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Abstract. This paper provides new stability results for Action-Dependent
Heuristic Dynamic Programming (ADHDP), using a control algorithm that

iteratively improves an internal model of the external world in the autonomous

system based on its continuous interaction with the environment. We extend
previous results for ADHDP control to the case of general multi-layer neural

networks with deep learning across all layers. In particular, we show that the

introduced control approach is uniformly ultimately bounded (UUB) under
specific conditions on the learning rates, without explicit constraints on the

temporal discount factor. We demonstrate the benefit of our results to the con-

trol of linear and nonlinear systems, including the cart-pole balancing problem.
Our results show significantly improved learning and control performance as

compared to the state-of-art.

1. Introduction

Adaptive Dynamic Programming (ADP) addresses the general challenge of opti-
mal decision and control for sequential decision making problems in real-life scenar-
ios with complex and often uncertain, stochastic conditions without the presump-
tion of linearity. ADP is a relatively young branch of mathematics; the pioneering
work (Werbos, 1974) provided powerful motivation for extensive investigations of
ADP designs in recent decades (Barto, Sutton & Anderson, 1983; Werbos, 1992;
Bertsekas & Tsitsiklis, 1996; Si, Barto & Powell & Wunsch, 2004; Vrabie & Lewis,
2009; Lendaris, 2009; Wang, Liu, Wei & Zhao & Jin, 2012; Zhang, Liu, Luo &
Wang, 2013). ADP has not only shown solid theoretical results to optimal con-
trol but also successful applications (Venayagamoorthy & Harley & Wunsch, 2003).
Various ADP designs demonstrated powerful results in solving complicated real-life
problems, involving multi-agent systems and games (Valenti, 2007; Al-Tamini &
Lewis & Abu-Khalaf, 2007; Zhang & Wei & Liu, 2011).

The basic ADP approaches include heuristic dynamic programming (HDP), dual
heuristic dynamic programming (DHP) and globalized DHP (GDHP) (Werbos,
1974, 1990; White & Sofge, 1992; Prokhorov & Wunsch, 1997). For each of these
approaches there exists an action-dependent (AD) variation (White & Sofge, 1992).
For several important cases, the existence of stable solution for ADP control has
been shown under certain conditions (Abu-Khalaf & Lewis, 2005; Vrabie & Lewis,
2009; Lewis & Liu, 2012; Zhang, Zhang, Luo & Liang, 2013).

Key words and phrases. Adaptive Dynamic Programming; Action-Dependent Heuristic Dy-
namic Programming; Adaptive control; Adaptive critic; Neural network; Gradient Descent; Lya-
punov function.
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The stability of ADP in the general case is an open and yet unsolved problem.
There are significant efforts to develop conditions for stability in various ADP de-
signs. We solved the stability problem for the specific ADHDP control case using
the Lyapunov approach, which is a classical method of investigating stability of
dynamical processes. Here we are addressing a discrete time dynamical system,
where the dynamics is described by a difference equation. The discrete time Lya-
punov function is used to prove the stability of the controlled process under certain
conditions. In this paper we generalize the results of (Liu, Sun, Si, & Guo &
Mei, 2012) for deriving stability conditions for ADHDP with traditional three layer
Multi-Layer Perceptron (MLP). The work (Liu et al., 2012) derives a stability con-
dition for the system with weights adapted between the hidden and output layers
only, under the assumption that networks have large enough number of neurons in
the hidden layers.

The approach presented in (Liu et al., 2012), in effect, is equivalent to a linear ba-
sis function approach: it is easy but it leads to scalability problems. The complexity
of the system is growing exponentially for the required degree of approximation of a
function of given smoothness (Barron, 1994). Additional problems arise regarding
the accuracy of parameter estimation, which tends to grow with the number of pa-
rameters, all other factors are kept the same. If we have too many parameters for
a limited set of data, it leads to overtraining. We need more parsimonious model,
capable of generalization, hence our intention is to use fewer parameters in truly
nonlinear networks, which is made possible by implementing more advanced learn-
ing algorithm. In the present work we focus on studying the stability properties of
the ADP system with MLP-based critic, when the weights are adapted between all
layers. By using Lyapunov approach, we study the uniformly ultimately bounded
property of the ADHDP design. Preliminary results of our generalized stability
studies have been reported in (Kozma & Sokolov, 2013), where we showed that our
general approach produced improved learning and convergence results, especially
in the case of difficult control problems.

The rest of the paper is organized as follows. First we briefly outline theoretical
foundations of ADHDP. Next we describe the learning algorithm based on gradient
descent in the critic and action networks. This is followed by the statements and
the proofs of our main results on the generalized stability criteria of the ADP
approach. Finally, we illustrate the results using examples of two systems. The
first one is a simple linear system used in (Liu et al., 2012), and the second example
is the inverted pendulum system, similar to (He, 2011). We conclude the paper by
outlining potential benefits of our general results for future applications in efficient
real-time training and control.

2. Theoretical foundations of ADHDP control

2.1. Basic definitions. Let us consider a dynamical system (plant) with discrete
dynamics, which is described by the following nonlinear difference equation:

x(t+ 1) = f (x(t), u(t)) , (2.1)

where x is the m-dimensional plant state vector and u is the n-dimensional control
(or action) vector.

