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Abstract

In this paper, the envelope-constrained H∞ filtering problem is investigated for a class of discrete time-varying stochastic
systems over a finite horizon. The system under consideration involves fading measurements, randomly occurring nonlinearities
(RONs) and mixed (multiplicative and additive) noises. A novel envelope-constrained performance criterion is proposed to
better quantify the transient dynamics of the filtering error process over the finite horizon. The purpose of the problem
addressed is to design a time-varying filter such that both the H∞ performance and the desired envelope constraints are achieved
at each time step. By utilizing the stochastic analysis techniques combined with the ellipsoid description on the estimation
errors, sufficient conditions are established in the form of recursive matrix inequalities (RMIs) reflecting both the envelope
information and the desired H∞ performance index. The filter gain matrix is characterized by means of the solvability of the
deduced RMIs. Finally, a simulation example is provided to show the effectiveness of the proposed filtering design scheme.

Key words: H∞ filtering; Finite-horizon filtering; Envelope constraints; Fading measurements; Ellipsoid constraints;
Randomly occurring nonlinearities.

1 Introduction
Filtering or state estimation has long been a hot research
topic in the areas of communications, control and signal
processing. Among various filtering approaches available
in the literature, the H∞ filtering has gained particu-
lar research attention due to its capability of providing
a bound for the worst-case estimation error without the
need for knowledge of noise statistics. It should be men-
tioned that most existing results with regard to H∞ fil-
tering have been concerned with the time-invariant sys-
tems over the infinite-horizon and the corresponding re-
sults for time-varying case are relatively few. In reality,
almost all practical systems are subject to time-varying
parameter variations and should be modeled as time-
varying systems (see e.g. [4]). As such, the finite-horizon
H∞ filtering problem has received extensive research at-
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tention in the past few years. For instance, the recursive
linear matrix inequality (RLMI) method has been pro-
posed in [10] to effectively solve a finite-horizon filtering
H∞ problems for a class of nonlinear systems with quan-
tization effects. The backward recursive Riccati differ-
ence equation (RDE) approach has been developed in [3]
to deal with a distributed H∞ state estimation problem
over sensor networks.

Because of the ever-increasing popularity of communi-
cation networks, more and more control and signal pro-
cess algorithms are executed over communication links.
In networked systems, the limited bandwidth of the
communication channel gives rise to various network-
induced phenomena such as the transmission delay [2],
missing measurements [11], signal quantization [7], ran-
domly occurring nonlinearities (RONs) [10], etc. If not
properly handled, these network-induced phenomena
could cause performance degradation of the addressed
systems. It is worth noting that the phenomena of
RONs have been put forward to describe the network-
induced nonlinear disturbances. This kind of nonlinear
disturbances might stem from some abrupt phenomena
such as random failures and repairs of the components,
changes in the interconnections of subsystems, modifi-
cation of the operating point of the linearized model of
a nonlinear system. Two typical approaches have been
widely adopted to cater for such phenomena: one is to
introduce a sequence of random variables obeying the
given Bernoulli distribution [10] and the other is to
utilize the statistical laws with known expectation and
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secondary moment [17]. The latter description includes
some well-studied nonlinearities as special cases such as
system with state-dependent multiplicative noises and
nonlinear systems with random vectors whose powers
depend on the norm of the state. To date, the occurrence
of RONs has gained some particular research interest
and the corresponding research on more general systems
is still ongoing. For example, the H∞ filtering issue for
time-varying stochastic systems with both RONs and
mixed noises (multiplicative and additive noises) has
not been adequately investigated, and this constitutes
one of the motivations for the present research.
Compared with the well-studied network-induced phe-
nomena such as communication delays and packet
dropouts, the research on network-induced channel fad-
ing problem is still on its early stage despite the fact that
the wireless channels are susceptible to fading effect [5].
Generally speaking, when a signal is transmitted over
a wireless channel, it is inevitably subject to some spe-
cial physical phenomena such as reflection, refraction
and diffraction, which lead to the multi-path induced
fading or the shadow fading. Fading is often modeled
by a time-varying stochastic mathematical model rep-
resenting the transmitted signal’s change in both the
amplitude and phase. Some representative models have
been investigated, of which the analog erasure channel
model, Rice fading channel model and Rayleigh channel
model are arguably the most popular ones, see [14] for
more details. Up to now, some preliminary results have
been reported in the literature concerning the stability
analysis, LQG control and Kalman filtering problems
with fading measurements, see [5, 8, 15] and the ref-
erences therein. Unfortunately, the finite-horizon H∞
filtering problem for time-varying stochastic systems
with fading measurements has attracted little research
attention, which remains as an open research issue.
Nowadays, the envelope-constrained filtering (ECF)
technique has been utilized to solve a wide range of
practical engineering problems arising in signal process-
ing and communications. Examples include the com-
munication channel equalization problems, the radar
and sonar detection problems, and the robust antenna
and filter design problems [1]. It should be pointed out
that the aim of ECF problems is to find a filter such
that the filtering error output stimulated by a specified
input signal lies within a desired envelope and the effect
from the input noises is also minimized [13]. The speci-
fications of the given envelope can arise either from the
standards set by certain regulatory bodies or from the
practical design consideration [1]. In the time domain,
the ECF issue is usually cast as a finite-dimensional
constrained quadratic optimization problem which can
be effectively handled by using linear matrix inequal-
ity approaches [19]. For example, by utilizing the H∞
or H2 optimal theory, some filter design schemes have
been proposed in [12,18]. Almost all ECF-relevant liter-
ature has been concerned with the linear time-invariant
systems, and the corresponding investigation on the
nonlinear time-varying systems has not received proper
research attention for the following two reasons: 1)
it is non-trivial to define the envelope constraints for
time-varying systems over a finite-horizon; and 2) it is
challenging to develop appropriate methodology to an-
alyze the transient dynamics of the filtering error due
to the time-varying nature.

