmetric Hamiltonian systems owning

special properties. So we exhibit some simple results about symmetric Hamiltonian system which

will be used here and when assigning the complex conjugate poles. Both results can be verified

directly, and we omit the proof.

Lemma 3.1. Let A,B ∈ Rn×n satisfying A⊤ = A,B⊤ = B. If λ is an eigenvalue of

[

A B
B −A

]

and
[

x⊤ y⊤
]⊤

is the corresponding eigenvector, then

[

A B
B −A

] [

x −y
y x

]

=

[

x −y
y x

] [

λ
−λ

]

,

and

[

B −A
−A −B

] [

x −y
y x

]

[ √
2
2 −

√
2
2

−
√
2
2 −

√
2
2

]

=

[

x −y
y x

]

[ √
2
2 −

√
2
2

−
√
2
2 −

√
2
2

]

[

λ
−λ

]

.

Lemma 3.2. (Property of Two Hamiltonian Systems) Let A,B ∈ Rn×n be symmetric, and let
[

A B
B −A

]

= U diag(Θ,−Θ)U⊤ be the spectral decomposition, where Θ = diag(θ1, θ2, . . . , θn) with

θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0. If the j-th column uj and the (n + j)-th column un+j of U satisfy

un+j =

[

−In
In

]

uj, then

[

B −A
−A −B

]

= U

[

0 −Θ
−Θ 0

]

U⊤.

Applying Lemma 3.2 to the two symmetric Hamiltonian systems which appeared in (3.6), that

is

[

S⊤
RSI + S⊤

I SR S⊤
RSR − S⊤

I SI

S⊤
RSR − S⊤

I SI −(S⊤
RSI + S⊤

I SR)

]

=U diag(Θ,−Θ)U⊤,

[

S⊤
RSR − S⊤

I SI −(S⊤
RSI + S⊤

I SR)
−(S⊤

RSI + S⊤
I SR) S⊤

I SI − S⊤
RSR

]

=U

[

0 −Θ
−Θ 0

]

U⊤,

then if we let

[γ1 . . . γr ζ1 . . . ζr ]
⊤
= U [µ1 . . . µr ν1 . . . νr]

⊤
, (3.7)
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x⊤
1 x2 + x⊤

2 x1 =
∑r

j=1 θj(µ
2
j − ν2j ) and x⊤

1 x1 − x⊤
2 x2 = −2

∑r
j=1 θjµjνj follow. Without loss of

generality, we may assume that θ1 ≥ θ2 ≥ . . . ≥ θr ≥ 0, then by taking

µ3 = ν3 = . . . = µr = νr = 0, µ1 = −ν1 =

√

θ2
θ1

µ2
2, (3.8a)

µ2 = ν2 =
1

‖ [SR −SI ]U
[√

θ2
θ1

1 0 · · · 0 −
√

θ2
θ1

1 0 · · · 0
]⊤

‖2
, (3.8b)

it is easy to verify that (3.4) holds with x1 and x2 computed by (3.5) and (3.7). Hence, we can

still choose initial vectors x1 and x2, so that (δ1 − 1
δ1
)2β2

1 = 0. We then initially set

X2 = [x1 x2] , T2 =

[

α1 β1

−β1 α1

]

. (3.9)

Now assume that (3.1) has been satisfied with j ≥ 1, we shall then assign the next pole λj+1.

3.1 Assigning a real pole

Assume that λj+1 is real, then the (j + 1)-th diagonal element of T must be λj+1. Comparing

the (j + 1)-th column of Q⊤
2 AX −Q⊤

2 XT = 0 gives rise to

Q⊤
2 Axj+1 −Q⊤

2 Xjvj+1 − λj+1Q
⊤
2 xj+1 = 0. (3.10)

Recall the definition of the departure from normality of Ac in (2.6) and notice that we are

now computing the (j + 1)-th columns of X and T , it is then natural to consider the following

optimization problem:

min
‖xj+1‖2=1

‖vj+1‖22 (3.11)

s.t. Mj+1

[

xj+1

vj+1

]

= 0, (3.12)

where

Mj+1 =

[

Q⊤
2 (A− λj+1In) −Q⊤

2 Xj

X⊤
j 0

]

. (3.13)

Let r = dimN (Mj+1). Then it follows from the controllability of (A,B) that Q⊤
2 (A − λj+1In)

is of full row rank, indicating that n −m ≤ rank(Mj+1) ≤ n −m + j and N (Mj+1) 6= ∅ ( [8]).

Suppose that the columns of S =
[

S⊤
1 S⊤

2

]⊤
with S1 ∈ Rn×r, S2 ∈ Rj×r form an orthonormal

basis of N (Mj+1), then (3.12) shows that

xj+1 = S1y, vj+1 = S2y, ∀y ∈ Rr. (3.14)
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Consequently, the optimization problem (3.11) subject to (3.12) is equivalent to the following

problem:

min
y⊤S⊤

1
S1y=1

y⊤S⊤
2 S2y. (3.15)

Perceived that the discussions above can also be found in [8], and the constrained optimization

problem (3.15) is solved via the GSVD of the matrix pencil (S1, S2). We put forward a simpler

approach here. Actually, since S⊤S = Ir, we have S⊤
2 S2 = Ir − S⊤

1 S1. Thus the problem (3.15)

is equivalent to

min
y⊤S⊤

1
S1y=1

y⊤y, (3.16)

whose minimum value is acquired when y is an eigenvector of S⊤
1 S1 corresponding to its greatest

eigenvalue and satisfies y⊤S⊤
1 S1y = 1. Once such y is obtained, xj+1 and vj+1 can be given by

(3.14). We may then update Xj and Tj as

Xj+1 = [Xj xj+1] ∈ R
n×(j+1), Tj+1 =

[

Tj vj+1

0 λj+1

]

∈ R
(j+1)×(j+1), (3.17)

and continue with the next pole λj+2.

