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Abstract

For the purpose to estimate the state of nonlinear continuous-time systems, we focus on the increasing-gain observer regarded
as generalization of the well-known high-gain observer. As compared with the previous results on increasing-gain observers, the
assumptions under which the global asymptotic stability of the estimation error is proved are relaxed. The stability analysis
is drawn by using a more general type of Lyapunov functional, where design parameters can be tuned to set the time-varying
gain. A new design method based on such a Lyapunov functional is proposed to construct the observer. Simulation results
affirm the effectiveness of the increasing-gain approach as compared with the high-gain observer.
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1 Introduction

Among the various approaches to state estimation for
nonlinear continuous-time systems, the high-gain ob-
server is by far the most popular [8]. The high-gain ob-
server is based on the idea of selecting a sufficiently large
gain in such a way as to dominate the nonlinear con-
tribution to the dynamics of the estimation error. Un-
fortunately, such a large gain is the source of the well-
known peaking phenomenon, which may cause destabi-
lization in the loop when the high-gain observer is used
in cascade with a feedback regulator. In order to reduce
peaking, a different approach was explored in [3], i.e.,
a time-varying estimatorwith the structure of the stan-
dard high-gain observer but with the possibility to assign
a small gain in the first time instants and let it increase
over time up to a point of maximum, thus motivating
the name of increasing-gain observer. In this paper, new
stability conditions on the estimation error as well as a
novel design method are presented for such an observer.

The high-gain observer is the result of numerous research
efforts devoted to the goal of state reconstruction for
nonlinear systems with guarantees on the stability of the
estimation error. First attempts to construct such ob-
servers are reported in [20,11]. Later on, other methods
were proposed by relying on the idea of performing state
transformation with a straightforward evaluation of the
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stability (see e.g., [12,13,7]). Nevertheless, the proof of
global stability for the estimation error under general
nonlinear assumptions on the system is still a challenge.

Recent researches are focused on enhancing the high-
gain observer by using some adaptation machinery. For
example, the adoption of a switching-gain strategy is
analyzed in [1]. The combination of the tuning capabil-
ities of the extended Kalman filter approach with the
high-gain global stability properties is considered in [5].
Adaptive high-gain observers are investigated to achieve
a tradeoff between transient response in a noise-free
setting and sensitivity to disturbances in the presence
of noise [9,14,10,4,16,15]. With respect to the previous
works, here we do not focus on a specific adaptation law
but deal with a generic time-varying gain likewise in [6],
where the first ideas about time-varying high-gain ob-
servers are presented. Under the assumption of trian-
gular structure and Lipschitz nonlinearities, in [3] the
stability of the estimation error given by the increasing-
gain observer is proved by means of a Lyapunov func-
tional instead of the quadratic Lyapunov function, which
is usually adopted to this scope (see also [18,17] about
observers with the property of finite-time stability). As
compared with [3], in this paper the stability analysis
of the estimation error is drawn by using a novel Lya-
punov functional because of some additional parameters
that may ensure stability under more favorable condi-
tions. Moreover, instead of the usual Lipschitz hypothe-
sis we rely on a more general sublinear assumption com-
posed of a Lipschitz bound with an additional term that
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converges to zero. Under such assumptions, the analy-
sis is conducted by providing new conditions that en-
sure global asymptotic stability. Finally, a novel design
method is presented that is based on a Taylor expansion
and turns out to be much simpler and more effective as
compared with the approach proposed in [3].

The paper is organized as follows. In Section 2, the sys-
tem and observer assumptions are briefly described. The
main results concerning stability are presented in Sec-
tion 3. Section 4 deals with the observer design. Sim-
ulation results are shown in Section 5. Conclusions are
drawn in Section 6.

Before concluding this section, let us introduce the no-
tation adopted and remind some useful results. R≥0 and
R>0 denote the set of the nonnegative and strictly posi-
tive real numbers, respectively. The components of any
column vector x ∈ R

n are denoted by x1, x2, . . . , xn,

i.e., x = (x1, x2, . . . , xn); moreover, ‖x‖ :=
√
x⊤x.

The norm of a matrix M is denoted by ‖M‖ :=
√

λmax (M⊤M) =
√

λmax (MM⊤). For a symmetric
matrix P , P > 0 (< 0) denotes that P is positive (nega-
tive) definite; the minimum andmaximum eigenvalues of
P are denoted by λmin (P ) and λmax (P ), respectively.
If P > 0, ‖P‖ = λmax (P ).

2 System Assumptions and Observer Structure

Let us consider the class of nonlinear continuous-time
system described by

{

·
x= Ax+ f(x, t)

y = C x
, t ≥ 0 (1)

where x(t) ∈ R
n is the state vector and y(t) ∈ R is

a scalar measurement; A ∈ R
n×n, C ∈ R

1×n, and the
function f : Rn × R≥0 → R

n are defined as follows:
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






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






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





, C := [1 0 . . . 0] ,

f(x, t) :=





















f1(x1, t)

f2(x1, x2, t)
...

fn−1(x1, x2, . . . , xn−1, t)

fn(x1, x2, . . . , xn, t)





















.

To estimate x(t), we consider the full-order observer

.

x̂= Ax̂+ f̂(x̂, t) +G (γ) (y − Cx̂) , t ≥ 0 (2)

where x̂(t) ∈ R
n is the estimate of x(t) at time t and

f̂(x̂, t) :=





















f̂1(x̂1, t)

f̂2(x̂1, x̂2, t)
...

f̂n−1(x̂1, x̂2, . . . , x̂n−1, t)

f̂n(x̂1, x̂2, . . . , x̂n, t)





















, G (γ) :=















γk1

γ2k2
...