Summarizing the discussions made so far, it is of both
theoretical significance and practical importance to
design an envelope-constrained H∞ filter for the time-
varying systems with network-induced RON, fading
channel and mixed noises. This appears to be a chal-
lenging task with three essential difficulties identified as
follows: 1) how to define the criterion for the envelope-
constrained filtering of a class of time-varying sys-
tems with network-induced phenomena? 2) what kind
of methods can be developed to solve the addressed
envelope-constrained filtering problem over a given
finite-horizon? 3) how to examine the impact from the
statistical information of both fading measurements and
RONs on the filtering performance? It is, therefore, the
main motivation of this paper to provide satisfactory
answers to the three questions mentioned above and also
propose a design scheme of the envelope-constrained
H∞ filter.
In this paper, we aim to investigate the envelope-
constrained H∞ filtering problem for a class of discrete
time-varying stochastic systems with simultaneous pres-
ence of fading measurements, RONs and mixed noises.
Some sufficient conditions are established, via intensive
stochastic analysis, to guarantee the existence of the
desired time-varying filter gains, and then such filter
gains is obtained by solving a set of recursive matrix in-
equalities (RMIs). The main contributions of this paper
are outlined as follows: 1) a novel envelope-constrained
performance criterion is proposed in order to describe
the transient dynamics of the filtering error process;
2) the system under consideration is comprehensive to
cover several network-induced phenomena; 3) by utiliz-
ing the ellipsoid description on the estimation errors,
the given envelope constraints are transformed into a set
of matrix inequalities while meeting the specified H∞
requirements; and 4) the filter gain matrix is obtained by
solving a set of recursive matrix inequalities solvable via
standard software package.
Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn and Rn×m denote, re-
spectively, the n dimensional Euclidean space and the
set of all n × m real matrices. l([0, N ]; Rn) is the space
of vector functions over [0, N ]. I denotes the identity
matrix of compatible dimensions. The notation X ≥ Y
(respectively, X > Y ), where X and Y are symmetric
matrices, means that X−Y is positive semi-definite (re-
spectively, positive definite). AT represents the trans-
pose of A. For matrices A ∈ Rm×n and B ∈ Rp×q, their
Kronecker product is a matrix in Rmp×nq denoted as
A⊗B. 1 denotes a compatible dimensional column vec-
tor with all ones. E{x} stands for the expectation of the
stochastic variable x. ||x|| describes the Euclidean norm
of a vector x. The shorthand diag{·} denotes a block di-
agonal matrix.In symmetric block matrices, the symbol
∗ is used as an ellipsis for terms induced by symmetry.

2 Problem Formulation and Preliminaries

Consider the following discrete time-varying stochastic
system defined on k ∈ [0, N ]

xk+1 =
(
Ak + ξkDk

)
xk + αkh(k, xk) + E1,kvk

yk = Ckxk + E2,kvk

zk = Lkxk

(1)
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where xk ∈ Rnx , yk ∈ Rny and zk ∈ Rnz are, re-
spectively, the state vector, the measurement output
(without fading) and the signal to be estimated. vk ∈
l([0, N ]; Rq) is the disturbance input, Ak, Ck, Dk, E1,k,
E2,k and Lk are known time-varying matrices with ap-
propriate dimensions, ξk ∈ R is a zero-mean random
sequence with E{ξ2

k} = 1. The random variable αk ∈
{0, 1}, which is uncorrelated to ξk, is a Bernoulli dis-
tributed white sequence obeying the probability distri-
bution law Prob{αk = 0} = 1 − ᾱ and Prob{αk = 1} =
ᾱ where ᾱ ∈ [0, 1] is a known scalar. The known non-
linear vector-valued function h : [0, N ] × Rnx → Rnx

is continuous, and satisfies h(k, 0) = 0 and the sector-
bounded condition[

h(k, x)− h(k, y) − Φk(x − y)
]T

×
[
h(k, x) − h(k, y) − Ψk(x − y)

]
≤ 0

(2)

for all x, y ∈ Rnx , where Φk and Ψk are known real
matrices with appropriate dimensions.
Letting the number of paths denoted by ℓ be given, the
actually received signal by the filter is of the following
form

ỹk =
∑ℓk

s=0
ϑs

kyk−s + E3,kwk (3)

where ℓk = min{ℓ, k}, ϑs
k (s = 0, 1, · · · , ℓk) are the

mutually independent channel coefficients having prob-
ability density functions f(ϑs

k) on the interval [0, 1] with
known mathematical expectations ϑ̄s and variances ϑ̃s,
and wk ∈ l([0, N ]; R) is an external disturbance.
For the purpose of simplicity, for −ℓ ≤ i ≤ −1, we
assume that Ci = 0, yi = 0 and [vT

i wT
i ] = 0. Based

on the actually received signal ỹk, the following filter is
constructed x̂k+1 =Akx̂k + ᾱh(k, x̂k) + Kk

(
ỹk −

ℓ∑
s=0

ϑ̄sCk−sx̂k−s

)
ẑk =Lkx̂k

(4)
where x̂k ∈ Rnx is the estimated state, ẑk ∈ Rnz repre-
sents the estimated output, and Kk is the time-varying
filter gain matrix to be designed.
Let the state estimation error be ek = xk − x̂k and the
output estimation error be z̃k = zk − ẑk. Then, the dy-
namics of the filtering errors can be obtained from (1)
and (4) as follows

ek+1 =Akek + ξkDkxk + ᾱ(h(k, xk) − h(k, x̂k))

+ (αk − ᾱ)h(k, xk) −
∑ℓ

s=0
ϑ̄sKkCk−sek−s

−
∑ℓ

s=0
(ϑs

k − ϑ̄s)KkCk−sxk−s + E1,kvk

−
∑ℓ

s=0
ϑs

kKkE2,k−svk−s − KkE3,kwk

z̃k =Lkek.

(5)

Furthermore, denoting ηk = [xT
k eT

k ]T , ζk = [vT
k wT

k ]T

and hk =
[
hT (k, xk) hT (k, xk)− hT (k, x̂k)

]T , we have
the following augmented system



ηk+1 = Akηk + ᾱhk + (αk − ᾱ)S1hk

+ ξkDkS1ηk −
∑ℓ

s=0
(ϑs

k − ϑ̄s)KkCk−sS3ηk−s

−
ℓ∑

s=1

ϑ̄s
(
KkCk−sS2ηk−s −KkEk−sS3ζk−s

)
−

∑ℓ

s=0
(ϑs

k − ϑ̄s)KkEk−sS3ζk−s + Fkζk

z̃k = Lkηk

(6)

where

Ak = diag{Ak, Ak − ϑ̄0KkCk}, Ck = diag{Ck, Ck},
Lk = [ 0 Lk ], Dk = diag{Dk, Dk},
Kk = diag{Kk, Kk}, S2 = diag{0, I},

S1 =

[
I 0
I 0

]
, S3 =

[
0 0
I 0

]
,

Ek =

[
0 0

E2,k 0

]
, Fk =

[
E1,k 0
E1,k −KkE3,k

]
.

