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Abstract

This paper considers the problem of using noisy output data to estimate unknown time-delays and unknown system parameters
in a general nonlinear time-delay system. We formulate the problem as a dynamic optimization problem in which the unknown
quantities are decision variables to be chosen optimally, with the cost function penalizing the mean and variance of the
least-squares error between actual and predicted system output. Since the time-delays and system parameters influence the
cost function implicitly through the governing time-delay system, the cost function’s gradient—which is required to solve the
problem using gradient-based optimization techniques—cannot be computed analytically using standard differentiation rules.
We instead develop two computational methods for evaluating this gradient: one involves solving an auxiliary time-delay system
forward in time; the other involves solving an auxiliary time-advance system backward in time. On this basis, we propose an
efficient optimization algorithm for determining optimal estimates for the time-delays and system parameters. We conclude
the paper by examining the performance of this algorithm on a dynamic model of a continuously-stirred tank reactor.
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1 Introduction

Developing a mathematical model is a two-step process:
first, the general structure of the model is derived based
on fundamental physical principles; then, the model is
matched to a particular system of interest by tuning var-
ious model parameters. This second step, known as pa-
rameter estimation or parameter identification, usually
involves comparing the system output predicted by the
model with the real system output measured during an
experiment (or a series of experiments).

This paper is concerned with parameter estimation for
nonlinear time-delay systems. We consider a general dy-
namic model consisting of nonlinear delay-differential
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equations with multiple time-delays and multiple sys-
tem parameters, each of which is unknown and needs
to be estimated appropriately. The problem that we
investigate—called the parameter estimation problem—
is to determine optimal estimates for the time-delays and
system parameters so that the dynamic model best fits
the real system under consideration. Such problems are
commonly referred to as inverse problems.

Parameter estimation for time-delay systems has at-
tracted considerable research interest over the past
two decades (see Tuch, Feuer & Palmor (1994); Lunel
(2001); Orlov, Belkoura, Richard & Dambrine (2002,
2003); Drakunov, Perruquetti, Richard & Belkoura
(2006); Belkoura, Richard & Fliess (2009); Park, Han
& Kwon (2013); Zheng, Barbot & Boutat (2013)). Pop-
ular approaches for solving the parameter estimation
problem include swarm intelligence algorithms such as
particle swarm optimization (Tang & Guan (2009); Gao,
Qi, Yin & Xiao (2010)), or finite-dimensional approx-
imation schemes for the original infinite-dimensional
time-delay model (Banks, Rehm & Sutton (2010)).
Recently, a new gradient-based optimization approach
has been proposed by Loxton, Teo & Rehbock (2010)
and Chai, Loxton, Teo & Yang (2013a, 2013b). In this
approach, the parameter estimates are chosen as the so-
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lution of a dynamic optimization problem in which the
cost function penalizes the deviation between predicted
and measured system output. Special dynamic opti-
mization techniques can then be deployed to solve this
problem and obtain accurate estimates for the model
parameters. This approach was introduced by Loxton
et al. (2010) for nonlinear time-delay systems in which
each nonlinear term contains a single delay and no
other model parameters, and then extended by Chai et
al. (2013a) to more general nonlinear systems with mul-
tiple delays and multiple system parameters. In Chai et
al. (2013b), the approach was applied to a more difficult
parameter estimation problem in which the dynamic
system contains both state- and input-delays, and the
input function is discontinuous.

The two main advantages of the parameter estimation
methods proposed by Loxton et al. (2010) and Chai et
al. (2013a, 2013b) are: (i) these methods can readily han-
dle system nonlinearities; and (ii) these methods can si-
multaneously compute optimal estimates for the time-
delays and system parameters in a unified fashion. One
limitation, however, is that these methods do not take
into account the possibility of noise in the output data.
Thus, the output measurements used in the cost func-
tion (recall that the cost function penalizes the discrep-
ancy between predicted and measured system output)
are assumed to be exact. This is, of course, an idealis-
tic assumption, as it is impossible to guarantee perfect
precision when measuring the output of a real system.

The purpose of this paper is to address this limitation.
Building on the results in Loxton et al. (2010) and Chai
et al. (2013a, 2013b), we will devise a new method for
parameter estimation that explicitly takes output mea-
surement noise into account. The main idea is to con-
sider the output data points as random variables, rather
than fixed constants. This allows for possible discrepan-
cies between the actual and observed system output due
to measurement errors.With the output data as random
variables, our parameter estimation problem is formu-
lated as a stochastic dynamic optimization problem in
which the aim is to choose the time-delays and system
parameters to minimize a weighted sum of the expec-
tation and variance of the least-squares error between
actual and predicted system output. We will develop a
computational approach for solving this problem based
on novel dynamic optimization techniques. The result
is a unified parameter estimation method for nonlinear
time-delay systems that is fast, versatile, and capable of
handling uncertainties in the measured output data.