γnkn















with γ ≥ 1 and ki ∈ R, i = 1, 2, . . . , n to be suitably
chosen.

Assumption 1 The functions f and f̂ are continuous
and there exist δ and δ̄ > 0, M and M̄ ∈ R

n
≥0, L and

L̄ ∈ R
n
≥0 such that, for all x,w ∈ R

n and t ≥ 0,

∣

∣fi(x1 + w1, x2 + w2, . . . , xi + wi, t)

− fi(x1, x2, . . . , xi, t)
∣

∣ ≤ M̄i exp(−δ̄t) + L̄i

i
∑

j=1

|wj | (3)

∣

∣fi(x1 + w1, x2 + w2, . . . , xi + wi, t)

− f̂i(x1, x2, . . . , xi, t)
∣

∣ ≤Mi exp(−δt) + Li

i
∑

j=1

|wj | . (4)

Instead of studying the stability of the estimation error
ê := x− x̂ that genuinely descends from (1) and (2), we
perform a change of variables ê = T (γ) e, e ∈ R

n with

T (γ) = diag
(

γ, γ2, . . . , γn
)

and study the stability in the new coordinates under
suitable conditions beginning with the existence of an
inverse for T (γ). Before proving our main results, we
need to assume the following.

Assumption 2 The time-varying parameter γ(t) is
such that t 7→ γ(t) is continuous on R≥0 and there exists
c0 ≥ 1 such that |γ(t)| ≤ c0, ∀t ≥ 0.

Assumptions 1 and 2 are strictly connected to the neces-
sity to ensure the existence of the solutions of the var-
ious differential equations we have to deal with. From

the continuity of f , f̂ , and γ we deduce the local exis-
tence of a solution for (1) and (2). Moreover, conditions
(3), (4), and the boundedness of γ ensure the existence
of complete solutions 1 for both (1) and (2).

1 A solution is complete if its domain of definition is R≥0.



The error dynamics is derived from (1) and (2) as follows:

˙̂e(t) = (A−G (γ(t))C) ê(t) + f(x(t), t)

− f̂ (x(t)− ê(t), t) . (5)

Lemma 1 Let t 7→ γ(t) be such that γ(t) ≥ 1 for all
t ≥ 0. Then, the following facts hold:

(i) the origin is a Lyapunov asymptotically stable equi-
librium point of the error dynamics in ê(t) if and only if
so it is also for the error dynamics in e(t);

(ii) there exist N > 0, kf > 0 such that

∥

∥

∥
T (γ(t))−1

(

f(x(t), t) − f̂(x(t)− T (γ(t)) e(t), t)
)

∥

∥

∥

≤ N exp (−δt) + kf ‖e(t)‖ (6)

for all t ≥ 0, and kf does not depend on γ(t) and t.

Proof. It is omitted as quite similar to the proof of
Lemma 1 in [3] (see p. 2846).

To state the differential problem associated with the er-
ror dynamics, from now on we need to assume the fol-
lowing.

Assumption 3 The function t 7→ γ(t) is a.e. differen-
tiable with γ̇(t) a.e. bounded on R≥0.

Based on the aforesaid, from (5) we obtain:

ė(t) = T (γ(t))−1 (A−G (γ(t)) C) T (γ(t)) e(t)

− T (γ(t))−1 T ′(γ(t)) γ̇(t) e(t) + T (γ(t))−1
(

f(x(t), t)

− f̂ (x(t) − T (γ(t)) e(t), t)
)

.

Because of the particular observer structure, the previ-
ous equation can be written as follows:

ė(t) = γ(t) (A−KC) e(t)− γ̇(t)

γ(t)
D e(t)

+ T (γ(t))−1
(

f(x(t), t) − f̂(x(t) − T (γ(t)) e(t), t)
)

(7)

where D := diag (1, 2, . . . , n).

3 Stability Analysis

First of all, let us consider a basic condition to accom-
plish the stability analysis of the estimation error pre-
sented in the following. Since (A,C) is observable, there
exist λ > 0, K ∈ R

n, and a symmetric, definite positive
matrix P ∈ R

n×n such that

(A−KC)⊤P + P (A−KC) + λI < 0 (8)

with K := [k1 k2 · · · kn]⊤.

To avoid cumbersome notations, from now on we will
drop the dependence on time unless ambiguity arises.
For example, we will write f(x) instead of f(x, t) for the
sake of brevity. Given P > 0 as in (8) and any α > 0,
for β ∈ (1, 2], let V : (z, t) ∈ R

n × [0,∞) → R the
functional

V(z, t) := z⊤Pz + 2 exp
(

αtβ
)

∫ ∞

t

∣

∣

∣

(

T (γ(s))−1
(

f(x(s))

− f̂
(

x(s)− T (γ(s))e(s)
)))⊤

Pe(s)
∣

∣

∣
exp

(

−αsβ
)

ds (9)

where t 7→ x(t) and t 7→ e(t) are solutions of (1)
and (7), respectively. Note that V(z, t) ≥ 0; moreover,
V(z, t) = 0 if and only if e(t) = 0 for all t ≥ 0 and z = 0.
For what is detailed later on, we need to state the fol-
lowing lemmas, which can be regarded as generalization
of results stated in [3].