Our aim in this paper is to design an envelope-
constrained H∞ filter of the form (4) such that the
following requirements are met simultaneously:
a) (H∞ requirement) for any nonzero ζk, the output z̃k

of the augmented system (6) satisfies
N∑

k=0

E{||z̃k||2} ≤ γ2
N∑

k=0

||ζk||2 + γ2
0∑

i=−ℓ

E{ηT
i Wiηi}

(7)
where γ is a prescribed positive scalar and Wi > 0
(−ℓ ≤ i ≤ 0) are some weighting matrices;

b) (envelope constraints) under the zero-initial condi-
tion, for the given input signal

ζ∗k =

{
1, k = 0
0, 1 ≤ k ≤ N

the corresponding output z̃∗k of the augmented system
(6) satisfies

di
k − εi

k ≤ E{Iiz̃
∗
k} ≤ di

k + εi
k, k ∈ [1, N ], i ∈ [1, nz](8)

where Ii :=
[
0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
nz−i

]
, and {di

k}k∈[0, N ]

and {εi
k}k∈[0, N ] are the sequences of the desired out-

put and the tolerance band, respectively. Obviously,
εi

k (k ∈ [1, N ], i ∈ [1, nz]) are positive scalars.

Remark 1 (8) gives the envelope constraint on the in-
dividual estimation error in the mean square, which can
be understood as the stochastic version of the envelope
definition in [12] over a finite horizon. Similar to [12],
an envelope-constrained H∞ filtering system is shown in
Fig. 1. The signal yk is the measurement of the plant sys-
tem with an energy bounded disturbance input vk and the
filter input signal ỹk is the output of transmission chan-
nel corrupted by an energy bounded noise wk. ẑk is the
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Fig. 1. The envelope-constrained H∞ filtering system model.

estimate of zk. The aim of the envelope-constrained fil-
tering problem is twofold: 1) a filter gain is designed to
reconstruct zk by using the distorted signal ỹk; and 2) for
the given input signal wk and vk, z̃k is guaranteed to lie
within the specified envelope at each time step. It should
be pointed out that, the H∞ criterion is concerned with
the performance requirement as a whole over the finite-
horizon [0, N ]. In contrast, the envelope-constrained re-
quirement (8) can be used to describe the transient dy-
namics of the filtering error process at each time step,
that is, the outputs {z̃∗k}k∈[0,N ] stimulated by the given
input {ζ∗k}k∈[0,N ] are included in a desired envelope in
the mean square sense at each step.

3 Main Results
In this section, by resorting to the stochastic analysis
combined with the ellipsoid description on the estima-
tion errors, some sufficient conditions are proposed to
guarantee the H∞ performance and achieve the desired
envelope constraints for the H∞ filter design over the
given finite horizon.
3.1 H∞ Performance Analysis

Denote ηℓ
k = [ηT

k−1 · · · ηT
k−ℓ]

T , ζℓ
k = [ζT

k · · · ζT
k−ℓ]

T and
η̃k = [ηT

k hT
k (ηℓ

k)T (ζℓ
k)T ]T . The following lemma will be

used in deriving our main results.
Lemma 1 Let the external disturbances ζk and the ini-
tial values {ηk}k∈[−ℓ, 0] be given. For the function

Vk = ηT
k Pkηk +

ℓ∑
j=1

k−1∑
i=k−j

ηT
i Ri,jηi (9)

where Pk and Ri,j are symmetric positive definite matri-
ces with appropriate dimensions, the following relation-
ship

E{∆Vk} := E{Vk+1 − Vk} = E{η̃T
k Πk

1 η̃k} (10)

is true, where

Πk
1 =


Πk

11 Πk
12 Πk

13 Πk
14

∗ Πk
22 Πk

23 Πk
24

∗ ∗ Πk
33 Πk

34

∗ ∗ ∗ Πk
44

 ,

I0v = diag{
√

ϑ̃0I, · · · ,
√

ϑ̃ℓI}, S̄21 = diagℓ{S2},

I1v = diag{
√

ϑ̃1I, · · · ,
√

ϑ̃ℓI}, S̄31 = diagℓ{S3},
C̄0k = diag{Ck, · · · , Ck−ℓ}, ID = [I 0 · · · 0],
C̄1k = diag{Ck−1, · · · , Ck−ℓ}, α̃ = ᾱ(1 − ᾱ),
Ē0k = diag{Ek, · · · , Ek−ℓ}, Λ0 = [ϑ̄0I · · · ϑ̄ℓI],
Ē1k = diag{Ek−1, · · · , Ek−ℓ}, Λ1 = [ϑ̄1I · · · ϑ̄ℓI],
Πk

12 = ᾱAT
k Pk+1, Πk

13 = −AT
k Pk+1KkΛ1C̄1kS̄21,

Πk
11 = AT

k Pk+1Ak − Pk + ST
1 DT

k Pk+1DkS1

+ ϑ̃0ST
3 CT

k KT
k Pk+1KkCkS3 +

∑ℓ

j=1
Rk,j ,

Πk
14 = −AT

k Pk+1KkΛ0Ē0k + AT
k Pk+1FkID

+ ϑ̃0
(
KkCkS3

)TPk+1KkEkID,

Πk
22 = ᾱ2Pk+1 + α̃ST

1 Pk+1S1,

Πk
23 = − ᾱPk+1KkΛ1C̄1kS̄21,

Πk
24 = − ᾱPk+1KkΛ0Ē0k + ᾱPk+1FkID,

Πk
33 = S̄T

21C̄T
1kΛT

1 KT
k Pk+1KkΛ1C̄1kS̄21

+ (C̄1kS̄31I1v)T (I ⊗ (KT
k Pk+1Kk))(C̄1kS̄31I1v)

− diag{Rk−1,1,Rk−2,2, · · · ,Rk−ℓ,ℓ},
Πk

34 = S̄T
21C̄T

1kΛT
1 KT

k Pk+1(KkΛ0Ē0k −FkID)
+ [0 (C̄1kS̄31I1v)T (I ⊗ (KT

k Pk+1Kk))(Ē1kI1v)],
Πk

44 = (KkΛ0Ē0k −FkID)TPk+1(KkΛ0Ē0k −FkID)
+ IT

0vĒT
0k(I ⊗ (KT

k Pk+1Kk))Ē0kI0v.

