
SPATIO-TEMPORAL MULTI-ROBOT ROUTING

A Thesis
Presented to

The Academic Faculty

by

Smriti Chopra

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Smriti Chopra

SPATIO-TEMPORAL MULTI-ROBOT ROUTING

Approved by:

Professor Magnus Egerstedt, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Spiridon Reveliotis
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Fumin Zhang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Tucker Balch
College of Computing
Georgia Institute of Technology

Professor Ayanna Howard
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 19 March 2015

To my mum and dad.

jai mata di.

iii

ACKNOWLEDGEMENTS

First off, I want to thank Magnus Egerstedt for being the best advisor, teacher and mentor

one could ask for. It was at his hands that I learned the ropes of research, and the art of

merging excitement and creativity with technical precision. I loved every harrowing minute

of it, and will forever be grateful to him for letting me barge my way into the GRITS lab.

Which brings me to its members, my lab mates who were a massive support to me

throughout the four years I spent here. I would especially like to thank JP, Yancy, Thi-

agarajan and Sung for being my rocks, patiently suffering through conversations on my

innumerable research “crises”, turning never-ending demo days into rollicking fun, and

holding down the fort at all those times that I messed up. I am also grateful to Matt Rice,

for being by my side (instead of bolting in the opposite direction), and powering through

the research whirlwind that we experienced this past year.

Finally I would like to thank a handful of very special people, without whom I would

not have survived even a month in the US. Suma, for being my family away from home,

Hassan for being my begrudging counsellor away from home, Gaurav Mama and Pooja for

being my trendy guardians away from home, and Mum, Dad, Sakshi, Siddharth, Shravan

and Chutters, for being my everything else.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

SUMMARY . ix

I INTRODUCTION . 1

1.1 Background . 4

1.1.1 Multi-Robot Routing . 4

1.1.2 Assignment Problems . 5

1.1.3 Connectivity Maintenance . 7

1.1.4 Heterogeneity . 8

1.1.5 Distributed Assignment . 9

1.2 Contributions . 11

II SPATIO-TEMPORAL ROUTING - THE BASIC PROBLEM 12

2.1 What Constitutes Feasible Routes . 13

2.2 Finding Optimal Routes . 16

III CONSTRAINED SPATIO-TEMPORAL ROUTING 20

3.1 Capping Robot Velocities . 20

3.1.1 Simulation and Hardware Results (Robot Music Wall 1.0) 23

3.2 Ensuring Connectivity . 27

3.2.1 Feasibility and Minimality . 28

3.2.2 Generating Trajectories . 32

v

3.2.3 Simulation Results (Robot Music Wall 1.0) 38

IV HETEROGENEOUS CAPABILITIES . 43

4.1 Feasible Routes . 44

4.1.1 Existence Results . 45

4.2 Generating Routes . 53

4.3 Simulation Results (Robot Music Wall 2.0) 55

V A DISTRIBUTED FRAMEWORK . 58

5.1 Distributed Assignment . 58

5.1.1 A Review of the Assignment Problem and the Hungarian Method . 59

5.1.2 Distributed Problem Setup . 65

5.1.3 A Distributed Version of the Hungarian Method 66

5.2 Distributed Dynamic Spatio-Temporal Routing 90

5.2.1 Simulation and Hardware Results (Robot Music Wall 3.0) 94

VI CONCLUDING REMARKS . 98

REFERENCES . 100

vi

LIST OF FIGURES

1 Spatio-temporal routing: A musically inspired problem. 2

2 A rendering of the Robot Music Wall concept. 3

3 An example of a feasible set of routes for Unconstrained Routing. 14

4 Robot Music Wall 1.0 (Piano Wall). 23

5 Simulation results for Velocity Constrained Routing. 24

6 A line of Khepera III robots. 25

7 Hardware implementation of Velocity Constrained Routing. 26

8 An example of the Assign sub-algorithm. 35

9 An example of the Connect sub-algorithm. 36

10 An example of the Mid-Config sub-algorithm. 38

11 Simulation results for Connectivity Constrained Routing. 40

12 Deviation of the Trajectories algorithm from the optimal solution. 41

13 Robot Music Wall 2.0: User-interface for Heterogeneous Routing 56

14 Simulation instances of Heterogeneous Routing. 57

15 An example of the Initialization step of the Hungarian Method. 62

16 An example of a two-step iteration of the Hungarian Method. 63

17 An example showing robots during an instance of the Distributed-Hungarian
algorithm. 68

18 An example of the Initialize sub-algorithm. 73

19 An example of a step in the Distributed-Hungarian algorithm, correspond-
ing to the Initialize step of the Hungarian Method. 79

vii

20 An example of a step in the Distributed-Hungarian algorithm, where the
information is not enough to execute a corresponding two-step iteration of
the Hungarian Method. 80

21 An example of a step in the Distributed-Hungarian algorithm, correspond-
ing to a two step iteration of the Hungarian Method. 81

22 Contd. An example of a step in the Distributed-Hungarian algorithm, cor-
responding to a two step iteration of the Hungarian Method. 82

23 Contd. An example of a step in the Distributed-Hungarian algorithm, cor-
responding to a two step iteration of the Hungarian Method. 83

24 Robots executing current routes, while simultaneously solving for future
routes. 91

25 Timing considerations for any changes made to the Score. 92

26 Contd. Timing considerations for any changes made to the Score. 93

27 Robot Music Wall 3.0: User-interface for Distributed Dynamic Routing . . 94

28 Simulation instances of Distributed Dynamic Routing. 96

29 Hardware implementation of Distributed Dynamic Routing. 97

viii

SUMMARY

In this dissertation, we analyze spatio-temporal routing under various constraints

specific to multi-robot applications. Spatio-temporal routing requires multiple robots to

visit spatial locations at specified time instants, while optimizing certain criteria like the to-

tal distance traveled, or the total energy consumed. Such a spatio-temporal concept is intu-

itively demonstrable through music (e.g. a musician routes multiple fingers to play a series

of notes on an instrument at specified time instants). As such, we showcase much of our

work on routing through this medium. Particular to robotic applications, we analyze con-

straints like maximum velocities that the robots cannot exceed, and information-exchange

networks that must remain connected. Furthermore, we consider a notion of heterogeneity

where robots and spatial locations are associated with multiple skills, and a robot can visit

a location only if it has at least one skill in common with the skill set of that location.

To extend the scope of our work, we analyze spatio-temporal routing in the context of a

distributed framework, and a dynamic environment.

ix

CHAPTER I

INTRODUCTION

Dissertation Statement: The objective of the research is spatio-temporal routing under

various constraints specific to multi-robot applications.

Multi-robot routing is a well studied topic in robotics, that requires multiple robots to

visit a set of spatially distributed requests for some purpose (e.g., delivery or acquisition)

with routes that optimize certain criteria (e.g., minimization of total distance traveled, or

energy consumption). However, solving such routing problems, in general, is computation-

ally expensive. Moreover, one can note that many times, applications require that spatial

locations be visited in a synchronized and sequenced manner, thus motivating the need for

spatio-temporal requests (spatial locations that must be visited at specified time instants)

in lieu of purely spatial requests. Such a spatio-temporal construction is especially conve-

nient for applying the framework of assignment problems towards finding solutions, with

the resulting reduction in complexity: a concept that forms the basis for the work presented

in this dissertation.

We consider music as an intuitive medium for demonstrating the spatio-temporal theme

of our work. For instance, consider a person presented with the task of playing a particular

piano piece. The sheet music for such a piece acts as a set of instructions for the person,

providing information on which piano notes need playing at which time instants. However,

the person needs to figure out “how” to play the piece, for example, decide which finger

goes where, or how many fingers should be used. Drawing inspiration from such notions

(see Figure 1), we use spatio-temporal requests as a high level instruction set for multiple

robots, and analyze the ensuing routing problem under different constraints particular to

1

16%

Figure 1: Piano sheet music as high level instructions for a pianist’s fingers, or equivalently,
a series of spatio-temporal requests as a high level instruction set for multiple robots.

multi-robot applications.

As such, we introduce the Robot Music Wall (see Figure 2), a musically instrumented

surface where planar positions correspond to distinct notes of an instrument. By perceiving

a musical composition as a series of spatio-temporal requests, multiple robots with the

ability to traverse the wall can effectively “play” the piece of music by being routed to such

requests, demonstrating the spatio-temporal theme central to this dissertation.

In many applications of multi-robot routing like search and rescue, transportation on

demand, assembly, and surveillance, several practical constraints are in play, that should

be considered in the analysis of problems beforehand. For instance, robots may have con-

straints on their dynamics, or limited sensing/communication abilities that could affect

their ability to accomplish tasks in a collaborative manner, or limited functionalities/skills

required for accomplishing different tasks. Furthermore, the choice of applications and in-

frastructures may dictate the need for employing centralized versus distributed techniques

towards finding solutions. Additionally, the task environments in which the robots operate

may remain static, or dynamically change over time, further influencing the analysis of

2

Figure 2: A rendering of the Robot Music Wall concept.

different situations.

Motivated by these facts, our work incorporates constraints like maximum velocity and

connectivity maintenance into spatio-temporal routing, where in the first case, robots have

a maximum velocity they cannot exceed, while in the second case, robots are range con-

strained and must ensure a connected information exchange network at all times. Moreover,

we inject a notion of heterogeneity in the context of spatio-temporal routing, where each

robot, as well as each request, is associated with one or more skills, and a request can be

serviced by a robot only if the robot has at least one skill in common with the skill set

of that request. In an effort to further generalize spatio-temporal routing in the context of

multi-robot applications, we analyze it under a distributed framework, and explore dynamic

environments where a user is allowed to modify spatio-temporal requests in real-time.

We demonstrate the entirety of our work through simulations and hardware implemen-

tations, centered around the premise of the Robot Music Wall. We conclude this disser-

tation with a graphical user-interface that allows humans to interact with multiple robots

through the creation of different musical compositions.

3

1.1 Background

Multi-robot routing represents an important class of problems in the robotics literature,

with applications in several domains like military, construction, reconnaissance, warehouse

automation, transportation on demand, and planetary exploration. In this survey, we review

existing methods that address such routing problems. Since we consider routing under

a spatio-temporal construction, a considerable body of our work deals with applying the

framework of assignment problems towards finding solutions. Thus, we include in this

section, a brief review of assignment problems, and in particular, certain formulations that

are integrated throughout the fabric of the work presented. Moreover, to provide context for

our work concerning the inclusion of different practical constraints, we review connectivity

maintenance and heterogeneity in multi-robot routing scenarios. Additionally, towards the

end of this dissertation, we analyze assignment problems under a distributed framework.

Thus, we conclude this section with a review of existing literature on the same.

1.1.1 Multi-Robot Routing

In its simplest form, a multi-robot routing problem is specified by a set of robots R =

{r1, r2, ..., rn}, a set of targets, T = {t1, t2, ..., tm}, their locations, and a non-negative cost

function c(i, j), i, j ∈ R ∪ T , which denotes the cost of moving between locations i and j

[45]. The objective of multi-robot routing is to find an allocation of targets to robots and a

path for each robot that visits all targets allocated to it so that a team objective is optimized.

Many combinatorial optimization problems in the field of operations research can be

extended towards finding centralized solutions to multi-robot routing problems. For in-

stance, Bektas [4] provides an extensive review of the Multiple Traveling Salesman Prob-

lem (m-TSP), that consists of determining a set of optimal routes for m salesmen who all

start from and turn back to a home city. Furthermore, he details variations of the m-TSP

concerning multiple depots, variable number of salesmen, and time windows, that can be

4

associated with many real world routing problems arising in the planning of autonomous

mobile robots [8, 72, 77], and unmanned aerial vehicles [62]. Another problem closely

related to multi-robot routing is the well known Vehicle Routing Problem (VRP) [7, 74],

which concerns the design of optimal delivery or collection routes for a fleet of vehicles

from one or many depots to a number of geographically scattered customers with known

demands. The dynamic counterpart of the VRP deals with online arrival of customer de-

mands during the operation [9, 54], while variations like capacitated VRP [60] and VRP

with time windows [70] incorporate practical constraints like capacities and timely deliv-

eries.

In addition to centralized methods, many decentralized approaches that use market-

based mechanisms, in particular, auction-based methods [22, 75], have been developed for

addressing multi robot routing problems. In such methods, the communicated information

consists of bids robots place on various tasks, and coordination is achieved by a process

similar to winner determination in auctions.

Solving such routing problems in general is computationally expensive. In fact, Lagoudakis

et al. [45] show that the multi-robot routing problem under team objectives like the sum of

robot path costs over all robots (total distance traveled), or the maximum robot path cost

over all robots, is NP-hard. Similarly, the m-TSP as well as the the VRP are both proven to

be NP-hard [34, 40]. This drawback regarding the complexity of multi-robot routing is mit-

igated in our work in Chapters 2 and 3.1, through the introduction of temporal constraints.

1.1.2 Assignment Problems

Assignment problems are an integral part of combinatorial optimization, with wide appli-

cability in theory as well as practice [43, 45, 53]. As discussed previously, assignment

problems play a fundamental role throughout the analysis of our work. In general, the term

“assignment problem” (AP) is recognized to have originated from Kuhn’s article [44]. He

5

describes the problem as follows: for a given set of “tasks” and a given set of “agents”,

the objective is to ensure each task is assigned to a different agent, with each agent being

assigned at most one task (a one-to-one assignment), while minimizing the total cost of the

assignment. Over the past few decades, many variations to the assignment problem have

emerged, including problems with different or multiple objectives [27, 33], and problems

that involve one-to-many [2] or many-to-one matching [76]. In an extensive survey, Pentico

[55] enumerates such variations, in conjunction with their applications and methods used

for solving them.

Model with one task per agent: In this section, we review the classic AP, also called

the Linear Sum Assignment Problem (LSAP). The mathematical model for the classic AP

is given as:

min
x

n∑
i=1

n∑
j=1

ci,jxi,j (1)

subject to:

xi,j ∈ {0, 1} (2)
n∑
i=1

xi,j = 1, ∀ j ∈ {1, ..., n} (3)

n∑
j=1

xi,j = 1, ∀ iin{1, ..., n} (4)

where xi,j = 1 if agent i is assigned to task j, 0 if not, and ci,j is the cost of assigning

agent i to task j. Martello [49] provides a survey that enumerates the many algorithms,

both sequential and parallel, that have been developed for solving the LSAP, ranging from

primal-dual combinatorial algorithms to simplex-like methods, cost operation algorithms,

forest algorithms, and relaxation approaches. In our work in Chapters 2, 3.1, 3.2 and 4,

we model different problems and sub-problems as variants of the LSAP, and choose to use

the first polynomial-time primal-dual algorithm developed for solving the LSAP, called the

6

Hungarian Method [44]. Note that the fastest version of the Hungarian Method involving

N stages is O(N3) (see implementation in [46]).

Model with multiple tasks per agent: Another popular variation of the AP is the Gen-

eralized Assignment Problem (GAP) [68] that allows an agent to be assigned to multiple

tasks. A large body of work exists on analyzing the GAP, and its variants involving time

minimization [2], bottleneck constraints [50], and cardinality constraints [13]. The mathe-

matical model for the GAP is given as:

min
x

n∑
i=1

n∑
j=1

ci,jxi,j (5)

subject to:

xi,j ∈ {0, 1} (6)
n∑
i=1

xi,j = 1, ∀ j ∈ {1, ..., n} (7)

n∑
j=1

ai,jxi,j ≤ bi,j, ∀ iin{1, ..., n} (8)

where xi,j = 1 if agent i is assigned to task j, 0 if not, and ci,j is the cost of assigning agent

i to task j, aj,j is the amount of agent i′s capacity used if that agent is assigned to tai j,

and bi is the available capacity of agent i. Our work concerning heterogeneity in Chapter 4

exploits the above mentioned model with multiple tasks per agent.

1.1.3 Connectivity Maintenance

An important aspect of multi-robot coordination concerns connectivity maintenance, where

to ensure that the robots can execute a mission in a collaborative manner, the induced

information exchange network must be sufficiently rich. Note that the information network

may pertain to either sensing or communication capabilities, or both. Though connectivity

constraints add a new level of complexity to the task allocation problem, they bring the

7

multi-robot routing problem closer to reality. For instance, most prior work on multi-robot

routing, implicitly or explicitly, makes the assumption that the robots of the team are able

to communicate at all times independently of their present location, a fact that cannot be

taken for granted in many interesting real-world applications.

In general, connectivity maintenance in multi-robot networks requires techniques for

ensuring connectivity of a range constrained multi-robot network during some task execu-

tion. Maintaining full connectivity between team members does not necessarily imply that

each robot is connected directly with all other robots, but rather that the minimum spanning

tree over all robot locations has no edge longer than the maximum connectivity radius [32].

A popular technique in the robotics literature, that addresses the issue of connectivity,

is the deployment of “relay” robots, that form chain structures to maintain connectivity

[24, 31, 51]. Other methods involve modeling the connectivity constraints as formation

constraints, and employing potential field controllers based on navigation functions, to-

wards motion planing [39, 56]. Basic approaches opportunistically take advantage of net-

work connectivity when available [10], but do not explicitly avoid network splits, while

other methods seek connectivity at particular time instants only [58, 59]. We address the

issue of connectivity under a spatio-temporal construction in Section 3.2, where we con-

struct routes that maintain connectivity for all times, while allowing dynamic assignment

between robots and spatio-temporal requests such that no robots exist solely for the task of

maintaining connectivity links.

1.1.4 Heterogeneity

A number of multi-robot applications require a mixture of robotic capabilities, that is too

extensive to design in a single robot. Moreover, time constraints may require the use of

multiple robots working simultaneously on different aspects of the mission (routing for

instance), to successfully accomplish the objective. As such, “heterogeneity” in robots is

8

a coveted feature, that can be utilized towards task completion. However, heterogeneity

can be characterized through several different metrics. For instance, in [26], robots are

heterogeneous in their ability to traverse the environment in that they differ on the basis of

movement speed and task execution speed, while in [37], heterogeneity is encoded through

different sensing and manipulation techniques. In [57], robots are classified into groups

based on varying sizes of sensor footprints.

A higher layer of classification seen in many heterogeneous robotic applications, is

provided through different multi-robot task allocation models as per the taxonomy in [29].

For instance, in [65, 66] , the model is such that each robot can perform at most a single

task at a given time, and each task requires to be completed by a single robot, while in

[41, 64], the model requires that each task be completed by multiple robots. Methods for

approaching such heterogeneous problem include algorithms based on gossip [26], token

passing [65] and Mixed Integer Programming [41, 61]. Though these methods provide

quality guarantees, they do not consider explicit temporal constraints on the spatial tasks

requiring servicing. In Chapter 4, we explore heterogeneity under such a spatio-temporal

construction. In particular, we characterize heterogeneity in terms of physical abilities or

skills possessed by the robots, and consider the model where each robot can service at most

one request at a given time, and each request can be serviced by exactly one robot.

1.1.5 Distributed Assignment

As discussed before, assignment problems are very popular in the field of distributed con-

trol, and often comprise of finding a one-to-one matching between multiple robots and

tasks, while minimizing some assignment benefit, for instance, the total distance traveled

[38, 69]. The cost for global computation and information in such scenarios can be pro-

hibitively high, creating the need for local solutions, a task often challenging due to limited

communication capabilities, and global knowledge of the robots.

9

Various techniques have been proposed for solving the multi-robot assignment problem

(or multi-robot task allocation (MRTA) problem) in both centralized and distributed set-

tings. Among centralized algorithms [3, 5, 21], the Hungarian Method [44] was the first to

compute an optimal solution in finite time. In [30], the authors propose a distributed ver-

sion of the Hungarian Method. However, they require a coordinator (root) robot, as well as

a predetermined communication network, on each iteration of their algorithm. Moreover,

no convergence guarantees are provided in [30]. Other decentralized techniques involve

consensus based approaches that typically require that robots converge on a consistent situ-

ational awareness before performing the assignment [1, 23, 73]. Though such methods are

robust, they are typically slow to converge, and require the transmission of large amounts

of data.

Distributed methods that solve linear programs, for instance, can also be employed to-

wards solving assignment problems [11, 25], though they are computationally expensive,

especially in comparison to more streamlined algorithms, developed for the purpose of

solving assignment problems. Other popular techniques include auction algorithms that re-

quire robots to bid on tasks, rendering them more or less attractive based on the correspond-

ing prices computed [6, 28]. Auction algorithms, though computationally efficient, usually

require a coordinator or shared memory. In [79], the authors develop an auction algorithm

without such constraints, however with high worst-case convergence bounds. In Section

5.1, we develop our own distributed version of the Hungarian Method, using a connectivity

assumption, where robots communicate locally with adjacent robots via a dynamic con-

nected directed information exchange network, and all robots converge to identical optimal

solutions, without any coordinator or shared memory.

We extend the distributed assignment algorithm to its dynamic counterpart, and in-

corporate it into spatio-temporal routing. In particular, we generate online routes for the

robots by iteratively assigning the robots to positions specified at successive time instants.

10

In essence, such a routing scheme is similar to online multi-robot task allocation (OM-

RTA) [47, 63, 78]. We differ from previous techniques on the basis of the above mentioned

algorithm that we develop for distributed task allocation.

1.2 Contributions

Through this dissertation, we analyze spatio-temporal routing under various constraints

specific to the multi-robot domain. In Chapter 2, we introduce the basic problem of spatio-

temporal routing, and develop an approach embedded in the theory of assignment problems,

towards solving it. In Chapter 3, we incorporate practical constraints like capped robot ve-

locities and network connectivity into the above mentioned basic problem, while in Chapter

4, we enable robots with heterogeneous capabilities. In each of the above mentioned cases,

we provide results on feasibility and the minimum number of robots required, as well as

generate explicit trajectories for the robots to execute. In Chapter 5, we provide an al-

gorithm for solving the assignment problem under a distributed framework, with precise

results on convergence, complexity and message size. Additionally, we extend the algo-

rithm towards dynamic spatio-temporal routing, enabling an autonomous team of robots to

determine their routes online, in a distributed manner, while the spatio-temporal requests

are modified (by a user) in real-time. For each chapter mentioned above, we demonstrate

our results musically, through the concept of the Robot Music Wall. Finally, we provide

some concluding remarks in Chapter 6.