3.2 Assigning a pair of conjugate poles

In this subsection, we will consider the case that λj+1 is non-real. To obtain a real matrix F from

the real Schur form of Ac = A + BF , we would assign λj+1 and λj+2 = λ̄j+1 simultaneously to

get the (j + 1)-th and (j + 2)-th columns of X and T .

3.2.1 Initial optimization problem

Assume that λj+1 = αj+1 + iβj+1 (βj+1 6= 0) and let Dδ =

[

αj+1 δβj+1

−βj+1/δ αj+1

]

be the diagonal

block in T whose eigenvalues are λj+1 and λ̄j+1. By comparing the (j + 1)-th and (j + 2)-th

columns of Q⊤
2 AX −Q⊤

2 XT = 0, we have

Q⊤
2 A [xj+1 xj+2]−Q⊤

2 Xj [vj+1 vj+2]−Q⊤
2 [xj+1 xj+2]Dδ = 0. (3.18)

Recalling the form of ∆2
F (Ac) in (2.6), it is then natural to consider the following optimization

problem:

min
δ,vj+1,vj+2

‖vj+1‖22 + ‖vj+2‖22 + β2
j+1(δ −

1

δ
)2 (3.19a)

s.t. Q⊤
2 (A [xj+1 xj+2]−Xj [vj+1 vj+2]− [xj+1 xj+2]Dδ) = 0, (3.19b)

X⊤
j [xj+1 xj+2] = 0, (3.19c)

[xj+1 xj+2]
⊤
[xj+1 xj+2] = I2. (3.19d)
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The constraints (3.19b) and (3.19d) are nonlinear. In [8], the author solves this optimization

problem by taking δ = 1 and neglecting the orthogonal requirement x⊤
j+1xj+2 = 0. These

simplify the problem significantly. However, it cannot lead to the real Schur form of the closed-

loop system matrix Ac, since xj+1 is generally not orthogonal to xj+2. Moreover, the minimum

value of the simplified optimization problem in [8] may be much greater than that of the original

problem (3.19).

We may rewrite the optimization problem (3.19) into another equivalent form. If we write

δ = δ2
δ1

with δ1, δ2 > 0, and set D0 =
[

αj+1 βj+1

−βj+1 αj+1

]

, then Dδ =
[

1/δ1
1/δ2

]

D0

[

δ1
δ2

]

. Redefine

xj+1 ,
xj+1

δ1
, xj+2 ,

xj+2

δ2
, vj+1 ,

vj+1

δ1
, vj+2 ,

vj+2

δ2
, then the optimization problem (3.19) is

equivalent to

min
δ1,δ2,vj+1,vj+2

‖δ1vj+1‖22 + ‖δ2vj+2‖22 + β2
j+1(

δ1
δ2

− δ2
δ1

)2 (3.20a)

s.t. Q⊤
2 (A [xj+1 xj+2]−Xj [vj+1 vj+2]− [xj+1 xj+2]D0) = 0, (3.20b)

X⊤
j [xj+1 xj+2] = 0, (3.20c)

[xj+1 xj+2]
⊤
[xj+1 xj+2] =

[

1/δ21
1/δ22

]

. (3.20d)

Here the constraint (3.20b) becomes linear. Once a solution to the optimization problem (3.20)

is obtained, we need to redefine

vj+1 ,
vj+1

‖xj+1‖2
, vj+2 ,

vj+2

‖xj+2‖2
, xj+1 ,

xj+1

‖xj+1‖2
, xj+2 ,

xj+2

‖xj+2‖2
as the corresponding columns of T and X .

The constraints (3.20b) and (3.20c) are linear. Actually, all vectors xj+1, xj+2, vj+1, vj+2

satisfying these two constraints can be found via the null space of the matrix

Mj+1 =

[

Q⊤
2 (A− (αj+1 + iβj+1)In) −Q⊤

2 Xj

X⊤
j 0

]

. (3.21)

Specifically, for any xj+1, xj+2, vj+1, vj+2 satisfying (3.20b) and (3.20c), direct calculations show

that Mj+1

[

xj+1 + ixj+2

vj+1 + ivj+2

]

= 0. Conversely, for any vector
[

z⊤ w⊤]⊤ ∈ N (Mj+1), the vectors

xj+1 = Re(z), xj+2 = Im(z), vj+1 = Re(w), vj+2 = Im(w) satisfy (3.20b) and (3.20c). The

constraint (3.20d) shows that x⊤
j+1xj+2 = 0. For any vector

[

z⊤ w⊤]⊤ ∈ N (Mj+1) with Re(z)

and Im(z) being linearly independent, we may then orthogonalize Re(z) and Im(z) by the Jacobi

transformation as follows to get xj+1 and xj+2 satisfying x⊤
j+1xj+2 = 0. Let ̺1 = ‖Re(z)‖22, ̺2 =

‖Im(z)‖22, γ = Re(z)⊤Im(z) and τ = ̺2−̺1

2γ , and define t as

t =

{

1/(τ +
√
1 + τ2), if τ ≥ 0,

−1/(−τ +
√
1 + τ2), if τ < 0.
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Let c = 1/
√
1 + t2, s = tc. Then xj+1 and xj+2 obtained by

[xj+1 xj+2] = [Re(z) Im(z)]

[

c s
−s c

]

(3.22)

satisfy x⊤
j+1xj+2 = 0. Moreover, if we let

[vj+1 vj+2] = [Re(w) Im(w)]

[

c s
−s c

]

, (3.23)

then xj+1, xj+2, vj+1, vj+2 satisfy (3.20b) and (3.20c). Hence, we can get xj+1, xj+2, vj+1, vj+2

satisfying the constrains (3.20b)-(3.20d) in this way. Furthermore,

1/δ21 = ‖xj+1‖22 = ‖x‖22 − ω, 1/δ22 = ‖xj+2‖22 = ‖y‖22 + ω, (3.24)

where x = Re(z), y = Im(z), ω = 2(x⊤y)2

‖y‖2
2
−‖x‖2

2
+
√

4(x⊤y)2+(‖y‖2
2
−‖x‖2

2
)2

if ‖x‖2 < ‖y‖2; and ω =

2(x⊤y)2

‖y‖2
2
−‖x‖2

2
−
√

4(x⊤y)2+(‖y‖2
2
−‖x‖2

2
)2

if ‖x‖2 ≥ ‖y‖2.