2 Problem Statement

Consider the following nonlinear time-delay system:

ẋ(t) = f(x(t),x(t− τ1), . . . ,x(t− τm), ζ), t ≥ 0, (1)

x(t) = φ(t, ζ), t ≤ 0, (2)

where x(t) ∈ R
n is the state vector ; ζ ∈ R

r is the pa-
rameter vector ; τi, i = 1, . . . ,m, are time-delays ; and
f : R(m+1)n ×R

r → R
n and φ : R×R

r → R
n are given

continuously differentiable functions.

The output y(t) ∈ R
q of system (1)-(2) is given by the

following equation:

y(t) = g(x(t), ζ), t ≥ 0, (3)

where g : Rn × R
r → R

q is a given continuously differ-
entiable function.

Both the time-delays τi, i = 1, . . . ,m, and the parameter
vector ζ are unknown and need to be estimated. Let ai
and bi denote the lower and upper bounds of the ith
time-delay. Then

ai ≤ τi ≤ bi, i = 1, . . . ,m. (4)

Any vector τ ∈ R
m with components satisfying (4) is

called a candidate time-delay vector for system (1)-(3).
Let T denote the set of all candidate time-delay vectors.

Similarly, let cj and dj denote the lower and upper
bounds of the jth system parameter in ζ. Then

cj ≤ ζj ≤ dj , j = 1, . . . , r. (5)

Any vector ζ ∈ R
r with components satisfying (5) is

called a candidate parameter vector for system (1)-(3).
Let Z denote the set of all candidate parameter vectors.

For each candidate pair (τ , ζ) ∈ T × Z, let x(·|τ , ζ)
denote the state trajectory obtained by solving equa-
tions (1)-(2) with the components of τ and ζ used as the
time-delays and system parameters, respectively. Fur-
thermore, let y(·|τ , ζ) denote the corresponding output
function obtained by substituting x(·|τ , ζ) into (3).

Our goal is to estimate the unknown time-delays and
system parameters by comparing the predicted system
output (obtained by solving the model (1)-(3)) with the
actual system output (measured during a series of ex-
periments) at a set of sample times {tk}

p
k=1, where

0 = t0 < t1 < t2 < · · · < tp−1 < tp.

Let ŷk denote the actual system output at time t = tk.
In Loxton et al. (2010) and Chai et al. (2013a, 2013b),
we assumed that the output vectors ŷk, k = 1, . . . , p,
can be measured exactly. However, this assumption is
unrealistic; due to system noise andmeasurement errors,
the true system output will often differ slightly from
the measured output. Thus, in this paper, we view ŷk,
k = 1, . . . , p, as random vectors of known distribution.

We assume that the following matrices can be obtained
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from the distribution of ŷk, k = 1, . . . , p:

Ξk,l = Cov{ŷk, ŷl}, Υk,l = Cov{(ŷk)2, ŷl}, (6)

where (ŷk)2 denotes the vector obtained by squaring
each element of ŷk. The issue of computing these matri-
ces is discussed in Section 4.

Any τ ∈ T is a candidate for the real time-delay vector.
Similarly, any ζ ∈ Z is a candidate for the real parame-
ter vector. To measure estimation accuracy, we use the
following least-squares error function:

J(τ , ζ) =

p
∑

k=1

∥

∥y(tk|τ , ζ)− ŷk
∥

∥

2
.

Our parameter estimation problem is stated as follows.

Problem P. Choose τ ∈ T and ζ ∈ Z to minimize

G(τ , ζ) = γE{J(τ , ζ)} + (1− γ)Var{J(τ , ζ)},

whereE{·} denotes expectation,Var{·} denotes variance,
and γ ∈ [0, 1] is a given weight.

The aim in Problem P is to minimize both the average
error and the error variance. The weight γ controls the
relative importance between these two objectives. If γ
is close to one, then the priority is to minimize average
error; if γ is close to zero, then the priority is to minimize
error variance. When the output distribution is known
exactly, γ = 1 is the best option for minimizing the
expected error. However, as we show in the numerical
simulations in Section 6, when there are errors and/or
uncertainties in the output distribution, it is essential to
choose γ < 1 to ensure solution robustness.

3 Equivalent Formulation

Omitting the τ and ζ arguments in y(·|τ , ζ) for sim-
plicity, the least-squares error function J(τ , ζ) can be
written as follows:

J(τ , ζ) =

p
∑

k=1

{

y(tk)
⊤y(tk)− 2(ŷk)⊤y(tk) + (ŷk)⊤ŷk

}

=

p
∑

k=1

y(tk)
⊤y(tk)− 2

p
∑

k=1

(ŷk)⊤y(tk) +

p
∑

k=1

(ŷk)⊤ŷk.