Lemma 2 For τ ≥ t0, let



















ė(τ) = γ(τ) (A −KC)e(τ)− γ̇(τ)

γ(τ)
D e(τ)

+ T (γ(τ))−1
(

f(x(τ)) − f̂
(

x(τ) − T (γ(τ)) e(τ)
))

e(t0)= e0 ∈ R
n

the initial value problem associated with (7). If there ex-
ists η > 0 such that

η ≥ sup
t≥0

∥

∥

∥

∥

γ(t) (A−K C)− γ̇(t)

γ(t)
D

∥

∥

∥

∥

, (10)

then

‖e(τ)‖ ≤
(

‖e0‖+
N

δ
exp(−δ t0)

)

exp((η

+ kf )(τ − t0)), τ ≥ t0 . (11)

Proof. It is omitted as quite similar to the proof of
Lemma 2 in [3] (p. 2847).

Lemma 3 Let γ(t) ≥ 1. If there exists η > 0 such that
(10) is satisfied, then

exp
(

αtβ
)

∫ ∞

t

(

N exp(−δs) + kf‖e(s)‖
)

‖e(s)‖

× exp(−αsβ) ds ≤
(

(N/2 + 2kf ) ‖e(t)‖2 +N
(

1/2

+N/δ + 2kfN/δ
2
)

exp(−2δt)
)

aα,β,η(t) (12)



and

tβ−1 exp
(

αtβ
)

∫ ∞

t

(

N exp(−δs) + kf‖e(s)‖
)

‖e(s)‖

× exp(−αsβ)ds ≤
(

2kf‖e(t)‖2 +N
(

‖e(t)‖+N
(

1/δ

+ 2kf/δ
2
)

)

exp(−δt)
)

bα,β,η(t) (13)

where aα,β,η : R≥0 → R≥0 defined as

aα,β,η(t) := exp
(

αtβ − 2 (η + kf ) t
)

∫ ∞

t

exp
(

− αsβ

+ 2 (η + kf ) s
)

ds (14)

is differentiable and strictly decreasing and bα,β,η :
R≥0 → R≥0 defined as

bα,β,η(t) := tβ−1 exp(αtβ − 2(η

+ kf )t)

∫ ∞

t

exp
(

− αsβ + 2 (η + kf ) s
)

ds (15)

is differentiable with

b′α,β,η(t) = tβ−2((β − 1 + αβ tβ − 2(η

+ kf )t) aα,β,η(t)− t) . (16)

Moreover,

(i) there exists tmax > 0 such that bα,β,η is strictly
increasing on [0, tmax] and strictly decreasing on
[tmax,+∞) (i.e., bα,β,η admits a global maximum in
tmax on R≥0);

(ii) bα,β,η is concave in [0, tmax].

Proof. See Appendix.

The proof of Lemma 3 for β = 2 with stronger assump-
tions on f is reported in [3], as the Lyapunov functional
(9) with the choice β = 2 is just the same adopted
therein. As a matter of fact, Lemma 3 is more general for
both the larger range in the choice of β and the weaker
hypothesis on f . In the case β = 2, using the bound in
Assumption 1 of [3] instead of Assumption 1 of this pa-
per, Lemma 3 provides the same result of Lemma 2 in
[3].

Now, we are able to prove that the Lyapunov functional
V is well defined and satisfies significant inequalities.

Theorem 1 Let e a solution of the error dynamics (7);
λ > 0, P > 0, and K such that (8) holds; γ(t) ≥ 1
for all t ≥ 0 and γ̇(t) ≥ 0 for a.e. t ≥ 0. Then, the
Lyapunov functional V(z, t) is well defined and satisfies

the following inequalities for a.e. t ≥ 0:

λmin (P ) ‖e(t)‖2 ≤ V(e(t), t) ≤ λmax (P )
(

(

1 + (N

+ 4 kf) aα,β,η(0)
)

‖e(t)‖2 +N
(

1 + 2N/δ

+ 4kfN/δ
2
)

aα,β,η(0) exp(−2δt)
)

(17)

∂V(e(t), t)
∂z

ė+
∂V(e(t), t)

∂t
≤ −

(

γ(t)λ− 4αβ λmax (P )

× kf bα,β,η(t)
)

‖e(t)‖2 + 2αβ λmax (P )N
(

‖e(t)‖

+N
(

1/δ + 2kf/δ
2
)

)

bα,β,η(t) exp(−δt) . (18)

Proof. Obviously, Ve(t) := V(e(t), t) ≥ λmin (P ) ‖e(t)‖2.
The upper bound in the r.h.s. of (17) follows from (12)
and the strict decreasing of the function aα,β,η. Using
(6), (8), and (13) as well as the assumptions on γ(t)
and γ̇(t), we get (18) since PD + DP > 0, which is
straightforward to verify as D and P are symmetric and
positive definite.

To proceed with the sequel, we need a result that is re-
lated to Lemma 1 in [19] (p. 674) but more general since
here asymptotic stability is proved without conditions
on the various parameters of the Lyapunov inequalities.

Theorem 2 Let F : [0,∞) ×W → R
n be a piecewise

continuous in t and locally Lipschitz in ξ on [0,∞)×W
and W ⊂ R

n a domain that contains the origin ξ = 0.
Let ϕ = 0 be an equilibrium point for

ϕ̇ = F (t, ϕ) . (19)

Let V : [0,∞) ×W → R≥0 be a continuously differen-
tiable function with Lyapunov parameters c1, c2, c3, c4,
ν, µ > 0 such that for ξ ∈ W and t ≥ 0:

c2‖ξ‖2 − c4 exp(−νt) ≤ V (t, ξ) ≤ c3
(

‖ξ‖2 + exp(−c1t)
)

(20)

∂V (t, ξ)

∂t
+
∂V (t, ξ)

∂ξ
· F (t, ξ) ≤ −c5‖ξ‖2

+ c6 exp(−µt) (1 + ‖ξ‖) for a.e. t ≥ 0 . (21)

Then there exist C0 > 0 and θ > 0 such that, for every
trajectory of (19), we have

‖ϕ(t)‖ ≤ C0 (‖ϕ(t0)‖ exp (−θ (t− t0)) + exp (−θ t))

for all t0 ≥ 0 and hence ϕ = 0 is asymptotically stable.