Previously we reported some stability results for ADP in the general stochastic
case (Werbos, 2012). In this paper we focus on the deterministic case, as described
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in equation (2.1) and introduce action-dependent heuristic dynamic programming
(ADHDP) to control this system. The original ADHDP method has been used
in the 1990’s for various important applications, including the manufacturing of
carbon-carbon composite parts (White & Sofge, 1992). ADHDP is a learning algo-
rithm for adapting a system made up of two components, the critic and the action,
as shown in Fig. 1. These two major components can be implemented using any
kind of differentiable function approximator. Probably the most widely used value
function approximators in practical applications (as surveyed in Lewis and Liu,
2012) are neural networks, linear basis function approximators, and piecewise lin-
ear value functions such as those used by (Powell, 2011). In this work we use MLP
as the universal function approximator.

The optimal value function, J∗ is the solution of the Bellman equation (White
& Sofge, 1992), which is a function of the state variables but not of the action
variables. Here we use function J , which is closely related to J∗, but J is a function
of both the state and the action variables. Function J is often denoted by J ′ in the
literature, following the definition in (White & Sofge, 1992, Chapter 3). The critic

provides the estimate of function J , which is denoted as Ĵ . Function Q, used in
traditional Q-learning (Si et al., 2004) is the discrete-variable equivalent of J .

The action network represents a control policy. Each combination of weights
defines a different controller, hence by exploring the space of possible weights we
approximate the dynamic programming solution for the optimal controller. AD-
HDP is a method for improving the controller from one iteration to the next, from
time instant t to t + 1. We also have internal iterations, which are not explicit
(Lewis & Liu, 2012; He 2011). Namely, at a given t, we update the weights of the
neural networks using supervised learning for a specific number of internal iteration
steps.

In ADHDP, the cost function is expressed as follows; see, e.g., (Lewis & Liu,
2012):

J(x(t), u(t)) =

∞∑
i=t

αi−tr(x(i+ 1), u(i+ 1)), (2.2)

where 0 < α ≤ 1 is a discount factor for the infinite horizon problem, and
r(x(t), u(t)) is the reward or reinforcement or utility function (He, 2011; Zhang, Liu
& Luo & Wang, 2013). We require r(t) = r(x(t), u(t)) to be a bounded semidefinite
function of the state x(t) and control u(t), so the cost function is well-defined. Using
standard algebra one can derive from (2.2) that 0 = αJ(t) + r(t)− J(t− 1), where
J(t) = J(x(t), u(t)).

2.2. Action network. Next we introduce each component, starting with the ac-
tion component. The action component will be represented by a neural network
(NN), and its main goal is to generate control policy. For our purpose, MLP with
one hidden layer is used. At each time step this component needs to provide an
action based on the state vector x(t) = (x1(t), . . . , xm(t))T , so x(t) is used as an
input for the action network. If the hidden layer of the action MLP consists of Nha
nodes; the weight of the link between the input node j and the hidden node i is

denoted by ŵ
(1)
aij (t), for i = 1, . . . , Nha and j = 1, . . . ,m. ŵ

(2)
aij (t), where i = 1, . . . , n,

j = 1, . . . , Nha is the weight from j′s hidden node to i′s output. The weighted sum of
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Figure 1. Schematics of the implemented ADHDP design
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Figure 2. Illustration of the action network as a MLP with one
hidden layer.

all inputs, i.e., the input to a hidden node k is given as σak(t) =
∑m
j=1 ŵ

(1)
akj (t)xj(t).

The output of hidden node k of the action network is denoted by φak(t).
For neural networks a variety of transfer functions are in use, see, e.g. (Zhang,

Liu & Luo & Wang, 2013). Hyperbolic tangent is a common transfer function,

which is used here: φak(t) = 1−e−σak (t)

1+e
−σak (t) . A major advantage of the standard MLP

neural network described here is the ability to approximate smooth nonlinear func-
tions more accurately than linear basis function approximators, as the number of
inputs grows (Barron, 1993; 1994). Finally, the output of the action MLP is a

n-dimensional vector of control variables ui(t) =
∑Nha
j=1 ŵ

(2)
aij (t)φaj (t). The diagram

of the action network is shown in Fig. 2.

2.3. Critic network. The critic neural network, with output Ĵ , learns to ap-
proximate J function and it uses the output of the action network as one of
its inputs. This is shown in Fig. 3. The input to the critic network is y(t) =
(x1(t), . . . , xm(t), u1(t), . . . , un(t))T , where u(t) = (u1(t), . . . , un(t))T is output of
the action network. Just as for the action NN, here we use an MLP with one

hidden layer, which contains Nhc nodes. ŵ
(1)
cij (t), for i = 1, . . . , Nhc and j =

1, . . . ,m + n is the weight from j′s input to i′s hidden node of the critic net-
work. Here hyperbolic tangent transfer function is used. For convenience, the



COMPLETE STABILITY ANALYSIS OF A HEURISTIC ADP CONTROL DESIGN 5

 ^  (1)
           w

s fck
ck

c11

 ^  (2)
           wc1

x1

u1

un

Ĵ

Figure 3. Illustration of the critic network as a MLP with one
hidden layer.

input to a hidden node k is split in two parts with respect to inputs σck(t) =∑m
j=1 ŵ

(1)
ckj (t)xj(t) +

∑n
j=1 ŵ

(1)
ci(m+j)

(t)uj(t). The output of hidden node k of the

critic network is given as φck(t) = 1−e−σck (t)

1+e
−σck (t) . Since the critic network has only

one output, we have Nhc weights between hidden and output layers of the form

ŵ
(2)
ci (t). Finally, the output of the critic neural network can be described in the

form Ĵ(t) = ŵ
(2)
c (t)∗φc(t) =

∑Nhc
i=1 ŵ

(2)
ci (t)φci(t), where ∗ denotes the inner product.