Hence,

E{J(τ , ζ)} =

p
∑

k=1

y(tk)
⊤y(tk)

− 2

p
∑

k=1

E{ŷk}⊤y(tk) +

p
∑

k=1

E{(ŷk)⊤ŷk}

(7)

and

Var{J(τ , ζ)} = 4Var

{ p
∑

k=1

(ŷk)⊤y(tk)

}

+Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 4Cov

{ p
∑

k=1

(ŷk)⊤ŷk,

p
∑

l=1

(ŷl)⊤y(tl)

}

.

(8)

Note that

Var

{ p
∑

k=1

(ŷk)⊤y(tk)

}

=

p
∑

k=1

p
∑

l=1

Cov
{

(ŷk)⊤y(tk), (ŷ
l)⊤y(tl)

}

=

p
∑

k=1

p
∑

l=1

y(tk)
⊤Ξk,ly(tl), (9)

where Ξk,l is as defined in (6). Furthermore,

Cov

{ p
∑

k=1

(ŷk)⊤ŷk,

p
∑

l=1

(ŷl)⊤y(tl)

}

=

p
∑

k=1

p
∑

l=1

Cov
{

(ŷk)⊤ŷk, (ŷl)⊤y(tl)
}

=

p
∑

k=1

p
∑

l=1

1qΥk,ly(tl), (10)

where Υk,l is as defined in (6) and 1q denotes a row
vector of ones in R

q. Substituting (9) and (10) into (8)
gives

Var{J(τ , ζ)} = 4

p
∑

k=1

p
∑

l=1

y(tk)
⊤Ξk,ly(tl)

+ Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 4

p
∑

k=1

p
∑

l=1

1qΥk,ly(tl).

(11)

Using (7) and (11), we have

G(τ , ζ) = γ

p
∑

k=1

y(tk)
⊤y(tk)− 2γ

p
∑

k=1

E{ŷk}⊤y(tk)

+ γ

p
∑

k=1

E{(ŷk)⊤ŷk}+ (1− γ)

[

4

p
∑

k=1

p
∑

l=1

y(tk)
⊤Ξk,ly(tl)

+ Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 4

p
∑

k=1

p
∑

l=1

1qΥk,ly(tl)

]

.
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Thus, since the third and fifth terms on the right-hand
side of this equation are independent of τ and ζ, Prob-
lem P is equivalent to the following problem.

Problem Q. Choose τ ∈ T and ζ ∈ Z to minimize

H(τ , ζ) = γ

p
∑

k=1

y(tk)
⊤y(tk)− 2γ

p
∑

k=1

E{ŷk}⊤y(tk)

+ 4(1− γ)

p
∑

k=1

p
∑

l=1

[

y(tk)
⊤Ξk,ly(tl)− 1qΥk,ly(tl)

]

,

where y(·) = y(·|τ , ζ).

4 Computing the Matrices Ξk,l and Υk,l

In this section, we show how to compute the matrices
Ξk,l andΥk,l when the random vectors ŷk, k = 1, . . . , p,
can be expressed as linear combinations of d indepen-
dent random variables z1, . . . , zd (not necessarily of the
same distribution). In this case, there exists matrices
Θk = [θkij ], k = 1, . . . , p, of dimension q × d such that

ŷk = Θkz, k = 1, . . . , p,

where z = [z1, . . . , zd]
⊤ ∈ R

d. Clearly,

ŷki =

d
∑

u=1

θkiuzu, ŷlj =

d
∑

v=1

θljvzv.

Therefore, since the components of z are independent,

[Ξk,l]ij = Cov{ŷki , ŷ
l
j}

=

d
∑

u=1

d
∑

v=1

θkiuθ
l
jvCov{zu, zv} =

d
∑

u=1

θkiuθ
l
juVar{zu}.

Furthermore,

[Υk,l]ij = Cov{(ŷki )
2, ŷlj}

=

d
∑

u=1

d
∑

v=1

d
∑

w=1

θkiuθ
k
ivθ

l
jwCov{zuzv, zw}. (12)

Now, since Cov{zuzv, zw} = E{zuzvzw}−E{zuzv}E{zw},
the summand on the right-hand side of (12) can be
simplified by considering four cases:

• u = v = w:
, Cov{zuzv, zw} = E{z3u}−E{zu}Var{zu}−E{zu}

3.
• u 6= v, u = w: Cov{zuzv, zw} = E{zv}Var{zu}.
• u 6= v, v = w: Cov{zuzv, zw} = E{zu}Var{zv}.
• u 6= w, v 6= w: Cov{zuzv, zw} = 0.

Thus, equation (12) becomes

[Υk,l]ij =

d
∑

u=1

d
∑

v=1
v 6=u

{

θkiuθ
k
ivθ

l
juE{zv}Var{zu}

+ θkiuθ
k
ivθ

l
jvE{zu}Var{zv}

}

+

d
∑

u=1

(θkiu)
2θlju

{

E{z3u} − E{zu}Var{zu} − E{zu}
3
}

.