11

CHAPTER II

SPATIO-TEMPORAL ROUTING - THE BASIC PROBLEM

In this chapter, we consider the basic spatio-temporal routing problem, where multiple

robots are required to visit a series of spatial locations at specified time instants (spatio-

temporal requests). In keeping with the musical parallel drawn previously in the Introduc-

tion, we call such a series of spatio-temporal requests, a Score. For convenience, we refer

to spatio-temporal requests as timed positions.

We let T = {t1, t2, ..., tn} denote the set of n discrete time instants over which the

Score is defined, where t1 < ... < tn. Moreover, we let Pi denote the corresponding set of

planar positions that require simultaneous servicing at time ti. Each position in this set is

denoted by Pi,α, where α ∈ {1, ..., |Pi|} (the symbol | · | denotes cardinality), i.e.,

Pi = {Pi,α |α ∈ {1, ..., |Pi|}}, ∀i ∈ {1, ..., n} (9)

We let K be the maximum number of timed positions that require simultaneous servicing

at any time instant in T , given by K = maxi∈{1,...,n} |Pi|.

Definition 1 Let the Score, denoted by Sc, be the set of all timed positions that the robots

must reach. We express such timed positions as (position, time) pairs, i.e.,

Sc = {(Pi,α, ti) | i ∈ {1, ..., n}, α ∈ {1, ..., |Pi|}} (10)

Moreover, for a given set of r robots, denoted byR = {1, ..., r}, we let P0 = {P0,α |α ∈

{1, ..., |P0|}} be the set of their initial positions, defined at time instant t0.

For a given (Sc,R, P0), we are interested in the problem of routing the robots to reach

the timed positions contained in the Score, with the total distance traveled as the optimiza-

tion criterion. We refer to this problem as the Unconstrained Routing Problem (URP)

12

[16, 19]. Note that we want our solution to act at a high enough level of abstraction so

that the dynamics of the robots do not have to be explicitly accounted for. Thus, for con-

venience, we represent each robot p ∈ R as a planar point particle with single integrator

dynamics, given by ẋp = up. For such systems, since minimum distance paths are straight

lines and minimum energy motions have constant velocities, we let robots move between

assigned positions in straight line paths with constant velocities that ensure their timely

arrival.

2.1 What Constitutes Feasible Routes

Since we can interpret the path of any robot as a series of individual assignments between

timed positions assigned to that robot, directed in increasing order of specified time in-

stants, the information contained in the paths of the robots can be encoded in a function

that explicitly describes such individual assignments. We address the feasibility aspects of

the URP through such a notion of individual assignments.

Definition 2 Let the Assignees, denoted by As, be the set containing all timed positions in

the Score specified before the last time instant tn, in addition to all timed initial positions

of the robots, i.e.,

As = {(Pi,α, ti) | i ∈ {0, ..., n− 1}, α ∈ {1, ..., |Pi|}} (11)

For convenience, let I , {0, ..., n − 1} and J , {1, ..., n} be the index sets for i and

j, representing the time instants at which positions are specified in As and Sc respectively.

Also, let Ai , {1, ..., |Pi|}, i ∈ {0, ..., n} be the index set for α and β.

Definition 3 The triple (Sc,R, P0) is feasible if there exists some As′ ⊆ As, such that the

function π : As′ → Sc is a bijection, where π((Pi,α, ti)) = (Pj,β, tj) ∈ Sc ⇒ tj > ti for

all (Pi,α, ti) ∈ As′.

13

(P1,2, t1)

(P1,1, t1)

(P3,1, t3)

1

2
3

R = {1, 2, 3}

(P2,1, t2) (P1,3, t1)

Sc = {(P1,1, t1), (P1,2, t1), (P1,3, t1), (P2,1, t2), (P3,1, t3)}

As = {(P0,1, t0), (P0,2, t0), (P0,3, t0), (P1,1, t1), (P1,2, t1), (P1,3, t1), (P2,1, t2)}
As0 = {(P0,1, t0), (P0,2, t0), (P0,3, t0), (P1,1, t1), (P1,3, t1)}

(P0,1, t0)

(P0,2, t0)

(P0,3, t0)

⇡((P0,1, t0)) = (P1,1, t1)

⇡((P1,1, t1)) = (P3,1, t3)

⇡((P0,2, t0)) = (P1,2, t1)

⇡((P0,3, t0)) = (P1,3, t1)

⇡((P1,3, t1)) = (P2,1, t2)

⇡ : As0 ! Sc

P0 = {P0,1, P0,2, P0,3}

Figure 3: An example of a function π as per Definition 3, for a given feasible triple
(Sc,R, P0) (robots are depicted as circles, and timed positions in the Score as stars.)

Notice that the function π maps between timed positions in the Assignees and the Score,

and ensures that every timed position in the Score is assigned, no two timed positions in the

Assignees are mapped to the same timed position in the Score, and no two timed positions

in the Score are assigned to the same timed position in the Assignees. Moreover, it enforces

directionality within each individual assignment, i.e. it ensures that each timed position in

the Score is assigned to a timed position in the Assignees, specified at some earlier time

instant. We call this the directionality constraint. Figure 3 shows an example of such a

function π. Notice that for each robot, we can construct its corresponding path by applying

π iteratively, starting with the initial position of that robot. However, to ensure the existence

of such a π (i.e. establish feasibility), we must have a minimum number of robots. We

provide this result in the form of the following Lemma:

14

Lemma 1 Given the Score, the minimum number of robots required, r?, to ensure that the

corresponding triple (Sc,R?, P0) is feasible, where R? = {1, ..., r?} is the set of robots ,

and P0 is the set of their initial positions, is given by K (where K is the maximum number

of positions that require simultaneous servicing in the Score).

Proof If r < K, i.e. we have fewer robots than the maximum number of timed positions

requiring simultaneous servicing in the Score, then allK positions cannot be reached simul-

taneously. Consequently, a function π as per Definition 3 cannot exist. For the case r ≥ K,

though intuitively trivial, we proceed to prove the existence of such a π. Note that r ≥ K

implies that |As| ≥ |Sc|. Without loss of generality, assume r = K, and |As| = |Sc|.

We generate a 0 − 1 element cost matrix C = [c(i, α, j, β)] of size |As| × |Sc|, where

the rows and columns in C represent timed positions in the Assignees and the Score re-

spectively, and the element c(i, α, j, β) = 1 ⇐⇒ tj > ti, and 0 otherwise. Note that we

can denote the element c(i, α, j, β) by c(p, q), where p, q ∈ {1, ..., |As|}, and,

p =
i−1∑

θ=0,i>0

|Pθ|+ α (12)

q =

j−1∑
θ=1,j>1

|Pθ|+ β (13)

Now consider a bijective function π : As → Sc, such that π((Pi,α, ti)) = (Pj,β, tj) ⇒

c(i, α, j, β) = c(p, q), (p = q), i.e. π contains individual assignments between all timed

positions in As and Sc that have a corresponding diagonal cost entry in the cost matrix C.

In the remainder of this proof, we will show (through contradiction) that such a function

π satisfies the condition for feasibility as per Definition 3, or in other words, π does not

contain any individual assignment that violates the directionality constraint.

Let us assume there exists an individual assignment in π that violates the directionality

constraint, i.e. there exists a diagonal element c(p, p) = c(i, α, j, β) in C with correspond-

ing cost 0. By construction, this implies that j ≤ i. Immediately, we notice that for i = 0,

there exists no j ∈ J such that j ≤ i. Similarly, for j = n, there exists no i ∈ I such

15

that j ≤ i. As a result, we see that c(p, p) = c(i, α, j, β) = 0 is a contradiction for the

above values of i and j. Hence, we direct our focus on the remaining values of i and j, i.e.

i ∈ {1, ..., n− 1} and j ∈ {1, ..., n− 1}.

Notice that we can rewrite (12) for index p as follows,

p = |P0|+
j−1∑

θ=1,j>1

|Pθ|+
i−1∑

θ=j,i>j

|Pθ|+ α (14)

p = r +

j−1∑
θ=1,j>1

|Pθ|+
i−1∑

θ=j,i>j

|Pθ|+ α (15)

Since p = q, we can equate (15) and (13) to get the following,

r +
i−1∑

θ=j,i>j

|Pθ|+ α = β (16)

Moreover, r = K ⇒ r ≥ β, since 1 ≤ β ≤ |Pj| ≤ K, ∀j ∈ {1, ..., n − 1}, thereby

making (16) a contradiction. Hence, we have shown that there exists no diagonal element

in C with corresponding cost 0, or that π is a bijective function as per Definition 3.

2.2 Finding Optimal Routes

Once we establish feasibility, in that we ensure we have enough robots (r ≥ r?), we can

focus on the problem of finding the paths of the robots. As mentioned previously, we

associate with such paths, the total distance traveled as a cost to be minimized. Thus, for

a given (Sc,R, P0) that is feasible, we would like to find a function π as per Definition 3,

with minimum total distance traveled. We call such a function an optimal assignment, and

denote it by π?.

By defining a mapping l(i, α, j, β), we can formulate the problem of finding such an

optimal assignment π?, as a linear program described as follows:

min
l

∑
i∈I

∑
α∈Ai

n∑
j=i+1

∑
β∈Aj

||Pj,β − Pi,α|| l(i, α, j, β) (17)

16

subject to:

l(i, α, j, β) ∈ {0, 1} (18)

j−1∑
i=0

∑
α∈Ai

l(i, α, j, β) = 1, ∀ j ∈ J , β ∈ Aj (19)

n∑
j=i+1

∑
β∈Aj

l(i, α, j, β) ≤ 1, ∀ i ∈ I, α ∈ Ai (20)

where l(i, α, j, β) represents the individual assignment of (Pi,α, ti) ∈ As to (Pj,β, tj) ∈ Sc,

and is 1 if the assignment is done, and 0 otherwise. The resulting l gives us the correspond-

ing optimal assignment π?, where l(i, α, j, β) = 1 ⇐⇒ π?((Pi,α, ti)) = (Pj,β, tj).

The linear program in Equations (17) - (20) represents the URP, and is a modified

version of the classic Linear Sum Assignment Problem (LSAP) [49]. In particular, the

LSAP concerns the following: given two equal sized sets P and Q with some non-negative

cost function C : (P × Q) → R, the objective is to find a bijection S : P → Q that

minimizes the function
∑

a∈P C(a, S(a)). As and Sc in the URP correspond to P and Q

in the LSAP, and the function π as per Definition 3 corresponds to S. Note that the LSAP

insists on P and Q being equal sized while the URP insists on |As| ≥ |Sc|. Moreover, in

the LSAP, there exist no forbidden individual assignments between P and Q, contrary to

the URP, where individual assignments between As and Sc that violate the directionality

constraint are forbidden. However, we can apply algorithms developed for solving the

LSAP towards solving the URP, by incorporating certain modifications that we discuss

later in this section.

Many algorithms, both sequential and parallel, have been developed for solving the

LSAP (e.g. [49]), ranging from primal-dual combinatorial algorithms to simplex-like meth-

ods, cost operation algorithms, forest algorithms, and relaxation approaches. Although im-

material to the underlying theory, in this paper, we choose to use the first polynomial-time

primal-dual algorithm developed for solving the LSAP, called the Hungarian Method (see

[44]). Note that the fastest version of the Hungarian Method involving N stages is O(N3)

17

(see implementation in [46]).

To use the Hungarian Method towards solving the URP, we generate a cost matrix

C = [c(i, α, j, β)] of size |As| × |Sc|, where the rows and columns in C represent timed

positions in the Assignees and the Score respectively, and the element c(i, α, j, β) equals

the distance between the corresponding timed positions, i.e. ||Pj,β − Pi,α||, (Pi,α, ti) ∈ As

and (Pj,β, tj) ∈ Sc. The Hungarian Method requires a square cost matrix, for which we

introduce (|As| − |Sc|) dummy1 positions as targets (in addition to the timed positions

in the Score). For convenience, we denote the set of such dummy positions by Pn+1 =

{Pn+1,β | β ∈ An+1} where An+1 , {1, 2, ..., (|As| − |Sc|)}. Moreover, we let the cost

associated with reaching these dummy positions be zero. We define Sc′ to be the set con-

taining the Score in addition to the dummy positions, i.e., Sc′ = Sc ∪ {(Pn+1,β, tn+1) | β ∈

An+1}. Forbidden individual assignments are typically dealt with, by associating a pro-

hibitively large cost M with each of them2. We denote this modified cost matrix by

Ĉ = [ĉ(i, α, j, β)], where,

ĉ(i, α, j, β) =



||Pj,β − Pi,α||, i ∈ I, α ∈ Ai,

j ∈ {i+ 1, ..., n}, β ∈ Aj

M, i ∈ I, α ∈ Ai,

j ∈ {1, ..., i}, β ∈ Aj

0, i ∈ I, α ∈ Ai,

j = n+ 1, β ∈ Aj

(21)

The symbol M represents forbidden individual assignments. The Hungarian Method

operates on such a square cost matrix to search for a one-to-one correspondence (bijective

function) between its row and column elements, with a minimum total cost. Since the triple

(Sc,R, P0) is feasible, we know there exists a bijective function as per Definition 3 (e.g.

1The term dummy is standard in the assignment literature, e.g. see [49].
2As per the big-M method [12, 55])

18

the function π as shown in the proof of Lemma 1). Consequently, the Hungarian Method

always finds a bijective function Hr : As → Sc′ with a minimum total cost, which avoids

forbidden individual assignments. Thus, usingHr, we can construct an optimal assignment

Hr|As′ : As′ → Sc, denoted by H?
r , where As′ ⊆ As is the set of timed positions in the

Assignees that are not assigned to dummy positions. By restricting the total number of

robots to be no greater than the total number of timed positions in the Score, i.e., r ≤ |Sc|,

the Hungarian Method finds the optimal paths for the robots, with complexity O(|Sc|3).

19

CHAPTER III

CONSTRAINED SPATIO-TEMPORAL ROUTING

We extend our analysis of the Unconstrained Routing Problem (URP), to its constrained

counterparts, where we consider the following two practical scenarios: first, the robots

have a maximum velocity that they cannot exceed (Section 3.1), and second, the robots

are range constrained and must maintain a connected information exchange network at all

times (Section 3.2).

3.1 Capping Robot Velocities

So far, we assume that robots do not have any constraints on their velocities. However, a

more realistic approach would be to introduce, say, a maximum velocity v̂ that the robots

cannot exceed while driving between assigned timed positions. We refer to the resulting

problem of routing velocity constrained robots to reach the timed positions contained in

the Score, while optimizing the total distance traveled, as the Velocity Constrained Rout-

ing Problem (VCRP) [16]. Similar to the Unconstrained Routing Problem (URP), we

approach feasibility of the VCRP in terms of a function π̂ that describes individual assign-

ments between timed positions in the Score.

Definition 4 The quadruple (Sc,R, P0, v̂) is feasible if there exists some As′ ⊆ As, such

that the function π̂ : As′ → Sc is a bijection, where π̂((Pi,α, ti)) = (Pj,β, tj) ∈ Sc⇒ tj >

ti ∧ ||Pj,β−Pi,α||
tj−ti < v̂ for all (Pi,α, ti) ∈ As′.

Note that for a given Score and a maximum velocity v̂, the minimum number of robots

required, r?, that ensures that the resulting quadruple (Sc,R?, P0, v̂) is feasible, where

20

R? = {1, ..., r?} is the set of robots , and P0 is the set of their initial positions, depends

on the initial positions of the robots. Thus, to remove this dependence, we assume the

following,

Assumption 1 The starting position of every robot is chosen such that it can reach any

timed position in the Score without violating the maximum velocity constraint.

Moreover, from Lemma 1, we know that irrespective of the maximum velocity v̂, we

require at least K robots, i.e. r? ≥ K (where . Thus, for a given (Sc,R, P0, v̂), where

R = {1, 2, ...,K}, we can pose the problem of finding r? as follows:

By defining a 0 − 1 element cost matrix C = [c(i, α, j, β)] of size |As| × |Sc|, where

c(i, α, j, β) = 1 ⇐⇒ (tj > ti) ∧ (
||Pj,β−Pi,α||

tj−ti < v̂), we state the following linear program,

max
l

∑
i∈I

∑
α∈Ai

n∑
j=i+1

∑
β∈Aj

c(i, α, j, β)l(i, α, j, β) (22)

subject to:

l(i, α, j, β) ∈ {0, 1} (23)∑
i∈I

∑
α∈Ai

l(i, α, j, β) = 1, ∀ j ∈ J , β ∈ Aj (24)

∑
j∈J

∑
β∈Aj

l(i, α, j, β) ≤ 1, ∀ i ∈ I, α ∈ Ai (25)

Note that the linear program shown above is another modified version of the Linear Sum

Assignment Problem (LSAP), and can be solved using many techniques mentioned earlier

in Section 2.2, including the Hungarian Method. Consequently, the minimum number of

robots, r? is given by,

r? = K + |{(Pj,β, tj) | c(i, α, j, β) = 0 ∧ l(i, α, j, β) = 1}| (26)

Once feasibility is established, we can apply methods similar to the ones employed for

solving the URP, towards finding routes for the VCRP. In particular, for a given feasible

21

quadruple (Sc,R, P0, v̂), we can find an optimal assignment π̂? (a function π̂ as per Defi-

nition 4, with minimum total distance traveled) by solving the following linear program,

min
L

∑
i∈I

∑
α∈Ai

n∑
j=i+1

∑
β∈Aj

||Pj,β − Pi,α|| l(i, α, j, β) (27)

subject to:

l(i, α, j, β) ∈ {0, 1} (28)
j−1∑
i=0

∑
α∈Ai

l(i, α, j, β) = 1, ∀ j ∈ J , β ∈ Aj (29)

n∑
j=i+1

∑
β∈Aj

l(i, α, j, β) ≤ 1, ∀ i ∈ I, α ∈ Ai (30)

||Pj,β − Pi,α||
tj − ti

< v̂ ⇐⇒ l(i, α, j, β) = 1 (31)

Using a similar approach to before, we solve the VCRP by applying the Hungarian

Method on an associated cost matrix ĈV = [ĉv(i, α, j, β)], where,

ĉv(i, α, j, β) =



||Pj,β − Pi,α||, ||Pj,β−Pi,α||
tj−ti ≤ v̂,

i ∈ I, α ∈ Ai

j ∈ {i+ 1, ..., n}, β ∈ Aj

M, i ∈ I, α ∈ Ai

j ∈ {1, ..., i}, β ∈ Aj

0, i ∈ I, α ∈ Ai

j = n+ 1, β ∈ Aj

M,
||Pj,β−Pi,α||

tj−ti > v̂,

i ∈ I, α ∈ Ai

j ∈ {i+ 1, ..., n}, β ∈ Aj

(32)

Note that we include individual assignments that not only violate the directionality

constraint, but also the maximum velocity constraint, in the set of forbidden individual

assignments. As before, we denote such assignments by M in the cost matrix.

22

Figure 4: The Robot Music Wall 1.0 (Piano Wall) with 36 coordinates (yellow circles)
representing the notes across three octaves of a piano.

3.1.1 Simulation and Hardware Results (Robot Music Wall 1.0)

In this section, we present the first simulated version of the Robot Music Wall, developed in

MATLAB and instrumented to sound like a piano (see Figure 4). We call this wall the Piano

Wall. Our goal was to make multiple robots perform the popular composition “Für Elise” by

Ludwig van Beethoven on this Piano Wall. Note that firstly, all notes in the version of “Für

Elise” we presented to the robots, lay amongst the set of notes used to create the Piano Wall.

Secondly, a pianist was required to hit a maximum of two keys simultaneously throughout

the performance of the piece (K = 2). With this set-up, we created the Score associated

with “Für Elise”, containing timed positions on the wall corresponding to notes in “Für

Elise”, specified at a beat of one second (the smallest time interval between consecutive

timed positions).

As depicted in Figure 5b, we simulated the robots as circles (green) on the Piano Wall.

Additionally, we created 2 base stations at the bottom of the wall (shown as two circles

23

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

20

22

maximum velocity v̂

m
in

im
u
m

n
u
m

b
er

o
f
ro

b
o
ts

r!

(a) A plot of the minimum number of robots (r?) versus the max-
imum velocity (v̂).

(b) Four snapshots of the velocity constrained case: v̂ = 3, r? = 5, r = 5.

Figure 5: Simulation results for Velocity Constrained Routing.

24

Figure 6: A line of Khepera III robots.

(blue)), from where robots could start in conjunction with Assumption 1. In our program,

the instant a robot reached an assigned timed position on the wall, it was encircled by a

light circle (yellow), and the sound of the corresponding piano note was generated. For the

Velocity Constrained Routing Problem (VCRP), we chose different values of the maximum

velocity, v̂, and calculated the corresponding minimum number of robots r? (see Figure 5a).

Then, for different number of robots r ≥ r? (given some v̂), we generated the optimal routes

for every robot (see Figure 5b). These routes were executed by the robots with appropriate

velocities that ensured their timely arrival at assigned positions.

In addition to MATLAB simulations, we conducted hardware implementations to demon-

strate the VCRP. These implementations were conducted in the Georgia Robotics and In-

telligent Systems Laboratory. The indoor facility is equipped with a motion capture system

which yields real time accurate data for all tracked objects. We used Khepera III miniature

robots by K Team as our hardware ground robots (see Figure 6).

By projecting the image of the Piano Wall onto the floor, we were able to demonstrate

the VCRP in the musical manner similar to our MATLAB simulation. Figure 7 depicts

instances of these hardware implementations. In particular, we capped the velocities of the

robots at 0.15m/s, and presented them with a slow version of the Score associated with

“Für Elise” (at a beat of 3 seconds). The minimum number of Khepera robots (5 in this

case), found by solving the corresponding routing problem, was then deployed in order to

25

successfully “play” the melody (see Figures 7a - 7c). By increasing the tempo of the Score

midway (3 times faster), we saw that the minimum number of required robots increased, as

two more robots joined the performance (see Figures 7d - 7f). Note that we implemented

low-level trajectory controllers using results from [52], in order to ensure that the robots

executed their respective paths in a timely manner.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Hardware implementation of Velocity Constrained Routing.
http://www.youtube.com/watch?v=YigAzrFoN3E/

26

3.2 Ensuring Connectivity

Often in multi-robot applications, connectivity among range constrained robots is a chal-

lenging practical concern, where in order to execute a mission in a collaborative manner,

it is required that the induced information exchange network between the robots be suf-

ficiently rich. In this chapter, we analyze the Unconstrained Routing Problem (URP) in

the context of such requirements. In particular, given range constrained robots, we ensure

that the underlying information exchange network induced by the positions of the robots,

remains connected for all times.