3.2.2 The suboptimal strategy

It is hard to get an optimal solution to (3.20) since it is a nonlinear optimization problem with

quadratic constraints. Even if such an optimal solution can be found, the cost will be expen-

sive. So instead of finding an optimal solution, we prefer to get a suboptimal one with less

computational cost.

Let the columns of S =
[

S⊤
1 S⊤

2

]⊤ ∈ C(n+j)×r with S1 ∈ Cn×r and S2 ∈ Cj×r form an

orthonormal basis of N (Mj+1), and let S1 = UΣV ∗ be the SVD of S1. Since S∗
1S1 + S∗

2S2 = Ir,

it follows that S∗
2S2 = V (Ir −Σ∗Σ)V ∗. For any vector

[

z⊤ w⊤]⊤ ∈ N (Mj+1) with z ∈ Cn and

w ∈ Cj , there exists b ∈ Cr such that z = S1b = U(ΣV ∗b) and w = S2b. Hence

‖z‖2 ≤ σ1‖b‖2 and ‖w‖22 ≥ (1− σ2
1)‖b‖22,

where σ1 is the largest singular value of S1. Now suppose that the real part and the imaginary

part of z are linearly independent satisfying ‖Re(z)‖2 ≤ ‖Im(z)‖2, and xj+1, xj+2, vj+1, vj+2 are

obtained from the the Jacobi orthogonal process (3.22), (3.23). Define C = ‖z‖2

‖xj+1‖2
, then C ≥

√
2

and the objective function in (3.20a) becomes

‖δ1vj+1‖22 + ‖δ2vj+2‖22 + β2
j+1(

δ1
δ2

− δ2
δ1

)2

=
C2

C2 − 1

‖w‖22
‖z‖22

+
C4 − 2C2

C2 − 1

‖vj+1‖22
‖z‖22

+ β2
j+1(C

2 − 3 +
1

C2 − 1
).

(3.25)

Obviously,

C2

C2 − 1

‖w‖22
‖z‖22

≤ C2

C2 − 1

‖w‖22
‖z‖22

+
C4 − 2C2

C2 − 1

‖vj+1‖22
‖z‖22

≤ C2 ‖w‖22
‖z‖22

. (3.26)
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So the objective function in (3.20a) depends on
‖w‖2

2

‖z‖2
2

and C with min
‖w‖2

2

‖z‖2
2

=
1−σ2

1

σ2
1

. In our

suboptimal strategy, we will first take b from span{V e1}, where ei is the i-th column of the

identity matrix. With this choice,
‖w‖2

2

‖z‖2
2

achieves its minimum value. And the following theorem

shows the relevant results.

Theorem 3.1. With the notations above, let u1 be the first column of U and assume that Re(u1)

and Im(u1) are linearly independent. Let xj+1 and xj+2 be the vectors obtained from Re(u1) and

Im(u1) via the Jacobi orthogonal process

[xj+1 xj+2] = [Re(u1) Im(u1)]

[

c s
−s c

]

,

and let

[vj+1 vj+2] = [Re(w) Im(w)]

[

c s
−s c

]

,

where w = S2V e1/σ1. Then xj+1, xj+2, vj+1, vj+2 satisfy the constrains (3.20b)-(3.20d), and the

value of the corresponding objective function specified by (3.20a) will be no larger than

1

min{‖xj+1‖22, ‖xj+2‖22}
(
1− σ2

1

σ2
1

+ β2
j+1).

Proof. The first part of the theorem is obvious. To prove the second part, note that here b = V e1
σ1

,

‖z‖2 = ‖u1‖2 = 1, ‖w‖22 =
1−σ2

1

σ2
1

. If ‖Re(u1)‖2 ≤ ‖Im(u1)‖2, it then follows directly from (3.25),

(3.26) and C2 − 3 + 1
C2−1 ≤ C2 with C = 1

‖xj+1‖2
. The case when ‖Re(u1)‖2 ≥ ‖Im(u1)‖2 can

be proved similarly.

Theorem 3.1 shows that if Re(u1) and Im(u1) are linearly independent, and min{‖xj+1‖2, ‖xj+2‖2}
is not pathologically small, the above procedure will generate xj+1, xj+2, vj+1, vj+2 satisfying the

constrains (3.20b)-(3.20d), and the value of the corresponding objective function in (3.20a) is

not too large. We then take these xj+1, xj+2, vj+1, vj+2 as the suboptimal solution. However,

if Re(u1) and Im(u1) are linearly dependent, we cannot get orthogonal xj+1 and xj+2 via the

Jacobi orthogonal process. Even if Re(u1) and Im(u1) are linearly independent, the resulted

min{‖xj+1‖2, ‖xj+2‖2} might be fairly small, which means that the corresponding value of the

objective function might be large. In this case, we would choose b from span{V e1, V e2}.
Define

x̃1 + iỹ1 = z1 = u1 =
S1V e1
σ1

, w1 =
S2V e1
σ1

,

x̃2 + iỹ2 = z2 = u2 =
S1V e2
σ2

, w2 =
S2V e2
σ2

, (3.27)
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where σ1, σ2 are the first two greatest singular values of S1. Let b =
[