Proof. It is omitted as quite similar to the proof of The-
orem 2 in [2] (see p. 3960).

The stability of the estimation error is ensured by a suit-
able choice of γ(t) and σ, as follows.



Theorem 3 Given λ > 0, P > 0,K such that (8) holds;
moreover, let γ(t) such that γ̇(t) ≥ 0 for a.e. t ≥ 0 and
there exist α > 0, β ∈ (1, 2], and η > 0 such that (10)
and

γ(t) ≥ max

(

1,
σ + 4αβ kf λmax (P ) bα,β,η(t)

λ

)

(22)

hold for all t ≥ 0 with

σ > κλmax (P )
1 + (N + 4kf ) aα,β,η(0)

√

λmin (P )
(23)

where κ := 2αβ λmax (P ) N bα,β,η(tmax) max(N(1 +
2kf/δ)/δ, 1). Then the observer (2) admits an estimation
error that is globally asymptotically stable at the origin
and there exist C1, C2, C3 > 0 such that

‖e(t)‖ ≤ C2 exp

(

−C1

2
(t− t0)

)

‖e(t0)‖

+ C3 exp

(

−1

2
min(δ, C1

)

(t− t0)

)

(24)

for all t ≥ t0.

Proof. The thesis is proved by means of the same argu-
ments of Theorem 3 in [2] (see p. 3961).

It is worth noting that, as compared with [3], the stabil-
ity proved in Theorem 3 is not uniform w.r.t. time just
because of the more general hypothesis given by (3) in
Assumption 1.

4 Observer Design

Based on the results presented so far, a novel method
derived from [3] is described to select the design param-
eters of the proposed observer in such a way to fully ex-
ploit the potential of the Lyapunov functional (9). As a
primary goal, we aim to design observers with a peaking
as much reduced as possible by searching for the small-
est gain that is consistent with the stability conditions.

First, we need to account for (8), which can be treated
by solving the equivalent LMI

A⊤P − C⊤Y ⊤ + PA− Y C + λI < 0 (25)

where the unknowns are λ > 0, Y = PK ∈ R
n, and

P > 0. Having solved such an LMI, we obtain the gain
K = P−1Y . If (10) and (23) hold, Theorem 3 ensures

the global stability of the estimation error by using

γ(t) =











































max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(t)

λ

)

t ∈ [0, tmax]

max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ

)

t > tmax .

(26)
Unfortunately, in general the selection of the design pa-
rameters in such a way to satisfy (10) is not easy. To
overcome this difficulty, a simple remedy is proposed in
[3] that consists in exploiting the concavity of bα,β,η by
replacing the curve with its tangent line at a given time
instant t∗ ∈ [0, tmax] to be chosen in such a way as to
ensure

sup
t≥0

γ̇(t) ≤ γ̇(t∗) (27)

through a convenient choice of γ(t). Toward this end,
instead of (26) we consider

γ(t) =











































































max
(

1, (σ + 4αβ λmax (P ) kf
(

bα,β,η(t∗)

+b′α,β,η(t∗)(t− t∗)))/λ∗

)

t ∈ [0, t∗]

max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(t)

λ∗

)

t ∈ (t∗, tmax]

max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ∗

)

t > tmax

(28)
where the design parameters t∗, tmax, α, β, σ, λ∗, and
η have to be carefully chosen. In [3,2] such parameters
are obtained by solving a nonlinear programming prob-
lem of pure feasibility. For the purpose of achieving a
reduced peaking, here we propose a new formulation of
the design problem aimed to find the lowest value of γ(t)
that is admissible with the stability conditions. More
specifically, we consider the following problem:

minmax

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ∗

)

(29a)

w.r.t. t∗, tmax, α, β, σ, λ∗, η s.t. t∗ ≥ 0, tmax ≥ 0,

α > 0, β ∈ (1, 2], σ > 0, λ∗ ∈ (0, λ], η > 0 (29b)

and

t∗ ≤ tmax (29c)

b′α,η (tmax) = 0 (29d)



η ≥ max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ∗

)

‖A

−KC‖+
4nαβ λmax (P ) kf b

′
α,β,η(t∗)

max (λ∗, σ + 4αβ λmax (P ) kf bα,β,η(t∗))
(29e)

σ > k0 αβ bα,β,η(tmax) (1 + (N + 4kf ) aα,β,η(0))
(29f)

where

k0 := 2λmax (P )
2N max

(

N(1 + 2kf/δ)/δ,

1
)

/
√

λmin (P )

is a constant with a given value after solving (25). The
statement of such a problem can be motivated as fol-
lows. Since (28) satisfies (27) by construction, the design
parameters that result from the solution of (29) com-
ply with (22). Moreover, (10) is taken into account since
(29e) follows from the inequalities

∥

∥

∥

∥

γ(t) (A−K C)− γ̇(t)

γ(t)
D

∥

∥

∥

∥

≤ ‖γ(t) (A−K C)‖

+

∥

∥

∥

∥

γ̇(t)

γ(t)
D

∥

∥

∥

∥

≤ γ(t) ‖A−K C‖+ γ̇(t)

γ(t)
‖D‖

≤ max

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ∗

)

‖A

−KC‖+
4nαβ λmax (P ) kf b

′
α,β,η(t∗)

max (λ∗, σ + 4αβ λmax (P ) kf bα,β,η(t∗))

where ‖D‖ = n. Finally, the constraint (29f) accounts
for (23).