3. Gradient-descent Learning Algorithm

3.1. Adaptation of the critic network. Let ec(t) = αĴ(t) + r(t) − Ĵ(t − 1)
be the prediction error of the critic network and Ec(t) = 1

2e
2
c(t) be the objective

function, which must be minimized. Let us consider gradient descent algorithm as
the weight update rule, that is, ŵc(t + 1) = ŵc(t) + ∆ŵc(t). Here the last term is

∆ŵc(t) = lc

[
−∂Ec(t)∂ŵc(t)

]
and lc > 0 is the learning rate.

By applying the chain rule, the adaptation of the critic network’s weights between

input layer and hidden layer is given as follow ∆ŵ
(1)
cij (t) = lc

[
− ∂Ec(t)

∂ŵ
(1)
cij

(t)

]
, which

yields

∂Ec(t)

∂ŵ
(1)
cij (t)

=
∂Ec(t)

∂Ĵ(t)

∂Ĵ(t)

∂φci(t)

∂φci(t)

∂σci(t)

∂σci(t)

∂ŵ
(1)
cij (t)

=

αec(t)ŵ
(2)
ci (t)

[
1

2
(1− φ2ci(t))

]
yj(t). (3.1)

The last calculation is obtained with respect to the main HDP (and ADHDP)

paradigm, which treats Ĵ(·) at different time steps as different functions; see e.g.,
(Lewis & Liu, 2012; Werbos, 2012). Application of the chain rule for the adapta-
tion of the critic network’s weights between hidden layer and output layer yields

∆ŵ
(2)
ci (t) = lc

[
− ∂Ec(t)

∂ŵ
(2)
ci

(t)

]
, which leads to

∂Ec(t)

∂ŵ
(2)
ci (t)

=
∂Ec(t)

∂Ĵ(t)

∂Ĵ(t)

∂ŵ
(2)
ci (t)

= αec(t)φci(t). (3.2)
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3.2. Adaptation of the action network. The training of the action network
can be done by using the backpropagated adaptive critic method (White & Sofge,

1992), which entails adapting the weights so as to minimize Ĵ(t). In this paper
we used an importance-weighted training approach. We denote by Uc the desired
ultimate objective function. Then the minimized error measure is given in the form
Ea(t) = 1

2e
2
a(t), where ea(t) = Ĵ(t)− Uc is the prediction error of the action NN.

In the framework of the reinforcement learning paradigm, the success corresponds
to an objective function, which is zero at each time step (Barto, Sutton & Anderson,
1983). Based on this consideration and for the sake of simplicity of the further
derivations, we assume Uc = 0, that is, the objective function is zero at each time
step, i.e. there is success.

Let us consider gradient descent algorithm as the weight update rule similarly
as we did for the critic network above. That is, ŵa(t+ 1) = ŵa(t) + ∆ŵa(t), where

∆ŵa(t) = la

[
−∂Ea(t)∂ŵa(t)

]
and la > 0 is the learning rate.

By applying the chain rule, the adaptation of the action network’s weights be-

tween input layer and hidden layer is given as ∆ŵ
(1)
aij (t) = la

[
− ∂Ea(t)

∂ŵ
(1)
aij

(t)

]
,

∂Ea(t)

∂ŵ
(1)
aij (t)

=
∂Ea(t)

Ĵ(t)

[
∂Ĵ(t)

∂u(t)

]T
∂u(t)

∂φai(t)

∂φai(t)

∂σai(t)

∂σai(t)

∂ŵ
(1)
aij (t)

=

∂Ea(t)

Ĵ(t)

n∑
k=1

∂Ĵ(t)

∂uk(t)

∂uk(t)

∂φai(t)

∂φai(t)

∂σai(t)

∂σai(t)

∂ŵ
(1)
aij (t)

=

Ĵ(t)

n∑
k=1

Nhc∑
r=1

[
ŵ(2)
cr (t)

1

2
(1− φ2cr (t))ŵ

(1)
cr,m+k

(t)

]
× ŵ(2)

aki
(t)

1

2
(1− φ2ai(t))xj(t), (3.3)

where

∂Ĵ(t)

∂uk(t)
=

Nhc∑
i=1

∂Ĵ(t)

∂φci(t)

∂φci(t)

∂σci(t)

∂σci(t)

∂uk(t)
. (3.4)

Using similar approach for the action network’s weights between hidden layer and

output layer, finally we get the following ∆ŵ
(2)
aij (t) = la

[
− ∂Ea(t)

∂ŵ
(2)
aij

(t)

]
,

∂Ea(t)

∂ŵ
(2)
akj (t)

=
∂Ea(t)

Ĵ(t)

∂Ĵ(t)

∂uk(t)

∂uk(t)

∂ŵ
(2)
akj (t)

=

ea(t)

Nhc∑
r=1

[
ŵ(2)
cr (t)

1

2
(1− φ2cr (t))ŵ

(1)
cr,m+k

(t)

]
φaj (t). (3.5)

4. Lyapunov stability analysis of ADHDP

In this section we employ Lyapunov function approach to evaluate the stability
of dynamical systems. The applied Lyapunov analysis allows to establish the UUB
property without deriving the explicit solution of the state equations.
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4.1. Basics of the Lyapunov approach. Let w∗c , w
∗
a denote the optimal weights,

that is, the following holds: w∗c = arg minŵc

∥∥∥αĴ(t) + r(t)− Ĵ(t− 1)
∥∥∥; we assume

that the desired ultimate objective Uc = 0 corresponds to success then w∗a =

arg minŵa

∥∥∥Ĵ(t)
∥∥∥.