V e1
σ1

V e2
σ2

]

[

γ1+iζ1
γ2+iζ2

]

with

γ2
1 + γ2

2 + ζ21 + ζ22 = 1, then

x+ iy = z = S1b = [z1 z2]

[

γ1 + iζ1
γ2 + iζ2

]

, w = S2b = [w1 w2]

[

γ1 + iζ1
γ2 + iζ2

]

. (3.28)

Denoting X̃ = [x̃1 x̃2], Ỹ = [ỹ1 ỹ2], it can be easily verified that

x =
[

X̃ −Ỹ
]

[γ1 γ2 ζ1 ζ2]
⊤
, y =

[

Ỹ X̃
]

[γ1 γ2 ζ1 ζ2]
⊤
, (3.29)

and

x⊤y + y⊤x = [γ1 γ2 ζ1 ζ2]

[

X̃⊤Ỹ + Ỹ ⊤X̃ X̃⊤X̃ − Ỹ ⊤Ỹ
X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)

]

[γ1 γ2 ζ1 ζ2]
⊤
, (3.30)

x⊤x− y⊤y = [γ1 γ2 ζ1 ζ2]

[

X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)

−(X̃⊤Ỹ + Ỹ ⊤X̃) Ỹ ⊤Ỹ − X̃⊤X̃

]

[γ1 γ2 ζ1 ζ2]
⊤
.

(3.31)

Obviously, the two matrices in (3.30) and (3.31) are symmetric Hamiltonian systems and they

satisfy the property in Lemma 3.2. Hence we can get the following lemma.

Lemma 3.3. Let φm, φM be the two smallest singular values of
[

Ỹ X̃
]

and [ p1
q1] , [

p2
q2] be the

corresponding right singular vectors respectively. Define

Ω =

[

p1 p2 −q1 −q2
q1 q2 p1 p2

]

, (3.32)

Φ = diag(φ1, φ2,−φ1,−φ2) with φ1 = 1− 2φ2
m, φ2 = 1− 2φ2

M , then
[

X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)
−(X̃⊤Ỹ + Ỹ ⊤X̃) Ỹ ⊤Ỹ − X̃⊤X̃

]

= ΩΦΩ⊤, (3.33)

and

[

X̃⊤Ỹ + Ỹ ⊤X̃ X̃⊤X̃ − Ỹ ⊤Ỹ
X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)

]

= Ω











φ1

φ2

φ1

φ2











Ω⊤.

Proof. Since (X̃⊤ − iỸ ⊤)(X̃ + iỸ ) = [z1 z2]
∗
[z1 z2] = I2, so X̃⊤X̃ + Ỹ ⊤Ỹ = I2 and X̃⊤Ỹ =

Ỹ ⊤X̃. Thus
[

X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)

−(X̃⊤Ỹ + Ỹ ⊤X̃) Ỹ ⊤Ỹ − X̃⊤X̃

]

=

[

I2 − 2Ỹ ⊤Ỹ −2Ỹ ⊤X̃
−2X̃⊤Ỹ I2 − 2X̃⊤X̃

]

= I4 − 2

[

Ỹ ⊤

X̃⊤

]

[

Ỹ X̃
]

.

From the above equation, it obviously holds that φ1, φ2 are the two nonnegative eigenvalues

of

[

X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)
−(X̃⊤Ỹ + Ỹ ⊤X̃) Ỹ ⊤Ỹ − X̃⊤X̃

]

with

[

p1
q1

]

,

[

p2
q2

]

being the corresponding eigenvectors.

Note that

[

X̃⊤X̃ − Ỹ ⊤Ỹ −(X̃⊤Ỹ + Ỹ ⊤X̃)

−(X̃⊤Ỹ + Ỹ ⊤X̃) Ỹ ⊤Ỹ − X̃⊤X̃

]

is a Hamiltonian matrix, thus the results follow

immediately from Lemma 3.1 and Lemma 3.2.
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Now by defining

[µ1 µ2 ν1 ν2]
⊤
= Ω⊤ [γ1 γ2 ζ1 ζ2]

⊤
, (3.34)

we have

x⊤y + y⊤x = 2φ1µ1ν1 + 2φ2µ2ν2, x⊤x− y⊤y = φ1(µ
2
1 − ν21 ) + φ2(µ

2
2 − ν22 ). (3.35)

Theorem 3.2. With the notations above, there exist µ1, µ2, ν1, ν2 ∈ R such that x⊤y = 0 and

‖x‖2 = ‖y‖2 =
√
2
2 . For these µ1, µ2, ν1, ν2, let γ1, γ2, ζ1, ζ2 be computed from (3.34), where Ω is

as in (3.32). Then xj+1 = x, xj+2 = y, vj+1 = Re(w) and vj+2 = Im(w), where w is computed by

(3.28), satisfy the constrains (3.20b)-(3.20d), and the value of the corresponding objective function

in (3.20a) will be no larger than
2(1−σ2

2)

σ2
2

.

