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Over Quantized Fading Channels∗

Guoxiang Gu§, Shuang Wan†,�, and Li Qiu†

November 2013

Abstract

This paper studies feedback stabilization for networked control systems (NCSs) over quan-

tized fading channels placed at the plant input, which cover both logarithmic quantization and

packet drop in the actuator channel. The notion of mean-square (MS) stability is developed

in the input-output setting, and the MS stabilizability is studied for both single-input (SI) and

multi-input (MI) systems under state feedback. A necessary and sufficient condition is derived

for the MS stabilizability of the NCS over the quantized fading channel by using channel re-

source allocation. Our result improves the known MS stabilizability condition and complement

the existing work in the NCS area.

1 Introduction

This paper considers the actuator channel in an NCS which involves both quantization and fading.

Two different logarithmic quantization methods are considered. The first one is proposed in [4], and

induces a sector bounded uncertainty in multiplicative form [7], which will be referred to as multi-

plicative logarithmic quantization (MLQ). The second one is proposed in [13] and induces a sector

bounded uncertainty in relative form, which will be referred to as relative logarithmic quantization

(RLQ). We assume that the state feedback control signal is first quantized via either the MLQ or

RLQ method and then transmitted over a fading channel prior to being applied at the plant input

as the true actuating signal. The fading channel model from [3, 18] is adopted, which is described
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by a set of m independent multiplicative random processes with m the input dimension of the plant.

They are independent and identically distributed (i.i.d.) stationary processes with fixed means and

variances, and cover packet drop as a special case. If the Gauss distribution is assumed, then the

fading channel resembles the Ricean channel widely used in digital communications. Due to the

presence of the fading channel, the NCS under consideration represents a stochastic control system.

This paper is aimed at deriving the MS stabilizability of the NCS in terms of the quantization error

bounds and signal-to-noise ratios (SNRs) of the MI fading channel. Our result shows that the RLQ

method is preferred for which the MS stabilizability problem admits an analytic solution.

Quantization and packet drop in networked control systems are two of the major sources for

the information loss that limits the feedback stabilization and control performance. Both have

been investigated extensively. Elia and Mitter are the first to study logarithmic quantization [4],

who obtain the quadratic stabilizability for SI systems under state feedback. The same problem is

studied in [7, 9] for MI systems, and a nice analytic solution is obtained in [13]. It is now known

that the least number of bits required for the quadratic stabilizability is exactly the topological

entropy of the system [19]. On the other hand, packet drop is initially studied in [2, 14]. The results

available in [3, 18] indicate that the fading channel is more general and covers the packet drop as a

special case. More importantly the MS stabilizability for MI NCSs over the fading channel depends

on roughly the SNR to be clarified later.

The NCS in presence of both quantization and packet drop leads to a stabilization problem which

is not a simple combination of the above two problems. Rather, it is more involved and requires a

deeper insight into the problem. This can be seen from the expression of channel capacity obtained

in our main result. The problem is studied first in [16] for SI systems and an inequality is derived for

the feedback stabilizability. It turns out that the MLQ employed in [16] for quantization weakens

its MS stabilizability results. Indeed recent conference papers [6, 17] show that a stronger result

can be obtained if the RLQ method is used for quantization. However the MS stabilizability for

MI systems remained unknown, which will be studied and a complete solution will be derived in

this paper.

We wish to emphasize at this point that all the results for MI systems mentioned above, e.g.

those in [13, 18], are obtained by an important technique called channel resource allocation, which

will be also employed in this paper. The technique avoids an NP-hard problem on structured

uncertainties by imposing only a total information constraint on the overall channel, rather than

on each of the individual channels. The technique not only mitigates the difficulty in solving the

problem for MI systems, but also suggests a wiser way to do synthesis, which can be referred to as

channel/controller co-design. This powerful tool is crucial to achieve the minimum required channel

capacity for stabilization. Moreover, it leads to an analytically solvable problem and the solution
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is constructive. The technique was first proposed in the conference paper [8] and have been proved

to be efficient for various channel models. Detailed explanation can be found in [13]. We will also

demonstrate the technique when proving our main result.

The notation in this paper is standard with R/C standing for the set of real/complex numbers. A

matrix M ∈ R
n×m/Cn×m has n×m elements in R/C. Its transpose is denoted by M ′ and conjugate

transpose by M∗. The ith singular value of M is denoted by σi(M) arranged in descending order

with σ(M) = σ1(M). If n = m, its ith eigenvalue is denoted by λi(M) , its spectral radius by

ρ(M), its determinant by det(M) and its trace by Tr{M}. For a transfer function matrix G(z) of

dimension p×m, its H∞ and H2 norms are defined respectively by

‖G‖H∞ := sup
|z|>1

σ[G(z)], ‖G‖H2 := sup
ρ>1

√
Tr

{
1

2π

∫ π

−π
G(ρejω)∗G(ρejω) dω

}
. (1)

For stable and rational G(z), ρ = 1 can be taken in computing ‖G‖H∞ and ‖G‖H2 .