Proof: By calculating the difference of the first term in
Vk along the trajectory of the system (6) and taking the
mathematical expectation, one has

E{ηT
k+1Pk+1ηk+1 − ηT

k Pkηk}

= E
{

ηT
k AT

k Pk+1Akηk − ηT
k Pkηk + 2ᾱηT

k AT
k Pk+1hk

− 2ηT
k AT

k Pk+1KkΛ1C̄1kS̄21η
ℓ
k − 2ηT

k AT
k Pk+1KkΛ0

× Ē0kζℓ
k + 2ηT

k AT
k Pk+1FkIDζℓ

k + ηT
k ST

1 DT
k Pk+1Dk

× S1ηk + ᾱ2hT
k Pk+1hk − 2ᾱhT

k Pk+1KkΛ1C̄1kS̄21η
ℓ
k

− 2ᾱhT
k Pk+1KkΛ0Ē0kζℓ

k + 2ᾱhT
k Pk+1FkIDζℓ

k

+ ᾱ(1 − ᾱ)hT
k ST

1 Pk+1S1hk + (ηℓ
k)T S̄T

21C̄T
1kΛT

1 KT
k

× Pk+1KkΛ1C̄1kS̄21η
ℓ
k + 2(ηℓ

k)T S̄T
21C̄T

1kΛT
1 KT

k Pk+1

×KkΛ0Ē0kζℓ
k − 2(ηℓ

k)T S̄T
21C̄T

1kΛT
1 KT

k Pk+1FkIDζℓ
k

+ ϑ̃0ηT
k

(
KkCkS3

)TPk+1KkCkS3ηk

+ (ηℓ
k)T (C̄1kS̄31I1v)T (I ⊗ (KT

k Pk+1Kk))

× (C̄1kS̄31I1v)ηℓ
k + 2ϑ̃0ηT

k ST
3 CT

k KT
k Pk+1KkEkIDζℓ

k

+ 2ηℓ T
k [0 (C̄1kS̄31I1v)T (I ⊗ (KT

k Pk+1Kk))(Ē1kI1v)]ζℓ
k

+ (ζℓ
k)T ĒT

0kΛT
0 KT

k Pk+1KkΛ0Ē0kζℓ
k − 2(ζℓ

k)T ĒT
0kΛT

0 KT
k

× Pk+1FkIDζℓ
k + (ζℓ

k)T (Ē0kI0v)T (I ⊗ (KT
k Pk+1Kk))

× (Ē0kI0v)ζℓ
k + (ζℓ

k)TIT
DFT

k Pk+1FkIDζℓ
k

}
.

(11)

On the other hand, it is not difficult to show that

E
{ ℓ∑

j=1

( k∑
i=k−j+1

ηT
i Ri,jηi −

k−1∑
i=k−j

ηT
i Ri,jηi

)}
= E

{∑ℓ

j=1
ηT

k Rk,jηk

− ηℓ T
k diag{Rk−1,1,Rk−2,2, · · · ,Rk−ℓ,ℓ}ηℓ

k

}
.

(12)

Therefore, it follows from (11) and (12) that the equality
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(10) holds, which completes the proof.
Theorem 1 Let the positive scalar γ > 0, the positive
definite matrices Wi > 0 (−ℓ ≤ i ≤ 0) and the filter
gain matrices {Kk}k∈[0, N ] be given. For the augmented
system (6), the H∞ performance requirement defined in
(7) is guaranteed for all nonzero ζk if there exist families
of positive scalars {λk}k∈[0, N ], positive definite matrices
{Pk}k∈[0, N+1] and {Ri,j}i∈[−ℓ, N ], j∈[1, ℓ] satisfying the
following recursive matrix inequalities

Πk =


Π̃k

11 Πk
12 + λkUT

1k Πk
13 Πk

14

∗ Πk
22 − λkI Πk

23 Πk
24

∗ ∗ Πk
33 Πk

34

∗ ∗ ∗ Πk
44 −

γ2

ℓ+1I

 < 0 (13)

and

P0 ≤ γ2W0,
ℓ∑

j=i

R−i,j ≤ γ2W−i, i = 1, 2, · · · , ℓ (14)

where Π̃k
11 = Πk

11−λkU2k+LT
k Lk, U1k = I⊗(Φk+Ψk)/2,

U2k = I⊗(ΦT
k Ψk+ΨT

k Φk)/2 and the other corresponding
matrices are defined in Lemma 1.
Proof: In order to analyze the H∞ performance of the
augmented system (6), we introduce the following func-
tion
Jk =ηT

k+1Pk+1ηk+1 − ηT
k Pkηk

+
ℓ∑

j=1

( k∑
i=k−j+1

ηT
i Ri,jηi −

k−1∑
i=k−j

ηT
i Ri,jηi

)
.

(15)

It is easy to see from (2) that[
hk − (I ⊗ Φk)ηk

]T [
hk − (I ⊗ Ψk)ηk

]
≤ 0. (16)

Then, substituting (10) and (16) into (15) results in

E{Jk} ≤ E
{

η̃T
k Πk

1 η̃k − λk

[
hk

− (I ⊗ Φk)ηk

]T [
hk − (I ⊗ Ψk)ηk

]}
.

(17)

Due to {ζk}k∈[−ℓ, −1] = 0, adding the zero term z̃T
k z̃k −

γ2ζT
k ζk − (z̃T

k z̃k − γ2ζT
k ζk) to E{Jk} yields

E{Jk} ≤ E
{

η̃T
k Π1η̃k + ||z̃k||2

− λk

[
hk − (I ⊗ Φk)ηk

]T [
hk − (I ⊗ Ψk)ηk

]
− γ2

ℓ + 1

ℓ∑
s=0

||ζk−s||2 +
γ2

ℓ + 1

ℓ∑
s=0

||ζk−s||2

− γ2||ζk||2
}
− E

{
∥z̃k∥2 − γ2∥ζk∥2

}
≤ E

{
η̃T

k Πkη̃k

}
− E

{
∥z̃k∥2 − γ2∥ζk∥2

}
+ E

{ γ2

ℓ + 1

ℓ∑
s=0

||ζk−s||2 − γ2||ζk||2
}

.