Proof. It is easy to check that all solutions of the following system of equations







φ1µ1ν1 + φ2µ2ν2 = 0,
φ1(µ

2
1 − ν21) + φ2(µ

2
2 − ν22) = 0,

µ2
1 + µ2

2 + ν21 + ν22 = 1.
(3.36)

are














































µ2 = ±
√

φ1

φ1 + φ2
− ν22

µ1 = −
√

φ2

φ1
ν2

ν1 = ±
√

φ2

φ1 + φ2
− φ2

φ1
ν22

and















































µ2 = ±
√

φ1

φ1 + φ2
− ν22

µ1 =

√

φ2

φ1
ν2

ν1 = ∓
√

φ2

φ1 + φ2
− φ2

φ1
ν22

(3.37)

with ν22 ≤ φ1

φ1+φ2
. Note (3.35) and ‖x‖22+‖y‖22 = 1, so with the values in (3.37), it holds that x⊤y =

0 and ‖x‖2 = ‖y‖2 =
√
2
2 . Since

[

z⊤ w⊤]⊤ ∈ N (Mj+1), so
[ xj+1 xj+2

vj+1 vj+2

]

=
[

x y

Re(w) Im(w)

]

satisfy the constrains (3.20b)-(3.20d) with δ1 = δ2 =
√
2
2 . Hence

‖δ1vj+1‖22 + ‖δ2vj+2‖22 + β2
j+1(

δ1
δ2

− δ2
δ1

)2

=2‖w‖22 = 2(γ2
1 + ζ21 )

1− σ2
1

σ2
1

+ 2(γ2
2 + ζ22 )

1− σ2
2

σ2
2

≤ 2(1− σ2
2)

σ2
2

,

which completes the proof of the theorem.

From the proof of Theorem 3.2 we can see that with such choice of xj+1, xj+2, vj+1, vj+2, the

value of the corresponding objective function is just 2‖w‖22. Define ξ1 = p⊤1 Ξp1, ξ2 = p⊤2 Ξp2, η1 =

q⊤1 Ξq1, η2 = q⊤2 Ξq2, ζ12 = q⊤1 Ξp2, ζ21 = q⊤2 Ξp1, with Ξ = diag{(1 − σ2
1)/σ

2
1 , (1 − σ2

2)/σ
2
2}, it then
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follows

‖w‖22 =







φ2

φ1+φ2
(ξ1 + η1) +

φ1

φ1+φ2
(ξ2 + η2) + 2

√

φ2

φ1

φ1

φ1+φ2
(ζ21 − ζ12) if (µ1ν2) ≤ 0,

φ2

φ1+φ2
(ξ1 + η1) +

φ1

φ1+φ2
(ξ2 + η2) + 2

√

φ2

φ1

φ1

φ1+φ2
(ζ12 − ζ21) if (µ1ν2) > 0.

(3.38)

So in order to get a smaller ‖w‖2, we can take µ1, µ2, ν1, ν2 satisfying µ1ν2 ≤ 0 if ζ21 ≤ ζ12, and

µ1ν2 > 0 if ζ21 > ζ12.

Till now we have proposed two strategies for computing xj+1, xj+2, vj+1, vj+2. The first

strategy computes xj+1, xj+2, vj+1 and vj+2 by using the Jacobi orthogonal process (3.22) and

(3.23) with z = u1 and w = S2V e1
σ1

. While the second one first computes µ1, µ2, ν1, ν2 by (3.37)

satisfying µ1ν2 ≤ 0 if ζ21 ≤ ζ12, and µ1ν2 > 0 if ζ21 > ζ12, and then compute γ1, γ2, ζ1, ζ2

from (3.34), where Ω is as in (3.32), and finally set xj+1 = x, xj+2 = y, vj+1 = Re(w) and

vj+2 = Im(w), where x, y, w are computed by (3.28). We cannot tell which strategy is better. So

we suggest to apply both strategies, compare the corresponding values of the objective function

and adopt the one which gives better results. Specifically, if the value of the objective function

corresponding to the first strategy is smaller, we would update Xj and Tj as

Xj+2 = [Xj δ1xj+1 δ2xj+2] ∈ R
n×(j+2), Tj+2 =





Tj δ1vj+1 δ2vj+2

0 αj+1 δβj+1

0 − 1
δβj+1 αj+1



 ∈ R
(j+2)×(j+2),

(3.39)

where δ1 = 1
‖xj+1‖2

, δ2 = 1
‖xj+2‖2

, δ = δ2
δ1
. Otherwise, we update Xj and Tj as

Xj+2 =
[

Xj

√
2x

√
2y

]

∈ R
n×(j+2), Tj+2 =





Tj

√
2Re(w)

√
2Im(w)

0 αj+1 βj+1

0 −βj+1 αj+1



 ∈ R
(j+2)×(j+2),

(3.40)

with x, y and w defined as in (3.28). This completes the assignment of the complex conjugate

poles λj+1, λj+2 = λ̄j+1, and we can then continue with the next pole λj+3.

These two strategies essentially choose z from R(u1) and R([u1 u2]), respectively. If the

results by these two strategies are not satisfactory, theoretically, we can choose z from a higher

dimensional space, i.e. z ∈ span{u1, u2, . . . , uk}, k ≥ 3, with ul being the l-th column of U . How-

ever the resulted optimization problem is much more complicated. More importantly, numerical

examples show that these two strategies with k = 1, 2 can produce fairly satisfying results for

most problems.

3.3 Algorithm

In this part, we give the framework of our algorithm.
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Algorithm 1 Framework of our Schur-rob algorithm.

Input:

A,B and L = {λ1, . . . , λn} (complex conjugate poles appear in pairs).

Output:

The feedback matrix F .

1: If λ1 is real, compute x1 by (3.3) and set X1 = x1, T1 = λ1, j = 1. If λ1 is non-real, compute

x1, x2 by (3.5), (3.7), (3.8), and set X2, T2 as in (3.9), j = 2.

2: while j < n do

3: if λj+1 is real then

4: Find S =
[

S⊤
1 S⊤

2

]⊤
, whose columns form an orthonormal basis of N (Mj+1) in (3.13);

5: Compute y by (3.16);

6: Compute xj+1 and vj+1 by (3.14), update Xj and Tj as (3.17) and set j = j + 1.