The main difficulty in searching the solution of (29) is
due to the need of analytic expressions of t 7→ bα,β,η(t)
and t 7→ b′α,β,η(t) as well as the value of aα,β,η(0). Here,
a new approach to the design of the increasing-gain ob-
server is presented as compared with that described in
[3], where an expansion series of aα,β,η(t) based on the
Dawson function is used in the various constraints of the
optimization problem. Instead of (29) we formulate a
problem with (29e) and (29f) replaced by stronger con-
ditions that are not expressed by means of aα,β,η(t),
bα,β,η(t), and b

′
α,β,η(t). After solving such a problem, we

fix a Taylor approximation of both bα,β,η(t) and b
′
α,β,η(t),

and reoptimize the selection of the design parameters as
far as possible.

The stronger conditions that enforce the satisfaction of
(29e) and (29f) without using aα,β,η(t), bα,β,η(t), and
b′α,β,η(t) are given in the following proposition, where
from now on

gα,β,η(t) := (β − 1)/t+ αβ tβ−1 − 2 (η + kf ) .

Proposition 1 Let t∗ ≥ 0, tmax ≥ 0, α > 0, β ∈
(1, 2], σ > 0, λ∗ > 0, η > 0; we have

bα,β,η(tmax) =
tβmax

gα,β,η(tmax)
. (30)

Moreover,

(i) if

η ≥ max

(

‖A−KC‖
λ∗

(

σ + 4αβ λmax (P ) kf

× bα,β,η(tmax)
)

+ n gα,β,η(t∗) ,
‖A−KC‖

λ∗
max

(

σ

+ 4αβλmax (P ) kf bα,β,η(tmax), λ∗

)

+
4nαβλmax (P ) kf

λ∗

(

gα,β,η(t∗) bα,β,η(tmax)− tβ−1
∗

)

)

(31)

then (29e) holds;

(ii) if

σ > k0 αβ bα,β,η(tmax)
(

1 + (N + 4kf )
(

(2(η

+ kf )/α)
1/(β−1) exp

(

2(η + kf ) (1− 1/β) (2(η

+ kf )/(αβ))
1/(β−1)

)

+ 1
))

(32)

then (29f) holds.

Proof. See Appendix.

Proposition 1 enables us to consider the following opti-
mization problem instead of (29):

minmax

(

1,
σ + 4αβ λmax (P ) kf bα,β,η(tmax)

λ∗

)

(33a)

w.r.t. t∗, tmax, α, β, σ, λ∗, η s.t. t∗ > 0, tmax > 0,

α > 0, β ∈ (1, 2], σ > 0, λ∗ ∈ (0, λ], η > 0, (29c), (30),

(31), and (32) hold. (33b)

It is worth noting that (32) reduces to σ > 0 for N = 0
since k0 turns to be equal to zero, namely, if Assumption
1 stands as a pure Lipschitz condition. In such a case, the
optimization w.r.t. σ is meaningless and hence σ should
be removed by the statement of the problem (33) and
fixed to any arbitrary strictly positive value.

To construct the increasing-gain observer, we have to
find a Taylor polynomial centered in tmax that approxi-
mates bα,β,η to compute (28) with the design parameters
that result from the solution of (33).



Proposition 2 Let bα,β,η as in (15) with tmax as its
point of global maximum on R≥0. Then there exists t̄ ≥ 0
with |t̄− tmax| < |t− tmax| such that

bα,β,η(t) =

n
∑

i=0

b
(i)
α,β,η(tmax) (t− tmax)

i

i!

+
b
(n+1)
α,β,η (t̄) (t− tmax)

n+1

(n+ 1)!
(34)

where

b′α,β,η(tmax) = 0 (35a)

b
(n)
α,β,η(t) =

n−1
∑

k=0

(

n− 1

k

)

g
(n−1−k)
α,β,η (t) b

(k)
α,β,η(t)− (β

− 1) . . . (β − n+ 1) tβ−n , n = 2, 3, . . . (35b)

with the n-th derivative of gα,β,η(t) for t > 0 given by

g
(n)
α,β,η(t) = (−1)n (β − 1)n! t−n−1

+ αβ (β − 1) . . . (β − n) tβ−n−1 , n = 1, 2, . . . .

Proof. Clearly, (35a) follows from the definition and it
is straightforward to obtain (35b) from (16) by using
Leibniz’s rule and (30).

The choice of the approximation order may be done by
bounding the rest in the r.h.s. of (34) in the interval
[t∗, tmax]. However, a simpler and less conservative tech-
nique to choose the order of the approximating polyno-
mial consists in repeating the evaluation of the maxi-
mum error on [t∗, tmax] after increasing the polynomial
order as far as such an error is less than or equal to the
computational precision tolerance.