Recall that for the set of robots R, we represent each robot as a planar point particle

with single integrator dynamics ẋp(t) = up(t), p ∈ R, t ∈ [t0, tn]. We assume that up

is continuous almost everywhere, and we use the notation xp ∈ Ĉ2[t0, tn] to denote this

fact (xp denotes the differentiable almost everywhere trajectory of robot p over the interval

[t0, tn]). Moreover, we let X(t) denote the set of positions of all robots at time t, i.e.,

X(t) = {xp(t) | p ∈ R}. By defining Cr as the following space,

Cr = Ĉ2[t0, tn]× ...× Ĉ2[t0, tn]︸ ︷︷ ︸
r copies

X ∈ Cr as such, denotes a collection of differentiable almost everywhere trajectories of

the robots over the time interval [t0, tn]. Additionally, we let dp,q(t) denote the Euclidean

distance between robots p and q, i.e., dp,q(t) = ||xp(t)− xq(t)||.

Each robot has a fixed connectivity range1 ∆ ∈ R. In other words, at a given time

t, robot p is connected to all robots that lie within a circle of radius ∆ centered at xp(t).

Since all robots possess the same range ∆, connectivity links between pairs of robots are

bidirectional, i.e. if robot p is connected to robot q, then robot q is connected to robot p as

well. The positions of the robots and the resulting links induce a ∆− disk proximity graph

G(X(t),∆), where the vertex set of G is given by the set R, and distinct vertices p and q

1The connectivity range can be a sensing footprint or a communication (broadcast) radius.

27

share an edge in G if and only if the distance between them (dp,q) is at most equal to ∆,

i.e.,

(p, q) ∈ E(G) ⇐⇒ ∆− dp,q ≥ 0 (33)

where E(G) denotes the edge set of G.

We are interested in the problem of routing such range constrained robots to reach timed

positions in the Score, while ensuring that the underlying proximity graph induced by the

positions of the robots remains connected at all times. Similar to previous cases, we view

the total distance traveled as the optimization criterion. We refer to this problem as the

Connectivity Constrained Routing Problem (CCRP) [17, 19].

3.2.1 Feasibility and Minimality

In this section, we summarize the feasibility aspects of the CCRP, and provide results on

the minimum number of robots required.

Definition 5 Given (Sc, R, P0, ∆), X ∈ Cr is feasible if it satisfies the following condi-

tions,

1. Pi ⊆ X(ti) ∀ i ∈ {0, ..., n}

2. G(X(t),∆) is connected ∀ t ∈ [t0, tn]

The first condition ensures that every timed position in the Score is reached by a robot. The

second condition ensures that the ∆− disk proximity graph induced by the positions of the

robots is connected for all time over the interval [t0, tn].

We let Fr ⊆ Cr denote the set of all feasible sets of trajectories,

Fr = {X |X ∈ Cr is feasible}, (34)

which allows us to state the Feasibility Problem : Given (Sc,∆), the objective is to find the

minimum number of robots, r? such that Fr? 6= ∅ for the corresponding (Sc,R?, P0,∆)

28

quadruple, where R? = {1, ..., r?} is the set of robots and P0 is the set of their initial

positions.

3.2.1.1 Establishing Feasibility:

In this section, we approach the Feasibility Problem by establishing certain conditions that

ensure the existence of a feasible set of trajectories, enumerated in the following Theorem,

Theorem 1 Given (Sc, R, P0, ∆), there exists X ∈ Cr such that,

1. Pi ⊆ X(ti) ∀ i ∈ {0, ..., n}

2. G(X(ti),∆) is connected ∀ t ∈ [t0, tn]

if and only if there exists a set of trajectories X ′ such that X ′ ∈ Fr and X ′(ti) = X(ti) ∀

i ∈ {0, ..., n}.

Proof Assume that there exists X ∈ Cr that satisfies the above conditions (1) and (2).

Notice that both these conditions constrain X at only paricular time instants, i.e. the initial

time instant (t0) and the subsequent Score time instants (t1, ..., tn). In other words, the

conditions constrain sets of robot positions X(ti), i ∈ {0, ..., n}.

Consider a pair of such sets of robot positions, specified at successive time instants,

denoted by say X(ti−1) and X(ti). From condition (2), we see that the corresponding in-

duced graphs G(X(ti−1),∆) and G(X(ti),∆) are connected. For such a pair of connected

graphs, it was shown in [71] that there exist connectivity preserving motions from one con-

figuration to another. In other words, there exists X ′ ∈ Cr such that X ′(ti−1) = X(ti−1)

and X ′(ti) = X(ti), and G(X ′(t),∆) is connected over the interval (ti−1, ti). More-

over, one can see that such a X ′ exists between every pair of successive sets of positions,

thereby proving the existence of a set of piecewise robot trajectories X ′ ∈ Fr, where

X ′(ti) = X(ti) ∀ i ∈ {0, ..., n}.

Conversely, if we assume that there exists X ′(t) ∈ Fr such that X ′(ti) = X(ti) ∀

i ∈ {0, ..., n}, then by definition, X(t) ∈ Cr satisfies conditions (1) and (2).

29

Theorem 1 states that the positions of the robots at particular time instants are sufficient

to determine the existence of a feasible set of trajectories. However, to ensure that the

positions satisfy conditions (1) and (2), we need to first ensure that we have enough robots.

The following equations establish such a requirement for a minimum number of robots,

r < K ⇒ Fr = ∅ (35)

r ≥ K 6⇒ Fr 6= ∅ (36)

Equation (35) states that if the number of robots is less than the maximum number

of positions in the Score, that require to be reached at simultaneously, then there are not

enough robots to ensure that all those positions are occupied simultaneously. In other

words, condition (1) would never be satisfied, and consequently, there would exist no fea-

sible set of trajectories. Equation (36), on the other hand, states that having a minimum of

K number of robots still does not guarantee the existence of a feasible set of trajectories.

For instance, it is entirely possible that, for a given range ∆, the positions requiring simul-

taneous reaching at some time instant in the Score are located so far apart from one another

that K number of robots are just not enough to induce a connected ∆− disk proximity

graph at that time instant. In other words, condition (2) would never be satisfied, resulting

in Fr = ∅.

Thus, we proceed to find the minimum number of robots r? that ensures that conditions

(1) and (2) from Theorem 1 can be met, which in turn would prove the existence of a

feasible set of trajectories. To keep the problem of finding r? independent of the initial

positions of the robots, we make the following assumption,

Assumption 2 The starting position of every robot in R is chosen such that the induced

∆− disk proximity graph G(X(t0),∆) = G(P0,∆) is connected.

Theorem 2 Given a set of positions Pi specified at time ti in the Score, and a connectivity

range ∆, the problem of finding the minimum number of robots, ri, that ensures that every

30

position in Pi is occupied, and the induced ∆− disk proximity graph is connected, is equiv-

alent to the Steiner tree problem with minimum number of Steiner points and bounded

edge length (STP-MSPBEL).

Proof The STP-MSPBEL in its general form (see [48]) is stated as follows,

“Given a set of planar positions P , and a positive constant R, the objective of the STP-

MSPBEL is to find a tree spanning a superset of P such that each edge in the tree has

a length no more than R and the number of points other than those in P , called Steiner

points, is minimized.”

We see that the problem of finding the minimum number of robots at time instant ti is

identical to the STP-MSPBEL, where the position set Pi corresponds to P and the range

∆ corresponds to the positive constant R. The positions of the vertices of the solution tree

denote the positions of the robots, thus ensuring that each position in Pi is occupied, and

the induced ∆− disk proximity graph is connected.

We denote the positions of the robots in the solution tree by Si, and the number of

Steiner Points by si. Note that si + |Pi| = |Si| = ri. Moreover, from Theorem 2, we

get the minimum number of robots required at a particular time instant in the Score, such

that conditions (1) and (2) in Theorem 1 evaluated at that particular time instant, can be

met. However, each time instant in the Score may require a different minimum number of

robots, depending on its corresponding specified position set. Thus, in order to obtain a

global minimum that ensures that both conditions (1) and (2) in Theorem 1 can be met, we

must take the maximum over all time instants, of the minimum number of robots.

Theorem 3 For a given (Sc,∆), the minimum number of robots required, r?, to ensure

that Fr? 6= ∅ for the corresponding (Sc,R?, P0,∆) quadruple, where R? = {1, ..., r?} is

the set of robots and P0 is the set of their initial positions, is given by,

r? = min
r
{Fr 6= ∅} = max{ri|i ∈ {1, ..., n}} (37)

31

Proof Let us assume that at time instant ti, the minimum number of robots required is

indeed the maximum over all time instants in the Score, i.e., ri = r?. Thus, if the total

number of robots r is less than r?, then at least one of the conditions (1) or (2) in Theorem

1 would never be met, thus resulting in Fr = ∅.

Conversely, if the total number of robots r is at least equal to r?, then both conditions

(1) or (2) in Theorem 1 can be met, thereby proving that Fr 6= ∅.

Calculating the minimum number of robots: From Theorem 2, it is clear that solving

the STP-MSPBEL is impertinent to finding r?. However, the STP-MSPBEL is proven to be

NP-hard [48]. Thus, Theorems 2 and 3 provide theoretical results on global optimality. To

calculate r? in practical scenarios, one can use many existing algorithms with varying time

complexities and performance ratios that provide an approximation to the STP-MSPBEL

[14, 15]. For instance, an O(N3) time approximate algorithm with performance ratio of at

most 3, is presented in [15], where N denotes the number of planar positions given in the

STP-MSPBEL. Another example is the approximate algorithm obtained by the minimum

spanning tree [48].

3.2.2 Generating Trajectories

In this section, we go from existence results to the generation of actual feasible trajectories.

To achieve this, one can associate a cost with the trajectories, for example, the total length

traveled. Or more precisely,

Given (Sc,R, P0,∆), where it is assumed that we have enough robots to ensure the

existence of a set of feasible trajectories (r ≥ r?), the objective would be to generate

X ∈ Fr such that the following function is minimized,∑
p∈R

∫ tn

t0

√
ẋ2
p1 + ẋ2

p2 dt (38)

Due to the high dimensionality of the multi-robot configuration space, finding a global

32

solution i.e. a set of minimum length trajectories that are feasible, is typically not an

option. As a result, we relax the requirement for global optimality and instead, propose

the Trajectories algorithm that guarantees convergence to a sub-optimal solution.

3.2.2.1 The Trajectories Algorithm:

To generate trajectories for the CCRP, we revisit certain results regarding the Uncon-

strained Routing Problem (URP) in Chapter 2. Given (Sc,R, P0,∆), the Trajectories al-

gorithm calculates the optimal assignment π? for the corresponding URP (as discussed in

2.2), and consequently, the trajectories of every robot by linearly interpolating between

successive pairs of assigned timed positions in increasing order of specified time instants.

We let Xb ∈ Cr denote the set of such trajectories.

Using ∆, and the positions Xb(ti) for all i ∈ {1, ..., n}, as an initial estimate, the algo-

rithm (inspired by Theorem 1) uses the Connect sub-algorithm to modify these positions in

a manner that ensures that the induced proximity graph at every time instant in the Score

is connected. As a result, conditions (1) and (2) of Theorem 1 are satisfied. Moreover, the

algorithm uses the Assign sub-algorithm to reassign robots from their positions at a par-

ticular time instant to positions at the next (successive) time instant in the Score. Finally,

the algorithm uses the Mid-Config sub-algorithm to find connectivity preserving motions

between sets of such robot positions, specified at successive time instants, thus generating

a set of feasible sub-optimal piecewise robot trajectories. In subsequent paragraphs, we

provide an explanation of each sub-algorithm used in the Trajectories algorithm.

Assign (X(ti−1), Si, X(ti) \Pi): For convenience, let A = X(ti−1) = {a1, ..., a|A|},

B = Si = {b1, ..., b|B|} and C = X(ti) \ Pi = {c1, ..., c|C|}. Note that A, B and C are

three sets of timed positions, where A is specified at ti−1 while B and C are specified at

ti, and |A| ≤ |B| + |C|. Let the cost of assigning a position in A to a position in B ∪ C

equal the distance between the two positions. The idea is to assign every position in A to a

33

Algorithm Trajectories (Sc,R, P0,∆)

1: X ← Xb, where Xb(t0) = P0 {X is initially equal to Xb}
2: for i = 1 to n do {iterating over all time instants in the Score}
3: if G(X(ti),∆) is connected then
4: if G(Xb(ti−1),∆) is not connected then {initial estimates of the robot positions

at ti−1 required modification}
5: H ← Assign (X(ti−1), X(ti), ∅)
6: Using H : X(ti−1) → X(ti), update X(ti) such that the current position of

robot p is given by xp(ti) = H(xp(ti−1)) = xbq(ti), where p, q ∈ R {At ti,
robot p assumes the position originally occupied by robot q}

7: Update X(tj), j ∈ {i + 1, ..., n} such that robot p assumes all positions origi-
nally occupied by robot q, at all future Score time instants, i.e. xp(tj) = xbq(tj)
∀j ∈ {i+ 1, ..., n}

8: end if
9: else {G(X(ti),∆) is not connected}

10: Find Si, i.e. the positions of ri robots at ti, obtained by approximately solving the
STP-MSPBEL [15]

11: if Si 6= Pi then {Pi does not induce a connected proximity graph, i.e. steiner
points are added at ti}

12: H ← Assign (X(ti−1), Si, X(ti) \ Pi) {e.g. Figure 8}
13: Using H : X(ti−1) → Si ∪ X(ti) \ Pi, update X(ti) such that the current

position of robot p is given by xp(ti) = H(xp(ti−1))

14: end if
15: X(ti)← Connect (Si, X(ti) \ Si,∆) {e.g. Figure9}
16: H ← Assign (X(ti−1), X(ti), ∅)
17: Using H : X(ti−1)→ X(ti), update X(ti) such that the current position of robot

p is given by xp(ti) = H(xp(ti−1))

18: end if
19: X(tmid)← Mid-Config (X(ti−1), X(ti),∆), tmid ∈ (ti−1, ti) {e.g. Figure 10}
20: X(t)← linear interpolation between X(ti−1), X(tmid) and X(ti), t ∈ (ti−1, ti)

21: end for
22: return X

34

unique position in B ∪ C, such that all positions in B are assigned, positions in C may or

may not be assigned, and the total cost of assignment is minimized. In essence, the Assign

sub-algorithm solves an unbalanced linear sum assignment problem (see [49]).

By defining B̂ , {b1, ..., b|B|, c1, ..., c|C|} , {b̂1, ..., b̂|B|+|C|}, we can describe the as-

signment problem as a linear program,

min
l

|A|∑
α=1

|B|+|C|∑
β=1

||b̂β − aα|| l(α, β) (39)

subject to:
l(α, β) ∈ {0, 1} (40)

|A|∑
α=1

l(α, β) = 1, ∀β ∈ {1, ..., |B|} (41)

|A|∑
α=1

l(α, β) ≤ 1, ∀β ∈ {|B|+ 1, ..., |B|+ |C|} (42)

|B|+|C|∑
β=1

l(α, β) = 1, ∀α ∈ {1, ..., |A|} (43)

where l(α, β) is 1 if aα ∈ A is assigned to b̂β ∈ B̂, and 0 otherwise.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

ti-1 ti ti-1 ti

Figure 8: Left: Robot positions at ti−1 induce a connected graph, and at ti, a disconnected

graph, Right: Using the Assign sub-algorithm, robots are reassigned to positions at ti,

such that all positions in Si are occupied (Si contains the timed positions at ti (two yellow

circles) and the added steiner point (red circle)).

35

Algorithm Assign (A,B,C)

1: B̂ , {b1, ..., b|B|, c1, ..., c|C|} , {b̂1, ..., b̂|B|+|C|}
2: Find l that solves Equations (63)-(66)

3: Find H : A → B̂ such that l(α, β) = 1 ⇐⇒ H(aα) = b̂β , ∀ α ∈ {1, ..., |A|}, β ∈
{1, ..., |B|+ |C|}

4: return H

Connect (Si, X(ti) \ Si, ∆): For convenience, let A = Si = {a1, ..., a|A|} and

B = X(ti) \ Si = {b1, ..., b|B|}. Note that A and B are two sets of timed positions,

both specified at ti, and the induced graph G(A,∆) is connected, i.e. positions in A form a

connected backbone, while B contains positions that may or may not be connected to this

backbone. The idea is to “grow” this connected backbone by recursively adding to A, up-

dated positions from B such that the updated G(A,∆) becomes connected. The algorithm

returns this connected backbone A.

1

2

3

4

5

ti ti

6

7

1

2

3

4

5

6

7

Figure 9: Left: Robots 2,3,4 and 5 form a connected backbone while robots 1,6 and 7 are

disconnected, Right: Using the Connect sub-algorithm, robots 1,6 and 7 merge with the

connected backbone (circular halos depict the range ∆
2

).

36

Algorithm Connect (A,B,∆)
1: repeat
2: Find α? ∈ {1, ..., |A|}, β? ∈ {1, ..., |B|} such that ||aα? − bβ? || = min (||aα − bβ||)

∀α, β
3: if ||aα? − bβ?|| > ∆ then

4: bβ? ← aα? +
bβ?−aα?
||aα?−bβ? ||

∆

5: end if
6: A← A ∪ {bβ?}
7: B ← B \ {bβ?}
8: until B = ∅
9: return A

Mid-Config (X(ti−1), X(ti), ∆): For convenience, let A = X(ti−1) = {a1, ..., a|A|}

andB = X(ti) = {b1, ..., b|B|}. Note thatA andB are two sets of timed positions, specified

at ti−1 and ti respectively, where |A| = |B|. Moreover, the induced graphs G(A,∆) and

G(B,∆) are both connected. The idea is to find an equal sized set of intermediate planar

positions M = {m1, ...,m|M |}, specified at some time instant tmid ∈ (ti−1, ti), such that

the induced proximity graph G(M,∆) contains the edges of the spanning trees of both

G(A,∆) and G(B,∆) (Notice that G(M,∆) is connected by definition). Consequently,

the set of piecewise linear trajectories formed by linearly interpolating between A, M and

B, is guaranteed to ensure a connected proximity graph for all times t ∈ (ti−1, ti).

Moreover, let the mid points of each unconstrained straight line path between corre-

sponding positions aα and bα, α ∈ {1, ..., |A|} be the so-called target points for corre-

sponding planar positions in M . Let C = {cα | cα = aα+bα
2

, α ∈ {1, ..., |A|}} denote the

set of these target points. The sub-algorithm Mid-Config then solves the following con-

strained optimization problem,

min
M

|A|∑
α=1

||mα − cα|| (44)

such that G(M,∆) contains the edges of the spanning trees of G(A,∆) and G(B,∆).

37

1 2

3

4

ti-1 ti

1 2

3

4

1

2

3

4

ti-1 ti

1

2

3

4

tmid

Figure 10: Left: Robots at time instants ti−1 and ti induce connected graphs, Right: Us-

ing the Mid-Config sub-algorithm, intermediate positions of the robots are found, and the

dashed lines represent the resulting connectivity preserving piecewise linear trajectories

over the interval.

Algorithm Mid-Config (A,B,∆)

1: C , {cα | cα = aα+bα
2

, α ∈ {1, ..., |A|}}
2: Gs(A,∆)← euclidean min span tree of G(A,∆)

3: Gs(B,∆)← euclidean min span tree of G(B,∆)

4: Find M by solving Equation 44 such that G(M,∆) contains the edges of Gs(A,∆)
and Gs(B,∆)

5: return M

3.2.3 Simulation Results (Robot Music Wall 1.0)

Recall the simulated Piano Wall introduced in Section 3.1.1. Similar to the implementation

of the Velocity Constrained Routing Problem (VCRP) discussed in that section, our goal

was to make multiple robots perform the popular composition “Für Elise” by Ludwig van

Beethoven on the Piano Wall. However, in this instance, the robots were given a connec-

tivity range ∆ instead of a maximum velocity v̂, and their trajectories were obtained by

solving the corresponding CCRP.

38

For different values of ∆, we calculated the corresponding minimum number of robots

r? (see Figure 11a). Then, for different number of robots r ≥ r? (given some ∆), we

constructed the routes for every robot, using the Trajectories algorithm (see Figure 11b for

an example). Similar to previous implementations, such routes/paths were executed by the

robots with appropriate velocities to ascertain their on-time arrival at assigned positions.

Computational Complexity: For a given (Sc,R, P0,∆), the Trajectories algorithm ini-

tially solves the Unconstrained Routing Problem (URP) by employing the Hungarian Method,

the complexity of which isO(|Sc|3). Additionally, it computes piecewise linear trajectories

using the various sub-algorithms, by iterating over n time instants, with the complexity of

each iteration beingO(r3). Thus, the overall complexity of the algorithm isO(|Sc|3+nr3).

3.2.3.1 Optimizing Total Length: A Discussion

In this section, we highlight various design characteristics targeted towards optimizing the

total length of robot trajectories. To begin with, the Trajectories algorithm uses optimal po-

sitions of robots, obtained by solving the URP, as initial estimates for finding a sub-optimal

solution to the CCRP. Moreover, the Connect sub-algorithm recursively moves each dis-

connected robot by a minimal distance, in order to merge it with a connected backbone

at a particular time instant in the Score. The Assign sub-algorithm reassigns robots from

their positions at one time instant in the Score to the next, such that the total length of

the corresponding straight line robot trajectories between assigned positions is minimum,

thereby providing a good base for the Mid-Config sub-algorithm. In turn, the Mid-Config

sub-algorithm finds intermediate robot positions that cause a minimum deviation between

the the original straight line trajectories and the resulting piecewise linear ones, while sat-

isfying the edge constraints on the induced proximity graph.