Consider the weight estimation error over full design, that is, over both critic
and action networks of the following form: w̃(t) := ŵ(t) − w∗. Then equations
(3.1), (3.2), (3.3) and (3.5) define a dynamical system of estimation errors for some
nonlinear function F in the following form

w̃(t+ 1) = w̃(t)− F (ŵ(t− 1), ŵ(t), φ(t− 1), φ(t)) . (4.1)

Definition 1. A dynamical system is said to be uniformly ultimately bounded with
ultimate bound b > 0, if for any a > 0 and t0 > 0, there exists a positive number
N = N(a, b) independent of t0, such that ‖w̃(t)‖ ≤ b for all t ≥ N + t0 whenever
‖w̃(t0)‖ ≤ a.

In the present study, we make use of a theorem concerning the UUB property
(Sarangapani, 2006). Detailed proof of this theorem appears in (Michel & Hou & Liu,
2008). We adapt the notation for our situation and address the special case of a
discrete dynamical systems as given in (4.1).

Theorem 1. (UUB property of a discrete dynamical system) If, for system
(4.1), there exists a function L(w̃(t), t) such that for all w̃(t0) in a compact set K,
L(w̃(t), t) is positive definite and the first difference, ∆L(w̃(t), t) < 0 for ‖w̃(t0)‖ >
b, for some b > 0, such that b-neighborhood of w̃(t) is contained in K, then the
system is UUB and the norm of the state is bounded to within a neighborhood of b.

Based on this theorem, which gives a sufficient condition, we can determine the
UUB property of the dynamical system selecting an appropriate function L. For
this reason, we first consider all components of our function candidate separately
and investigate their properties, and thereafter we study the behavior of L function
to match the condition from Theorem 1.

4.2. Preliminaries. In this subsection we introduce four lemmas which will be
used in the proof of our main theorem.

Assumption 1. Let w∗a and w∗c be the optimal weights for action and critic net-
works. Assume they are bounded, i.e., ‖w∗a‖ ≤ wmaxa and ‖w∗c‖ ≤ wmaxc .

Lemma 1. Under Assumption 1, the first difference of L1(t) = 1
lc

tr

[(
w̃

(2)
c (t)

)T
w̃

(2)
c (t)

]
is expressed by

∆L1(t) = −α2 ‖ζc(t)‖2 −
(

1− α2lc ‖φc(t)‖2
)∥∥∥αŵ(2)

c (t)φc(t) + r(t)−

ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 +
∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 , (4.2)

where ζc(t) = w̃
(2)
c (t)φc(t) is the approximation error of the output of the critic

network.
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Proof. (Lemma 1 ). Using (3.2) and taking into account that w
∗(2)
c does not de-

pend on t, i.e., it is optimal for each time moment t, we get the following

w̃(2)
c (t+ 1) = ŵ(2)

c (t+ 1)− w(2)
c

∗
=

w̃(2)
c (t)− αlcφc

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]T
. (4.3)

Based on the last expression, we can find the trace of multiplication of w̃
(2)
c (t+ 1)

by itself in the following way:

tr

[(
w̃(2)
c (t+ 1)

)T
w̃(2)
c (t+ 1)

]
=
(
w̃(2)
c (t)

)T
w̃(2)
c (t)−

2αlcw̃
(2)
c (t)φc(t)

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]T
+

α2l2c ‖φc(t)‖
2
∥∥∥αŵ(2)

c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 . (4.4)

Since w̃
(2)
c (t)φc(t) is a scalar, we can rewrite the middle term in the above formula

as follows:

−2αlcw̃
(2)
c (t)φc(t)

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]
=

lc

(∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)− αw̃(2)
c (t)φc(t)

∥∥∥2−∥∥∥αw̃(2)
c (t)φc(t)

∥∥∥2 − ∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2) =

lc

(∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 − α2 ‖ζc(t)‖2−∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2) . (4.5)

Here the definition of w̃
(2)
c (t) = ŵ

(2)
c (t) − w

∗(2)
c is applied to obtain the above

expression.
Now let us consider the first difference of L1(t) in the form

∆L1(t) =
1

lc

[(
w̃(2)
c (t+ 1)

)T
w̃(2)
c (t+ 1)−

(
w̃(2)
c (t)

)T
w̃(2)
c (t)

]
. (4.6)

Substituting the results for
(
w̃

(2)
c (t+ 1)

)T
w̃

(2)
c (t + 1), finally we get the state-

ment of the lemma, as required. �

Lemma 2. Under Assumption 1, the first difference of L2(t) = 1
laγ1

tr

[(
w̃

(2)
a (t)

)T
w̃

(2)
a (t)

]
is bounded by

∆L2(t) ≤ 1

γ1

(
−
(

1− la ‖φa(t)‖2
∥∥∥ŵ(2)

c (t)C(t)
∥∥∥2)∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 +

4 ‖ζc(t)‖2 + 4
∥∥∥w∗(2)c φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2) , (4.7)
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where ζa(t) = w̃
(2)
a (t)φa(t) is the approximation error of the action network output

and γ1 > 0 is a weighting factor; C(t) is the Nhc × n matrix with coefficients

Cij(t) = 1
2

(
1− φ2ci(t)

)
ŵ

(1)
ci,m+j (t), where i = 1 . . . Nhc , and j = 1 . . . n.

Proof. (Lemma 2 ). Let us consider the weights from the hidden layer to output
layer of the action network which are updated according to (3.5)

w̃(2)
a (t+ 1) = ŵ(2)

a (t+ 1)− w∗(2)a = ŵ(2)
a (t)− laφa(t)ŵ(2)

c (t)C(t)
[
ŵ(2)
c (t)φc(t)

]T
− w∗(2)a = w̃(2)

a (t)− laφa(t)ŵ(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
. (4.8)

Based on this expression, it is easy to see that

tr
[
(w̃(2)

a (t+ 1))T w̃(2)
a (t+ 1)

]
= (w̃(2)

a (t))T w̃(2)
a (t)+

l2a ‖φa(t)‖2
∥∥∥ŵ(2)

c (t)C(t)
∥∥∥2 ∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 − 2laŵ

(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
ζa(t).