5 Simulation Results

Let us consider


























·
x1= x2 − c sin(x1) + exp(−t)
·
x2= x3 − c sin(x2) + exp(−t)
·
x3= −c sin(x3) + exp(−t) + u

y = x1

(36)

where x(t) = (x1(t), x2(t), x3(t)) is the vector to be esti-
mated by using only the measurements of the first vari-
able and u is an external input. Thus, we have

A =









0 1 0

0 0 1

0 0 0









, C = [1 0 0] ,

f(x, u, t) =









−c sin(x1) + exp(−t)
−c sin(x2) + exp(−t)

−c sin(x3) + exp(−t) + u









,

where the positive constant c is scaled in such a way
to yield different values of the Lipschitz constant of
f(·, u, t), which will be denoted by kf . Moreover, we
chose u(t) = sin t. First, we solved (25), thus obtaining

λ = 0.2195 , K = [8.5818 15.0909 7.7818]⊤ ,

P =









1.0976 −0.4390 −0.2744

−0.4390 0.5488 −0.4390

−0.2744 −0.4390 1.0976









.

Second, we considered such a system with different val-
ues of c so as to obtain kf equal to 0.1, 1, 10, and 15, re-
spectively; using the routine fmincon of the Matlab Op-
timization Toolbox, we solved (33) and Taylor approx-
imations of order 20 to compute bα,β,η and b′α,β,η (see

the final minimizers shown in Table 1). Fig. 1 shows the
corresponding mapping t 7→ γ(t) given by (28). For all
the observers, we chose

f̂(x̂, u, t) = [−c sin(x̂1) − c sin(x̂2) − c sin(x̂3) + u]
⊤
.

Likewise for the increasing-gain observers, the high-gain
observers were designed by minimizing the correspond-
ing gain under constraints that ensure the asymptotic
stability of the corresponding estimation errors. Such a
minimization was accomplished by using the same rou-
tine fmincon adopted for the solution of (33).
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Fig. 1. Plots of γ(t), its tangent line in t∗, and
γ0(t) := (σ + 4αβ λmax (P ) kf bα,β,η(t))/λ∗.

An example of a single run simulation is shown in Fig.
2. Table 2 reports the medians of the maximum abso-



Table 1
Optimal design parameters.

kf

0.1 1 10 15

t∗ 9.322681 · 10−4 3.9848386 ·10−7 3.9505594 ·10−7 3.9698746 ·10−7

tmax 9.590693 · 10−4 1.0672627 · 10−4 3.2540019 · 10−5 5.4250563 · 10−5

α 819.7327 4054.3032 7849.0366 5844.1067

β 1.615669 1.577717 1.5271657 1.5365227

σ 0.09365816 0.044591381 0.36900222 1.3555074

λ∗ 0.210754 0.21905934 0.21940956 0.21938864

η 287.0292 2336.391 6976.7783 4299.2249

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

 

 

 x
1

high−gain obs. estim. of  x
1

incr.−gain obs. estim. of  x
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

 

 
 x

2

high−gain obs. estim. of  x
2

incr.−gain obs. estim. of  x
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

50

100

time

 

 
 x

3

high−gain obs. estim. of  x
3

incr.−gain obs. estim. of  x
3

Fig. 2. Comparison in the case kf = 1: simulation run with
x(0) = (1 1 1) and x̂(0) = (−1 − 1 − 1) for both observers.

lute errors with initial values of all the state variables
randomly chosen according to a uniform distribution in
[−1, 1]. Such results clearly show the increasing-gain ob-
server outperforms the high-gain observer as to the peak-
ing of the estimation error of inaccessible state variables
(i.e., x2 and x3), especially for large values of kf .

Table 2
Medians of the maximum absolute errors for each state vari-
able over 1000 simulation runs on the time interval [0,5].

kf

0.1 1 10 15

x1 0.60819 0.62997 0.6273 0.62252

incr.-gain obs. x2 1.2561 1.3326 6.3256 17.0862

x3 0.9401 1.0216 22.5384 157.9092

x1 0.60819 0.62997 0.6273 0.62252

high-gain obs. x2 1.34 9.342 93.5494 17.0862

x3 0.96176 42.0036 4065.2572 9040.3839

6 Conclusions

The increasing-gain observer originally proposed in [3]
has been enhanced by using a more general Lyapunov
functional to prove global asymptotic stability and de-
rive novel design conditions. The motivation of the ap-
proach with the goal of peaking reduction has been con-

firmed by simulations. Such an advantage may be as-
cribed to the richer structure of the Lyapunov functional
used to construct the increasing-gain observer as com-
pared with the quadratic Lyapunov function adopted for
the high-gain observer. As a future work, we will focus
on improving the optimization especially as to the lo-
cal minima trapping, which may undermine the effective
selection of the design parameters. Another subject of
interest is the observer design in the presence of system
and measurement disturbances.

Appendix

For the sake of notational convenience, let us omit the
indices of the functions aα,β,η, bα,β,η, and gα,β,η, which
will be denoted by a, b, and g, respectively.

Proof of Lemma 3. First, inequalities (12) and (13) follow
by applying (11) to each l.h.s., respectively. Let us prove
only (12), as the verification of (13) is quite similar. Using
the well-known Young’s inequality and since s ≥ t, we
obtain

exp
(

αtβ
)

∫ ∞

t

(

N exp(−δs) + kf ‖e(s)‖
)

‖e(s)‖

× exp(−αsβ) ds ≤ exp
(

αtβ − 2(η + kf )t
)

∫ ∞

t

(

N

× exp(−δt) + kf (‖e(t)‖+ (N/δ) exp(−δt))
)(

‖e(t)‖

+ (N/δ) exp(−δt)
)

exp(−αsβ + 2(η + kf )s) ds

≤
(

(N/2 + 2kf )‖e(t)‖2 +N(1/2 +N/δ

+ 2kfN/δ
2
)

exp(−2δt)
)

a(t) .