(18)

Summing up (18) on both sides from 0 to N with respect
to k, one has

N∑
k=0

E{Jk} = E{VN+1} − E{V0}

≤ E
{ N∑

k=0

η̃T
k Πk

2 η̃k

}
− E

{ N∑
k=0

(∥z̃k∥2 − γ2∥ζk∥2)
}

+ E
{ γ2

ℓ + 1

ℓ∑
s=0

N∑
k=0

(
||ζk−s||2 − ||ζk||2

)}
.

(19)

Finally, it can be easily concluded from (13), (14) and
(19) that

0 ≤ E{VN+1} + E
{

γ2
0∑

i=−ℓ

ηT
i Wiηi − V0

}
≤ E

{ N∑
k=0

(γ2∥ζk∥2 − ∥z̃k∥2) + γ2
0∑

i=−ℓ

ηT
i Wiηi

} (20)

which means that the H∞ performance index (7) holds,
and the proof is now complete.
3.2 Envelope Constraint Analysis
Let us now deal with the analysis issue on the enve-
lope constraints for the addressed discrete time-varying
stochastic systems by employing the idea of ellipsoid
description borrowed from the set-membership filtering
method.
Theorem 2 Let the filter gain matrices {Kk}k∈[0,N ]

as well as the sequence {di
k, εi

k}k∈[1,N ] of desired out-
puts and tolerance bands be given. For the augmented
system (6) with ηi = 0 (−ℓ ≤ i ≤ 0), the envelope
constraints defined in (8) are guaranteed for the given
input {ζ∗k}k∈[0,N ] if there exist families of positive scalars
{µk+1, πk, τk

0 , τk
1 , · · · , τk

ℓ }k∈[0, N ] and positive definite
matrices {Qk}k∈[1, N+1] satisfying the following recur-
sive matrix inequalities

Ξk =

−µε,i
k+1 0 M̄T

k

∗ −µk+1Q−1
k+1 Q−1

k+1LT
k+1I

T
i

∗ ∗ −I

 < 0 (21a)

Ωk =


Ξ0k ΞT

1k ΞT
2k ΞT

3k ΞT
4k

∗ −Q−1
k+1 0 0 0

∗ ∗ −∆Q
k 0 0

∗ ∗ ∗ −Q−1
k+1 0

∗ ∗ ∗ ∗ −∆Q
k

 < 0 (21b)

where
µε,i

k+1 = (εi
k+1)

2 − µk+1, i ∈ [1, nz],

∆1
k = −πkη∗T

k U2kη∗
k +

ℓ∑
i=0

τk
i − 1, ∆Q

k = I ⊗Q−1
k+1,

∆2
k = (I ⊗Kk)(C̄1kS̄31I1v η̄ℓ∗

k + Ē1kI1vζℓ∗
k ),

Θk = I (k = −ℓ, · · · , 0), ΘkΘT
k = Q−1

k (k > 0),
Γk = diag{τk

1 , · · · , τk
ℓ }, Θ̄k = diag{Θk−1, · · · , Θk−ℓ},
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Ξ0k =


∆1

k −πkη∗T
k U2kΘk 0 πkη∗T

k UT
1k

∗ −πkΘT
k U2kΘk − τk

0 I 0 πkΘT
k UT

1k

∗ ∗ −I ⊗ Γk 0
∗ ∗ ∗ −πkI

 ,

Ξ1k =
[
− ᾱh̄k AkΘk −KkΛ1C̄1kS̄21Θ̄k ᾱI

]
,

Ξ2k =

[
DkS1η̄

∗
k DkS1Θk 0 0

0 0 0
√

α̃I

]
,

Ξ3k =
[√

ϑ̃0Kk(CkS3η̄
∗
k + Ekζ∗k)

√
ϑ̃0KkCkS3Θk 0 0

]
,

Ξ4k =
[

∆2
k 0 (I ⊗Kk)C̄1kS̄31Θ̄kI1v 0

]
,

M̄k = IiLk+1Mk − di
k+1, η̄∗

0 = 0, η̄ℓ∗
0 = 0, ζℓ∗

0 = 0,

Mk = Akη̄∗
k + ᾱh̄∗

k −KkΛ1C̄1kS̄21η̄
ℓ∗
k

−KkΛ1Ē1kζℓ∗
k − ϑ̄0KkEkζ∗k + Fkζ∗k ,

η̄ℓ∗
k = [ η̄∗T

k−1, · · · , η̄∗T
k−ℓ ]T , ζℓ∗

k = [ ζ∗T
k−1, · · · , ζ∗T

k−ℓ ]T .

Here, η̄∗
k satisfies the following recursive dynamics

η̄∗
k+1 = Akη̄∗

k + ᾱh̄∗
k −

∑ℓ

s=1
ϑ̄sKkCk−sS2η̄

∗
k−s

−
∑ℓ

s=0
ϑ̄sKkEk−sζ

∗
k−s + Fkζ∗k

(22)

with h̄∗
k =

[
hT

(
k, [I 0]η̄∗

k

)
hT

(
k, [I 0]η̄∗

k

)
−hT

(
k, [I 0]η̄∗

k−
[0 I]η̄∗

k

)]T .