(4.9)

Here the last formula is based on the assumption that all vector multiplications
are under trace function.

Now let us consider the first difference of function L2(t), that is, the following
expression

∆L2(t) =
1

laγ1
tr
[
(w̃(2)

a (t+ 1))T w̃(2)
a (t+ 1)− (w̃(2)

a (t))T w̃(2)
a (t)

]
. (4.10)

After substituting the appropriate terms in the last formula, we get

∆L2(t) =
1

γ1

(
la ‖φa(t)‖2

∥∥∥ŵ(2)
c (t)C(t)

∥∥∥2∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2
− 2ŵ(2)

c (t)C(t)
[
ŵ(2)
c (t)φc(t)

]T
ζa(t)

)
. (4.11)

Consider the last term of (4.11)

− 2ŵ(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
ζa(t) =

∥∥∥ŵ(2)
c (t)φc(t)− ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 −∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 − ∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 .(4.12)

After substituting this formula into ∆L2, we get

∆L2(t) =
1

γ1

(
la ‖φa(t)‖2

∥∥∥ŵ(2)
c (t)C(t)

∥∥∥2 ∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 + (4.13)∥∥∥ŵ(2)
c (t)φc(t)− ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 − ∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 − ∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2) .

Notice that
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∥∥∥ŵ(2)
c (t)φc(t)− ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 − ∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 ≤

2
∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 +

∥∥∥ŵ(2)
c (t)C(t)ζa(t)

∥∥∥2 ≤
2
∥∥∥(w̃(2)

c (t) + w∗(2)c

)
φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2 ≤

2
(∥∥∥w̃(2)

c (t)φc(t)
∥∥∥+

∥∥∥w∗(2)c φc(t)
∥∥∥)2 +

∥∥∥ŵ(2)
c (t)C(t)ζa(t)

∥∥∥2 ≤
4 ‖ζc(t)‖2 + 4

∥∥∥w∗(2)c φc(t)
∥∥∥2 +

∥∥∥ŵ(2)
c (t)C(t)ζa(t)

∥∥∥2 . (4.14)

Finally we get the following bound for ∆L2(t), as required:

∆L2(t) ≤ 1

γ1

(
−
(

1− la ‖φa(t)‖2
∥∥∥ŵ(2)

c (t)C(t)
∥∥∥2)∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 +

4 ‖ζc(t)‖2 + 4
∥∥∥w∗(2)c φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2) . (4.15)

�

Remark 1. If we introduce the following normalization for the network’s weights∥∥∥(ŵ
(2)
c (t))TC(t)

∥∥∥2 = 1 and fix the weights of the input layer, then applying Lemmas

1 and 2, we can readily obtain the results given by (Liu et al., 2012).

Lemma 3. Under Assumption 1, the first difference of L3(t) = 1
lcγ2

tr

[(
w̃

(1)
c (t)

)T
w̃

(1)
c (t)

]
is bounded by

∆L3(t) ≤ 1

γ2

(
α2lc

∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 ‖a(t)‖2 ‖y(t)‖2 +

α
∥∥∥w̃(1)

c (t)y(t)aT (t)
∥∥∥2 + α

∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2) , (4.16)

where γ2 > 0 is a weighting factor and a(t) is a vector, with ai(t) = 1
2

(
1− φ2ci(t)

)
ŵ

(2)
ci (t)

for i = 1 . . . Nhc .

Proof. (Lemma 3 ). Let us consider the weight update rule of the critic network
between input layer and hidden layer in the form

ŵ(1)
c (t+ 1) = ŵ(1)

c (t)− αlc
(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)T
B(t),

(4.17)

where Bij(t) = 1
2 (1− φ2ci(t))ŵ

(2)
ci (t)yj(t), for i = 1, . . . , Nhc , j = 1, . . . ,m+ n.

Following the same approach as earlier, we can express w̃
(1)
c (t+ 1) by

w̃(1)
c (t+ 1) = ŵ(1)

c (t+ 1)− w∗(1)c = w̃(1)
c (t)−

αlc

(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)T
B(t). (4.18)
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For convenience, we introduce the following notationBT (t)B(t) = yT (t)aT (t)a(t)y(t) =

‖a(t)‖2 ‖y(t)‖2. Then the trace of multiplication can be written as

tr

[(
w̃(1)
c (t+ 1)

)T
w̃(1)
c (t+ 1)

]
=
(
w̃(1)
c (t)

)T
w̃(1)
c (t) +

α2l2c

∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2BT (t)B(t)−

2αlc

(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)
BT (t)w̃(1)

c (t). (4.19)

Using the property of trace function, that is, the following tr
(
y(t)aT (t)w̃

(1)
c (t)

)
=

tr
(
w̃

(1)
c (t)y(t)aT (t)

)
, we can express the last term of (4.19) as follows:

− 2αlc

(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)
y(t)aT (t)w̃(1)

c (t) =

αlc

(∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)− w̃(1)
c (t)y(t)aT (t)

∥∥∥2−∥∥∥w̃(1)
c (t)y(t)aT (t)

∥∥∥2 − ∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2) . (4.20)

Therefore, using (4.19), (4.20), the first difference of L3(t) can be bounded by

∆L3(t) ≤ 1

γ2

(
α2lc

∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 ‖a(t)‖2 ‖y(t)‖2 +

α
∥∥∥w̃(1)

c (t)y(t)aT (t)
∥∥∥2 + α

∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2) . (4.21)

�

Lemma 4. Under Assumption 1, the first difference of L4(t) = 1
laγ3

tr

[(
w̃

(1)
a (t)

)T
w̃

(1)
a (t)

]
is bounded by

∆L4(t) ≤ 1

γ3

(
la

∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2 +∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥∥2 ∥∥∥w̃(1)

a (t)x(t)
∥∥∥2) , (4.22)

where γ3 > 0 is a weighting factor; and Dij(t) = 1
2

(
1− φ2ai(t)

)
ŵ

(2)
aji(t) for i =

1 . . . Nha and j = 1 . . . n.