7: else

8: Find S =
[

S⊤
1 S⊤

2

]⊤
, whose columns form an orthonormal basis of N (Mj+1) in (3.21);

9: Compute the SVD of S1 as S1 = UΣV ∗;

10: if Re(Ue1) and Im(Ue1) are linearly independent then

11: Compute xj+1, xj+2, vj+1, vj+2 by (3.22) and (3.23) with z = S1V e1
σ1

, w = S2V e1
σ1

;

12: Set δ1 = 1
‖xj+1‖2

, δ2 = 1
‖xj+2‖2

and δ = δ2
δ1
;

13: Compute dep1 = ‖δ1vj+1‖22 + ‖δ2vj+2‖22 + β2
j+1(δ − 1

δ )
2;

14: else

15: Set dep1 = ∞;

16: end if

17: Let X̃ = [x̃1 x̃2], Ỹ = [ỹ1 ỹ2] with x̃1, ỹ1, x̃2, ỹ2 defined as in (3.27), and compute the

spectral decomposition (3.33);

18: Compute µ1, µ2, ν1, ν2 by (3.37) satisfying µ1ν2 ≤ 0 if ζ21 ≤ ζ12, and µ1ν2 > 0 if ζ21 > ζ12,

and then compute γ1, γ2, ζ1, ζ2 from (3.34), where Ω is as in (3.32);

19: Compute z, w by (3.28), set xj+1 = Re(z), xj+2 = Im(z), vj+1 = Re(w) and vj+2 =

Im(w). Compute dep2 = 2[(γ2
1 + ζ21 )

1−σ2
1

σ2
1

+ (γ2
2 + ζ22 )

1−σ2
2

σ2
2

];

20: If dep1 < dep2, update Xj and Tj as in (3.39); otherwise, update them as in (3.40). Set

j = j + 2.

21: end if

22: end while

23: Set X = Xn, T = Tn, and compute F by (2.5).
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4 Numerical Examples

In this section, we give some numerical examples to illustrate the performance of our Schur-rob

algorithm, and compare it with some of the different versions of SCHUR in [8], the MATLAB

functions robpole [23] and place [13]. Each algorithm computes a feedback matrix F such

that the eigenvalues of A + BF are those given in L, and A + BF is robust. When applying

robpole to all test examples, we set the maximum number of sweep to be the default value 5.

All calculations are carried out on an Intel R©CoreTMi3, dual core, 2.27 GHz machine, with 2.00

GB RAM. MATLAB R2012a is used with machine epsilon ǫ ≈ 2.2× 10−16.

With λ1 ∈ R fixed, the choice of x1 in Schur-rob ignores the freedom of x1. Inspired by

O-SCHUR [8], we may regard x1 as a free parameter and manage to optimize the robustness.

Specifically, we may run Schur-rob with several different choices of x1, and keep the solution F

corresponding to the minimum departure from normality. We denote such method as “O-Schur-

rob”.

In this section, results on precision and robustness obtained by different algorithms are dis-

played. Here the precision refers to the accuracy of the eigenvalues of computed Ac = A + BF ,

compared with the prescribed poles in L. Precisely, we list

precs =

⌊

min
1≤j≤n

(− log(|λj − λ̂j

λj
|))

⌋

,

where λ̂j , j = 1, . . . , n are eigenvalues of computed Ac = A + BF . Larger values of precs

indicate more accurate computed eigenvalues. The robustness is, however, more complicated,

since different measures of robustness are used in these algorithms. Specifically, let the spectral

decomposition and the real Schur decomposition of A+BF respectively be

A+BF = XΛX−1, A+BF = UTU⊤,

where Λ is a diagonal matrix whose diagonal elements are those in L, U is orthogonal, and T

is the real Schur form. The MATLAB function place tends to minimize ‖X−1‖F and robpole

aims to maximum | det(X)|. Both measures are closely related to the condition number κF (X) =

‖X‖F‖X−1‖F . While different versions of SCHUR [8] and our Schur-rob try to minimize the

departure from normality of Ac = A+BF . Hence, in the following tests, we adopt the following

two measures of robustness: the departure from normality of Ac (denoted as “dep.”) and the

condition number of X (denoted as “κF (X)”).
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(n, k)
dep. precs

SCHURSCHUR-DO-SCHURSchur-robSCHURSCHUR-DO-SCHURSchur-rob
(4, 1e+1) 9.5e+1 2.2e+1 4.3e+1 2.7e+0 14 14 14 15
(4, 1e+2) 1.5e+4 8.2e+2 1.4e+4 3.3e+2 11 13 11 14
(4, 1e+3) 1.4e+6 6.6e+4 1.2e+6 6.6e+2 7 8 7 10
(4, 1e+4) 2.9e+8 9.9e+5 4.3e+7 1.0e+4 4 10 6 13
(4, 1e+5) 1.8e+10 7.3e+6 1.2e+10 3.8e+5 3 7 3 10
(20,1e+1) 4.0e+1 7.6e+0 1.7e+1 4.6e+0 13 14 14 14
(20,1e+2) 7.7e+4 2.6e+2 2.4e+2 1.8e+1 9 12 11 12
(20,1e+3) 2.0e+5 4.4e+3 9.3e+4 4.7e+2 9 11 10 12
(20,1e+4) 3.2e+7 2.4e+4 5.2e+6 1.9e+3 6 10 8 11
(20,1e+5) 1.7e+9 1.2e+6 8.8e+8 6.0e+4 3 9 6 10
(50,1e+1) 1.1e+1 2.9e+0 4.4e+0 4.4e+0 13 12 13 13
(50,1e+2) 2.0e+4 5.9e+2 8.8e+2 1.8e+1 10 12 11 12
(50,1e+3) 1.1e+6 7.8e+2 5.8e+4 5.5e+2 8 11 9 12
(50,1e+4) 8.8e+7 3.2e+4 9.6e+6 2.1e+3 6 10 7 11
(50,1e+5) 8.4e+9 2.0e+5 4.8e+8 3.7e+4 3 9 5 10