Proof: To start with, let us first propose an ellipsoid de-
scription on the errors between the states of the aug-
mented system (6) (with the given input ζ∗k) and the re-
cursive dynamics (22). Then, based on the obtained el-
lipsoid description, the envelope constraints given in (8)
can be transformed into a set of recursive matrix inequal-
ities that are easy to handle. For this purpose, define an
ellipsoid Ω(Q, ηs, 1) in the mean-square sense as follows

Ω(Q, ηs, 1) =
{
η ∈ R2nx : ηs ∈ R2nx ,

E{(η − ηs)TQ(η − ηs)} ≤ 1
} (23)

where Q ∈ R2nx×2nx is a positive definite matrix and ηs
is the centre of the ellipsoid Ω(Q, ηs, 1).
For −ℓ ≤ i ≤ 0, because of η̄∗

i = ηi = 0, one has that
ηi belongs to the ellipsoid Ω(I, η̄∗

i , 1). Similar to [6], for
−ℓ ≤ s ≤ 0, there exists a set of random vectors ϖs

(−ℓ ≤ s ≤ 0) with E{ϖT
s ϖs} ≤ 1 satisfying ηs = η̄∗

s +
Θsϖs where Θs = I.
In what follows, by using the mathematical induction
method, we will first prove the following assertion.
Assertion: The solution Qk of (21b) satisfies

E{(ηk − η̄∗
k)TQk(ηk − η̄∗

k)} ≤ 1, 1 ≤ k ≤ N (24)

or, ηk ∈ Ω(Qk, η̄∗
k, 1), where η̄∗

k is determined by the
dynamics (22).
The proof of the above assertion is divided into two steps,
namely, the initial step and the inductive step.
Initial step. For i = 1, denote ϖℓ

0 = [ϖT
−1, · · · , ϖT

−ℓ]
T

and ϱ0 = [1, ϖT
0 , ϖℓT

0 , hT
0 ]T . Considering E{ϖT

s ϖs} <

1 (s = −ℓ, · · · , 0) and ℵT (η̄∗
0 , ϖ0)ℵ(η̄∗

0 , ϖ0) ≤ 0 (with
ℵ(η̄∗

0 , ϖ0) := h0 − (I ⊗ Ψ(0))(η̄∗
0 + Θ0ϖ0)), one has

E
{
(η1 − η̄∗

1)TQ1(η1 − η̄∗
1)

}
− 1

≤E
{

ϱT
0

(
ΞT

10Q1Ξ10 + ΞT
20(I ⊗Q1)Ξ20

+ΞT
30Q1Ξ30 + ΞT

40(I ⊗Q1)Ξ40

)
ϱ0 − 1

−
∑0

s=−ℓ
τ0
s (ϖT

s ϖs − 1) − π0

[
h0 − (I ⊗ Φ(0))

×(η̄∗
0 + Θ0ϖ0)

]T [
h0 − (I ⊗ Ψ(0))(η̄∗

0 + Θ0ϖ0)
]}

= E
{

ϱT
0

(
ΞT

00 + ΞT
10Q1Ξ10 + ΞT

20(I ⊗Q1)Ξ20

+ΞT
30Q1Ξ30 + ΞT

40(I ⊗Q1)Ξ40

)
ϱ0

}
. (25)

Therefore, by using the Schur Complement Lemma, it
can be verified from (25) that the solution Q1 of (21b)
satisfies

E{(η1 − η̄∗
1)TQ1(η1 − η̄∗

1)} ≤ 1,

which means that η1 belongs to the ellipsoid Ω(Q1, η̄
∗
1 , 1).

Inductive step. So far, we have proved that the assertion
is true of i = 1. Next, given that the assertion is true for
i = k, we aim to show that the same assertion is true for
i = k + 1.
Since the assertion is true for i = k, it follows again
from [6] that there exists a set of random vectors ϖi (with
E{ϖT

i ϖi} ≤ 1) satisfying ηi = η̄∗
i + Θiϖi where Θi is a

factorization of Q−1
i = ΘiΘT

i . It remains to show that,
for i = k + 1, the solution Qk+1 of the recursive matrix
inequalities (21b) guarantees ηk+1 ∈ Ω(Qk+1, η̄

∗
k+1, 1).

For notational simplicity, denote ϖℓ
k = [ ϖT

k−1, · · · , ϖT
k−ℓ ]T

and ϱk = [ 1, ϖT
k , (ϖℓ

k)T , hT
k ]T . Similar to the initial

step for i = 1, it can be derived that
E

{
(ηk+1 − η̄∗

k+1)
TQk+1(ηk+1 − η̄∗

k+1)
}
− 1

≤E
{

ϱT
k

(
ΞT

1kQk+1Ξ1k + ΞT
2k(I ⊗Qk+1)Ξ2k

+ ΞT
3kQk+1Ξ3k + ΞT

4k(I ⊗Qk+1)Ξ4k

)
ϱk − 1

−
∑k

s=k−ℓ
τk
s (ϖT

s ϖs − 1) − πk

[
hk − (I ⊗ Φ(k))

× (η̄∗
k + Θkϖk)

]T [
hk − (I ⊗ Ψ(k))(η̄∗

k + Θkϖk)
]}

=E
{

ϱT
k

(
ΞT

0k + ΞT
1kQk+1Ξ1k + ΞT

2k(I ⊗Qk+1)Ξ2k

+ ΞT
3kQk+1Ξ3k + ΞT

4k(I ⊗Qk+1)Ξ4k

)
ϱk

}
,

(26)

which implies that ηk+1 belongs to Ω(Qk+1, η̄
∗
k+1, 1) if

(21b) holds. Therefore, by the induction, it can be con-
cluded that the solution Qk of (21b) satisfies (24).
Having proved the assertion, let us now consider the en-
velope constraints (8) which are equivalent to the fol-
lowing inequalities[
E{(Iiz̃k+1 − di

k+1)}
]2 ≤ (εi

k+1)
2, i ∈ [1, nz]. (27)

Noticing that there exists a random vector ϖk+1 satis-
fying
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ηk+1 = η̄∗
k+1 + Θk+1ϖk+1, E{ϖT

k+1ϖk+1} ≤ 1,

one has[
E{(Iiz̃k+1 − di

k+1)}
]2 − (εi

k+1)
2

=
[
(IiLk+1Mk − di

k+1)

+ IiLk+1Θk+1E{ϖk+1}
]2 − (εi

k+1)
2

= χT
k

{[
−(εi

k+1)
2 0

0 0

]

+

[
M̄T

k

ΘT
k+1LT

k+1I
T
i

][
M̄T

k

ΘT
k+1LT

k+1I
T
i

]T
 χk

(28)

where χk := [ 1 E{ϖT
k+1}]T .

In light of E{ϖT
k+1}E{ϖk+1} ≤ E{ϖT

k+1ϖk+1} < 1, it
follows from (28) that[

E{(Iiz̃k+1 − di
k+1)}

]2 − (εi
k+1)

2

<
[
E{(Iiz̃k+1 − di

k+1)}
]2 − (εi

k+1)
2 + µk+1

− µk+1E{ϖT
k+1}E{ϖk+1}

= χT
k

{[
−(εi

k+1)
2 + µk+1 0
0 −µk+1I

]

+

[
M̄T

k

ΘT
k+1LT

k+1I
T
i

][
M̄T

k

ΘT
k+1LT

k+1I
T
i

]T
 χk.