39

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

range ∆

m
in

im
u
m

n
u
m

b
er

o
f
ro

b
o
ts

r?

(a) A plot of the minimum number of robots (r?) versus the range
(∆).

(b) Four snapshots of the connectivity constrained case: ∆ = 4, r? = 4.

Figure 11: Simulation results for Connectivity Constrained Routing.

40

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of robots

Pe
rc

en
ta

ge
 in

cr
ea

se
 in

 th
e

co
st

Figure 12: Average percentage increase in the cost, calculated over 5000 Scores, randomly
generated each time for a different r.

As discussed before, finding an optimal solution to the CCRP is typically not feasible,

since searching the space for all possible coordinated paths for multiple robots requires

a prohibitive amount of computation time and memory (for instance, the general optimal

motion planning problem for multiple robots is P-Space hard [36]). However, in order to

characterize “how” sub-optimal the solution obtained from the Trajectories algorithm is,

we carry out the following experiment:

For a given (Sc,R, P0), we solve the Unconstrained Routing Problem (URP) using

the Hungarian Method (see Section 2.2). Since the solution to the URP provides globally

optimal robot trajectories, we calculate the minimum sensing range ∆free that ensures a

connected proximity graph for all times, given the robot trajectories. Thus, for the quadru-

ple (Sc,R, P0,∆free), these trajectories provide an optimal solution to the corresponding

connectivity constrained version of the problem, i.e. the CCRP. Now, by running the Tra-

jectories algorithm on the same quadruple (Sc,R, P0,∆free), we obtain a sub-optimal so-

lution to the CCRP, that can be compared to the optimal solution computed earlier.

41

Notice that through this approach, the optimal solution to the CCRP is the very same

that is computed by the Trajectories algorithm on line (1), as an initialization step. Con-

sequently, the Trajectories algorithm never executes lines (10) - (17), and thus, the ap-

proximation algorithm that solves the STP-MSPBEL on line (10) does not affect the opti-

mality of the solution. In fact, the main deviation from the optimal solution is caused by

the Mid-Config sub-algorithm, which we characterize through multiple simulation experi-

ments. We acknowledge that this approach is targeting a simpler instance of the CCRP, but

since the generalized problem is computationally intractable to solve, we hope to provide

a benchmark for cases where we can in fact, find the optimal solution, and hence make a

sub-optimality comparison.

In particular, for a fixed number of robots, say r, we randomly generate r number of

initial and final positions from a pre-defined uniform distribution. For such a “one-beat”

Score, we calculate ∆free that allows the Hungarian Method to provide an optimal solution

to the corresponding CCRP. Moreover, we generate the sub-optimal solution through the

Trajectories algorithm, and calculate the percentage increase in the cost, i.e. the total length

traveled, with respect to the optimal solution (see Figure 12). As can be seen, the increase

in cost is small on the average across all cases.

42

CHAPTER IV

HETEROGENEOUS CAPABILITIES

Many a times, missions in multi-robot scenarios require an assortment of robotic capabil-

ities. For instance, robots with different sensing techniques may be required to simulta-

neously execute different aspects of an information gathering mission. Moreover, in large

scale multi-robot applications, it is usually preferable to have cheaper robots with different

individual capabilities, as opposed to expensive robots enabled with all possible capabil-

ities. As such,, we incorporate heterogeneity into the Unconstrained Routing Problem

(URP) discussed in Chapter 2, by associating one or more skills (capabilities) with each

robot, as well as each timed position A robot can reach a timed position only if it has at

least one skill in common with the skill set of that position.

Recall that the Score, denoted by Sc, is the set of all timed positions that must be

reached, where each timed position is expressed as a (position, time) pair (Definition 1).

For convenience, let Sci be the set of timed positions specified at time instant ti ∈ T , i.e.,

Sci = {(Pi,α, ti) |α ∈ {1, ..., |Pi|}} (45)

Consequently, the Score is given by Sc =
n⋃
i=1

Sci.

We let L = {l1, l2..., l|L|} be the set of distinct skills that are required at timed positions

in the Score. Moreover, we let Mpos : Sc→ 2L \ ∅ describe a mapping between timed po-

sitions and skill sets, such that Mpos((Pi,α, ti) ∈ Sc) ⊆ L 6= ∅ gives the skill set associated

with the timed position (Pi,α, ti) ∈ Sc.

Recall thatR = {1, 2, ..., r} denotes the set of r robots, and P0 = {P0,α |α ∈ {1, ..., r}}

denotes the set of their initial positions, defined at some initial time instant t0. Similar to

how every timed position in the Score has an associated skill set, every robot in R has an

43

associated skill set, described through the function Mrbt : R→ 2L \ ∅.

We are interested in the problem of routing these robots to reach the timed positions

contained in the Score, under the condition that a robot can be assigned to a timed position

only if it has a skill in common with the associated skill set of that timed position. We refer

to this problem as the Heterogeneous Routing Problem (HRP) [18].

4.1 Feasible Routes

In this section, we discuss the feasibility aspects of the HRP, i.e. if it is even possible to

execute the Score with a given set of resources. Additionally, we provide an algorithm for

calculating the minimum number of robots required.

Definition 6 The quintuple (Sc,R, L,Mpos,Mrbt) is feasible if there exists a mapping A :

R → 2Sc between robots in R and sets of timed positions in the Score, that satisfies the

following conditions,

⋃
p∈R

A(p) = Sc (46)

A(p) ∩ A(q) = ∅ ∀ p, q ∈ R, p 6= q (47)

(Pi,α, ti), (Pj,β, tj) ∈ A(p)⇒ i 6= j if α 6= β (48)

(Pi,α, ti) ∈ A(p)⇒Mpos((Pi,α, ti)) ∩Mrbt(p) 6= ∅ (49)

Equation (46) states that every timed position in the Score is assigned, while Equation

(47) states that no two robots are assigned the same timed position. Equation (48) states

that a robot is not assigned more than one position at a given time instant, and Equation

(49) states that if a robot is assigned to a timed position, then it must have at least one

skill in common with the associated skill set of that timed position. Note that for such a

mapping, the path of every robot can be determined by its assigned set of timed positions,

traversed in increasing order of specified time instants.

44

4.1.1 Existence Results

For a given (Sc,R, L,Mpos,Mrbt), we would like to characterize the conditions that (R,Mrbt)

must satisfy, such that (Sc,R, L,Mpos,Mrbt) is feasible. In other words, what are the con-

ditions on robots and their respective skill sets, that ensure the existence of a mapping

A : R→ 2Sc as per Definition 6.

We let Sgrp = {s1, s2, ..., s|Sgrp|} denote the set of all distinct skill sets associated with

the robots in R, i.e. Sgrp = Range(Mrbt). Moreover, we let Rgrp = {r1, r2, ..., r|Sgrp|} de-

note the set of identically skilled groups of robots, where rj ∈ Rgrp = |{p ∈ R |Mrbt(p) =

sj}| i.e., rj is the number of robots with skill set sj ∈ Sgrp. The total number of robots,

r =
∑
rj , ∀rj ∈ Rgrp.

Note that (Sgrp, Rgrp), though constructed using (R,Mrbt), does not retain the informa-

tion on individual robots in R and their corresponding skill sets described through Mrbt.

Instead, it simply enumerates the distinct skill sets available for use, and the number of

robots per set. However, not only is the information in (Sgrp, Rgrp) sufficient to character-

ize feasibility, it is also convenient for formulating the optimization problem for finding the

minimum number of robots, as we will see later in the paper. In the following Lemma, we

provide the conditions on the robots and their respective skill sets, that ensure feasibility.

Note that we express these conditions on (Sgrp, Rgrp), constructed using (R,Mrbt).

Lemma 2 Given (Sc,R, L,Mpos,Mrbt), for every time ti ∈ T , there exists a function

Πi : Sgrp → 2Sci such that,⋃
sj∈Sgrp

Πi(sj) = Sci (50)

Πi(sj) ∩Πi(sk) = ∅ ∀ sj , sk ∈ Sgrp, sj 6= sk (51)

sj ∩Mpos((Pi,α, ti)) 6= ∅ ∀(Pi,α, ti) ∈ Πi(sj) (52)

|Πi(sj)| ≤ rj ∈ Rrgp ∀sj ∈ Sgrp (53)

if and only if (Sc,R, L,Mpos,Mrbt) is feasible.

45

Proof Assume that for every time ti ∈ T , there exists a function Πi : Sgrp → 2Sci such

that Equations (50) - (53) are satisfied. Note that Πi is a function that maps each skill

set to one or more timed positions specified at ti. In other words, for skill set sj ∈ Sgrp,

Πi(sj) denotes the timed positions that are assigned robots with skill set sj . From Equation

(52), we see that each timed position contained in Πi(sj) has a skill in common with sj .

Moreover, Equation (53) states that the total number of robots with skill set sj , assigned to

timed positions at ti, given by |Πi(sj)|, does not exceed rj , i.e. total number of available

robots with skill set sj . Equations (50) and (51) further state that every timed position at

ti is assigned to some skill set (or equivalently some robot with that skill set), and no two

skill sets (or robots) are assigned to the same timed position.

Thus, the set of Πis implies that at every time ti ∈ T , each timed position specified

at ti can be assigned a robot in R (where each timed position is assigned to exactly one

robot, each robot is assigned to at most one timed position, and an assignment implies that

the robot has at least one skill in common with the skill set of that timed position). Con-

sequently, we can construct a mapping A : R → 2Sc by combining the above mentioned

robot assignments to timed positions, over all time instants in the Score. Moreover, A sat-

isfies the conditions in Definition 6, further implying that (Sc,R, L,Mpos,Mrbt) is feasible

(Note that for a given set of Πis, the mapping A need not be unique).

Conversely, if we assume that (Sc,R, L,Mpos,Mrbt) is feasible, then there exists a

mapping A : R→ 2Sc as per Definition 6. For such a mapping A, by definition, there exist

Πis that satisfy Equations (50) - (53) (Note that for a given A, the set of Πis is unique).

For convenience, we let Π = {Πi | i ∈ {1, ..., n}} denote the set of Πis that satisfy

Equations (50) - (53) of Lemma 2.

46

4.1.1.1 Minimum Number of Robots

Once we establish feasibility, we can go one step further and optimize the total number of

robots required. More formally, we state the Minimality Problem:

Given a quintuple (Sc,R, L,Mpos,Mrbt) that is feasible, the objective is to find the

minimum number of robots, r?, such that feasibility is ensured, i.e.,

1. there exists some R′ ⊆ R, |R′| = r?, such that (Sc,R′, L,Mpos,Mrbt) is feasible

2. there exists no R? ⊂ R, |R?| < r?, such that (Sc,R?, L,Mpos,Mrbt) is feasible

In the remainder of this section, we pose the Minimality problem of finding r? as a combinatorial-

optimization assignment problem, and provide the MinBots algorithm for solving it.

Assuming (Sc,R, L,Mpos,Mrbt) is feasible, we know from Lemma 2 that at every time

ti ∈ T , there exists a function Πi : Sgrp → 2Sci such that Equations (50) - (53) are satisfied.

Recall that for such a set of Πis, denoted by Π, the number of robots required with skill set

sj ∈ Sgrp, at a particular time ti ∈ T , is given by |Πi(sj)|. We denote this number by rΠ
i,j .

Consequently, the total number of robots required with skill set sj ∈ Sgrp, over all time

instants, is given by maxi∈{1,...,n} r
Π
i,j . We denote this number by rΠ

j . For convenience, we

let RΠ
grp = {rΠ

j | j ∈ J }. Finally, the total number of robots required over all time instants

and all skill sets, denoted by rΠ, is given by,

rΠ =
∑

rΠ
j ∈RΠ

grp

rΠ
j ≤ r (54)

where we reiterate that rΠ is the total number of robots required, given a particular Π.

Consequently, we can express the problem of finding r? as an optimization problem that

searches for a Π, i.e. a set of Πis that satisfy Equations (50) - (53) of Lemma 2, thereby

ensuring feasibility, while minimizing the total number of robots required, rΠ, given by

Equation (54).

To do so, we define a 0 − 1 element cost matrix C = [c(j, i, α)] of size |Sgrp| × |Sc|,

where c(j, i, α) = 1 if and only if the skill set sj ∈ Sgrp contains a skill in common with

47

the skill set of the timed position (Pi,α, ti) ∈ Sc.

For convenience, we let I , {1, ..., n} be the index set for i, representing the time

indices at which positions are specified in Sc, and J , {1, ..., |Sgrp|} be the index set for

j, representing the skill set indices in Sgrp. By defining the mapping l(i, α, j), we state the

optimization problem as follows,

min
l

∑
j∈J

(
max
i∈I

∑
α∈Ai

c(j, i, α) l(j, i, α)

)
(55)

such that,

l(j, i, α) ∈ {0, 1} (56)∑
j∈J

c(j, i, α) l(j, i, α) = 1 ∀i ∈ I, α ∈ Ai (57)

max
i∈I

∑
α∈Ai

c(j, i, α) l(j, i, α) ≤ rj ∀j ∈ J (58)

where l(j, i, α) represents the assignment of a particular skill set sj ∈ Sgrp to a timed

position (Pi,α, ti) ∈ Sc, and is 1 if the assignment is done, and 0 otherwise. Using l, we

can construct Πi : Sgrp → 2Sci at every time ti ∈ T , where c(j, i, α)l(j, i, α) = 1 ⇐⇒

(Pi,α, ti) ∈ Πi(sj). Note that Equations (57) and (58) ensure that Πi satisfies Equations

(50) - (53) of Lemma 2, for every time ti ∈ T , thereby ensuring feasibility, while (55)

minimizes the total number of robots required.

Conversion to a Linear Program: Note that the above mentioned optimization prob-

lem can be converted into the following linear program, and can be solved using one of

many techniques available for solving linear programs (see [67]).

min
l

∑
j∈J

uj

48

such that,

l(j, i, α) ∈ {0, 1}∑
j∈J

c(j, i, α) l(j, i, α) = 1 ∀i ∈ I, α ∈ Ai

uj ≥
∑
α∈Ai

c(j, i, α) l(j, i, α) ∀i ∈ I, j ∈ J

uj ≤ rj ∀j ∈ J

However, in keeping with the theme of assignment problems that runs throughout the

work presented in this dissertation, we provide the MinBots Algorithm in the subsequent

section, to optimize the number of robots required, by iteratively solving modified versions

of the Linear Sum Assignment Problem [55].

The MinBots Algorithm: In this section, we provide a description of the MinBots al-

gorithm (Algorithm), and the ReduceCost sub-algorithm, developed for solving the as-

signment problem described in Equations (55)-(58). The main idea behind the MinBots

algorithm is as follows: For a given (Sc,R, L,Mpos,Mrbt) that is feasible, the algorithm

finds Π1 (set of Πis that satisfy Equations (50) - (53) of Lemma 2). Given Π, the algorithm

calculates the cost to be minimized, i.e. the total number of robots required, rΠ, using

Equation (54). Beyond this point, the objective of the algorithm is to reduce this cost, by

updating individual Πis in a systematic manner, using the ReduceCost sub-algorithm, until

convergence is achieved. We elaborate on this in subsequent paragraphs.

The MinBots algorithm evaluates every skill set in Sgrp, one at at time, as follows: For

sj? ∈ Sgrp2, the MinBots algorithm finds all time instants ti such that rΠ
i,j? = rΠ

j? , i.e. the

total number of robots with skill set sj? , required at ti, is equal to the total number of robots

with skill set sj? , required over all time instants in the Score. We let I ′ = {i ∈ I | rΠ
i,j? =

1Equivalent to finding an l that satisfies Equations (56) to (58), since we can construct Π from such an l.
2The order in which skill sets are chosen is not pertinent to finding the minimum number of robots

required.

49

Algorithm MinBots (Sc,R, L,Mpos,Mrbt)

1: (Sgrp, Rgrp)← (R,Mrbt)

2: I, I ′ ← {1, ..., n}; J ,J ′ ← {1, ..., |Sgrp|}
3: RΠ

grp ← Rgrp {Initialize RΠ
grp to Rgrp, where rΠ

j ∈ R′grp represents the number of
robots required, with skill set sj ∈ Sgrp}

4: For each i ∈ I, find some initial Πi : Sgrp → 2Sci that satisfies Equations (50) - (53)
of Lemma 2 {The set of Πis is denoted by Π}

5: Given Π from line 4, update each rΠ
j ∈ RΠ

grp as follows: rΠ
j ← max

i∈I
rΠ
i,j

6: rΠ ← ∑
j∈J

rΠ
j {rΠ denotes the total number of robots required}

7: rΠ
pr ← 0 {Initialize variable to 0}

8: whileJ ′ 6= ∅ do {There exist unevaluated skill sets in Sgrp, with corresponding indices
in J ′}

9: Choose j? ∈ J ′ {Corresponding skill set sj? ∈ Sgrp is chosen for evaluation}
10: while rΠ

pr 6= rΠ do {Cost has not converged}
11: rΠ

pr ← rΠ

12: I ′ ← {i ∈ I | rΠ
i,j? = rΠ

j?} {I ′ contains all time indices at which the number of
robots required with skill set sj? equals rΠ

j?}
13: while I ′ 6= ∅ do {There exist unevaluated Πis with corresponding time indices in

I ′}
14: Choose i ∈ I ′ {Corresponding Πi is chosen for evaluation}
15: Πi ← ReduceCost (Sci,Mpos, R

Π
grp, Sgrp, j

?)

16: I ′ ← I ′ \ {i} {Πi is updated, thus remove corresponding time index from
evaluation set}

17: end while
18: Update rΠ

j? ∈ RΠ
grp as follows: rΠ

j? ← max
i∈I

rΠ
i,j?

19: Update rΠ as follows: rΠ ←
∑
j∈J

rΠ
j

20: end while
21: J ′ ← J ′ \ {j?} {Skill set sj? ∈ Sgrp is evaluated, thus remove corresponding index

from evaluation set}
22: end while
23: r? ← rΠ{r? is the minimum number of robots}
24: return Π, r?{Π solves Equations (55)-(58)}

50

rΠ
j?} denote the set of indices corresponding to such time instants. Moreover, at each such

time instant, ti, the algorithm calls upon the ReduceCost sub-algorithm, that updates the

corresponding individual function Πi.

ReduceCost (Sci,Mpos, R
Π
grp, Sgrp, j

?): The objective of the sub-algorithm is to find

Π̂i such that rΠ̂
i,j? is minimized, while ensuring that rΠ̂

i,j ≤ rΠ
j for all j ∈ J \ {j?}. In

other words, the ReduceCost sub-algorithm minimizes the total number of robots with

skill set sj? , required at ti, while ensuring that the total number of robots with skill set

sj 6= sj? , required at ti, does not exceed rΠ
j . Note that to maintain feasibility, Π̂i must

satisfy Equations (50) - (53) of Lemma 2.

Thus, for a 0 − 1 element cost matrix C = [c(j, α)] of size |Sgrp| × |Sci|, where

c(j, α) = 1 if and only if the skill set sj ∈ Sgrp contains a skill in common with the skill set

of the timed position (Pi,α, ti) ∈ Sci, the ReduceCost sub-algorithm solves the following

assignment problem3:

min
l

∑
α∈Ai

c(j?, α) l(j?, α) (59)

such that,

l(j, α) ∈ {0, 1} (60)∑
j∈J

c(j, α) l(j, α) = 1 ∀α ∈ Ai (61)

∑
α∈Ai

c(j, α) l(j, α) ≤ rΠ
j ∀j ∈ J (62)

where l(j, α) represents the assignment of a particular skill set sj ∈ Sgrp to a timed position

(Pi,α, ti) ∈ Sci, and is 1 if the assignment is done, and 0 otherwise. Consequently, Π̂i :

Sgrp → 2Sci can be constructed using l, where c(j, α) l(j, α) = 1 ⇐⇒ (Pi,α, ti) ∈ Π̂i(sj).

Note 1: Since the ReduceCost sub-algorithm is applied at all time instants ti ∈ T

where rΠ
i,j? = rΠ

j? , the result is a set of corresponding Π̂is. However, for the remaining time

3The assignment problem is feasible, since Πi satisfies Equations (50) - (53) of Lemma 2.

51

instants, ti, at which the ReduceCost sub-algorithm is not applied, we let Π̂i = Πi, i.e.

Π̂i = Πi ∀i ∈ I \ I ′. For convenience, we let Π̂ = {Π̂i | i ∈ I} denote the set of all Π̂is.

Lemma 3 Given Π, and a skill set sj? ∈ Sgrp, if we apply the ReduceCost sub-algorithm

at all time instants ti where rΠ
i,j? = rΠ

j? , the resulting Π̂ (constructed as per Note 1) satisfies

the following: rΠ̂ ≤ rΠ.

Proof The proof follows directly from Equation (62) which ensures that for all j ∈ J ,

rΠ̂
j ≤ rΠ

j . In other words, the ReduceCost sub-algorithm ensures that for all skill sets

sj ∈ Sgrp, the total number of robots with skill set sj , required over all time instants in the

Score, does not increase. As a consequence, the total number of robots required over all

time instants and all skill sets does not increase, i.e. rΠ̂ ≤ rΠ.

Theorem 4 Given a quintuple (Sc,R, L,Mpos,Mrbt) that is feasible as per Definition 6,

the MinBots algorithm converges to the minimum number of robots required, given by r?,

such that feasibility is ensured, i.e.,

(a) there exists some R′ ⊆ R, |R′| = r?, such that (Sc,R′, L,Mpos,Mrbt) is feasible

(b) there exists no R? ⊂ R, |R?| < r?, such that (Sc,R?, L,Mpos,Mrbt) is feasible

Proof Note that at the termination of the MinBots algorithm, the total number of robots

required, rΠ = r?, is calculated with respect to a particular Π, i.e. a set of Πis that satisfy

Equations (50) - (53) of Lemma 2. Hence, using Lemma 2, we can conclude that there

exists some R′ ⊆ R, |R′| = r?, such that (Sc,R′, L,Mpos,Mrbt) is feasible or in other

words, condition (a) of Theorem 4 is satisfied.