Table 4.1: Numerical results for Example 4.1

Example 4.1. Let

A =





1 0 0
0 In−2 0
0 0.5× e⊤ 0.5



 , B =

[

In−1

0

]

,

L = {randn(1, n− 2), 0.5 + ki, 0.5− ki},

where e⊤ is the row vector with its all entries being 1, “randn(1, n−2)” is a row vector of dimension

n−2, generated by the MATLAB function randn. We set k as 1e+1, 1e+2, 1e+3, 1e+4, 1e+5,

and apply the four algorithms SCHUR, SCHUR-D, O-SCHUR and Schur-rob on these

examples, where “SCHUR-D” denotes the algorithm combining the Dk varying strategy in [8]

with SCHUR. In [8], the author points out that minimizing the departure from normality via

the Dk varying technique can be achieved by optimizing the condition number of X⊤X or X ,

which actually is hard to realize. So here, the numerical results associated with “SCHUR-D”

are obtained by taking many different vectors from the null space of (6) in [8], which lead to

orthogonal columns in X when placing complex conjugate poles, and adopting the one owning

the minimal departure from normality as the solution to the SFRPA. All numerical results are

summarized in Table 4.1, which shows that our algorithm outperforms SCHUR and O-SCHUR

on these examples with complex conjugate poles to be assigned.

We now compare our Schur-rob, O-Schur-rob algorithms with the MATLAB functions

place, robpole and the SCHUR, O-SCHUR algorithms by applying them on some bench-

mark sets. The tested benchmark sets include eleven illustrated examples from [5], ten multi-
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num. 5 7 8 9 11

dep.

place 7.4e-1 3.5e+0 1.3e+1 1.2e+1 2.5e-3
robpole 7.4e-1 3.4e+0 5.0e+0 1.2e+1 3.6e-1
SCHUR 7.2e-1 7.2e+0 7.0e+0 1.9e+1 2.3e+0

O-SCHUR 7.1e-1 4.8e+0 6.0e+0 1.7e+1 6.0e-1
Schur-rob 7.2e-1 3.7e+0 7.5e+0 1.8e+1 2.4e-1

O-Schur-rob 7.1e-1 3.2e+0 3.3e+0 1.1e+1 1.4e-1

κF (X)

place 1.5e+2 1.2e+1 3.7e+1 2.4e+1 4.0e+0
robpole 1.5e+2 1.2e+1 6.2e+0 2.4e+1 4.1e+0
SCHUR 2.7e+3 1.3e+2 1.1e+1 5.6e+1 6.0e+0

O-SCHUR 1.1e+3 4.5e+1 7.5e+0 5.5e+1 4.1e+0
Schur-rob 1.9e+3 2.5e+1 1.2e+1 5.8e+1 4.1e+0

O-Schur-rob 1.2e+3 2.2e+1 9.6e+0 3.3e+1 4.0e+0

Table 4.2: Robustness of the closed-loop system for the examples from [5]

input CARE examples and nine multi-input DARE examples in benchmark collections [1,2]. All

examples are numbered in the order as they appear in the references.

Example 4.2. The first benchmark set includes eleven small examples from [5]. Applying the

six algorithms on these examples, all algorithms produce comparable precisions of the assigned

poles, which are greater than 10, and we omit the results here. Table 4.2 lists two measures of

robustness, i.e. dep. and κF (X), for five examples. The results are generally comparable. The

remaining six examples are not displayed in the table, as the results of the six algorithms applying

on these examples are quite similar.

Now we apply the six algorithms on ten CARE and nine DARE examples from the SLICOT

CARE/DARE benchmark collections [1, 2]. Table 4.3 to Table 4.6 present the numerical results,

respectively. The “-”s in the first columns in Table 4.4 and Table 4.6 corresponding to place,

robpole, SCHUR and O-SCHUR mean that all four algorithms fail to output a solution, since

the multiplicity of some pole is greater than m. Note that the “precs” in the last six columns

associated with SCHUR and O-SCHUR in Table 4.3 and those in the third and eighth columns

in Table 4.4 are also “ -”s, which suggest that there exists at least one eigenvalue of A + BF ,

which owns no relative accuracy compared with the assigned poles. From Table 4.3, we know

that the relative accuracy “precs” of the poles in example 4 and 5 corresponding to Schur-rob

and O-Schur-rob are lower than those produced by place and robpole. And the reason is

that there are semi-simple eigenvalues in both examples. So how to dispose the issue that semi-

simple eigenvalues can achieve higher relative accuracy deserves further exploration and we will

treat it in a separate paper. For the sixth column in Table 4.3, “precs” from our algorithms are

also smaller than those obtained from place and robpole for the existence of poles which are
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precs
1 2 3 4 5 6 7 8 9 10

place 14 14 11 11 11 9 14 11 13 11
robpole 14 14 12 13 12 11 14 14 13 10
SCHUR 12 13 9 6 - - - - - -

O-SCHUR 14 16 10 7 - - - - - -
Schur-rob 14 14 12 8 9 6 14 14 12 9

O-Schur-rob 15 15 13 8 9 6 14 14 12 9

Table 4.3: Accuracy for CARE examples

precs
1 2 3 4 5 6 7 8 9

place - 15 14 14 7 11 5 - 13
robpole - 15 14 14 7 11 1 - 13
SCHUR - 1 - 14 7 8 1 - 12

O-SCHUR - 1 - 14 8 9 2 - 15
Schur-rob 15 15 15 15 8 10 4 - 12

O-Schur-rob 15 15 15 15 8 10 4 - 13

Table 4.4: Accuracy for DARE examples

num. 1 2 3 4 5 6 7 8 9 10

dep.