2 Problem Formulation

The discrete-time plant model in consideration admits a state space description

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (2)

where A ∈ R
n×n, B ∈ R

n×m, and thus x(t) ∈ R
n and u(t) ∈ R

m with time index t non-negative

integer valued. Due to the existence of the communication network at the plant input, a traditional

state feedback control law u(t) = Fx(t) cannot be applied directly. Instead u(t) = g[Fx(t)] has to

be employed with g[ · ] modeling the network effect. This paper assumes that multiple independent

channels are used, and during transmission, considers only quantization and packet drop that are

the two major sources of information loss in a digital network, i.e. each component sk(t) of the

control signal s(t) = Fx(t) is first quantized and then transmitted in a packet over the network

independently from others. The quantization error and possible packet drop present a significant

challenge to feedback stabilization.

This stabilization problem is studied in [16] for single input (SI) systems (with m = 1), which

provides an interesting inequality derived for the stabilizability of the NCS. A similar result is

available in [6, 17] with the former focusing on SISO output feedback systems, and the latter on

state feedback for multi-input (MI) systems. Both provide only sufficient conditions for networked

stabilizability. It turns out that the inequality derived first in [16] and generalized to MI systems

in [17] has a far reaching implication. In fact it provides an equivalent condition for the networked

stabilizability over quantized fading channels which will be shown in this paper.
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Consider first logarithmic quantization, denoted by Q(·) and proposed in [4] for the case m = 1.

It is a scalar nonlinear mapping Q : R → R satisfying Q(s) = −Q(−s) and is defined by [7]

Q(s) = v(i) ∀ s ∈
(

v(i)

1 + δ
,

v(i)

1− δ

]
(3)

where v(i) =
(
1−δ
1+δ

)i
v(0) > 0 for some v(0) > 0, i = 0,±1,±2, · · · , and 0 < δ < 1. If m > 1, then

the kth component of s can be quantized independently as in (3) with δ replaced by δk. In light of

[7], such a quantization induces a sector bounded time-varying uncertainty in the form of

v(t) = [I +Δ(t)]s(t), |Δk(t)| ≤ δk < 1 ∀ t (4)

where Δ(t) = diag[Δ1(t), · · · ,Δm(t)] and the signal s(t) = Fx(t). The above quantization method

is referred to as multiplicative logarithmic quantization (MLQ). A different quantization method,

referred to as relative logarithmic quantization (RLQ), is proposed in [13] by taking

Q(s) = v(i) ∀ s ∈ (
v(i)(1− δ), v(i)(1 + δ)

]
(5)

with all the parameters defined identically to those of (3). The above Q[ · ] for each component of

s(t) leads to the sector bounded time-varying uncertainty

v(t) = [I +Δ(t)]−1s(t), |Δk(t)| ≤ δk < 1 ∀ t (6)

where Δ(t) = diag[Δ1(t), · · · ,Δm(t)] as well. Different from [4, 7], the sector bounded uncertainty

will be assumed to be nonlinear time-varying and dynamic (NTVD) with the unique equilibrium

point at the origin having norm bounds (under zero initial condition)

‖Δk‖H∞ := sup
‖s‖2 �=0

‖Δksk‖2
‖sk‖2 ≤ δk, ‖sk(t)‖2 :=

( ∞∑
τ=0

|sk(τ)|2
)1/2

, (7)

for 1 ≤ k ≤ m. The use of NTVD uncertainty Δ can take time delay into account.

In contrast to the stabilizability results in [13], the aforementioned two quantization methods

result in rather different stabilizability conditions when the quantized signals {v(t)} are transmitted

in packets over the network to be shown in the next section. A packet drop model is proposed

in [2] which is extended to stochastic multiplicative fading channels [18]. Let vk(t) be the kth

component of v(t), which is transmitted over the fading channel. The received signal is uk(t) =

1
μk
Fk(t)vk(t) that is the kth component of the control signal. The fading channel in [18] assumes

that {Fk(t)} are i.i.d. stationary random processes with mean {μk} and variance {σ2
k}. Such a

fading channel resembles the Ricean channel in digital communications, and covers packet drop as

a special case [3, 18]. Indeed if the kth packet arrival rate is γk satisfying 0 < γk < 1, then the
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fading channel covers the stationary packet drop model with μk = γk and σ2
k = γk(1 − γk). For

1 ≤ k ≤ m, denote

Nk(t) =
1

μk
Fk(t)− 1, ν2k =

σ2
k

μ2
k

= γ−1
k − 1. (8)

Then {Nk(t)} are also i.i.d. stationary processes with mean zero and variance {ν2k}, respectively.

[A|B]

x(t)
�

F �
s(t)

� �

�Δ
�−

�N (t)
�� �
u(t)v(t)

Fig. 1 The NCS over the (RLQ) quantized fading channel

The NCS over the quantized fading channel is shown in Fig. 1 in which the RLQ method is

employed for quantization and [A|B] stands for the system (2) or equivalently the transfer matrix

(zI − A)−1B. By keeping the signal v(t) and outputs of Δ and N (t) intact, an equivalent block

diagram is obtained next.