This equation expressesΥk,l in terms of the first, second,
and third moments of the random variables z1, . . . , zd.

5 Gradient Computation

Problem Q is a dynamic optimization problem in which
the decision vectors τ and ζ must be chosen to minimize
the cost functionH subject to the time-delay system (1)-
(3) and the bound constraints (4) and (5). In principle,
this problem can be solved using existing gradient-based
optimization algorithms. However, to do so, the partial
derivatives of the cost function H are required. These
partial derivatives are difficult to obtain because H is
not an explicit function of the decision vectors τ and ζ.
In this section, we will develop two numerical methods
for computing the partial derivatives ofH . The key idea
is to view the state vector x(t|τ , ζ) as a function of τ
and ζ, as well as time. It is then possible to consider the
partial derivatives of x(t|τ , ζ) with respect to τ and ζ.
This is similar to the classical sensitivity approach in the
field of ordinary differential equations (Khalil (2002)).

Let

χ(t|τ , ζ) =







∂φ(t, ζ)

∂t
, if t ≤ 0,

f̄ (t|τ , ζ), if t > 0,

where

f̄(t|τ , ζ) = f(x(t),x(t− τ1), . . . ,x(t− τm), ζ). (13)

Clearly, for almost all time points t ∈ R, we have
ẋ(t|τ , ζ) = χ(t|τ , ζ). Now, define

∂f̄(t|τ , ζ)

∂ζj
=

∂f(x(t),x(t− τ1), . . . ,x(t− τm), ζ)

∂ζj

and

∂f̄(t|τ , ζ)

∂x̃i
=

∂f(x(t),x(t− τ1), . . . ,x(t− τm), ζ)

∂x(t− τi)
,

where x(·) = x(·|τ , ζ) and τ0 = 0 (i.e., ∂x̃0 denotes
differentiation with respect to x).

4



For each i = 1, . . . ,m, consider the following sensitivity
system:

Λ̇i(t) =

m
∑

ς=0

∂f̄(t|τ , ζ)

∂x̃ς
Λi(t− τς)

−
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi|τ , ζ), t ≥ 0, (14)

Λi(t) = 0, t ≤ 0, (15)

where (τ , ζ) ∈ T ×Z is a given pair. LetΛi(·|τ , ζ) denote
the solution of (14)-(15) corresponding to (τ , ζ) ∈ T ×Z.

Under mild assumptions on the functions f and φ, it
can be shown (see Loxton et al. (2010) and Chai et
al. (2013a)) that the state vector x(t|τ , ζ) is differen-
tiable with respect to each τi. Moreover, it turns out that
the value of the corresponding partial derivative is given
by the solution of (14)-(15):

∂x(t|τ , ζ)

∂τi
= Λi(t|τ , ζ), t ∈ R, i = 1, . . . ,m. (16)

On this basis, we have the following theorem for the
partial derivatives of H with respect to the time-delays.

Theorem 1. For each i = 1, . . . ,m, the partial deriva-
tive of H with respect to τi is given by

∂H(τ , ζ)

∂τi
= 2

p
∑

k=1

σk(τ , ζ)⊤
∂g(x(tk), ζ)

∂x
Λi(tk),

where x(·) = x(·|τ , ζ), Λi(·) = Λi(·|τ , ζ), and

σk(τ , ζ) = γg(x(tk), ζ)− γE{ŷk}

+ 2(1− γ)

p
∑

l=1

{

2Ξk,lg(x(tl), ζ) − (1qΥl,k)⊤
}

.
(17)

Proof. DifferentiateH with respect to τi and then apply
equation (16) and the identity Ξl,k = (Ξk,l)⊤.

We now consider the partial derivatives of H with re-
spect to the system parameters. For each j = 1, . . . , r,
define the following sensitivity system:

Γ̇j(t) =

m
∑

ς=0

∂f̄(t|τ , ζ)

∂x̃ς
Γj(t− τς)

+
∂f̄(t|τ , ζ)

∂ζj
, t ≥ 0, (18)

Γj(t) =
∂φ(t, ζ)

∂ζj
, t ≤ 0, (19)

where (τ , ζ) ∈ T ×Z is a given pair. LetΓj(·|τ , ζ) denote
the solution of (18)-(19) corresponding to (τ , ζ) ∈ T ×Z.
Then according to the results in Loxton et al. (2010) and
Chai et al. (2013a), the following equation holds:

∂x(t|τ , ζ)

∂ζj
= Γj(t|τ , ζ), t ∈ R, j = 1, . . . , r.

Thus, the solution of (18)-(19) coincides with the par-
tial derivative of the state vector with respect to the jth
system parameter. We now present the analogue of The-
orem 1 for the partial derivatives of H with respect to
the system parameters. The proof is similar to the proof
of Theorem 1.