For condition (b) of Theorem 4, we provide the following proof by contradiction: Let

us assume that condition (b) is not satisfied. In other words, r? 6= rmin, where rmin denotes

the minimum number of robots required. Since (Sc,R, L,Mpos,Mrbt) is feasible, we know

52

that r? 6< rmin. Moreover, r? > rmin implies that for the given Π, there exists at least one

skill set sj? ∈ Sgrp such that rΠ
j? , i.e. the total number of robots required with skill set sj? ,

over all time instants in the Score, can be reduced. However, from Lemma 3, we can see

that for a given skill set sj? , the while loop on line (10) always terminates with a reduction

in rΠ
j? and consequently a reduction in the cost, rΠ, whenever a reduction is possible. Since

the MinBots algorithm evaluates all skill sets in Sgrp, it follows that there exists no skill set

sj? ∈ Sgrp such that rΠ
j? can be reduced. In other words, there exists no R? ⊂ R, |R?| < r?,

such that (Sc,R?, L,Mpos,Mrbt) is feasible, i.e. condition (b) of Theorem 4 is satisfied.

Computational Complexity: The ReduceCost sub-algorithm can be solved using the

Hungarian Method, and thus, has a complexity of O((rΠ)3), where rΠ ≤ r. Moreover, for

each skill in Sgrp, the sub-algorithm is called n times, where n is the total number of time

instants in the Score. By bounding the number of available robots per skill set, rj ∈ Rgrp,

to be no more that K4, where K denotes the maximum number of timed positions that must

be reached simultaneously, we provide the following upper bound on the total number of

robots, r =
∑

rj∈Rgrp rj ≤ |Sgrp|K. Thus, the computational complexity of the MinBots

algorithm is given by O(nr3|Sgrp|), where r ≤ |Sgrp|K.

4.2 Generating Routes

Up until this point, we have discussed feasibility and minimality aspects of the routing

problem, in that under what conditions on a given set of resources (robots) is it possible

to execute a Score, and how can we optimize these resources. However, we have not dealt

with methods that translate to actual robotic motion. In this section, we provide one such

method through the PathGen algorithm, that generates explicit paths for the robots, required

to execute a Score.

4This bound has no implications on the calculation of r?.

53

In essence, for a quintuple (Sc,R, L,Mpos,Mrbt) that is feasible, the PathGen algo-

rithm finds a mapping A : R → 2Sc as per Definition 6, by iteratively assigning robots to

timed positions specified at a particular time instant.

Algorithm PathGen (Sc,R, L, P0,Mpos,Mrbt)

1: Define A : R→ 2Sc, and initialize as follows: A(p) = ∅ ∀p ∈ R
2: Define Pcur : R→ R2, where Pcur(p) denotes the planar position that robot p occupies,

and initialize as follows: Pcur(p)← (P0,p) ∀p ∈ R
3: for i = 1 to n do {iterating over all time instants in the Score}
4: H? ← Assign2 (Sci, R, Pcur,Mpos,Mrbt) {Find H? : R′ → Sci, R′ ⊆ R, that

encodes the new positions occupied by all robots in R′}
5: Using H? : R′ → Sci, R′ ⊆ R, update A to include the new positions occupied by

robots in R′, i.e. ∀p ∈ R′, A(p)← A(p) ∪H?(p)

6: Update Pcur, i.e. ∀p ∈ R′, Pcur(p)← Pi,α, where (Pi,α, ti) ∈ H?(p)

7: end for
8: return A

Assign2 (Sci, R, Pcur,Mpos,Mrbt): The main idea behind the Assign sub-algorithm

is to assign robots to timed positions at ti where the cost of assigning a robot to a timed

position is the distance between the robot’s current position and that timed position. Each

timed position is assigned to exactly one robot, each robot is assigned to at most one timed

position, and an assignment is made only if the robot has a skill in common with the skill

set of that timed position.

More formally, the Assign sub-algorithm finds some R′ ⊆ R such that firstly, the re-

stricted function H|R′R′ → Sci is a bijection, where H(p ∈ R) = (Pi,α, ti) ∈ Sci ⇒

Mrbt(p) ∩Mpos((Pi,α, ti)) 6= ∅, and secondly, the total cost of the assignment is minimum.

We let H? denote such a function. Thus, the Assign sub-algorithm essentially solves an

unbalanced linear sum assignment problem (see [21]) described as follows,

min
l

∑
p∈R

∑
α∈Ai

||Pi,α − Pcur(p)|| l(p, α) (63)

54

subject to:

l(p, α) ∈ {0, 1} (64)∑
p∈R

l(p, α) = 1, ∀α ∈ Ai (65)

∑
α∈Ai

l(p, α) ≤ 1, ∀ p ∈ R (66)

l(p, α) = 1⇒Mrbt(p) ∩Mpos((Pi,α, ti)) 6= ∅ (67)

where l(p, α) represents the individual assignment of p ∈ R to (Pi,α, ti) ∈ Sci, and is 1 if

the assignment is done, and 0 otherwise. The resulting l gives us H? : R′ → Sci, where

l(p, α) = 1 ⇐⇒ H?(p ∈ R′) = (Pi,α, ti) ∈ Sci.

By construction, we see that the PathGen algorithm terminates with a mapping A :

R → 2Sc that satisfies Equations (46) - (49) of Definition 6. Moreover, the path of every

robot can be constructed by traversing its assigned set of timed positions in increasing order

of specified time instants.

Computational Complexity: The assignment problem, described in the Assign sub-

algorithm, can be solved using the Hungarian Method, with complexityO(r3) and thus, the

computational complexity of the PathGen algorithm is given by O(nr3), where r ≤ |Sc|.

4.3 Simulation Results (Robot Music Wall 2.0)

In this section, we introduce the second simulated (heterogeneous) version of the Robot

Music Wall, developed in MATLAB and instrumented to include piano, guitar and drum

sounds (see Figure 13). This time around, we chose to demonstrate the Heterogeneous

Routing Problem (HRP) by making multiple robots (each robot could play one or more

instruments) perform an instrumental version of the song “Can You Feel the Love Tonight”

by Elton John (from the movie The Lion King). For the purpose of exhibiting feasibility

and minimality results with clarity and flexibility, we created a graphical user-interface

(GUI) around the Robot Music Wall 2.0, also depicted in Figure 13.

55

Piano: Guitar: Drum:

Sgrp

Rgrp

r r?

R⇧
grp

P1

P2

G2

G1

D1

D2

D3

D4

D5 e.g. 2-d point
representing a
distinct piano
note

P1, P2: 36 distinct piano notes divided into 2 blocks of 18 notes each
G1, G2: 18 distinct guitar notes divided into 2 blocks of 9 notes each
D1 - D5: 5 distinct drums

8 robots at P0

Figure 13: A user-interface developed for the Robot Music Wall 2.0, with coordinates

representing either piano notes, guitar notes or drums. For a user specified choice of

Sgrp = {{p, g}, {g, d}, {p, d}} and Rgrp = {3, 4, 4}, MinBots provides r? = 8, and

RΠ
grp = {3, 3, 2}, while PathGen provides the path of every robot corresponding to RΠ

grp.

Each robot is color indexed to denote the instruments it can play, and is initially positioned

at the boundary of the wall.

We created the heterogeneous Score associated with the Lion King song, and for a user

specified set of resources, i.e. (Sgrp, Rgrp) (enumerating the available skill sets, and the

number of robots per skill set), we calculated the minimum number of robots, r?, required

to execute the Score. Additionally, we calculated a corresponding distribution of robots

per skill set, RΠ
grp (need not be unique), using the MinBots algorithm, and their trajectories,

using the PathGen algorithm. Similar to previous cases, the instant a robot reached an

assigned timed position, it was encircled by a light circle (yellow), and the sound of the

corresponding instrument was generated. Thus, we created a GUI for calculating r? as

a function of user specified available resources, and demonstrated the routing problem

56

through a performance of “Can You Feel the Love Tonight” on the Robot Music Wall 2.0.

Instances of one such simulation are shown in Figure 14.

Piano: Guitar: Drum:

Piano: Guitar: Drum:

Figure 14: Two snapshots of the execution of the song “Can You Feel the Love Tonight”,

being played by eight robots.

57

CHAPTER V

A DISTRIBUTED FRAMEWORK

A frequent requirement in many multi-robot applications, is the need for a distributed

framework, since an infrastructure that supports a centralized authority for large teams of

mobile robots is often, not a feasible option. It is preferable that robots coordinate with one

another to allocate and execute individual tasks, through an efficient, distributed mecha-

nism. Thus, in an effort to extend the scope of our work to further include such multi-robot

scenarios, we consider spatio-temporal routing in the context of a distributed framework

[20].

Since the theory of assignment problems underlies most of our work up until this point,

we analyze the basic Linear Sum Assignment Problem (LSAP) [55] in a distributed setting.

In the light of spatio-temporal multi-robot routing, we perceive the LSAP as simply a “one-

step” assignment problem between robot positions, and timed positions specified at some

time instant ti in the Score. As a natural extension of our work, in which we frequently use

the Hungarian Method [44], we develop a novel algorithm - essentially a distributed version

of the Hungarian Method, for analyzing the LSAP in a distributed setting. Furthermore, we

extend the distributed algorithm towards dynamic spatio-temporal routing, where the Score

changes in real-time and the robots adapt their routes accordingly.

5.1 Distributed Assignment

In this section, we consider the Linear Sum Assignment Problem (LSAP) in a distributed

environment, where the LSAP comprises of finding a one-to-one matching between robots

and spatial locations (targets), while optimizing the total distance traveled. Using a weak

58

connectivity assumption, where robots communicate locally with adjacent robots via a dy-

namic connected directed information exchange network (that can be generalized to jointly

connected networks as well), we propose a distributed version of the Hungarian Method,

and show that all robots converge to identical1 optimal solutions, without any coordina-

tor or shared memory. Moreover, we provide precise results on the number of iterations

required for convergence, and the amount of information communicated.

In the following section, we review the LSAP under a centralized setting, before we

delve into its proposed distributed counterpart.

5.1.1 A Review of the Assignment Problem and the Hungarian Method

We review some key definitions and theorems, used to express the general form of the

LSAP in graph theoretic terms, and to understand the Hungarian Method employed for

solving it.

- Bipartite Graph: A graph G = (V,E), where the vertex set V is decomposed into two

disjoint sets of vertices A and B respectively, such that no two vertices in the same set

are adjacent. In general, we say that the graph G has bipartition (A,B).

- Matching: A set of edges without common vertices.

- Maximum Cardinality Matching: A matching that contains the largest possible number

of edges.

- Vertex Cover: A set of vertices such that each edge is incident on at least one vertex of

the set.

- Minimum Vertex Cover: A vertex cover that contains the smallest possible number of

vertices.

Remark 1 In a bipartite graph, the number of edges in a maximum cardinality matching

equals the number of vertices in a minimum vertex cover (by Konig’s theorem [42]). In

1The assignment problem may have multiple optimal solutions

59

fact, due to this inter-relation between a matching and a vertex cover, algorithms used for

finding a maximum cardinality matching M (e.g. Hopcroft-Karp [35]), can be extended to

finding a corresponding minimum vertex cover Vc ⊂ V .

Using the definitions presented above, we review the formal, graph theoretic interpre-

tation of the LSAP, known as the Minimum Weight Bipartite Matching Problem [55]:

“Given a graph G = (V,E) with bipartition (A,B) and weight function w : E → R,

the objective is to find a maximum cardinality matchingM of minimum cost, where the cost

of matching M is given by c(M) =
∑

e∈M w(e)”.

Without loss of generality, we can assume that G is complete2, i.e. there exists an

edge between every vertex a ∈ A, and every vertex b ∈ B, and balanced3, i.e. |A| =

|B| = |V |/2. Hence, a maximum cardinality matching M is always a perfect matching,

i.e. |M | = |V |/2. Next, we review the dual of the Minimum Weight Bipartite Matching

Problem, stated as follows:

“Given a graph G = (V,E) with bipartition (A,B), a weight function w : E → R,

and a vertex labeling function y : V → R, the objective is to find a feasible labeling of

maximum cost, where a feasible labeling is a choice of labels y, such that w(a, b) ≥ y(a)+

y(b)∀ (a, b) ∈ E, and the cost of the labeling is given by c(y) =
∑

a∈A y(a)+
∑

b∈B y(b)”.

Moreover, given a feasible labeling y, an equality subgraph Gy = (V,Ey) is a sub-

graph of G such that,

Ey = {(a, b) | y(a) + y(b) = w(a, b)} (68)

Now that we have discussed the Minimum Weight Bipartite Matching Problem, as well

as its corresponding dual, we review a key theorem that provides the basis for the Hungarian

Method, the first primal-dual algorithm developed for solving the LSAP. We follow the

2by adding high-weight edges, as per the big-M method [12, 55], if required.
3by adding dummy vertices with associated edge weights 0, if required.

60

theorem with a brief description of the Hungarian Method that will assist us in explaining

our proposed distributed algorithm in later sections of this chapter.

Theorem 5 (Kuhn-Munkres) Given a bipartite graphG = (V,E) with bipartition (A,B),

a weight function w : E → R, and a vertex labeling function y : V → R, let M and y be

feasible (M is a perfect matching and y is a feasible labeling). Then M and y are optimal

if and only if M ⊆ Ey, i.e. each edge in M is also in the set of equality subgraph edges

Ey, given by (68).

Initialization: Given a graph G = (V,E) with bipartition (A,B), and a weight function

w (Figure 29a), the Hungarian Method begins with an arbitrary feasible labeling y (Figure

29b), generates the corresponding equality subgraph edges Ey using (68) (Figure 15c),

finds a maximum cardinality matching My ⊆ Ey, and a corresponding minimum vertex

cover Vcy ⊂ V , with bipartition (Acy , Bcy) as per Remark 1 (Figure 15d). The algorithm

then performs the following two-step iterations repeatedly, until My is a perfect matching:

1. - The algorithm uses Vcy to isolate a set of candidate edges Ecand ⊆ E \ Ey as per

Remark 2, and calculates the following (Figure 16a):

δ = min(a,b)∈Ecandslack(w, y, a, b)

where slack(w, y, a, b) = w((a, b))− (y(a) + y(b))

- Using δ and Vcy , the algorithm updates y as follows (Figure 16b):

y(a) = y(a)− δ, ∀a ∈ Acy

y(b) = y(b) + δ, ∀b ∈ B \Bcy

2. For the updated y, the algorithm finds the corresponding equality subgraph edges Ey

using (68) (Figure 16c), to find a maximum cardinality matching My ⊆ Ey, and a

corresponding minimum vertex cover Vcy ⊂ V as per Remark 1 (Figure 16d).

61

Ini$al'informa$on'

1

2

4

5

1

2

4

5

'3'
6'

2'

4'

5'

3'

3'

5'

1'
6'

2'

A B

4'

7'

'3'

6'

(a) An example of a bipartite graph G = (V,E),
with edge weight function w : E → R.

feasible'labeling'

1

2

4

5

'3'

1

2

4

5

'3'
6'

2'

4'

5'

3'

3'

5'

1'
6'

2'

A B
(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$
4'

7'

6'

(b) Initial feasible vertex labeling function
y : V → R (highlighted in yellow).

1

2

4

5

'3'

1

2

4

5

'3'2'

5'

3'

3'

1' 2'

A B
(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

equality'graph'edges'

(c) For the given y, the corresponding set of equality
subgraph edges Ey .

matching'plus'cover'

1

2

4

5

'3'

1

2

4

5

'3'2'

5'

3'

3'

1'
2'

A B
(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

(d) For the given Ey , a maximum cardinality match-
ing My (red edges), and a corresponding minimum
vertex cover Vcy = (Acy , Bcy) (red vertices).

Figure 15: An example of the Initialization step of the Hungarian Method.

62

1

2

4

5

'3'

1

2

4

5

'3'

A B
(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Candidate'edges'(step'aB1)'

4'

7'

minimum slack edge
� = 4� (1 + 0) = 3

(a) Step 1: For the given minimum vertex cover Vcy ,
the isolated set of candidate edges (green edges).
Using such edges, the minimum slack δ is calcu-
lated.

Candidate'edges'(step'a'B'2)'

1

2

4

5

'3'

1

2

4

5

'3'
6'

2'

4'

5'

3'

3'

5'

1'
6'

2'

A B
(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$
4'

7'

6'

updated
vertex
label

(b) Step 1: The updated feasible vertex labeling
function y (highlighted in yellow), using the min-
imum slack δ.

1

2

4

5

'3'

1

2

4

5

'3'2'

5'

3'

3'

1' 2'

A B
(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$
4'

Equality'graph'with'added'edge(step'
bB'1)'

added edge

(c) Step 2: For the updated y, the corresponding set
of equality subgraph edges Ey (with the new, added
edge highlighted in yellow).

1

2

4

5

'3'

1

2

4

5

'3'2'

5'

3'

3'

1' 2'

A B
(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$
4'

Matching'and'cover'(step'bB'2)'

(d) Step 2: For the updated Ey , a maximum cardi-
nality matching My (red edges), and a correspond-
ing minimum vertex cover Vcy = (Acy , Bcy) (red
vertices).

Figure 16: An example of a two-step iteration of the Hungarian Method.

63

Remark 2 As mentioned above in Step 1, the selection of the candidate edges is done

based on the minimum vertex cover Vcy = (Acy , Bcy). In particular, the set of candidate

edges Ecand represents the edges between vertices in A \ Acy and vertices in B \ Bcy , i.e.

edges between uncovered vertices in A and uncovered vertices in B (see Figure 16a for an

example).

Without delving into details, we provide a quick proof sketch that shows the Hungarian

Method converges to an optimal solution, for reference purposes in later sections of this

chapter (see [55] for details).

Lemma 4 Given G = (V,E) with bipartition (A,B), a weight function w, a feasible

vertex labeling function y, and a corresponding maximal matching My, every two-step

iteration (steps (a) and (b)) of the Hungarian Method results in the following: (i) An up-

dated y that remains feasible. (ii) An increase in the matching size |My|, or no change in

the matching My, but an increase in |Acy | (and corresponding decrease in |Bcy |, such that

|Acy |+ |Bcy | = |My|).4

The above stated Lemma 4 ensures that the size of a matching My increases after a

finite number of two-step iterations (worst-case |V |2). Since the algorithm converges when

My is perfect, i.e. |My| = |R|, Lemma 4 in conjunction with Theorem 5 proves that the

Hungarian Method converges to an optimal solution (perfect matching with minimum cost),

after O(|V |2) two-step iterations. Each two-step iteration requires O(|V |2) time, yielding

a total running time of O(|V |4) (through certain modifications, this running time can be

reduced to O(|V |3)). Now that we have reviewed the LSAP, as well as the Hungarian

Method used for solving it, we proceed to setup the distributed assignment problem central

to this chapter.

4Either |Acy | increases and |Bcy | decreases, or |Bcy | increases and |Acy | decreases, depending on the
particular implementation of the algorithm employed for finding My and Vcy .

64

5.1.2 Distributed Problem Setup

LetR = {1, 2, ..., r} denote a set of r robots, and P = {1, 2, ..., p} denote a set of p targets.

Let P i ⊆ P be the set of targets that robot i ∈ R can be assigned to, with the associated

cost function ci : P i → R. Note that ci(j ∈ P i) represents the distance between robot i’s

location, and target j’s location. Every target in P can be assigned to at least one robot, i.e.

∪i∈RP i = P .

We assume that each robot i ∈ R knows the sets R and P . Moreover, each robot knows

the cost function ci, associated with the subset of targets that it can be assigned to (see

Figure 18a for an example).

Communication network: We model the communication between the robots by a time-

varying directed graph Gc(t) = (R,Ec(t)), where t ∈ R≥0. In such a graph, an edge exists

from robot i to robot j at some time t if and only if robot i transfers information to robot

j at time t. Moreover, for robot i, we let NO(i, t) denote the set of outgoing neighbors,

and NI(i, t) denote the set of the incoming neighbors respectively. Based on the above

discussion, we assume the following:

Assumption 3 For every time instant t ∈ R≥0, the directed graph Gc(t) is strongly con-

nected (there exists a directed path from every robot, to every other robot in Gc(t)) 5.

We are interested in the problem of assigning robots to targets with minimum total cost,

where each robot i ∈ R initially knows (R,P, ci), and can communicate with other robots

only via the time-varying communication graph Gc(t), as per Assumption 3. Note that

we can generate the problem data for the corresponding centralized assignment problem

(Section 5.1.1) as follows:

- Bipartite graph G = (V,E) with bipartition (R,P), where E = {(i, j) | j ∈ P i} ∀i ∈ R

5One can extend Assumption 3 to the case where Gc(t) is jointly connected over some time period, w.l.o.g.

65

- Weight function w : E → R, where w((i, j)) = ci(j), ∀(i, j) ∈ E

As mentioned before, we can modify G to ensure its balanced and complete. For now,

assume |R| = |P | = |V |/2, and include high-weight edges as per the big-M method,

to make G complete. Recall that the optimal solution to such an assignment problem is a

minimum weight perfect matching. However, due to the inherent degeneracy in assignment

problems, there can be multiple minimum weight perfect matchings. LetM denote the set

of such minimum weight perfect matchings. Then, for any M ∈ M, the corresponding

unique optimal cost c? is given by c? = c(M) =
∑

e∈M w(e).

Note that the property of degeneracy in assignment problems can be of particular con-

cern, especially in context to a distributed framework, since all robots must converge not

only to an optimal solution (assignment), but to the same optimal solution. We denote such

a solution by M̂ ∈ M (note that c(M̂) = c?). Thus, we define the distributed version of

the assignment problem as follows:

Distributed Assignment Problem: Given a set of robots R, a set of targets P , and

a communication graph Gc(t) as per Assumption 3. Every robot i ∈ R knows (R,P, ci),

i.e. the sets R and P , and the cost function associated with itself and targets that it can be

assigned to. Then, the distributed assignment problem requires all robots to converge to

identical optimal solutions, M̂ ∈M, that are also optimal to the corresponding centralized

assignment problem.