Proof. (Lemma 4 ). Let us consider the weights from the input layer to the hidden
layer of the action network

w̃(1)
a (t+1) = ŵ(1)

a (t+1)−w∗(1)a = w̃(1)
a (t)−laŵ(2)

c (t)φc(t)D(t)CT (t)
(
ŵ(2)
c (t)

)T
xT (t).

(4.23)
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Let us consider

tr
[
(w̃(1)

a (t+ 1))T w̃(1)
a (t+ 1)

]
= (w̃(1)

a (t))T w̃(1)
a (t) +

l2a

∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 ∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2 −

2laŵ
(2)
c (t)C(t)DT (t)φTc (t)

(
ŵ(2)
c (t)

)T
w̃(1)
a (t)x(t). (4.24)

We obtained the last term since tr(ATB + BTA) = tr(ATB) + tr([ATB]T ) =
2 tr(ATB) and tr(AB) = tr(BA).

The last term in (4.23) can be transformed into the form:

−2laŵ
(2)
c (t)C(t)DT (t)φTc (t)

(
ŵ(2)
c (t)

)T
w̃(1)
a (t)x(t) ≤

la

(∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥∥2 ∥∥∥w̃(1)

a (t)x(t)
∥∥∥2) . (4.25)

Based on the last result, we can obtain the upper bound for ∆L4(t), which is given
in the statement of the lemma:

∆L4(t)≤ 1

γ3

(
la

∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 ∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2 +∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥∥2 ∥∥∥w̃(1)

a (t)x(t)
∥∥∥2) . (4.26)

�

4.3. Stability analysis of the dynamical system. In this section we introduce
a candidate of Lyapunov function for analyzing the error estimation of the system.
To this aim, we utilize the following auxilary function L = L1 + L2 + L3 + L4.

Theorem 2. (Main Theorem) Let the weights of the critic network and the action
network are updated according to the gradient descent algorithm, and assume that
the reinforcement signal is a bounded semidefinite function. Then under Assump-
tion 1, the errors between the optimal networks weights w∗a, w∗c and their estimates
ŵa(t), ŵc(t) are uniformly ultimately bounded (UUB), if the following conditions
are fulfilled:

lc < min
t

γ2 − α

α2γ2

(
‖φc(t)‖2 + 1

γ2
‖a(t)‖2 ‖y(t)‖2

) , (4.27)

la < min
t

γ3 − γ1

γ3 ‖(ŵ2
c (t))

TC(t)‖2 ‖φa(t)‖2 + γ1

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2
(4.28)

Proof. (Theorem 2 ) At first, let us collect all terms of ∆L(t) based on the results
of lemmas 1 - 4. Hence ∆L(t) is bounded by
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∆L(t) ≤
{
−α2 ‖ζc(t)‖2 −

(
1− α2lc ‖φc(t)‖2

)∥∥∥αŵ(2)
c (t)φc(t) + r(t)−

−ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 +
∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2}+

1

γ1

{
−
(

1− la ‖φa(t)‖2
∥∥∥ŵ(2)

c (t)C(t)
∥∥∥2)∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 + 4 ‖ζc(t)‖2

+4
∥∥∥w∗(2)c φc(t)

∥∥∥2 +
∥∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥∥2}+

1

γ2

{
α2lc

∥∥∥αŵ(2)
c (t)φc(t)+

r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 ‖a(t)‖2 ‖y(t)‖2 + α
∥∥∥w̃(1)

c (t)y(t)aT (t)
∥∥∥2 +

α
∥∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2}+

1

γ3

{
la

∥∥∥ŵ(2)
c (t)φc(t)

∥∥∥2 ∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2 +
∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2 +∥∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥∥2 ∥∥∥w̃(1)

a (t)x(t)
∥∥∥2} . (4.29)

The first difference of L(t) can be rewritten as

∆L(t) ≤ −(α2 − 4

γ1
) ‖ζc(t)‖2 −

(
1− α2lc ‖φc(t)‖2 −

α2lc
γ2
‖a(t)‖2 ‖y(t)‖2−

α

γ2

)∥∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 − ∥∥∥ŵ(2)

c (t)φc(t)
∥∥∥2( 1

γ1
−

la
γ1

∥∥∥ŵ(2)
c (t)C(t)

∥∥∥2 ‖φa(t)‖2 − la
γ3

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2 − 1

γ3

)
+

4

γ1

∥∥∥w∗(2)c φc(t)
∥∥∥2 +

1

γ1

∥∥∥ŵ(2)
c (t)C(t)

∥∥∥2 ‖ζa(t)‖2 +∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 +

α

γ2

∥∥∥w̃(1)
c (t)y(t)

∥∥∥2 ‖a(t)‖2 +
1

γ3

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ∥∥∥w̃(1)
a (t)x(t)

∥∥∥2 . (4.30)

To guarantee that the second and the third terms in the last expression are
negative, we need to choose learning rates in the following manner