Note that the function a in (14) is differentiable and
strictly positive for all t ≥ 0. Using the De l’Hôpital
theorem, we obtain

lim
t→∞

a(t) = lim
t→∞

∫ ∞

t

exp
(

−αsβ + 2 (η + kf ) s
)

ds

exp (−αtβ + 2 (η + kf ) t)
= 0 .

(37)



To prove that a is strictly decreasing, let us consider the
derivative of a given by

a′(t) = exp
(

αtβ − 2 (η + kf ) t
)

ω(t)

where the function ω : R≥0 → R defined as

ω(t) :=
(

αβ tβ−1 − 2 (η + kf )
)

∫ ∞

t

exp
(

− αsβ

+ 2(η + kf )s
)

ds− exp
(

−αtβ + 2(η + kf )t
)

is differentiable. Note that lim
t→∞

ω(t) = 0 since

lim
t→∞

∫ ∞

t

exp
(

−αsβ + 2 (η + kf ) s
)

ds = 0

of order higher than 1 because of (37). Moreover, ω is
strictly increasing on R≥0 and ω(0) < 0. Hence ω(t) < 0
for all t ≥ 0 and this proves the monotonicity of a.

The function b in (15) is differentiable for t > 0, b(0) =
0, b(t) > 0 for all t > 0, and

lim
t→∞

b(t) = 1/(αβ) (38)

since

lim
t→∞

tβ−1

∫ ∞

t

exp
(

−αsβ + 2 (η + kf ) s
)

ds = 0 .

Deriving b(t), we obtain (16) and write

b′(t) = tβ−2 exp
(

αtβ − 2 (η + kf ) t
)

ψ(t) (39)

where the function ψ : R≥0 → R defined as

ψ(t) := (β − 1)

∫ ∞

t

exp
(

−αsβ + 2(η + kf )s
)

ds

+
(

αβ tβ − 2(η + kf )t
)

∫ ∞

t

exp
(

− αsβ + 2(η

+ kf )s
)

ds− t exp
(

−αtβ + 2(η + kf )t
)

is differentiable. Note that ψ(0) > 0, lim
t→∞

ψ(t) = 0,

ψ′(0) < 0, and lim
t→∞

ψ′(t) = 0. Moreover,

lim
t→0+

ψ′′(t) =























+∞ if 1 < β < 2

4α

∫ ∞

0

exp
(

− αs2+ 2(η + kf )s
)

ds

−2(η + kf ) if β = 2

and lim
t→∞

ψ′′(t) = 0. If 1 < β < 2, for t > 0, we have

ψ′′(t) = (β − 1) exp((−αtβ + 2(η + kf )t)
(

− 2(η + kf )

+ αβ2 a(t)/t2−β
)

. (40)

The function t 7→ ν(t) := αβ2 a(t)/t2−β

is continuous and differentiable in R>0,
lim
t→0+

ν(t) = +∞ , lim
t→+∞

ν(t) = 0 and it is strictly de-

creasing. Then ν (R>0) = R>0, so there exists a unique
point t2 > 0 for which ν(t2) = 2(η+ kf ). If β = 2, since

ψ′′(0) > 2

(

(η + kf ) +
√
απ exp

(

(η + kf )
2

α

))

> 0

and ψ′′′(t) > 0 if and only if

t > t1 :=
(

(η + kf )
2 + α

)

/ (α (η + kf )) ,

it follows that ψ′′ is decreasing in [0, t1] and increasing in
[t1,∞). In virtue of ψ′′(0) > 0 and lim

t→∞
ψ′′(t) = 0, there

exists a point denoted by t2 ∈ (0, t1) such that ψ′′(t2) =
0. Now we can even out the proof for every 1 < β ≤ 2.
Since ψ′′(t) > 0 for t ∈ (0, t2), ψ

′′(t) < 0 for t ∈ (t2,∞),
we obtain that ψ′ is increasing in [0, t2] and decreasing in
[t2,∞). Asψ′(0) < 0 and lim

t→∞
ψ′(t) = 0, there exists t3 ∈

(0, t2) such that ψ′(t) < 0 for t ∈ [0, t3) and ψ
′(t) > 0 for

t ∈ (t3,∞). Thus, ψ is decreasing in [0, t3] and increasing
in [t3,∞). Since ψ(0) > 0 and lim

t→∞
ψ(t) = 0, there exists

tmax ∈ (0, t3) such that ψ(t) > 0 for t ∈ [0, tmax) and
ψ(t) < 0 for t ∈ (tmax,∞). Therefore, from (39) we
obtain that b is increasing in [0, tmax] and decreasing in
[tmax,∞). Moreover, since b(0) = 0 and limt→∞ b(t) =
1/(αβ) (see (38)), b admits a global maximum in tmax

and b(tmax) > 1/(αβ). To prove the concavity of b in
[0, tmax], let us study the function b′ in more detail. Such
a function is differentiable,

lim
t→0+

b′(t) =



















+∞ if 1 < β < 2
∫ ∞

0

exp
(

− αs2 +2(η + kf )s
)

ds > 0

if β = 2

and, obviously, b′(tmax) = 0. Moreover, from (39) and
for t > 0, we obtain

b′′(t) = tβ−2 exp
(

αtβ − 2(η + kf )t
)

ζ(t)

where the function ζ : R>0 → R defined as

ζ(t) := ψ′(t) +
(

αβ tβ−1 − 2(η + kf ) + (β − 2)/t
)

ψ(t)

is differentiable, lim
t→0+

ζ(t)=−∞, ζ(tmax)=ψ
′(tmax)<0.