= χT
k Υ̃kχk

(29)

Obviously, it follow from (29) that (27) (or (8)) holds if
Υ̃k < 0 which is, according to the Schur Complement
Lemma, equivalent to−(εi

k+1)
2 + µk+1 0 M̄T

k

∗ −µk+1I ΘT
k+1LT

k+1I
T
i

∗ ∗ −I

 < 0. (30)

By performing the congruence transformation diag{I,
Θk+1, I} to (30), it is not difficult to obtain the inequal-
ity (21a) and therefore (30) is true. It can now be con-
cluded that the envelope constraints (8) are achieved,
which completes the proof.
Remark 2 It is worth mentioning that the idea of the
set-membership filtering is to construct an ellipsoidal
state estimation set of all system states consistent with
the measured outputs and the given disturbance informa-
tion (i.e. a specified ellipsoid description) [9, 16]. Dif-
ferent from the traditional point estimation approaches
(e.g. the H∞ state estimation, the Bayes’ estimation and
the method of moments), the set-membership filtering
approach can be utilized to obtain a certain region en-
compassing the system states rather than the estimation
vector. In this paper, borrowed from the set-membership
filtering method, the idea of employing the ellipsoid de-
scription on the estimation errors is used to convert the
envelope constraints (8) into a set of matrix inequalities
(21a) which can be easily handled via standard software
package.

3.3 Envelope-Constrained H∞ Filter Design
Having established the analysis results, we are in a po-
sition to deal with the filter design problem. For this
purpose, denote

Π̄k
11 =

∑ℓ

j=1
Rk,j − Pk − λkU2k + LT

k Lk,

Π̄k
33 = diag{Rk−1,1,Rk−2,2, · · · ,Rk−ℓ,ℓ},

Υ0k =


Π̄k

11 λkU1k 0 0
∗ −λkI 0 0
∗ ∗ −Π̄k

33 0
∗ ∗ ∗ − γ2

ℓ+1I

 , P̃k+1 = P−1
k+1,

Υ2k =
[ √

ϑ̃0KkCkS3 0 0
√

ϑ̃0KkEkID

]
,

Υ3k =
[

0 0 (I ⊗Kk)C̄1kS̄31I1v [ 0 (I ⊗Kk)Ē1kI1v]
]
,

Υ4k =

[
DkS1 0 0 0

0
√

α̃S1 0 0

]
, Q̃k+1 = Q−1

k+1,

¯̃Pk+1 = I ⊗ P̃k+1,
¯̃Qk+1 = I ⊗ Q̃k+1.

It is not difficult to see that the inequalities (13), (21a)
and (21b) in Theorem 1 and 2 are, respectively, equiva-
lent to

Πk =


Υ0k ΥT

1k ΥT
2k ΥT

3k ΥT
4k

∗ −P̃k+1 0 0 0
∗ ∗ −P̃k+1 0 0
∗ ∗ ∗ − ¯̃Pk+1 0
∗ ∗ ∗ ∗ − ¯̃Pk+1

 < 0

(31a)

Ξ̃k =

−µε,i
k+1 0 M̄T

k

∗ −µk+1I Q̃k+1LT
k+1I

T
i

∗ ∗ −I


+ diag

{
0, µk+1(I − Q̃k+1), 0

}
< 0, i ∈ [1, nz] (31b)

Ω̃k =


Ξ0k ΞT

1k ΞT
2k ΞT

3k ΞT
4k

∗ −Q̃k+1 0 0 0
∗ ∗ − ¯̃Qk+1 0 0
∗ ∗ ∗ −Q̃k+1 0
∗ ∗ ∗ ∗ − ¯̃Qk+1

 < 0

(31c)

Furthermore, it is apparent that Ξ̃k < 0 if both Q̃k+1 ≥ I
and−µε,i

k+1 0 M̄T
k

∗ −µk+1I Q̃k+1LT
k+1I

T
i

∗ ∗ −I

 < 0, i ∈ [1, nz] (32)

hold with µε,i
k+1 = (εi

k+1)
2 − µk+1. Note that the intro-

duction of Q̃k+1 ≥ I and (32) is for computational con-
venience.
According to Theorem 1 and Theorem 2, we have the
following filter design scheme.
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Theorem 3 Let the disturbance attenuation level
γ > 0, the positive definite matrices Wi (i = −ℓ, · · · , 0),
and the sequence of desired output and tolerance
band {di

k, εi
k}k∈[1, N ] be given. For the discrete

time-varying stochastic system (1) with the envelope-
constrained H∞ filter (4), the output estimation er-
rors {z̃k}k∈[0,N ] satisfy both the desired H∞ per-
formance (7) for any nonzero inputs and the enve-
lope constraint requirement (8) for the certain inputs
{ζ∗k}k∈[0,N ] if there exist families of positive scalars
{λk, µk+1, πk, τk

0 , τk
1 , · · · , τk

ℓ }k∈[0, N ], positive definite
matrices P0, {P̃k, Q̃k}k∈[1, N+1], {Ri,j}i∈[−ℓ, N ], j∈[1, ℓ],
and real-valued matrices {Kk}k∈[0, N ] satisfying Q̃k+1 ≥
I, matrix inequalities(14), the recursive matrix inequal-
ities (31a), (31c) and (32) with the parameters updated
by Pk+1 = P̃−1

k+1 and Qk+1 = Q̃−1
k+1.

Remark 3 In this paper, the envelope-constrained H∞
filtering problem is investigated for a class of discrete
time-varying stochastic systems with fading measure-
ments, RONs and mixed noises. The main result estab-
lished in Theorem 3 contains all the information about
the H∞ index, the envelope constraints, the occurring
probability of RONs and the statistical information of
channel coefficients. The main novelty is twofold: 1) a
new envelope-constrained performance criterion is pro-
posed to describe the transient dynamics of the filtering
error process; and 2) by employing the ellipsoid descrip-
tion on the estimation errors, the envelope constraints
(8) are transformed into a set of matrix inequalities and
the filter gain matrix is obtained by solving these matrix
inequalities.