5.1.3 A Distributed Version of the Hungarian Method

Drawing from the description of the Hungarian Method discussed previously in Section

5.1.1, we propose the Distributed-Hungarian algorithm for solving the Distributed Assign-

ment Problem (stated above). Though we provide a formal proof of convergence later in

this chapter, for the sake of clarity, we emphasize the gist of our algorithm as follows:

66

Similar to the Hungarian Method in the centralized case, the idea behind the Distributed-

Hungarian algorithm is to execute a finite number of unique stages or two-step iterations (1

and 2), required to converge to an optimal solution. However, the execution of these stages

is distributed across the robots. In particular, each robot shares and operates on certain

limited information as opposed to complete information in the centralized case, executing

a stage (two-step iteration) as and when it has enough information to do so. Moreover,

by sharing its updated (evolved) information across the network, another robot is able to

execute a subsequent stage, as and when it has enough information, and so on and so forth.

Every stage is executed at least once, by at least one robot. In the following paragraphs, we

provide a more detailed description of the Distributed-Hungarian algorithm.

All robots begin running their individual copies of the algorithm at some initial time

t0 ∈ R≥0, and continue to run it synchronously, at intervals of Ts seconds (Ts ∈ R>0).

The robots maintain and update a corresponding global iteration-counter α ∈ N (initialized

at 1), that represents the αth iteration of the algorithm, executed synchronously at time

t0 + (α− 1)Ts.

Each robot i ∈ R starts with the initial information (R,P, ci), and creates a bipartite

graph Gi
orig = (V,Ei

orig) with bipartition (R,P), and weight function wiorig : Eorig → R

(see the Initialize sub-algorithm for details, and Figures 18b-18c for an example). More-

over, throughout the execution of the algorithm, robot i shares, updates and operates on a

bipartite graphGi
lean = (V,Ei

lean) with bipartition (R,P), a corresponding weight function

wilean : Ei
lean → R, and a corresponding vertex labeling function yi : V → R (the subscript

lean refers to the sparseness of the graph, with significantly less number of edges than |V |2,

as in the centralized case).

In particular, the graph Gi
lean contains sparse representations of two kinds of edges, one

corresponding to the equality subgraph edges Ei
y (necessary for Step 2 of the Hungarian

Method), and the other corresponding to candidate edges Ei
cand (necessary for Step 1 of the

67

5

2

43

1

(�2 = 3)

(�1 = 5)

(�5 = 2)

(�3 = 5) (�4 = 2)

Figure 17: An example of 5 robots, communicating via a strongly connected directed graph
on some iteration α of the Distributed-Hungarian algorithm, with corresponding progress-
counter values.

Hungarian Method). We denote such disjoint sets of edges by Elean = (Ey, Ecand). More-

over, robot i maintains and updates a so called progress-counter, γi, denoting the cumula-

tive number of completed stages (two-step iterations) of the Hungarian Method, resulting

in its current information Gi
lean, wilean and yi. In other words, γi measures (informally

speaking) robot i’s “progress” towards finding a solution.

On every iteration α of the Distributed-Hungarian algorithm, the following two actions

are performed by all robots:

- (Send) Robot i sends a message msgi, to each of its outgoing neighbors, where msgi =

(Gi
lean, w

i
lean, y

i, γi) (see Figure 18c for an example of an initial message sent by a robot).

- (Receive and Compute) Robot i receives the messages from its incoming neighbors, and

through computations involving the received information, its own message msgi, and its

original information (Gi
orig, w

i
orig), robot i prepares its new message for sending.

As mentioned earlier, a key feature of the Distributed-Hungarian algorithm is that dif-

ferent stages of the Hungarian Method are performed across different robots. Depending

68

on the underlying communication graph (as per Assumption 3), and consequently the infor-

mation that different robots have access to, the robots can progress at different rates from

each other. Thus, on some iteration α of the Distributed-Hungarian algorithm, robots may

have different counter values (see Figure 17).

Every robot extracts specific information from the messages it receives from its incom-

ing neighbors. In particular, robot i only uses information from robots that have the highest

counter value among all received counters (including its own), since their information is

most evolved in terms of the number of completed stages (two-step iterations) of the Hun-

garian Method. Robot i combines such information (see the Parse-Info sub-algorithm for

details) into an updated (Gi
lean, w

i
lean, yi, γi), and continues with the Hungarian Method

(performs a subsequent two-step iteration if possible, where Steps 1 and 2 are described

in detail, in the Update-Label, and the Find-Matching-Cover sub-algorithms respectively).

The caveat is that robot i must have sufficient candidate edges in Ei
cand, for it to be able to

execute Step 2. If this is not the case, robot i gathers whatever pertinent candidate edges it

has (drawing an edge if required, from its original information (Gi
orig, w

i
orig)), and updates

Ei
cand accordingly (explained in detail, in the Get-Ecand sub-algorithms).

Robot i then prepares its new message for sending, at the next synchronized iteration of

the Distributed-Hungarian algorithm. This process is repeated until robot i finds a perfect

matching M i
y on executing Step 2, at which point it repeatedly sends the corresponding

message till some stopping criterion (presented later in this chapter) is met. Figures 19 - 20

depict an example of an instance of the Distributed-Hungarian algorithm, where a robot

does not have enough candidate edges to perform a two-step iteration of the Hungarian

Method, while Figures 21 - 23 depict an example where a robot can, in fact, perform a

two-step iteration of the Hungarian Method.

Remark 3 The Distributed-Hungarian algorithm requires every robot i to repeatedly share

as well as update a sparse graph Gi
lean = (V,Ei

lean), with the edge weight function wilean,

69

and the vertex labeling function yi. The structure of this graph is very important, as it is

contingent to many results presented later in this chapter, regarding (i) the amount of infor-

mation transmitted, (ii) robot i’s convergence to an optimal solution, and (iii) elimination

of degeneracy in the final solution across all robots. Thus, it is important to note that the

edges inGi
lean, i.e. sparse representations of equality subgraph edges and candidate edges,

are initialized in the Initialize sub-algorithm, and updated using the Find-Matching-Cover

sub-algorithm, and the Get-Ecand sub-algorithm respectively.

70

Algorithm Distributed-Hungarian (R,P, ci,Gc)
1: Inputs:

Set of robots R, set of targets P
Robot i’s cost function ci : P i → R
Time-varying communication graph Gc (Assumption 3.)

2: (msgi, Giorig, w
i
orig)← Initialize (R,P, ci){see Figure 18}

3: α← 1 {Initialize iteration-counter α}
4: while ¬ stopping criterion do {See Corollary 3.}
5: (Send)

Robot i sendsmsgi to every outgoing neighbor k ∈ NO(i, t0 +(α−1)Ts), every Ts seconds
6: (Receive and Compute)

I ← ⋃
j∈NI(i,t0+(α−1)Ts)

{msgj} ∪msgi
{I contains messages received by incoming neighbors of robot i at time t0 + (α− 1)Ts}

7: (Gilean, w
i
lean, y

i, γi)← Parse-Info (I)

{Gilean = (V,Eilean), where V = (R,P), and Eilean = (Eiy, E
i
cand)}

8: If γ = −1, go to line 21 {Not ready yet, to enter the computation phase}
9: (Begin Computation)

10: (V i
cy ,M

i, Eiy) ← Find-Matching-Cover (V,Eiy) {For the input graph G = (V,Eiy), V i
cy =

(Ricy , P
i
cy) is a minimum vertex cover, and M i ⊆ Eiy is a maximal matching (see Figures

19d and 21d)}
11: if M i is not perfect then

12: Eicand ← Get-Ecand (Giorig, w
i
orig, y

i, V i
cy , E

i
cand){see Figures 20a - 20c, and 22a -22c}

13: if ∃ j ∈ P \ P icy such that (i, j) ∈ Eicand, ∀i ∈ R \ Ricy then {From every uncovered
robot, there is an edge in Eicand, to an uncovered target (see Figure 22c)}

14: (yi, Eiy)← Update-Label (Gilean, w
i
lean, y

i, V i
cy , E

i
cand) {Step 1, e.g. Figures 22d and

23a}
15: (V i

cy ,M
i, Eiy)← Find-Matching-Cover (V,Eiy) {Step 2, e.g. Figure 23b}

16: γi ← γi + 1 {Update the progress-counter}
17: Eicand ← Get-Ecand (Giorig, w

i
orig, y, Vcy , ∅){see Figure 23c}

18: end if
19: end if
20: For the (possibly) updated set of edges Eilean = (Eiy, E

i
cand), update the corresponding

weight function wilean : Eilean → R
21: msgi ← (Gilean, w

i
lean, y

i, γi){see Figures 20d and 23d}
22: α← α+ 1 {End of iteration α; Increment the iteration-counter}
23: end while

71

In subsequent paragraphs, we provide an overview of each sub-algorithm used in the

Distributed-Hungarian algorithm.

Initialize (R,P, ci): Given robot i’s initial information (R,P, ci), the Initialize sub-

algorithm generates a bipartite graph Gi
orig with weight function wiorig, and an initial sparse

graph Gi
lean, with weight function wilean and vertex labeling function yi (see Figure 18 for

an example). Moreover, the sub-algorithm sets robot i’s progress-counter to −1.

Sub-algorithm Initialize (R,P, ci)

1: Inputs:
Set of robots R, set of targets P
Robot i’s cost function ci : P i → R

2: Gi
orig ← (V,Ei

orig), where Ei
orig ← {(i, j) | j ∈ P} {Bipartite graph, with bipartition

(R,P)}

3: wiorig((i, j) ∈ Ei
orig)←

{
ci(j) ∀j ∈ P i

M ∀j ∈ P \ P i

{Weight function wiorig : Ei
orig → R, with M denoting the cost to targets that cannot

be assigned to robot i}
4: yi(v ∈ V)← 0, ∀v ∈ V {Vertex labeling function yi : V → R, initialized to 0}
5: Ei

y ← {(i, j?)}, j? ∈ P , s. t. wiorig(i, j
?) = minj∈P w

i
orig(i, j) {Ei

y represents the
edge between robot i and the target with minimum cost associated with robot i (We
denote the target by j?)}

6: Ei
cand ← ∅

7: Gi
lean ← (V,Ei

lean), where Ei
lean ← (Ei

y, E
i
cand)

8: wilean ← wiorig|Eilean⊆Eiorig
9: γi ← −1 {Initialize progress-counter}

10: msgi ← (Gi
lean, w

i
lean, y

i, γi)

11: return msgi, Gi
orig, w

i
orig

Parse-Info (I): Given I, containing messages from a subset of robots, say R′ ⊆ R,

where a robot i’s message is the following: msgi = (Gi
lean, w

i
lean, y

i, γi), the Parse-Info

sub-algorithm parses and combines the messages into a resultant sparse graph Glean =

(V,Elean), with weight function wlean and vertex labeling y, and a progress-counter value

γ. The gist of this sub-algorithm is to utilize the information of only those robots that

72

1

2

4

5

%3%

1

2

4

5

%3%

R P

i =

6%

2%

4%

R = {1, 2, 3, 4, 5}, i 2 R = 3

P = {1, 2, 3, 4, 5}
P 3 = {1, 3, 5}
c3 : P 3 ! R
c3(1) = 6

c3(3) = 2

c3(5) = 4

(a) Robot 3’s original information, (R,P, c3).

1

2

4

5

%3%

1

2

4

5

%3%

R P

i =

6%

2%

4%

M

M

G3
orig = (V, E3

orig)

V = (R, P)

E3
orig = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)}

w3
orig : E3 ! R

w3
orig((3, 1)) = 6

w3
orig((3, 2)) = M

w3
orig((3, 3)) = 2

w3
orig((3, 4)) = M

w3
orig((3, 5)) = 4

(b) Robot 3’s original information in the form of the graph G3
orig, and edge

weight function w3
orig.

1

2

4

5

%3%

1

2

4

5

%3%

R P

2%

(0)$

(0)$

(0)$

(0)$

(0)$

(0)$

(0)$

(0)$

(0)$

(0)$

i =

G3
lean = (V, E3

lean)

V = (R, P)

E3
lean = (E3

y , E3
cand)

E3
y = {(3, 3)}

E3
cand = ;

w3
lean : E3

lean ! R
w3

lean((3, 3) 2 E3
y) = 2

y3 : V ! R
y3(v 2 V) = 0 8v 2 V

�3 = �1

(c) Robot 3’s initial message, msg3 = (G3
lean, w

3
lean, y

3, γ3).

Figure 18: For the example in Figure 29a, robot 3’s initial information, and the corre-
sponding output of the Initialize sub-algorithm, comprising of the bipartite graph G3

orig, the
corresponding weight function w3

orig and the outgoing message msg3.

73

have the maximum progress-counter value amongst all counter values. In particular the

following two cases can occur:

1. The maximum progress-counter value amongst all received counter values is −1:

Such a case implies that every robot’s message in I is its initial message (generated

by the Initialize sub-algorithm). In this case, the Parse-Info sub-algorithm combines

the edges Ei
y, of every robot i ∈ R′, into a resultant graph Glean = (V,Elean),

with corresponding weight function wlean, where Elean = (Ey, Ecand), and Ey =⋃
i∈R′ Ei

y.

- Special Case: If Ey contains an edge from every robot i ∈ R, then the Parse-

Info sub-algorithm computes an initial vertex labeling function y as per line 6,

and updates the progress-counter value from -1 to 0, denoting that the information

(Glean, wlean, y, γ) is ready for computation (line 9 of the Distributed-Hungarian

algorithm).

2. The maximum progress-counter value amongst all received counter values is some

value k ∈ N0: In such a case, the Parse-Info sub-algorithm isolates a set of robots

Rlead ⊆ R′, with corresponding progress-counter values equal to k, and for any one

robot i ∈ Rlead, the sub-algorithm sets y = yi and Ey = Ei
y. (We prove later in

this chapter, that if two robots have identical counter values, then they have identical

vertex labeling functions and equality subgraph edges, and hence it does not mat-

ter which robot is chosen to set y and Ey). However, the sub-algorithm combines

the candidate edges of every robot i ∈ Rlead, i.e. Ecand =
⋃
i∈Rlead E

i
cand, and up-

dates the weight function wlean, for the corresponding edge set Elean = (Ey, Ecand).

Moreover, the sub-algorithm updates the counter value γ to k.

74

Sub-algorithm Parse-Info (I)
1: Inputs:
I containing messages from a subset of robots, say R′ ⊆ R, where a robot i’s message
is the following: msgi = (Gi

lean, w
i
lean, y

i, γi)

2: γ ← maxi∈R′ γi{progress-counter with the highest value}
3: if γ = −1 then
4: Ey ←

⋃
i∈R′ Ei

y{Collect initial edges from every robot in R′}
5: if |Ey| = |R| then {The resulting (combined) set of edges Ey contains the edge Ei

y

from every robots initial outgoing message msgi.}
6: Generate the initial vertex labeling function y : V → R as follows:

y(i) ← wklean((i, j) ∈ Ek
y), ∀i ∈ R, where robot k ∈ R′ is a robot that contains

the edge (i, j) in its set of sent edges

y(j)← 0, ∀j ∈ P
7: γ ← 0 {Set the progress-counter γ to 0, signifying that the received information

is complete and ready for the computation phase}
8: end if
9: else

10: Rlead ← {i | γi = γ} {Subset of robots with counters corresponding to the highest
value}

11: Choose a robot i ∈ Rlead,
y ← yi, Ey ← Ei

y {All robots in Rlead have identical vertex labeling functions and
equality subgraph edges (proved later in this chapter)}

12: end if
13: Ecand ←

⋃
i∈Rlead E

i
cand {Collect candidate edges from every robot in Rlead}

14: Glean ← (V,Elean), where Elean ← (Ey, Ecand)

15: wlean((i, j) ∈ Elean) ← wklean((i, j) ∈ Ek
lean), ∀(i, j) ∈ Elean, where robot k ∈ Rlead

is a robot that contains the edge (i, j) in its set of sent edges
16: return Glean, wlean, y, γ

75

Find-Matching-Cover (V,Ey): Given a bipartite graph Gy = (V,Ey), with biparti-

tion (R,P), the Find-Matching-Cover sub-algorithm finds a maximum cardinality match-

ing My, and a corresponding minimum vertex cover Vcy = (Rcy , Pcy), as per the Initializa-

tion and Step 2 of the Hungarian Method (see Figures 19d, 21d, and 23b for examples).

As mentioned in Remark 3, an important aspect of the Find-Matching-Cover sub-

algorithm is that it returns a sparse representation of the inputted edges Ey, denoted by

E ′y ⊆ Ey. In particular, E ′y satisfies the following:

1. |E ′y| = |Rcy |+ |V |/2

2. For the bipartite graphG′ = (V,E ′y), the Find-Matching-Cover sub-algorithm returns

a maximum matching M ′
y, and minimum vertex cover V ′cy , identical to the original

matching and cover, i.e. M ′
y = My, and V ′cy = Vcy .

Sub-algorithm Find-Matching-Cover (V,Ey)

1: Inputs:
Bipartite graph Gy = (V,Ey), with bipartition (R,P), where for each robot i ∈ R,
there exists at least one target j ∈ P such that (i, j) ∈ Ey

2: M ←maximal matching given Gy {Using e.g. Hopcroft-Karp [35]}
3: Et, E

′
y ← ∅

4: for every unmatched target j ∈ P do
5: Et ← Et ∪ {edges of the alternating tree with root j} .
6: end for
7: Rcy ← {i ∈ R | (i, j) ∈ Et}
8: Pcy ← {j ∈ P | (i, j) ∈M \ Et}
9: for every i ∈ Rcy do {From every robot, choose an edge in Et that is not in M}

10: Choose some target j ∈ P such that (i, j) ∈ Et \M
11: E ′y ← E ′y ∪ {(i, j)}
12: end for
13: E ′y ← E ′y ∪M
14: for every unmatched robot i ∈ R do
15: Choose some target j ∈ P such that (i, j) ∈ Ey
16: E ′y ← E ′y ∪ {(i, j)}
17: end for
18: return Vcy ← (Rcy , Pcy),M,E ′y

76

Get-Ecand (Gi
orig, w

i
orig, y, Vcy , Ecand): Given robot i’s original information, in the

form of a bipartite graph Gi
orig = (V,Ei

orig), with bipartition (R,P), a corresponding

weight function wiorig, a vertex labeling function y and a corresponding minimum vertex

cover Vcy = (Rcy , Pcy), the Get-Ecand sub-algorithm isolates a set of candidate edges, as

per Remark 1, and chooses exactly one edge with minimum slack (see line 4). Such an edge

is robot i’s contribution to the sparse set of inputted candidate edges Ecand (see Figures 20a

- 20c, 22a -22c, and 23c for examples).

Sub-algorithm Get-Ecand (Gi
orig, w

i
orig, y, Vcy , Ecand)

1: Inputs:
Robot i’s initial information: bipartite graphGi

orig = (V,Ei
orig) with bipartition (R,P),

and weight function wiorig
Vertex labeling y
Minimum vertex cover Vcy = (Rcy , Pcy)
Bipartite graph G = (V,Ecand) containing candidate edges

2: if i ∈ R \ Rcy then {Robot i is uncovered, and can thus, contribute a candidate edge
using its original information}

3: δi = minj∈P\Pcy worig((i, j))− (y(i) + y(j))

4: Ecand ← Ecand ∪ {(i, j?)}, s.t. worig((i, j?))− (y(i) + y(j?)) = δi, j? ∈ P \ Pcy
5: end if
6: return Ecand

Update-Label (Glean, wlean, y, Vcy , Ecand): Given a bipartite graphGlean = (V,Elean),

where V = (R,P), and Elean = (Ey, Ecand), a weight function wlean, a vertex labeling y,

and minimum vertex cover Vcy , the Update-Label sub-algorithm updates y as per Step 1 of

the Hungarian Method (see Figures 22d and 23a for examples).

Lemma 5 For a robot i ∈ R, the number of edges in its sparse graph Gi
lean = (V,Ei

lean),

included in its message msgi, is at most |V | − 1.

Proof Recall that Gi
lean = (V,Ei

lean) is a bipartite graph, where V = (R,P), and Ei
lean =

(Ei
y, E

i
cand). SinceEi

y is constantly updated using the Find-Matching-Cover sub-algorithm,

77

Sub-algorithm Update-Label (Glean, wlean, y, Vcy , Ecand)

1: Inputs:
Bipartite graph Glean = (V,Elean), where V = (R,P), and Elean = (Ey, Ecand)
Weight function wlean
Vertex labeling y
Minimum vertex cover Vcy = (Rcy , Pcy)

2: δ ← min(i,j)∈Ecand wlean((i, j))− (y(i) + y(j))

3: Update the cover y as follows,
y(i)← y(i)− δ, ∀i ∈ Rcy

y(j)← y(j) + δ, ∀j ∈ P cy

4: Ey ← equality subgraph edges, given (Glean, wlean) and the updated y {Using equation
(68); At least one edge from Ecand is included in Ey}

5: return y, Ey

(that also generates a maximal matching M i
y, and a corresponding minimum vertex cover

V i
cy = (Ri

cy , P
i
cy)), it satisfies the following: |Ei

y| = |Ri
cy | + |V |/2 (see point (1) in the

explanation of the Find-Matching-Cover sub-algorithm). Moreover, from the Get-Ecand

sub-algorithm, we know that Ei
cand is determined based on the same vertex cover V i

cy .

Moreover, for each uncovered robot, Ei
cand contains exactly one weighted edge from that

robot to some uncovered target, if such an edge exists. Thus, |Ei
cand| < |R \ Ri

cy | =

|V |/2−|Ri
cy | (if |Ei

cand| = |R \Ri
cy |, then robot i has sufficient candidate edges to perform

a two-step iteration of the Hungarian Method, i.e., robot i will only send information that it

cannot update any further). Thus, |Ei
lean| = |Ei

y|+ |Ei
cand| < |Ri

cy |+ |V |/2+ |V |/2−|Ri
cy |,

or |Ei
lean| ≤ |V | − 1.