place 5.2e+0 3.0e-1 7.3e+2 1.5e+6 2.9e+6 2.3e+7 7.6e+02.2e+16.1e+0 4.9e+9
robpole 5.2e+0 2.9e-1 5.7e+2 7.5e+5 2.9e+6 2.3e+7 8.1e+02.0e+16.0e+0 3.8e+9
SCHUR 8.4e+17.2e+05.0e+2 1.7e+6 3.0e+9 5.3e+7 6.2e+18.9e+27.5e+04.4e+17

O-SCHUR 4.7e+12.6e+03.8e+2 8.0e+5 5.4e+8 2.6e+7 7.3e+01.7e+26.8e+02.3e+17
Schur-rob 7.6e+0 3.0e-1 1.4e+2 1.1e+5 7.3e+6 2.3e+7 7.5e+02.1e+18.4e+02.2e+10

O-Schur-rob7.3e+0 2.6e-1 1.4e+2 1.1e+5 2.5e+6 2.3e+7 6.8e+02.0e+16.8e+02.2e+10

κF (X)

place 7.4e+08.0e+04.3e+11.7e+15 8.5e+4 4.8e+6 1.6e+19.8e+11.5e+2 2.3e+6
robpole 7.3e+08.0e+04.2e+1 2.2e+7 8.9e+4 3.2e+6 1.6e+19.0e+11.4e+2 2.3e+6
SCHUR 2.2e+21.0e+11.7e+3 9.1e+9 6.0e+114.0e+133.5e+86.1e+91.3e+94.6e+13

O-SCHUR 1.2e+25.1e+12.1e+3 1.0e+9 2.4e+10 1.2e+8 1.0e+83.7e+94.1e+95.7e+13
Schur-rob 1.1e+18.2e+09.2e+2 9.0e+7 2.0e+6 3.2e+8 3.3e+15.7e+26.5e+3 4.3e+6

O-Schur-rob1.0e+18.0e+09.1e+2 6.5e+7 1.3e+6 1.2e+8 2.8e+14.2e+23.4e+3 4.3e+6

Table 4.5: Robustness of the closed-loop system matrix for ten CARE examples

relatively badly separated from the imaginary axis. And this is a weakness of our algorithm.

We now test the five methods place, robpole, SCHUR, O-SCHUR and Schur-rob on

some random examples generated by the MATLAB function randn.

Example 4.3. This test set includes 33 examples where n varies from 3 to 25 increased by 2,

and m is set to be 2, ⌊n
2 ⌋, n − 1 for each n. The examples are generated as following. We first

randomly generate the matrices A,B and F by the MATLAB function randn, and then get L

using the MATLAB function eig, that is, L = eig(A+ BF ). We then apply the five algorithms

on the A,B and L as input.

Fig. 4.1 to Fig. 4.4, respectively exhibit the departure from normality of the computed Ac,

the condition number of the eigenvector matrix X , the relative accuracy of the poles and the

CPU time of the five algorithms applied on these randomly generated examples. In these figures,

the x-axis represents the number of the 33 different (n,m). For example, (3, 2), (5, 2) and (5, 4)

correspond to 1, 2 and 3 in the x-axis, respectively. And the values along the y-axis are the mean

values over 50 trials for a certain (n,m).
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num. 1 2 3 4 5 6 7 8 9

dep.

place - 2.2e-1 3.9e-1 4.3e-1 1.7e+0 1.4e+0 2.3e+1 4.3e+7 8.9e+0
robpole - 2.2e-1 3.9e-1 3.6e-1 1.7e+0 1.3e+0 1.8e+1 3.9e+12 8.0e+0
SCHUR - 4.1e-1 1.1e+2 5.9e-1 1.8e+0 1.1e+1 3.2e+2 3.4e+2 1.1e+1

O-SCHUR - 3.3e-1 4.9e+1 4.1e-1 1.7e+0 1.1e+0 1.7e+2 1.2e+1 8.0e+0
Schur-rob 1.0e-1 2.5e-1 1.3e+0 3.4e-1 1.7e+0 2.0e+0 1.9e+1 9.8e+0 9.9e+0

O-Schur-rob 1.0e-1 2.5e-1 1.3e+0 3.4e-1 1.7e+0 1.2e+0 1.8e+1 9.4e+0 6.6e+0

κF (X)

place - 5.2e+0 4.9e+0 5.4e+0 1.8e+1 1.3e+1 2.3e+8 9.2e+292 3.4e+2
robpole - 5.2e+0 5.0e+0 5.3e+0 1.8e+1 1.2e+1 2.9e+8 1.3e+308 3.0e+2
SCHUR - 4.0e+7 1.2e+9 5.7e+0 1.8e+1 5.8e+3 1.9e+11 2.8e+295 4.7e+3

O-SCHUR - 3.3e+7 8.0e+8 5.4e+0 1.8e+1 1.7e+3 2.0e+11 3.3e+295 2.6e+3
Schur-rob 7.1e+15 5.5e+0 5.6e+0 7.2e+0 1.8e+1 3.8e+1 1.7e+9 5.6e+292 2.2e+4

O-Schur-rob 2.5e+15 5.5e+0 5.5e+0 7.2e+0 1.8e+1 3.8e+1 1.2e+9 5.6e+292 4.7e+3

Table 4.6: Robustness of the closed-loop system matrix for nine DARE examples
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All these figures show that our Schur-rob algorithm can produce comparable or even better

results as place and robpole, but with much less CPU time.

5 Conclusion

Pole assignment problem for multi-input control is generally under-determined. And utilizing this

freedom to make the closed-loop system matrix to be insensitive to perturbations as far as possible

evokes the state-feedback robust pole assignment problem (SFRPA) arising. Based on SCHUR

[8], we propose a new direct method to solve the SFRPA, which obtains the real Schur form of

the closed-loop system matrix and tends to minimize its departure from normality via solving

some standard eigen-problems. Many numerical examples show that our algorithm can produce

comparable or even better results than existing methods, but with much less computational costs

than the two classic methods place and robpole.
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