Before proceeding with the derivative of ζ, we recall two
inequalities that we will use to evaluate the sign of ζ′ in
[0, tmax]. First, for every t ∈ [0, tmax), we have

(

β − 1 + αβ tβ − 2(η + kf )t
)

∫ ∞

t

exp(−αsβ + 2(η

+ kf )s) ds >t exp
(

− αtβ + 2(η + kf )t
)

(41)



as ψ(t) > 0 for all t ∈ [0, tmax). Second, since ψ
′(t) < 0

for all t ∈ [0, tmax], then

(

αβ2tβ−1 − 2(η + kf )
)

∫ ∞

t

exp(−αsβ + 2(η + kf )s) ds

< β exp
(

− αtβ + 2(η + kf )t
)

. (42)

Using the expressions of ψ′(t) and ψ′′(t) and taking into
account (41) and (42), with a little algebra we obtain

ζ′(t) > h(t)

∫ ∞

t

exp(−αs2 + 2(η + kf )s) ds

where

h(t) := −(β − 2)(β − 1)
(

1/t2 − 2(η + kf )/(βt)
)

+ 4(η + kf )
2 (1 − 1/β) .

The function h : R>0 → R is differentiable and

h′(t) = (β − 2)(β − 1)
(

2/t3 − 2(η + kf )/(βt
2)
)

.

Moreover, lim
t→0+

h(t) = +∞ and lim
t→+∞

h(t) = 4(η +

kf )
2 (1 − 1/β) > 0 for β > 1. Then h admits an abso-

lute minimum in t̃ = β/(η + kf ) and, if 1 < β ≤ 2, it
follows h(t̃) = (η + kf )

2 (5β2 − 7β + 2)/β2 > 0. There-
fore, we obtain that h(t) > 0 on R>0; hence ζ′(t) > 0
and ζ strictly increasing for all t ∈ (0, tmax]. This al-
lows one to conclude that ζ(t) < 0, i.e., b′′(t) < 0 for all
t ∈ [0, tmax] , thus ensuring the strict decrease of b′ and
the concavity of b in such an interval.

Proof of Proposition 1. First of all, let us find a convenient
expression for b(tmax), which will be used later on. Since
b′(tmax) = 0 and a(tmax) = b(tmax)/t

β−1
max , from (16) we

obtain (30)with a denominator that has to be necessarily
strictly positive.

As to (i), we consider two cases to account for (29e) by
addressing separately (a) σ + 4αβ λmax (P ) kf b(t∗) >
λ∗ and (b) σ + 4αβ λmax (P ) kf b(t∗) ≤ λ∗ and finally
combining what results from (a) and (b). As to (a), we
have to deal with

η ≥ ‖A−KC‖
λ∗

(σ + 4αβ λmax (P ) kf b(tmax))

+
4nαβ λmax (P ) kf b

′(t∗)

σ + 4αβ λmax (P ) kf b(t∗)
(43)

since λ∗ < σ + 4αβ λmax (P ) kf b(t∗) ≤ σ +
4αβ λmax (P ) kf b(tmax). As a matter of fact, (43) can
be replaced by a stronger condition given by

η ≥ ‖A−KC‖
λ∗

(σ + 4αβ λmax (P ) kf b(tmax))

+ n b′(t∗)/b(t∗) . (44)

Since the r.h.s. of (16) is upper bounded by g(t) b(t), for
all t∗ > 0 we obtain

b′(t∗)/b(t∗) ≤ g(t∗) . (45)

Using (30) and (45), it follows that the inequality

η ≥ ‖A−KC‖
λ∗

(σ + 4αβ λmax (P ) kf b(tmax))

+n g(t∗) (46)

implies (44) and hence (43). As to (b), (29e) takes on
the form of

η ≥ ‖A−KC‖
λ∗

max (σ + 4αβ λmax (P ) kf b(tmax), λ∗)

+
4nαβ λmax (P ) kf b

′(t∗)

λ∗
(47)

because of (30). Since b(t∗) ≤ b(tmax), (16) yields

b′(t∗) ≤ g(t∗) b(tmax)− tβ−1
∗

and hence it is straightforward to impose (47) by means
of the following inequality:

η ≥ ‖A−KC‖
λ∗

max (σ + 4αβ λmax (P ) kf b(tmax), λ∗)

+
4nαβ λmax (P ) kf

λ∗

(

g(t∗) b(tmax)− tβ−1
∗

)

. (48)

Combining the conclusions drawn in case (a) and (b)
(i.e., (46) and (48)), we obtain that (29e) is implied by
(31) and thus end the proof of (i).

As to (ii), we need to evaluate the integral

a(0) =

∫ ∞

0

exp
(

− αsβ + 2 (η + kf ) s
)

ds .

Note that

a(0) =

∫ l0

0

exp
(

− αsβ + 2(η + kf )s
)

ds+ a(l0) (49)

where l0 := (2(η + kf )/α)
1/(β−1)

. The first term
in (49) is upper bounded with the value of the
area of the rectangle having base length and
height equal to l0 and l1, respectively, where l1 :=

exp
(

2(η + kf ) (1− 1/β) (2(η + kf )/(αβ))
1/(β−1)

)

.

Thus, we have a(0) ≤ l0 l1 + a(l0) and, after not-
ing that a(l0) can be bounded from above by 1 since
−αsβ +2 (η + kf ) s < −s+ l0 for s > l0 and using (30),
it is straightforward to verify that (29f) is implied by
(32).
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