1− α2lc ‖φc(t)‖2 −
α2lc
γ2
‖a(t)‖2 ‖y(t)‖2 − α

γ2
> 0. (4.31)

Therefore,

lc < min
t

γ2 − α

α2γ2

(
‖φc(t)‖2 + 1

γ2
‖a(t)‖2 ‖y(t)‖2

) . (4.32)

In particular, γ2 > α. Similarly, for the action network we obtain:

1

γ1
− 1

γ1
la

∥∥∥(ŵ(2)
c (t))TC(t)

∥∥∥2 ‖φa(t)‖2 − la
γ3

∥∥∥D(t)CT (t)ŵ(2)
c (t)

∥∥∥2 ‖x(t)‖2 − 1

γ3
> 0,

(4.33)
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la < min
t

γ3 − γ1

γ3

∥∥∥(ŵ
(2)
c (t))TC(t)

∥∥∥2 ‖φa(t)‖2 + γ1

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ‖x(t)‖2
(4.34)

In particular, γ3 > γ1. Notice that the norm of sum can be bounded by sum of
norms, thus we have the following∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 ≤

4α2
∥∥∥w∗(2)c φc(t)

∥∥∥2 + 4r2(t) + 2
∥∥∥ŵ(2)

c (t− 1)φc(t− 1)
∥∥∥2 . (4.35)

Let C, wa1, wa2, wc1, φa, y, x, a, D be upper bounds of C(t), w̃
(1)
a (t), w̃

(2)
a (t),

w̃
(1)
c (t), φa(t), y(t), x(t), a(t), D(t), correspondingly; while wc2=max {w∗(2)c , w

(M)
c2 },

where w
(M)
c2 is the upper bound of ŵ

(2)
c (t). Finally, we obtain the following bound:

4

γ1

∥∥∥w∗(2)c φc(t)
∥∥∥2 +

1

γ1

∥∥∥ŵ(2)
c (t)C(t)

∥∥∥2 ‖ζa(t)‖2 +∥∥∥αw∗(2)c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥∥2 +

α

γ2

∥∥∥w̃(1)
c (t)y(t)

∥∥∥2 ‖a(t)‖2 +
1

γ3

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2 ∥∥∥w̃(1)
a (t)x(t)

∥∥∥2 ≤(
4

γ1
+ 4α2 + 2

)
(wc2φc)

2 + 4r2 +
1

γ1
(wc2C wa2φa)2 +

α

γ2
(wc1y a)2 +

1

γ3
(wc2C Dwa1x)2 = M. (4.36)

Therefore, if α2− 4
γ1
> 0, that is, γ1 >

4
α2 and α ∈ (0, 1), then for la and lc with

constraints from (4.32), (4.34) and ‖ζc(t)‖2 > M
α2− 4

γ1

, we get ∆L(t) < 0. Based on

Theorem 1, this means that the system of estimation errors is ultimately uniformly
bounded.

�

4.4. Interpretation of the results. It is to be emphasized that present results
do not pose any restrictions on the discount factor α, as opposed to with (Liu et
al., 2012). The choice of the discount factor depends on the given problem and the
absence of any constraints on this factor is a clear advantage of our approach. A
constraint on the discount factor can reduce the performance of the design. Also it
should be mentioned that parameters γ1, γ2, and γ3 allow fine-tuning of the learning
in different layers of the networks, thus leading to further improved performance.
Further consequences of this advantage will be the subject of our future research.

5. Simulation study

In this section, we consider two examples and compare our results with previous
studies. In our case, we allow adaptation in the whole MLP, and denote this
approach AdpFull. Previous studies by (Liu et al., 2012) employ partial adaptation
in the output layers only, so we call it AdpPart. We use a relatively easy example
for a linear system, similar to (Liu et al., 2012), to demonstrate the similarity
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Figure 4. Behavior of the linear system, Eq. 5.1, during training
using: (a) AdpFull; (b) AdpPart .

between AdpFull and AdpPart. Then we introduce a more complicated example,
to demonstrate the advantages of the more general results by AdpFull.

5.1. Linear problem. Following (Liu et al., 2012), we consider a system described
by the linear discrete time state-space equation of the form:

xk+1 = 1.25xk + uk. (5.1)

We apply ADHDP to stabilize this system. For this purpose we utilize two
neural networks, the parameters of which match the condition of Theorem 2. In
the implementations we use MATLAB environment. We choose the discount factor
as follows α = 0.9. The number of nodes in the hidden layer of both networks are
set to Nhc = Nhc = 6. In the training process, the learning rates are lc = la = 0.1.
Like in (Liu et al., 2012), the initial state is chosen as x(0) = 1, and the weights
of both critic and action networks are set randomly. The reinforcement learning
signal is of the form rk = 0.04x2k + 0.01u2k. The convergence of the state, control
and cost-to-go function for approaches from this paper and (Liu et al., 2012) are
shown in Fig. 4(a) and Fig. 4(b), correspondingly. At each time step, we perform
a fixed number of iterations to adapt the critic and action networks. The number
of internal iterations are selected according to the given problem. In the case of
the linear control we chose smaller number of iterations (up to 50), while for more
difficult problems we have 100 iterations.

After learning is completed, we fix weights of both networks and test the con-
troller. Additionally, we compare performance of the controller with that in (Liu
et al., 2012). The corresponding graphs are shown in Fig. 6(a) and in Fig. 6(b).
Our results show that AdpFull and AdpPart control system perform similarly and
they reach the equilibrium state fast, within 5 time steps. Detailed analysis shows,
that AdpFull reaches the target state in average one step earlier.