Theorem2. For each j = 1, . . . , r, the partial derivative
of H with respect to ζj is given by

∂H(τ , ζ)

∂ζj
= 2

p
∑

k=1

σk(τ , ζ)⊤
{

∂g(x(tk), ζ)

∂x
Γj(tk)

+
∂g(x(tk), ζ)

∂ζj

}

,

where x(·) = x(·|τ , ζ), Γj(·) = Γj(·|τ , ζ), and σk(τ , ζ)
is defined by (17).

Recall from our discussion at the beginning of this sec-
tion that computing the partial derivatives of H is the
key step to solving Problem Q using gradient-based op-
timization techniques. By virtue of Theorems 1 and 2,
these partial derivatives can be obtained by solving the
state system (1)-(2) and the auxiliary systems (14)-(15)
and (18)-(19). There are m auxiliary systems of the
form (14)-(15) and r auxiliary systems of the form (18)-
(19), with each auxiliary system of dimension n (the
same dimension as the state space). Thus, evaluating the
derivative formulae in Theorems 1 and 2 requires solv-
ing a large number of differential equations, which can
be time-consuming in practice. We now derive an alter-
native method for computing the partial derivatives of
H that requires solving only one auxiliary system.

Consider a new auxiliary system defined as follows:

λ̇(t) = −

m
∑

ς=0

[

∂f̄(t+ τς |τ , ζ)

∂x̃ς

]⊤

λ(t+τς), t ≤ tp, (20)

with the intermediate jump conditions

λ(t−k ) = λ(t+k ) + 2

[

∂g(x(tk|τ , ζ), ζ)

∂x

]⊤

σk(τ , ζ),

k = 1, . . . , p,

(21)
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and the terminal condition

λ(t) = 0, t > tp, (22)

where (τ , ζ) ∈ T × Z is a given pair and σk(τ , ζ) is
defined by (17).

Note that system (20)-(22) is a “time-advance” system
that must be solved backward in time starting from the
terminal condition (22). Note also that this system is
analogous to the well-known costate system in optimal
control (Lin, Loxton & Teo (2014)). Let λ(·|τ , ζ) denote
the left-continuous solution of (20)-(22) corresponding
to (τ , ζ) ∈ T ×Z. We now express the partial derivatives
ofH with respect to the time-delays in terms ofλ(·|τ , ζ).

Theorem 3. For each i = 1, . . . ,m, the partial deriva-
tive of H with respect to τi is given by

∂H(τ , ζ)

∂τi
= −

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi|τ , ζ)dt,

where λ(·) = λ(·|τ , ζ).

Proof. Let vk : [tk−1, tk] → R
n, k = 1, . . . , p, be a set of

arbitrary absolutely continuous functions. Multiplying
equation (1) by vk and integrating over the subintervals
[tk−1, tk], k = 1, . . . , p, gives

p
∑

k=1

∫ tk

tk−1

vk(t)⊤ẋ(t)dt =

p
∑

k=1

∫ tk

tk−1

vk(t)⊤f̄(t|τ , ζ)dt,

where f̄(·|τ , ζ) is defined by (13).

Thus, using integration-by-parts,

p
∑

k=1

{

vk(tk)
⊤x(tk)− vk(tk−1)

⊤x(tk−1)

−

∫ tk

tk−1

v̇k(t)⊤x(t)dt

}

=

p
∑

k=1

∫ tk

tk−1

vk(t)⊤f̄(t|τ , ζ)dt.

This equation can be rearranged to give

vp(tp)
⊤x(tp) +

p−1
∑

k=1

{

vk(tk)
⊤ − vk+1(tk)

⊤
}

x(tk)

− v1(0)⊤φ(0, ζ)

=

p
∑

k=1

∫ tk

tk−1

{

v̇k(t)⊤x(t) + vk(t)⊤f̄(t|τ , ζ)

}

dt.

Now, by differentiating this equation with respect to τi,

and then applying equation (16), we obtain

vp(tp)
⊤Λi(tp) +

p−1
∑

k=1

{

vk(tk)
⊤ − vk+1(tk)

⊤
}

Λi(tk)

=

p
∑

k=1

∫ tk

tk−1

{

v̇k(t)⊤Λi(t)− vk(t)⊤
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi)

+
m
∑

ς=0

vk(t)⊤
∂f̄(t|τ , ζ)

∂x̃ς
Λi(t− τς)

}

dt, (23)

where χ(·) = χ(·|τ , ζ) and Λi(·) = Λi(·|τ , ζ).

Since vk : [tk−1, tk] → R
n, k = 1, . . . , p, are arbitrary

functions, we can choose

vk(t) :=







λ(t+k−1), if t = tk−1,

λ(t), if t ∈ (tk−1, tk),

λ(t−k ), if t = tk,

(24)

where λ(·) = λ(·|τ , ζ) is the solution of the auxiliary
system (20)-(22). Then by using Theorem 1 and equa-
tions (21) and (22), equation (23) becomes

∂H(τ , ζ)

∂τi
=

∫ tp

0

λ̇(t)⊤Λi(t)dt

+

m
∑

ς=0

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂x̃ς
Λi(t− τς)dt

−

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi)dt.