4 Numerical Example
In this section, a numerical example is presented to
illustrate the effectiveness of the proposed envelope-
constrained H∞ filter design scheme for discrete time-
varying stochastic systems (1) with fading measure-
ments (3). The corresponding parameters are given as
follows

Ak =

[
0.73 + 0.2 sin(1.5k) 0.30

−0.35 0.44

]
, Dk =

[
0.10 −0.2
0 0.08

]
,

E1k =

[
0.2

−0.16

]
, Ck = [−0.6 0.75],

E2k = 0.06, E3k = 0.105, Lk = [−0.072 0.064].

The probability of RONs is taken as ᾱ = 0.45 and the
nonlinear vector-valued function h(k, xk) is chosen as

h(k, xk) =



[
h1(k, xk)

0.06x2k − tanh(0.02x2k)

]
, 0 ≤ k < 6[

0.04x1k − tanh(0.02x1k)
0.05x2k

]
, 6 ≤ k ≤ 17

where h1(k, xk) = −0.06x1k + 0.03x2k + tanh(0.03x1k)
and xi(k) (i = 1, 2) denotes the i-th element of the sys-
tem state x(k). It is easy to see that the constraint (2)
is met with

0 2 4 6 8 10 12 14 16
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Time (k)

T
h
e

en
v
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o
p
e

 

 

The desired zk

The upper bound
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Fig. 2. The desired envelope.

Φk =


[
−0.03 0.03

0 0.06

]
, 0 ≤ k < 6,

diag{0.02, 0.05}, 6 ≤ k ≤ 17,

Ψk =


[
−0.06 0.03

0 0.04

]
, 0 ≤ k < 6,

diag{0.04, 0.05}, 6 ≤ k ≤ 17.

The order of the fading model is ℓ = 1 and the probabil-
ity density functions of channel coefficients are as follows{

f(ϑ0) = 0.0005(e9.89ϑ0 − 1), 0 ≤ ϑ0 ≤ 1,

f(ϑ1) = 8.5017e−8.5ϑ1
, 0 ≤ ϑ2 ≤ 1.

(33)

It can be obtained that the mathematical expectation
ϑ̄s (s = 0, 1) are 0.8991 and 0.1174, and the variance
ϑ̃s (s = 0, 1) are 0.0133 and 0.01364. Furthermore, by
utilizing 2000 times simulation to system (1) with the
given input ζ∗k , the desired output dk and the tolerance
band εk are, respectively, selected as

dk = 0, 0 ≤ k ≤ 20; εk =


0.013, 0 ≤ k < 4,

0.005, 4 ≤ k < 8,

0.003, 8 ≤ k ≤ 17.

The desired envelope is shown in Fig. 2. Let the posi-
tive scalar γ and the corresponding matrices be taken
as γ = 0.75, W0 = 21I and Wi = I (i = −ℓ, · · · ,−1).
By applying Theorem 3, the desired filter parameters
are obtained and shown in Tab. 1. Other matrices are
omitted for space saving.
Table 1
The filter parameter Kk

k 0 1 2 3 · · ·

Kk

[
−0.2890

0.2583

] [
0.3166

0.1592

] [
0.4553

0.0189

] [
0.4589

0.0117

]
· · ·

In the simulation, the exogenous disturbance inputs are
selected as wk = 0.5e−0.2k sin(k) and vk = 4 cos(k)/(k+
1). The initial values x(k) are randomly generated that
obey uniform distribution over [−0.5, 0.5]. By utilizing
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Fig. 3. The outputs.

500-times independent simulation trials, the average tra-
jectories of the filter outputs and the filtering errors are
shown in Fig. 3 and Fig. 4, respectively. The simulation
results have confirmed that the designed filter performs
very well.
In what follows, it would be interesting to see the rela-
tionship between the disturbance attenuation level γ and
the probability ᾱ. With the same parameters with the
previous trials, by applying Theorem 3, we can obtain
the permitted γ with respect to the different probability
ᾱ as shown in Table 2, from which we can see that the
disturbance attenuation performance (in terms of γ) de-
teriorates with increased ᾱ. Furthermore, in order to see
the relationship between γ and the channel number ℓ, we
assume that the probability ᾱ is 0.45, and the parame-
ters ϑ̄s and ϑ̃s for all s ∈ (0, 1, · · · ℓ) are 0.35 and 0.0134,
respectively. In this case, the permitted γ is shown in Ta-
ble 3, from which we can observe that a smaller ℓ leads
to a better filtering performance. Finally, let us show
the relationship between γ and the tolerance band εk.
For this purpose, we assume that the probability den-
sity function f(ϑs) (s = 1, 2) is the same as (33) and the
probability ᾱ is 0.45. By utilizing Theorem 3 again, we
can obtain the permitted γ for different tolerance bands
εk as listed in Table 4. We can find from Table 4 that
a larger sequence value of the tolerance bands results in
a smaller γ, indicating that a larger sequence value im-
proves the disturbance attenuation performance, which
deserves further theoretical investigation.

Table 2
The permitted γ with different ᾱ

ᾱ 0.40 0.41 0.42 0.43 0.44

γ 0.423674 0.427785 0.431567 0.436177 0.440454

Table 3
The permitted γ with different ℓ

ℓ 1 2 3 4 5

γ 0.4654 0.4844 0.4940 0.5046 0.5177

Table 4
The permitted γ with different tolerance bands

The tolerance band 1.02εk 1.01εk εk 0.99εk

γ 0.44413 0.44441 0.44497 0.44525
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Fig. 4. The filtering errors.

5 Conclusions

In this paper, we have addressed the envelope-
constrained H∞ filtering problem for a class of discrete
time-varying stochastic systems with fading measure-
ments, randomly occurring nonlinearities (RONs) and
mixed noises. Some uncorrelated random variables have
been introduced, respectively, to govern the phenomena
of RONs and fading measurements. A novel envelope-
constrained performance criterion has been proposed
to describe the transient dynamics of the filtering er-
ror process. By employing the stochastic analysis ap-
proach combined with the ellipsoid description on the
estimation errors, some sufficient conditions have been
established in the form of recursive matrix inequalities
and the desired filter gain matrices have been obtained
in terms of the solution to these matrix inequalities.
Further research topics include the investigation on the
blind equalization problems with fading measurements
and RONs.
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