In the linear problem, the linear quadratic regulator (LQR) control provides the
exact solution (Bryson & Ho, 1975). Therefore, it is of interest to compare the re-
sults obtained by our ADHDP controller and the LQR controller. We implemented
and compared these control approaches and here summarize the results. Our anal-
ysis shows that the ADHDP control is very close to the exact optimal solution given
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Figure 5. Illustration of the cart-pole balancing system.
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Figure 6. The state trajectory (x) and control action (u) for the
linear system Eq. 5.1 using: (a) AdpFull; (b) AdpPart .

by LQR. This conclusion is in agreement with the results described by (Liu, Sun,
Si, Guo & Mei, 2012) for the linear case.

5.2. The cart-pole balancing problem. We present the case of a nonlinear
control problem to illustrate the difference between our current study and previous
approaches (Liu et al., 2012). We consider the cart-pole balancing problem, which is
a very popular benchmark for applying methods of ADP and reinforcement learning
(He, 2011). We consider a system almost the same as in (He, 2011); the only
difference is that for simplicity we neglect friction. The model shown in Fig. 5 can
be describe as follows

d2θ

dt2
=
g sin θ + cos θ

(
−F−mplθ̇2 sin θ

mc+mp

)
l
(

4
3 −

mp cos2 θ
mc+mp

) , (5.2)

d2x

dt2
=
F +mpl(θ̇

2 sin θ − θ̈ cos θ)

mc +mp
, (5.3)

where g = 9.8 m/s2, the acceleration due to gravity; mc = 1.0 kg, the mass of the
cart; mp = 0.1 kg, the mass of the pole; l = 0.5 m, the half-pole length; F = ±10
N, force applied to cart center of mass.

This model has four state variables (θ(t), x(t), ẋ(t), θ̇(t)), where θ(t) is the angle
of the pole with respect to the vertical position, x(t) is the position of the cart on

the track, ẋ(t) is the cart velocity and θ̇(t) is the angular velocity.
In our current simulation, a run includes 100 consecutive trials. A run is con-

sidered successful if the last trial lasted 600 time steps where one time step is 0.02
s. A trial is a complete process from start to fall. System is considered fallen if
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the pole is outside the range of [−12◦, 12◦] and/or the cart is moving beyond the
range [−2.4, 2.4] m in reference to the central position on the track. The controller
can apply force to the center of mass of the system with fixed magnitude in two
directions. In this example, a binary reinforcement signal r(t) is considered. We
utilized similar structure of critic and action networks as in the previous example,
therefore it is possible to set the same network parameters.

Figs. 7(a) - 7(d) show examples of the time dependence of the action force,
the position, and the angle trajectories, respectively. These figures correspond to
simulations which are produced after training is completed and weights are fixed.
In the case of successful control by ADHDP, the angle oscillates within limits ±0.4
degrees. This control outcome is quite reasonable, as the observed angle deviation
is more than an order of magnitude below than the required ±12 degrees threshold
specified in the description of the task.

Next, we demonstrate the difference between the control approaches in our
current study (AdpFull) and the one described in (Liu et al., 2012) (AdpPart).
We select two initial position (0.85, 0, 0, 0) and (2, 0, 0, 0), as described next. In
Figs. 7(a) - 7(b), controllers AdpFull and AdpPart show similar performance; the
initial angle has small disturbance θ = 0.85 with respect to equilibrium position.
However, even in this case, one can see a small drift on the cart position from 0
to 0.15. This indicates that AdpFull is able to properly stabilize the cart, but
AdpPart has some problem with this task.

By selecting initial condition θ = 2, we observe essential differences between
the two approaches, see in Figs. 7(c) - 7(d). Our AdpPart approach stabilizes the
cart after about 3000 steps. At the same time, the AdpPart approach produces
divergent behavior; after 6000 iterations the cart moves out of the allowed spatial
region [−2.4, 2.4]. This behavior is discussed in the concluding section.

6. Discussion and Conclusions

In this work, we introduce several generalized stability criteria for the ADHDP
system trained by gradient descent over the critic and action networks modeled by
MLPs. It is shown here that the proposed ADHDP design is uniformly ultimately
bounded under some constraints on the learning rates, but we do not discuss bounds
on the accuracy of estimation of the approximation of the J function. Our approach
is more general than the one available in the literature, as our system allows adapta-
tion across all layers of the networks. This generalization has important theoretical
and practical consequences.

• From theoretical point of view, it is known that an MLP with at least one
hidden layer is a universal approximator in a broad sense. However, by
assuming that the weights between the input and the hidden layer are not
adaptable, the generalization property of the network will be limited.

• As for practical aspects, the difference between our approach and previous
studies is demonstrated using two problems. An easy one with a linear
system to be controlled, and a more difficult system with the cart-pole
balancing task.

• Our results show that the two approaches give very similar results for the
easier linear problem. However, we demonstrate significant differences in
the performance of the two systems for more complicated tasks (pole bal-
ancing). In particular, with larger initial deviation in the pole angle, our
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Figure 7. Simulated results of balancing the inverted pendulum
using: (a) AdpFull stability criteria; initial angle is θ = 0.85; (b)
AdpPart stability criteria; initial angle is θ = 0.85; (c) AdpFull
stability criteria; initial angle is θ = 2; (d) AdpPart stability cri-
teria; initial angle is θ = 2.

approach is able to balance the system. At the same time, the approach
using a simplified control system with non-adaptable weights between the
input and hidden layer is unable to solve this difficult task.

These results show the power of the applied ADP approach when using the deep
learning algorithm introduced here. It is expected that our results will be very
useful for training of the intelligent control and decision support systems, including
multi-agent platforms, leading to more efficient real-time training and control.
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