Hence, by performing a change of variable in the second
integral on the right-hand side,

∂H(τ , ζ)

∂τi
=

∫ tp

0

λ̇(t)⊤Λi(t)dt

+

m
∑

ς=0

∫ tp−τς

−τς

λ(t+ τς)
⊤ ∂f̄(t+ τς |τ , ζ)

∂x̃ς
Λi(t)dt

−

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi)dt.

In view of (15) and (22), this can be simplified to yield

∂H(τ , ζ)

∂τi
=

∫ tp

0

λ̇(t)⊤Λi(t)dt

+

m
∑

ς=0

∫ tp

0

λ(t+ τς)
⊤ ∂f̄(t+ τς |τ , ζ)

∂x̃ς
Λi(t)dt

−

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂x̃i
χ(t− τi)dt.

Applying (20) completes the proof.
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The next theorem expresses the partial derivatives of H
with respect to the system parameters in terms of the
solution of (20)-(22). The proof is simliar to the proof of
Theorem 3.

Theorem4. For each j = 1, . . . , r, the partial derivative
of H with respect to ζj is given by

∂H(τ , ζ)

∂ζj
= 2

p
∑

k=1

σk(τ , ζ)⊤
∂g(x(tk), ζ)

∂ζj

+ λ(0+)⊤
∂φ(0, ζ)

∂ζj
+

∫ tp

0

λ(t)⊤
∂f̄(t|τ , ζ)

∂ζj
dt

+
m
∑

ς=1

∫ 0

−τς

λ(t+ τς)
⊤ ∂f̄(t+ τς |τ , ζ)

∂x̃ς

∂φ(t, ζ)

∂ζj
dt,

where λ(·) = λ(·|τ , ζ) and σk(τ , ζ) is defined by (17).

By exploiting the derivative formulae in either Theo-
rems 1 and 2 or Theorems 3 and 4, Problem Q can
be solved using gradient-based optimization algorithms.
Note that, in general, such algorithms are only guaran-
teed to find locally-optimal points that satisfy the first-
order optimality conditions (the well-known KKT con-
ditions). Nevertheless, for Problem Q, it is highly likely
that a global solution will be obtained. This is because
the number of decision variables in Problem Q is small
compared with most nonlinear optimization problems.
Moreover, from practical experience, it is usually pos-
sible to determine good initial guesses for the optimal
parameter estimates.

6 Simulation Results

Consider a continuously-stirred tank reactor in which
the reaction A → B occurs. The reaction dynamics can
be described by the following delay-differential equations
(Loxton et al. (2010)):

ẋ1(t) = ζ1x1(t) + (1− x1(t)) exp

[

20x2(t)

x2(t) + 20

]

+ x1(t− τ), (24)

ẋ2(t) = ζ2x2(t) + (1− x1(t)) exp

[

20x2(t)

x2(t) + 20

]

+ x2(t− τ), (25)

with initial conditions

x1(t) = 1, x2(t) = 1, t ≤ 0, (26)

where x1 is the (dimensionless) concentration of A; x2 is
the (dimensionless) temperature of the reactor; and τ ,
ζ1, and ζ2 are unknown model parameters that need to
be identified.

The system output is given by

y(t) = 10x2(t), t ≥ 0.

Hence, the least-squares error function is

J(τ, ζ1, ζ2) =

p
∑

k=1

{

y(tk)− ŷk
}2

=

p
∑

k=1

{

10x2(tk)− ŷk
}2

,

where p is the number of sample times, tk is the kth
sample time, and ŷk is a random variable representing
the output measurement at the kth sample time. We
choose p = 20 equidistant sample times:

tk = 1
2k, k = 1, . . . , 20.

The problem is to choose τ , ζ1, and ζ2 to minimize

G(τ, ζ1, ζ2) = γE{J(τ, ζ1, ζ2)}+(1−γ)Var{J(τ, ζ1, ζ2)}

subject to the delay-differential equations (24)-(25) and
the initial conditions (26), where γ ∈ [0, 1] is a given
weight. Based on the discussion in Section 3, this prob-
lem can be reformulated as follows: choose τ , ζ1, and ζ2
to minimize

H(τ, ζ1, ζ2) = γ

p
∑

k=1

y(tk)
2 − 2γ

p
∑

k=1

E{ŷk}y(tk)

+ 4(1− γ)

p
∑

k=1

p
∑

l=1

[

y(tk)Ξ
k,ly(tl)−Υk,ly(tl)

]

subject to the delay-differential equations (24)-(25) and
the initial conditions (26), where

Ξk,l = Cov{ŷk, ŷl}, Υk,l = Cov{(ŷk)2, ŷl}.