78

Robot%2’s%Ini,al%informa,on%

1

2

4

5

1

2

4

5

%3%

3%

3%

7%

%3%

i =

M

M

R P

(a) Robot 2’s original information in the form of
the graph G2

orig, and edge weight function w2
orig.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Ini,al%equality%graph%edges%+%labeling%

i =

R P

(b) Robot 2’s received and parsed information
G2

lean = (V,E2
lean), where E2

lean contains the
equality sub-graph edges E2

y (black edges) and the
candidate edges E2

cand (green edges, none in this
case), the corresponding weight function w2

lean,
the vertex labeling function y2, and the progress-
counter γ2. At this point, γ2 = 0 and Robot 2 is
ready to begin the computation phase

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Ini,al%equality%graph%edges%+%labeling%

i =

R P

(c) The isolated set of equality sub-graph edgesE2
y

from the received and parsed information.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Ini,al%matching%+%cover%

i =

R P

(d) For the given E2
y , a maximum cardinality

matching M2
y (red edges), and a corresponding

minimum vertex cover V 2
cy = (A2

cy , B
2
cy) (red ver-

tices).

Figure 19: For the centralized example in Figure 15, an example of an instance of the
Distributed-Hungarian algorithm, where Robot 2 performs a similar Initialization step.

79

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Candidate%edge%

i = 7%

Robot 2’s minimum slack edge
�2 = 7� (3 + 0) = 4

R P

(a) For the given minimum vertex cover V 2
cy ,

Robot 2’s set of candidate edges (green edges,
only one in this case) using its original information
G2

orig, and w2
orig (Figure 19a). Exactly one edge

(with corresponding minimum slack δ2) is chosen
for inclusion in E2

cand.

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Candidate%edge%received%

i =

R P

(b) The isolated set of candidate edges E2
cand

(green edges, none in this case) from the received
and parsed information (Figure 19b).

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Candidate%edge%total%

i = 7%

R P

(c) The updated set of candidate edges E2
cand

(green edges), combining the edges from Figures
20a and 20b. As can be seen, the edges are not suf-
ficient, i.e. an edge does not exist between every
uncovered robot and some uncovered target.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Graph%to%send%

i = 7%

R P

(d) Robot 2’s outgoing message msg2, compris-
ing of the graph G2

lean = (V,E2
lean), where E2

lean

contains the equality sub-graph edges E2
y (black

edges) and the candidate edges E2
cand (green

edge), the corresponding weight function w2
lean,

the vertex labeling function y2, and the progress-
counter γ2 = 0.

Figure 20: Continued from Figure 19, Robot 2 adds a candidate edge from its original
information, to the received set of candidate edges. However, Robot 2 does not have a can-
didate edge from every uncovered robot to an uncovered target, and hence cannot perform
a two-step iteration of the Hungarian Method, similar to the one depicted in the centralized
example in Figure 16.

80

Robot%2’s%Ini,al%informa,on%

1

2

4

5

1

2

4

5 %3%%3%

i =

M

M

2%

6%

R P

(a) Robot 4’s original information in the form of
the graph G4

orig, and edge weight function w4
orig.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Received%info%i%=%4%

i =

M

M
7%

4%

R P

(b) Robot 4’s received and parsed information
G4

lean = (V,E4
lean), where E4

lean contains the
equality sub-graph edgesE4

y (black edges) and the
candidate edges E4

cand (green edges), the corre-
sponding weight function w4

lean, the vertex label-
ing function y4, and the progress-counter γ4 = 0.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Isolate%equality%graph%

i =

R P

(c) The isolated set of equality sub-graph edges
E4

y from the received and parsed information.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

find%matching%and%cover%

i =

R P

(d) For the given E4
y , a maximum cardinality

matching M4
y (red edges), and a corresponding

minimum vertex cover V 4
cy = (A4

cy , B
4
cy) (red ver-

tices).

Figure 21: An example of an instance of the Distributed-Hungarian algorithm, where
Robot 4 performs a two-step iteration of the Hungarian Method (continued through Fig-
ures 22 - 23), similar to the one depicted in the centralized example in Figure 16. Up until
this point, Robot 4 performs the Initialization step.

81

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Received%info%i%=%5%

i =
M

Robot 4’s minimum slack edge
�4 = M� (2 + 0) = M

R P

(a) For the given minimum vertex cover V 4
cy ,

Robot 4’s set of candidate edges (green edges)
using its original information G4

orig, and w4
orig

(Figure 21a). Exactly one edge (with correspond-
ing minimum slack δ4) is chosen for inclusion in
E4

cand.

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

M

M
7%

4%

Enough%Candidate%edges%(step%aI1)%

i =

R P

(b) The isolated set of candidate edges E4
cand

(green edges) from the received and parsed infor-
mation (Figure 21b).

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

M

M
7%

M

4%

Enough%Candidate%edges%(step%aI1)%

i =

� = min
i2R

�i = 4� (1 + 0) = 3
minimum slack edge

R P

(c) Step 1: The updated set of candidate edges
E4

cand (green edges), combining the edges from
Figures 22a and 22b. Since the edges are sufficient
(there exists an edge from every uncovered robot
to some uncovered target), the minimum slack δ is
calculated using the edges.

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Step%aI2%

M

M
7%

M

4%
i =

updated
vertex
label

R P

(d) Step 1: The updated vertex labeling function
y4 (highlighted in yellow), using the minimum
slack δ.

Figure 22: Continued from Figure 21, Robot 4 adds a candidate edge from its original
information, to the received set of candidate edges. Since Robot 4 has sufficient candidate
edges, it can perform a two-step iteration similar to the one depicted in the centralized
example in Figure 16. Up until this point, Robot 4 has performed Step 1.

82

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Step%bI1%Equality%graph%new%

4%
i =

added edge

R P

(a) Step 2: For the updated y4, the corresponding
set of equality subgraph edges E4

y (with the new,
added edge highlighted in yellow).

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Step%b%I2:%matching%+cover%

4%
i =

R P

(b) Step 2: For the updated E4
y , a maximum cardi-

nality matchingM4
y (red edges), and a correspond-

ing minimum vertex cover V 4
cy = (A4

cy , B
4
cy) (red

vertices).

1

2

4

5

%3%

1

2

4

5

%3%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Candidate%edge%

i = 6%
M

Robot 4’s minimum slack edge
�4 = 6� (2 + 0) = 4

R P

(c) For the updated minimum vertex cover V 4
cy ,

Robot 4’s set of candidate edges (green edges)
using its original information G4

orig, and w4
orig

(Figure 21a). Exactly one edge (with correspond-
ing minimum slack δ4) is chosen for inclusion in
E4

cand

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

Glean%to%send%

i =
4%

6%

R P

(d) Robot 4’s outgoing message msg4, compris-
ing of the graph G4

lean = (V,E4
lean), where E4

lean

contains the equality sub-graph edges E4
y (black

edges) and the candidate edges E4
cand (green

edge), the corresponding weight function w4
lean,

the vertex labeling function y4, and the progress-
counter γ4 = 1.

Figure 23: Continued from Figure 22, Robot 4 completes the two-step iteration, and com-
putes its outgoing message, with the updated information including a candidate edge con-
tributed for enabling the next two-step iteration (to be performed by any robot that has
sufficient information to do so).

83

Convergence Analysis: Recall that in the Distributed-Hungarian algorithm, robot i’s

progress-counter γi represents the cumulative number of completed stages, or two-step it-

erations (Steps 1 and 2) of the Hungarian Method, that results in its corresponding informa-

tion given by (Gi
lean, w

i
lean, y

i). In other words, we use γi for keeping track of the updates

in the vertex labeling function yi, and the set of corresponding equality subgraph edges Ei
y

in particular, since these determine the maximum cardinality matching M i
y, i.e. robot i’s

subsequent solution. Let us assume that the maximum value any robot’s progress-counter

can take is k̂ ∈ N0. Then, for γi = k, k ∈ {0, 1, ..., k̂}, we denote the corresponding vertex

labeling function and equality sub-graph edges by yik and Ei
yk

respectively.

We proceed to provide the main feature of the Distributed-Hungarian algorithm, that is

key to analyzing its convergence properties:

Lemma 6 In the Distributed-Hungarian algorithm, for every progress-counter value k =

0, ..., k̂, there exists a unique, globally feasible6 vertex labeling function, denoted by yk,

and a unique set of equality subgraph edges, denoted by Eyk . In other words, during

some iteration α of the algorithm, if robot i’s progress-counter value equals k, then its

corresponding vertex labeling function equals yk, and the set of equality subgraph edges

equals Eyk , i.e.,

γi = k ⇒ yik = yk and Ei
yk

= Eyk

Proof (by induction) By the connectivity assumption (Assumption 3), it follows that within

a maximum of |R| − 1 iterations from the very first iteration of the Distributed-Hungarian

algorithm, there exists at least one robot i that receives every robot’s initial messages, and

increments its progress-counter from −1 to 0, with an accompanying determination of a

vertex labeling function yi and corresponding set of equality subgraph edges Ei
y (Step 1:

Special Case of the Parse-Info sub-algorithm). Let a0 be the iteration of the algorithm, on

which this occurs. Based on the initial messages of every robot, it is clear that yi is globally

6Feasible with respect to (G,w), i.e. the problem data for the centralized assignment problem.

84

feasible.

By construction, during some iteration α, where a0 ≤ α ≤ a0 + |R| − 1, robot j,

(j 6= i) updates its progress-counter γj from −1 to 0, in one of the following ways: (i)

robot j receives and operates on the exact same information used by robot i on iteration

a0, and (ii) robot j receives information from another robot with progress-counter value

0. Clearly, in both cases, yj0 = y0 (and we already showed y0 is globally feasible), and

Ej
y0

= Ey0 .

Without loss of generality, assume that on some iteration of the algorithm, all robots

are at the above mentioned state (progress-counter values 0), and synchronously, start the

computation phase of the Distributed-Hungarian algorithm (in reality, this need not be the

case). In particular, the robots execute the Initialization step of the Hungarian Method (i.e.

find identical maximal matchings, and a corresponding minimum vertex covers), and if the

matchings found are not perfect, the robots begin performing the two-step iterations (Steps

1 and 2) of the Hungarian Method.

Recall that if a robot does not have sufficient candidate edges to execute Step 2, it

includes (if possible) a candidate edge from its original information, to a set of candidate

edges selected with respect to a minimum vertex cover associated with its equality subgraph

edges, and sends such a set in its outgoing message. Clearly, there exists at least one robot

p that contains a candidate edge in its original bipartite graph Gp
orig, that satisfies Step 1-(i)

of the Hungarian Method, and can thus, be used to execute a two-step iteration, or in other

words, update the progress-counter value from 0 to 1. Robot p includes such a candidate

edge in its message for sending, and since all robots contribute pertinent candidate edges

in context to identical minimum vertex covers, within a maximum of (|R| − 1) iterations,

there exists at least one robot q (may or may not be the same as p) that receives sufficient

candidate edges (including the above-mentioned candidate edge that satisfies Step 1-(i)),

and updates its progress-counter from 0 to 1. Let a1 be the iteration of the algorithm, on

85

which the occurs. Moreover, the update satisfies Lemma 4, and hence results in a globally

feasible, vertex labeling function yj1, and a corresponding set of equality subgraph edges

Ej
1. Let y1 = yj1, and Ey1 = Ej

1.

Following the same train of logic as before, by construction, during some iteration α,

where a1 ≤ α ≤ a1+|R|−1, robot s, (s 6= q) updates its progress-counter γs from 0 to 1, in

one of the following ways: (i) robot s receives and operates on the exact same information

used by robot q on iteration a1, and (ii) robot s receives information from another robot

with progress-counter value 1. Clearly, in both cases, ys1 = y1 (and we already showed y1

is globally feasible), and Es
y1

= Ey1 . By assuming that for every robot i ∈ R, γi = k

corresponds to a unique globally feasible yk, and a unique Eyk , we can complete the proof

by induction.

Corollary 1 On some iteration α of the Distributed-Hungarian algorithm, if two robots

have identical progress-counter values, then they have identical corresponding maximal

matchings, i.e.,

γi = γj ⇒ M i = M j ∀i, j ∈ R, i 6= j

Proof Let γi = γj = k, for some k ∈ {0, 1, ..., k̂}. From Lemma 6, we know that

the progress-counter value k corresponds to a unique set of equality subgraph edges Eyk ,

and consequently, a unique maximal matching. Let such a matching be denoted by Myk ,

where Myk ⊆ Eyk). Thus, robots i and j have identical maximal matchings, equal to Myk

corresponding to the progress-counter value k.

Corollary 2 On some iteration α of the Distributed-Hungarian algorithm, if robot i’s

progress-counter value is higher than robot j’s progress-counter value, i.e. γi > γj , then

one of the following is true,

(i) Robot i’s maximal matching is greater in size than robot j’s maximal matching, i.e.

|M i| > |M j|, or

86

(ii) Robots i and j have the same maximal matching, i.e. M i = M j , but |Ri
cy | > |Rj

cy |,

i.e. robot i has more covered vertices in R than robot j.

Proof Let γi = p, and γj = q, where p, q ∈ {0, 1, ..., k̂}, p > q. From Lemma 6, it is clear

that for every k ∈ {q + 1, ..., p − 1}, there existed a robot with progress-counter value k,

and corresponding globally feasible vertex labeling function yk, equality subgraph edges

Eyk , and maximal matching Myk , during some previous iteration of the algorithm. Thus,

we can use Lemma 4 iteratively, for every progress-counter update that occurred from k to

k+1, k ∈ {q, q+1, ..., p−1}, to show that either statement (i) or (ii) from Lemma 4 is true

(since each progress-counter update corresponds to a two-step iteration of the Hungarian

Method).

Theorem 6 Given a set of robots R, a set of targets P , and a time-varying communication

graph Gc(t) as per Assumption 3. Assuming every robot i ∈ R knows (R,P, ci), if the robots

execute the Distributed-Assignment algorithm, there exists a finite number of iterations

such that all robots converge to identical optimal solutions M̂ ∈ M, that are also optimal

to the corresponding centralized assignment problem.

Proof We consider the following two cases: On some iteration α of the Distributed-

Hungarian algorithm, either (i) there exists at least one robot i such that γi ≥ γj , ∀j ∈

R, j 6= i, or (ii) all robots have the same progress-counter values, i.e. γi = γj , ∀i, j ∈ R.

In the first case, using the connectivity assumption (Assumption 3), within a maximum

of (|R| − 1) iterations, all robots receive information from robot i, and by construction,

update their information to robot i’s information, bringing us to the second case: Suppose

γi = γj = k, ∀i, j ∈ R, where k ∈ {0, 1, ..., k̂}. Using Corollary 1, we know that all

robots have identical maximal matchings, equal to Myk . Clearly, if Myk is perfect, then

k = k̂ (since the progress-counter ceases to update, once a perfect matching is found).

Moreover, Myk̂
is optimal. This is true because we know from Lemma 6, that yi

k̂
is globally

87

feasible, and since the maximal matching is contained within the equality subgraph edges,

i.e. Myk̂
⊆ Eyk̂ , from Theorem 5, we can conclude that Myk̂

is optimal.

Now, suppose in the second case, Myk is not perfect (and hence, not optimal). Then,

from the proof of Lemma 6, we know that within a maximum of (|R| − 1) iterations, there

exists at least one robot that executes an update, i.e. a two-step iteration of the Hungarian

Method with a consequent increment in its progress-counter. Moreover, from Lemma 4, we

know that there is a finite number of such updates that can occur (worst case |V |2), before

a robot finds a perfect matching.

Detecting Infeasibility: If the centralized assignment problem (G,w) is infeasible, the

Distributed-Hungarian algorithm converges to a matching M̂ that contains edges with in-

feasible weights (i.e. denoted by M as per the big-M method).

Corollary 3 (Stopping Criterion) Suppose robot i finds a perfect matching M i
y during

some iteration α of the Distributed-Hungarian algorithm. Then robot i can stop sending its

corresponding message msgi = (Gi
lean, w

i
lean, y

i) (where Ei
lean = (M̂, ∅)) after (|R| − 1)

iterations.

Proof The above result is derived from the following fact: if the matching M i
y, found by

robot i is perfect, then it is also optimal (as discussed in the proof of Theorem 6). Moreover,

no other robot can find a perfect (and hence optimal) matching, different from M i
y, i.e.

M i
y = M̂ (using Lemma 6). Thus, within a maximum of (|R| − 1) iterations, every robot

in the network will receive robot i’s message, and update its own information to robot i’s

solution, at which point, robot i need not send its message anymore.

Corollary 4 All robots converge to identical optimal solutions M̂ ∈ M in O(|V |3) itera-

tions.

Proof As discussed previously, the Hungarian Method converges to an optimal solution

in O(|V |2) two-step iterations. In context to the Distributed-Hungarian algorithm, each

88

two-step iteration of the Hungarian Method corresponds to a progress-counter update that

occurs within O(|V |) iterations of the Distributed-Hungarian algorithm, and thus, every

robot converges to M̂ in O(|V |3) iterations.

Lemma 7 On every iteration of the Distributed-Hungarian algorithm, a robot transmits

O(|V |log|V |) bytes.

Proof Recall that a robot i’s message,msgi, comprises of a sparse graphGi
lean = (V,Ei

lean)

with at most |V | − 1 edges (see Lemma 5), a weight function wi : Ei
lean → R, a vertex

labeling function yi : V → R, and a progress-counter value, γi ∈ {0, 1, ..., k̂}, where

k̂ denotes the maximum number of two-step iterations of the Hungarian Method, and is

of the order of O(|V |2) (using Lemma 4). Note that we can encode each edge in Elean,

in 1/4 log2(|V |/2) bytes. Moreover, by approximating a real number as a 16-bit floating

point value, we can encode the corresponding edge weights in wilean, and vertex labels in

yi, in 2(|V | − 1) and 2|V | number of bytes respectively. Additionally, we can encode

the progress-counter value in the order of O(2 log2(|V |)). Thus, robot i’s message, msgi,

comprises of O(|V |log|V |) bytes.

Complexity of the Distributed-Hungarian algorithm: The run time of a single iteration

of the Distributed-Hungarian algorithm is O(r2). In contrast to the centralized Hungarian

Method, where a solution is reached in O(r3), here every robot executes sub-steps of the

Hungarian Method, and hence computes less per iteration of the distributed algorithm, i.e.

every robot takesO(r2) time per iteration of the algorithm. Since the robots compute iden-

tical optimal solutions inO(r3) iterations, the overall runtime of the Distributed-Hungarian

algorithm is O(r5).

89

5.2 Distributed Dynamic Spatio-Temporal Routing

In this section, we discuss high level concepts that extend our work on distributed assign-

ments, to spatio-temporal routing. So far, in previous chapters, we dealt with finding routes

for robots given a static (fixed) Score, where the routes were obtained in a centralized

manner beforehand (i.e. the robots executed pre-determined routes). Now we consider

spatio-temporal routing under a distributed framework, where the robots determine routes

online, given a dynamic Score. By dynamic, we mean that the Score (comprising of timed

positions) can change in real-time, e.g. through user involvement, and the robots are re-

quired to adapt to the changes. We incorporate such a dynamic aspect by broadcasting the

changes made to the Score, that the robots then assimilate while determining their routes.

In the following paragraph, we put forth the two key ideas, central to the execution

of the above mentioned distributed dynamic spatio-temporal routing problem. For conve-

nience, we assume the following:

Assumption 4 Let tpos be the minimum time between consecutive timed positions in the

Score. Additionally, let tasgn be the worst-case time required to solve the Distributed (“one-

step”) Assignment Problem from Section 5.1.2, using the proposed Distributed-Hungarian

algorithm. Then, (i) tpos ≥ tasgn, and (ii) choose the initial time instant t0 such that

(t1 − t0) ≥ tasgn + tpos.

The above assumption ensures that every timed position in the Score is assigned to a robot,

at a time instant before it needs to be reached by that robot.

- Distributed Aspect: Given a Score, the robots determine routes by iteratively solving

assignments between successive time instants, employing the Distributed-Hungarian al-

gorithm for each assignment. Moreover, the robots solve assignments between future

consecutive time instants, while simultaneously executing routes that they have already

determined (see Figure 24) (We assume that the underlying time-varying communication

90

2

4

%3%

1

ti t timeti+1 ti+2 ti+3 ti+4

look ahead time window

solved assignments solving

Tw

(current time)

Figure 24: Robots (circles) at time t with a look-ahead window Tw, and timed positions
(stars) grouped in grey boxes representing specific time instant, where the robots are cur-
rently solving an assignment between future consecutive time instants (ti+2 - ti+3), while
executing routes they have already determined (ti - ti+1).

graph, induced as the robots execute their paths, satisfies Assumption 3). Note that the

robots may have a moving look-ahead time window Tw ∈ R≥0, constraining the number

of future timed positions that they have knowledge of, thus constraining how far-ahead

in time, they can plan their routes.

- Dynamic Aspect: Modifications made to the Score must satisfy three criteria before they

are broadcasted to the robots: first, the changes should not violate feasibility (in that, the

available number of robots should not fall short)7, second, all changes should be specified

at time instants later than t + (tpos + tasgn), where t denotes the current time, to allow

the robots a certain minimum time interval to respond to the changes (see Figure 25),

and third, all addition-specific changes must respect the minimum time constraint (δmin)

between consecutive timed positions.

7Velocity constraints are not considered here, since the user has no knowledge of the positions of the
robots, and hence, cannot ascertain feasibility in that respect.

91

2

4

#3#

1

ti ti+1t ti+2
(current time)

allowed

time

if modified

modifications not allowed
Score

tpos + tasgn

(a) Case 1: If at the current time t, a modification is received, specified at a time
instant in the depicted time interval (yellow), all robots retain their routes up until
time instant ti+1 and begin recalculating their routes, from their positions at ti+1

onwards.

2

4

#3#

1

ti ti+1t
(current time)

allowed

time

if modified

modifications not allowed
Score

tpos + tasgn

(b) Case 2: If at the current time t, a modification is received, specified at a time
instant in the depicted time interval (yellow), all robots begin recalculating their
routes, from their current positions at time t onwards.

Figure 25: Robots (circles) at time t, and timed positions (stars) grouped in grey boxes
representing specific time instant, with depictions of the time periods in which a user cannot
(red) and can (green) modify the Score.