Consider the output trajectory of (24)-(26) correspond-
ing to the nominal parameter estimates

(τ, ζ1, ζ2) = (2,−2,− 5
2 ).

This output trajectory is known as the reference trajec-
tory. To generate the output data for our numerical ex-
periments, we randomly perturbed the reference trajec-
tory using independent normal random variables. The
sample points obtained are shown in Figure 1.

Now, suppose that the noisy output measurements take
the following form:

ŷk = αk +

k
∑

j=1

βj , k = 1, . . . , 20, (27)

where αk, k = 1, . . . , 20, and βj , j = 1, . . . , 20, are inde-
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Fig. 1. Reference output trajectory (blue line) and corre-
sponding perturbed sample points (red stars).

pendent random variables.

We assume that αk follows a gamma distribution with
parameters 10 and 10/ȳk, where ȳk is the kth sample
point in Figure 1. Themean, variance, and thirdmoment
of αk are determined by the distribution parameters as
follows:

E{αk} = ȳk, Var{αk} = 1
10 (ȳ

k)2, E{α3
k} = 33

25 (ȳ
k)3.

We also assume that βj = β̄j − E{β̄j}, where β̄j follows
a beta distribution with parameters 2 and 5. The mean,
variance, and third moment of β̄j are

E{β̄j} = 2
7 , Var{β̄j} = 5

196 , E{β̄3
j } = 1

21 .

Thus,

E{βj} = 0, Var{βj} = Var{β̄j} = 5
196 ,

E{β3
j } = E{β̄3

j } − 3E{β̄2
j }E{β̄j}+ 2E{β̄j}

3 = 5
2058 .

Based on the distributions of αk and βj, we have

E{ŷk} = E{αk}+

k
∑

j=1

E{βj} = ȳk, k = 1, . . . , 20.

To solve the estimation problem, we wrote a Fortran
program that combines the optimization code NLPQLP
(Schittkowski (2007)) with the derivative formulae in
Section 5 (the user can choose between the formulae in
Theorems 1-2 and the formulae in Theorems 3-4). The
state and auxiliary systems are solved using the sixth-
order Runge-Kutta method, with the delay/advance val-
ues calculated using Hermite interpolation.

Using our Fortran program, we solved the estimation
problem for γ = 0, 0.01, 0.02, . . . , 1.0. Both the forward

γ τ∗ ζ∗1 ζ∗2

0.0 1.50040 −1.67516 −2.09934

0.1 1.50129 −1.67723 −2.10157

0.2 1.50249 −1.67979 −2.10434

0.3 1.50394 −1.68303 −2.10782

0.4 1.50591 −1.68725 −2.11236

0.5 1.50856 −1.69299 −2.11853

0.6 1.51245 −1.70126 −2.12739

0.7 1.51867 −1.71414 −2.14118

0.8 1.52999 −1.73706 −2.16561

0.9 1.55661 −1.78917 −2.22072

1.0 1.65698 −2.01224 −2.45646

Table 1
Optimal parameter estimates for γ = 0, 0.1, . . . , 1.0.

t
0 2 4 6 8 10

y(
t)

3

4

5

6

7

8

9

10

Fig. 2. Output trajectories corresponding to the optimal pa-
rameter estimates in Table 1. The red crosses are the sample
points {(tk, ȳ

k)}20k=1.

and the backward gradient computation schemes worked
equally well in our computations. The optimal parame-
ter estimates for γ = 0, 0.1, . . . , 1.0 are given in Table 1
and the corresponding output trajectories are shown in
Figure 2. Note that, due to the uncertain nature of the
output measurements, the optimal system trajectories
do not intersect the sample points.

To investigate solution robustness, we generated 100,000
realizations of the output data ŷk, k = 1, . . . , 20. For
each realization, we calculated the least-squares error
corresponding to the optimal parameter estimates for
γ = 0, 0.01, 0.02, . . . , 1.0. Figure 3 shows the mean and
variance of the least-squares error for the 100,000 output
realizations. The tradeoff between error mean and error
variance is clearly apparent. Note that the dashed blue
curve (error variance) is much steeper than the solid red
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Fig. 3. Mean and variance of the least-squares error for
100,000 output realizations generated according to (27).

γ Mean Error Error Variance

0.95 58.08380 447.12879

0.96 57.97462 449.53893

0.97 57.85729 452.91093

0.98 57.73659 457.84531

0.99 57.62714 465.52275

1.00 57.57255 478.54902

Table 2
Mean and variance of the least-squares error for 100,000
realizations generated according to (27).

curve (error mean) near γ = 1 (see also Table 2). For
example, when γ changes from γ = 0.99 to γ = 1.0, the
variance increases from 465.52275 to 478.54902, but the
mean drops only slightly from 57.62714 to 57.57255.This
clearly demonstrates the advantage of our new stochas-
tic formulation: imposing a small penalty on the error
variance increases solution robustness, with negligible
cost to the error mean.

Note that, for γ = 1, the cost function in Problem P is

E{J(τ, ζ1, ζ2)} = E

{ p
∑

k=1

{

y(tk)− ŷk
}2

}

=

p
∑

k=1

{

y(tk)
2 − 2E{ŷk}y(tk) + E{(ŷk)2}

}

=

p
∑

k=1

{

y(tk)
2 − 2E{ŷk}y(tk) + Var{ŷk}+ E{ŷk}2

}

=

p
∑

k=1

{

y(tk)− E{ŷk}
}2

+

p
∑

k=1

Var{ŷk},

where E{ŷk} = ȳk. Since the last term is constant with
respect to τ , ζ1, and ζ2, Problem P for γ = 1 is equiv-
alent to the following deterministic estimation problem:
choose τ , ζ1, and ζ2 to minimize

p
∑

k=1

{

y(tk)− E{ŷk}
}2

=

p
∑

k=1

{

10x2(tk)− E{ŷk}
}2

,

subject to the delay-differential equations (24)-(25) and
the initial conditions (26). This deterministic formula-
tion, in which the output measurements are fixed values
instead of random variables, was proposed in Loxton et
al. (2010) and Chai et al. (2013a). Table 2 shows that
our new stochastic formulation gives more robust re-
sults than the deterministic formulation (which is equiv-
alent to γ = 1). In addition, a side benefit of our new
approach is that the backward gradient computation
scheme in Theorems 3-4 requires solving fewer differen-
tial equations than the corresponding methods in Lox-
ton et al. (2010) and Chai et al. (2013a).

The optimal parameter estimates obtained by our pro-
gram are based on the output distribution specified by
equation (27). We now investigate how these optimal es-
timates performwhen the actual output distribution dif-
fers slightly from the assumed distribution—a common
occurence in practice. Thus, instead of equation (27), we
now suppose that the output distribution is given by

ŷk = ηk +

k
∑

j=1

βj , k = 1, . . . , 20, (28)

where ηk and βj are independent randomvariables.Here,
βj is as defined in (27) and ηk follows a gamma distri-
bution with parameters 10 and 10/(ȳk + ǫ), where ǫ is a
small parameter. The parameter ǫ ensures that ηk differs
slightly from αk in (27). We generated 100,000 realiza-
tions of the output data according to (28) with ǫ = 0.2.
For each realization, we calculated the least-squares es-
timation error corresponding to the optimal solutions
obtained previously for γ = 0, 0.01, . . . , 1.0. The mean
and variance of the least-squares error are shown in Fig-
ure 4. Note that, as expected, the mean error in Figure 4
is higher than the mean error in Figure 3 due to the
discrepancy between the actual output distribution (28)
and the assumed output distribution (27). In the face
of such discrepancies, the benefits of our new stochas-
tic formulation are clearly apparent: since the deviation
in the error mean is much smaller than the deviation in
the error variance, imposing a small penalty on the error
variance hardly changes the errormean, but significantly
improves solution robustness. In particular, the solution
for γ = 1 (which is the same as the solution from the de-
terministic formulation in Loxton et al. (2010) and Chai
et al. (2013a)) performs poorly, yielding more error on
average with much higher variance.
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Fig. 4. Mean and variance of the least-squares error for
100,000 output realizations generated according to (28).

7 Conclusion

This paper has considered a dynamic optimization prob-
lem in which the goal is to choose optimal estimates for
unknown time-delays and system parameters in a time-
delay dynamic model. This dynamic optimization prob-
lem is similar to those formulated in earlier work (see
Loxton et al. (2010) and Chai et al. (2013a, 2013b)), but
with one important difference: the output measurements
are random variables—not fixed constants—to allow for
system noise andmeasurement inaccuracies. In contrast,
the output measurements in the aforementioned refer-
ences are assumed to be exact—clearly an idealistic as-
sumption. Indeed, identical experiments run at different
times are unlikely to yield exactly the same results—
there will usually be some random variation due to sys-
tem disturbances and measurement errors.

The numerical results in Section 6 demonstrate the effec-
tiveness of our new parameter estimation approach.Nev-
ertheless, several interesting research questions remain
unanswered. For example, how does the choice of sample
times influence estimation accuracy, andwhat properties
should the functions f (system dynamics) and g (output
function) satisfy to guarantee high-quality estimates?
The second question is related to the so-called identifi-
ability issue, which has been studied extensively in the
literature (see Lunel (2001), Denis-Vidal, Jauberthie &
Joly-Blanchard (2006), Zheng et al. (2013), and the ref-
erences cited therein). One of the limitations of the new
estimation method proposed in this paper is that it re-
lies on the statistical properties of the output noise. Fu-
ture work will focus on extending this method to the
case where such statistical data is unavailable.
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