92

2

4

#3#

1

ti ti+1t ti+2
(current time)

allowed

time

if modified

modifications not allowed
Score

tpos + tasgn

Figure 26: Continued from Figure 25, Case 3: If at the current time t, a modification is
received, specified at a time instant in the depicted time interval (yellow), only robots 1, 2
and 3 retain their routes up until time instant ti+1. The robots begins recalculating their
routes from their positions at ti+1 onwards, however robot 4 begins recalculating its route
from its current position at time t onwards.

We provide a brief description of the process of incorporating dynamic modifications,

in the determination of routes. Since the routes of the robots are determined through piece-

wise assignments between robot positions and timed positions at successive time instants

in the Score, the instant a dynamic modification is received, each robot chooses the time

instant in the Score up until which, its previously-determined routes need not be modified,

and begins recalculating its route from such a time instant onwards (while executing its

trajectory on the previously determined route). In Figures 25a, 25b and 26, we provide

examples of three different cases that can occur, when a particular dynamic modification is

received.

93

&A

&B

&C

Figure 27: An iPad interface for modifying and broadcasting changes to the Score. A: The
Robot Music Wall 3.0 comprising of unique positions corresponding to piano and guitar
notes, as well as drum beats. B: Pre-defined sub-scores for an instrumental version of “The
Final Countdown”. C: A feature for either selecting, or setting the available number of
robots per skill set.

5.2.1 Simulation and Hardware Results (Robot Music Wall 3.0)

In this section, we introduce the third and final version of the Robot Music Wall, developed

in MATLAB and instrumented to include a larger array of piano, guitar and drum sounds

(see A in Figure 27). In addition to the Wall, we developed a graphical user-interface

(GUI) (Figure 27) that allows a user to create, and administer changes to a musical Score

on the Wall. The user-interface is developed on an iPad that broadcasts the changes issued

by a user, to the robots executing the Score. For convenience, we created beforehand, a

heterogeneous Score comprising of piano and guitar notes, and drum beats associated with

the popular song “The Final Countdown” by the Swedish band “Europe”.

94

We divided the Score into multiple single-instrument sub-scores. For instance, we sep-

arated the piano notes into individual sub-scores corresponding to the piano lead, piano

bass, and second and third harmonies (see B in Figure 27). The motivation behind the cre-

ation of such sub-scores was to enable a user to “add, delete or modify” the Score through

these structures, in an intuitive and immediately recognizable manner. In addition to the

sub-scores, we included the option of adding and removing individual timed positions, and

switching instruments (pianos to guitars and vice versa, drums from one type to another).

To execute an example of dynamic distributed spatio-temporal routing, the user selects

the number of robots available for use, and creates a Score using the iPad interface. Once

the user hits the start button, the iPad broadcasts this Score to the robots (simulated on

a separate computer, see Figure 28). From this point onwards, the robots determine and

execute routes in real-time, while the iPad broadcasts changes to the Score, as and when a

user decides to modify it. We implemented a real-time rendition of “The Final Countdown”

on the basis of the above mentioned method, in both simulation and hardware environments

(Figures 28 and 29 respectively).

95

(a) A user interacting with simulated robots through the music wall iPad interface.

(b) An instance of simulated robots (geometric shapes - diamonds, circles and
squares), performing the Score by executing dynamic spatio-temporal routing (the
black lines denote the underlying dynamic communication network, required for a
distributed implementation).

Figure 28: Simulation of multiple robots performing “The Final Countdown” on the Wall,
with a user “conducting” (modifying) the Score through the iPad interface.

96

(a) A user interacting with actual robots through the music wall iPad interface.

(b) An instance of actual robots, performing the Score by executing dynamic
spatio-temporal routing.

Figure 29: Hardware implementation of multiple robots performing “The Final Count-
down” on the Wall, with a user “conducting” (modifying) the Score through the iPad inter-
face.

97

CHAPTER VI

CONCLUDING REMARKS

The research presented in this dissertation can be used towards customizing and compar-

ing various instances of spatio-temporal routing, for example centralized versus distributed

versions, static versus dynamic Scores, or homogeneous versus heterogeneous capabilities.

In subsequent paragraphs, we highlight three aspects of our work that are not explicitly ad-

dressed in this document, but are pertinent to the implementation of the concepts provided,

onto a practical hardware platform.

1. Collision Avoidance: In the homogeneous case (where robots and timed positions in

the Score are not associated with skill sets), minimum distance paths in R2 do not

intersect, and as a result, we are guaranteed routes that do not cross one another.

However, the same does not apply to the heterogeneous case. Moreover, since the

robots are not point particles in the real world, we should incorporate collision avoid-

ance in the lower level controller that the robots use to execute their routes, for both

homogeneous as well as heterogeneous cases.

2. Velocity Constraints: Though we explicitly account for a maximum velocity that

the robots cannot exceed, in the analysis of spatio-temporal routing in Section 3.1,

we do not incorporate this constraint in conjunction with connectivity maintenance

in Section 3.2 or heterogeneity in Chapter 4 (due to the prohibitive complexity of

the ensuing optimization problems). However, since we provide heuristic algorithms

for generating the routes of the robots in both cases, we can extend our work using

techniques similar to the ones proposed in Section 3.1, to incorporate a maximum

velocity, thereby yielding a lower bound on the minimum number of robots required,

98

and consequent routes that do not violate the velocity constraint.

3. Robot Failure: Though we do not explicitly implement robustness to robot failure, it

is conceivable that if a robot fails during the distributed execution of spatio-temporal

routing, and the failure is detected by another (neighboring) robot, the information

about such a failure can be eventually communicated to all robots, and they can

exclude the robot in question from future computations.

In conclusion, through this dissertation, we presented an analysis of spatio-temporal

routing under various constraints specific to multi-robot applications. We began with the

basic version of spatio-temporal routing, called the Unconstrained Routing Problem (URP),

and provided insight into how the framework of assignment problems could be applied to-

wards finding solutions. Next, we analyzed the URP under interesting practical constraints

like maximum robot velocities and network connectivity, followed by a further generaliza-

tion involving robots with heterogeneous capabilities. For each of these cases, we provided

results on feasibility and route generation, using techniques drawn from the theory of as-

signment problems. To analyze our work in context to a distributed framework, we de-

veloped a novel, distributed version of the Hungarian Method used for solving assignment

problems. With this algorithm in hand, we extended spatio-temporal routing to its dis-

tributed dynamic counterpart. Using the medium of music, we demonstrated the entirety of

our research through simulations, hardware implementations and graphical user-interfaces,

centered around the concept of the Robot Music Wall.

99

REFERENCES

[1] ALIGHANBARI, M. and HOW, J., “Decentralized task assignment for unmanned

aerial vehicles,” in European Control Conference, pp. 5668–5673, 2005.

[2] ARORA, S. and PURI, M., “A variant of time minimizing assignment problem,”

European Journal of Operational Research, vol. 110, no. 2, pp. 314 – 325, 1998.

[3] BALINSKI, M., “Signature methods for the assignment problem,” Operations

research, vol. 33, no. 3, pp. 527–536, 1985.

[4] BEKTAS, T., “The multiple traveling salesman problem: an overview of formulations

and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219, 2006.

[5] BERTSEKAS, D., “A new algorithm for the assignment problem,” Mathematical

Programming, vol. 21, no. 1, pp. 152–171, 1981.

[6] BERTSEKAS, D., “The auction algorithm for assignment and other network flow

problems: A tutorial,” Interfaces, vol. 20, no. 4, pp. 133–149, 1990.

[7] BODIN, L., GOLDEN, B., ASSAD, A., and BALL, M., “Routing and scheduling

of vehicles and crews: The state of the art.,” Computers and Operations Research,

vol. 10, no. 2, pp. 63–211, 1983.

[8] BRUMITT, B. and STENTZ, A., “Grammps: A generalized mission planner for mul-

tiple mobile robots in unstructured environments,” in IEEE International Conference

on Robotics and Automation, vol. 2, pp. 1564–1571, 1998.

[9] BULLO, F., FRAZZOLI, E., PAVONE, M., SAVLA, K., and SMITH, S., “Dynamic

vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1482

–1504, 2011.

[10] BURGARD, W., MOORS, M., STACHNISS, C., and SCHNEIDER, F., “Coordinated

multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 376 –

378, 2005.

100

[11] BÜRGER, M., NOTARSTEFANO, G., BULLO, F., and ALLGÖWER, F., “A dis-

tributed simplex algorithm for degenerate linear programs and multi-agent assign-

ments,” Automatica, vol. 48, no. 9, pp. 2298–2304, 2012.

[12] BURKARD, R., DELL’AMICO, M., and MARTELLO, S., Assignment problems. So-

ciety for Industrial and Applied Mathematics, 2009.

[13] CHANG, G. and HO, P.-H., “The beta-assignment problems,” European Journal of

Operational Research, vol. 104, no. 3, pp. 593 – 600, 1998.

[14] CHEN, D., DU, D., HU, X., LIN, G., WANG, L., and XUE, G., “Approximations for

steiner trees with minimum number of steiner points,” Journal of Global Optimization,

vol. 18, pp. 17–33, 2000.

[15] CHENG, X., DU, D., WANG, L., and XU, B., “Relay sensor placement in wireless

sensor networks,” Wireless Networks, vol. 14, pp. 347–355, 2008.

[16] CHOPRA, S. and EGERSTEDT, M., “Multi-robot routing for servicing spatio-

temporal requests: A musically inspired problem,” Proceedings of the IFAC

Conference on Analysis and Design of Hybrid Systems, 2012.

[17] CHOPRA, S. and EGERSTEDT, M., “Multi-robot routing under connectivity con-

straints,” 3rd IFAC Workshop on Distributed Estimation and Control in Networked

Systems, 2012.

[18] CHOPRA, S. and EGERSTEDT, M., “Heterogeneous multi-robot routing,”

Proceedings of the American Control Conference, 2014.

[19] CHOPRA, S. and EGERSTEDT, M., “Spatio-temporal multi-robot routing,”

Automatica, 2014. Accepted for Publication. To appear 2015.

[20] CHOPRA, S., RICE, M., and EGERSTEDT, M., “A multi-robot orchestra: dynamic

spatio-temporal routing,” in IEEE Conference on Inteligent Robots and Systems,

2015. Submitted.

[21] DERIGS, U., “The shortest augmenting path method for solving assignment problems

- motivation and computational experience,” Annals of Operations Research, vol. 4,

101

pp. 57–102, 1985.

[22] DIAS, M., ZLOT, R., KALRA, N., and STENTZ, A., “Market-based multirobot coor-

dination: A survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1257–

1270, 2006.

[23] DIONNE, D. and RABBATH, C., “Multi-uav decentralized task allocation with inter-

mittent communications: The dtc algorithm,” in Proceedings of the American Control

Conference, pp. 5406–5411, 2007.

[24] DIXON, C. and FREW, E., “Maintaining optimal communication chains in robotic

sensor networks using mobility control,” Mobile Networks and Applications, vol. 14,

pp. 281–291, 2009.

[25] DUTTA, H. and KARGUPTA, H., “Distributed linear programming and resource

management for data mining in distributed environments,” in IEEE Data Mining

Workshops, pp. 543–552, 2008.

[26] FRANCESCHELLI, M., ROSA, D., SEATZU, C., and BULLO, F., “Gossip algorithms

for heterogeneous multi-vehicle routing problems,” Nonlinear Analysis: Hybrid

Systems, vol. 10, pp. 156 – 174, 2013.

[27] GARFINKEL, R., “An improved algorithm for the bottleneck assignment problem,”

Operations Research, pp. 1747–1751, 1971.

[28] GERKEY, B. and MATARIC, M., “Sold!: Auction methods for multirobot coordina-

tion,” Robotics and Automation, IEEE Transactions on, vol. 18, no. 5, pp. 758–768,

2002.

[29] GERKEY, B. and MATARIĆ, M., “A formal analysis and taxonomy of task alloca-

tion in multi-robot systems,” The International Journal of Robotics Research, vol. 23,

no. 9, pp. 939–954, 2004.

[30] GIORDANI, S., LUJAK, M., and MARTINELLI, F., “A distributed algorithm for

the multi-robot task allocation problem,” in Trends in Applied Intelligent Systems,

pp. 721–730, Springer, 2010.

102

[31] GOLDENBERG, D. K., LIN, J., MORSE, A. S., ROSEN, B. E., and YANG, Y. R.,

“Towards mobility as a network control primitive,” in Proceedings of the 5th ACM

international symposium on Mobile ad hoc networking and computing, pp. 163–174,

2004.

[32] GRAHAM, R. and HELL, P., “On the history of the minimum spanning tree problem,”

Annals of the History of Computing, vol. 7, no. 1, pp. 43–57, 1985.

[33] GUPTA, S. and PUNNEN, A., “Minimum deviation problems,” Operations research

letters, vol. 7, no. 4, pp. 201–204, 1988.

[34] GUTIN, G. and PUNNEN, A., The traveling salesman problem and its variations,

vol. 12. Springer, 2002.

[35] HOPCROFT, J. and KARP, R., “An nˆ5/2 algorithm for maximum matchings in bipar-

tite graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.

[36] HOPCROFT, J., SCHWARTZ, J., and SHARIR, M., “On the complexity of motion

planning for multiple independent objects; pspace-hardness of the” warehouseman’s

problem”,” The International Journal of Robotics Research, vol. 3, no. 4, pp. 76–88,

1984.

[37] HOWARD, A., PARKER, L., and SUKHATME, G., “Experiments with a large hetero-

geneous mobile robot team: Exploration, mapping, deployment and detection,” The

International Journal of Robotics Research, vol. 25, no. 5-6, pp. 431–447, 2006.

[38] JI, M., AZUMA, S.-I., and EGERSTEDT, M., “Role-assignment in multi-agent coor-

dination,” 2006.

[39] KAN, Z., DANI, A., SHEA, J., and DIXON, W., “Information flow based connectivity

maintenance of a multi-agent system during formation control,” Proceedings of the

IEEE Conference on Decision and Control, pp. 2375 –2380, 2011.

[40] KARP, R., “Reducibility among combinatorial problems,” Complexity of Computer

Computations, pp. 85–103, 1972.

103

[41] KOES, M., NOURBAKHSH, I., and SYCARA, K., “Heterogeneous multirobot coordi-

nation with spatial and temporal constraints,” Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI), pp. 1292–1297, 2005.

[42] KONIG, D., “Gráfok és mátrixok. matematikai és fizikai lapok, 38: 116–119, 1931.”

[43] KOOPMANS, T. C. and BECKMANN, M., “Assignment problems and the location of

economic activities,” Econometrica: journal of the Econometric Society, pp. 53–76,

1957.

[44] KUHN, H., “The hungarian method for the assignment problem,” Naval Research

Logistics, vol. 2, no. 1-2, pp. 83–97, 1955.

[45] LAGOUDAKIS, M., MARKAKIS, E., KEMPE, D., KESKINOCAK, P., KLEYWEGT,

A., KOENIG, S., TOVEY, C., MEYERSON, A., and JAIN, S., “Auction-based multi-

robot routing,” in Robotics: Science and Systems, pp. 343–350, 2005.

[46] LAWLER, E., Combinatorial optimization: Networks and matroids. Holt, Rinehart

and Winston, New York, 1976.

[47] LERMAN, K., JONES, C., GALSTYAN, A., and MATARIĆ, M. J., “Analysis of dy-

namic task allocation in multi-robot systems,” The International Journal of Robotics

Research, vol. 25, no. 3, pp. 225–241, 2006.

[48] LIN, G. and XUE, G., “Steiner tree problem with minimum number of steiner points

and bounded edge-length,” Information Processing Letters, vol. 69, no. 2, pp. 53 – 57,

1999.

[49] MARTELLO, S. and TOTH, P., “Linear assignment problems,” Annals of Discrete

Mathematics, vol. 31, pp. 259–282, 1987.

[50] MARTELLO, S. and TOTH, P., “The bottleneck generalized assignment problem,”

European Journal of Operational Research, vol. 83, no. 3, pp. 621 – 638, 1995.

[51] NGUYEN, H., PEZESHKIAN, N., RAYMOND, M., GUPTA, A., and SPECTOR, J.,

“Autonomous communication relays for tactical robots,” Proceedings of the 11th

International Conference on Advanced Robotics, 2003.

104

[52] OLFATI-SABER, R., “Near-identity diffeomorphisms and exponential epsilon-

tracking and epsilon-stabilization of first-order nonholonomic se(2) vehicles,”

Proceedings of the American Control Conference, vol. 6, pp. 4690 – 4695, 2002.

[53] PAPADIMITRIOU, C. and STEIGLITZ, K., Combinatorial optimization: algorithms

and complexity. Courier Dover Publications, 1998.

[54] PAVONE, M. and FRAZZOLI, E., “Dynamic vehicle routing with stochastic time con-

straints,” IEEE International Conference on Robotics and Automation, pp. 1460 –

1467, 2010.

[55] PENTICO, D., “Assignment problems: A golden anniversary survey,” European

Journal of Operational Research, vol. 176, no. 2, pp. 774 – 793, 2007.

[56] PEREIRA, G., DAS, A., KUMAR, R., and CAMPOS, M., “Decentralized motion

planning for multiple robots subject to sensing and communication constraints,”

Proceedings of the Second Multi-Robot Systems Workshop, pp. 267–278, 2003.

[57] PIMENTA, L., KUMAR, V., MESQUITA, R., and PEREIRA, G., “Sensing and cov-

erage for a network of heterogeneous robots,” in IEEE Conference on Decision and

Control, pp. 3947–3952, 2008.

[58] PONDA, S., JOHNSON, L., CHOI, H., and HOW, J., “Ensuring network connectivity

for decentralized planning in dynamic environments,” AIAA Aerospace Information

Technologies Conference, 2011.

[59] PONDA, S., REDDING, J., CHOI, H.-L., HOW, J. P., VAVRINA, M., and VIAN,

J., “Decentralized planning for complex missions with dynamic communication con-

straints,” in Proceedings of the American Control Conference, pp. 3998–4003, 2010.

[60] RALPHS, T., “Parallel branch and cut for capacitated vehicle routing,” Parallel

Computing, vol. 29, no. 5, pp. 607 – 629, 2003.

[61] RAMCHURN, S., POLUKAROV, M., FARINELLI, A., TRUONG, C., and JENNINGS,

N., “Coalition formation with spatial and temporal constraints,” in Proceedings of the

9th International Conference on Autonomous Agents and Multiagent Systems, vol. 3,

105

pp. 1181–1188, 2010.

[62] RYAN, J., BAILEY, T., MOORE, J., and CARLTON, W., “Reactive tabu search in

unmanned aerial reconnaissance simulations,” in Proceedings of the 30th conference

on Winter simulation, pp. 873–880, 1998.

[63] SARIEL-TALAY, S., BALCH, T. R., and ERDOGAN, N., “Multiple traveling robot

problem: A solution based on dynamic task selection and robust execution,”

Mechatronics, IEEE/ASME Transactions on, vol. 14, no. 2, pp. 198–206, 2009.

[64] SARIEL-TALAY, S., BALCH, T. R., and ERDOGAN, N., “A generic framework for

distributed multirobot cooperation,” Journal of Intelligent & Robotic Systems, vol. 63,

no. 2, pp. 323–358, 2011.

[65] SCERRI, P., FARINELLI, A., OKAMOTO, S., and TAMBE, M., “Allocating tasks in

extreme teams,” in Proceedings of the 4th International Conference on Autonomous

Agents and Multiagent Systems, pp. 727–734, 2005.

[66] SCHNEIDER, J., APFELBAUM, D., BAGNELL, D., and SIMMONS, R., “Learn-

ing opportunity costs in multi-robot market based planners,” in IEEE International

Conference on Robotics and Automation, pp. 1151–1156, 2005.

[67] SCHRIJVER, A., Theory of linear and integer programming. John Wiley & Sons,

1998.

[68] SHMOYS, D. and TARDOS, É., “An approximation algorithm for the generalized

assignment problem,” Mathematical Programming, vol. 62, no. 1-3, pp. 461–474,

1993.

[69] SMITH, S. and BULLO, F., “Target assignment for robotic networks: Asymptotic

performance under limited communication,” in Proceedings of the American Control

Conference, pp. 1155–1160, 2007.

[70] SOLOMON, M., “Algorithms for the vehicle routing and scheduling problems with

time window constraints,” Operations Research, vol. 35, no. 2, pp. 254 – 265, 1987.

[71] SPANOS, D. and MURRAY, R., “Motion planning with wireless network constraints,”

106

Proceedings of the American Control Conference, pp. 87 – 92, 2005.

[72] STROUPE, A. W. and BALCH, T., “Value-based action selection for observation

with robot teams using probabilistic techniques,” Robotics and Autonomous Systems,

vol. 50, no. 2, pp. 85–97, 2005.

[73] TAHBAZ-SALEHI, A. and JADBABAIE, A., “On consensus over random networks,”

in 44th Annual Allerton Conference, Citeseer, 2006.

[74] TOTH, P. and VIGO, D., The vehicle routing problem, vol. 9. Siam, 2002.

[75] TOVEY, C., LAGOUDAKIS, M., JAIN, S., and KOENIG, S., “The generation of

bidding rules for auction-based robot coordination,” in From Swarms to Intelligent

Automata Volume III, pp. 3–14, Springer, 2005.

[76] YAMADA, T. and NASU, Y., “Heuristic and exact algorithms for the simultaneous

assignment problem,” European Journal of Operational Research, vol. 123, no. 3,

pp. 531–542, 2000.

[77] YU, Z., JINHAI, L., GUOCHANG, G., RUBO, Z., and HAIYAN, Y., “An implementa-

tion of evolutionary computation for path planning of cooperative mobile robots,” in

Intelligent Control and Automation, vol. 3, pp. 1798–1802, 2002.

[78] ZAVLANOS, M. and PAPPAS, G., “Dynamic assignment in distributed motion plan-

ning with local coordination,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 232–

242, 2008.

[79] ZAVLANOS, M., SPESIVTSEV, L., and PAPPAS, G., “A distributed auction algorithm

for the assignment problem,” in IEEE Conference on Decision and Control, pp. 1212–

1217, 2008.

107