Δ

N (t)

W (z)
�
�

�

�v(t)

Fig. 2 An equivalent NCS

Due to the use of RLQ in Fig. 1, the above figure admits the transfer matrix

W (z) =
[
T (z) S(z)

]
(9)

with S(z) as the sensitivity, and T (z) as the complementary sensitivity, specified by

T (z) = F (zI −A−BF )−1B, S(z) = I + T (z). (10)

The uncertainty blocks are represented by

Δ = diag[Δ1, · · · ,Δm], N (t) = diag[N1(t), · · · ,Nm(t)]. (11)

The NCS in Fig. 2 is in effect a stochastic control system. Assume that its initial condition

x(0) = x0 �= 0 with x(t) the state vector associated with W (z), which can also be random but
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is independent of N (t) for all t. The MS stability is the stability notion commonly used in the

literature that is concerned with E{x(t)x(t)′} as t → ∞ where E{·} denotes the operation of

expectation. Such a notion is equivalent to the input/output MS stability as defined next.

Definition 1 Suppose that the system represented by transfer matrix W (z) is internally stable.

Let the uncertainty blocks Δ and N (t) be given in (11) and described as earlier, and ‖ · ‖ be the

Euclidean norm. The feedback system in Fig. 2 is said to be MS stable, if E
{‖v(t)‖2} → 0 as

t → ∞ for any mean-power bounded initial condition, i.e., E{‖x0‖2} < ∞, and in presence of all

H∞-norm bounded uncertainties {Δk} and all multiplicative random processes {Nk(t)} with mean

0 and variance {ν2k}.

It is important to point out that when the feedback system in Fig. 2 is MS stable, then it

describes an asymptotically wide-sense stationary (WSS) process v(t) even if the initial condition

x(0) = x0 �= 0. Let the (mean) power norm of v(t) be defined as

‖v‖P := lim
N→∞

(
1

N

N−1∑
τ=0

E{‖v(τ)‖2}
) 1

2

. (12)

Then the MS stability for the closed-loop system in Fig. 2 is equivalent to ‖v‖P = 0.

For the NCS in Fig. 2, the uncertainty bounds {δk} of {Δk} measure roughly the information

loss in quantization, and variances {ν2k} are roughly the inverse of the SNR in packet transmission

by ν2k = σ2
k/μ

2
k. As {δk} and {ν2k} increase, the network becomes less reliable and the underlying

NCS is less likely to be stabilizable in the MS sense. For this reason, {δ−1
k } and {ν−2

k } represent the

network resource qualitatively. Our goal is to characterize the minimum network resource required

to stabilize the NCS in Fig. 2, and study how to design controller F and allocate the network

resource jointly in achieving the MS stabilization.

Let (A,B) be stabilizable and A have no eigenvalue on the unit circle. Then there exists a

unique stabilizing solution X ≥ 0 to the algebraic Riccati equation (ARE)

X = A′X(I +BB′X)−1A. (13)

The following lists some useful facts when (A+BF ) is a Schur matrix, i.e. ρ(A+BF ) < 1:

1

2π

∫ π

−π
S(ejω)∗S(ejω) dω = I +

1

2π

∫ π

−π
T (ejω)∗T (ejω) dω, (14)

1

2π

∫ π

−π
S(ejω)∗S(ejω) dω ≥ I +B′XB. (15)

Equality holds for (15) if [13]

F = −(I +B′XB)−1B′XA. (16)
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In fact the use of the above state feedback gain yields the optimal sensitivity [13]

S(ejω)∗S(ejω) = I +B′XB ∀ ω ∈ R. (17)

There holds identity det(I +B′XB) = M(A)2 [4, 7, 13] with M(A) the Mahleh measure defined as

M(A) :=
n∏

i=1

max
i

{1, |λi(A)|}. (18)

Finally consider a vector-valued WSS random process h(t). Its autocorrelation and power

spectral density (PSD) are defined respectively by

Rh(τ) = lim
N→∞

1

N

N−1∑
i=0

E{h(i)h(i− τ)′}, Ψh(ω) =

∞∑
τ=−∞

Rh(τ)e
−jωτ .

The mean-power of h(t) has an alternative expression

Ph = ‖h‖2P = Tr{Rh(0)} = Tr

{
1

2π

∫ π

−π
Ψh(ω) dω

}
.

Let P (z) be a rational transfer matrix for a stable system. If h(t) is used as input, then its output

g(t) admits a PSD Ψg(ω) = P (ejω)Ψh(ω)P (ejω)∗ and

Rg(0) =
1

2π

∫ π

−π
Ψg(ω) dω = P (ejω0)Rh(0)P (ejω0)∗, (19)

if the PSD of h(t) is chosen as δD(ω−ω0) with δD(·) the Dirac Delta function. Note that although

δD(ω) is unbounded at ω = 0, a WSS process with δD(ω) as the PSD has a constant and bounded

mean-power at each time index t. If g(t) = N (t)h(t) with N (t) in (11) described earlier, then

Rg(τ) = δK(τ)Rh(0) =⇒ Ψg(ω) = Rh(0) ∀ ω ∈ R (20)

where δK(·) is the Kronecker Delta function and “=⇒” stands for “implies”.

3 SI System Stablization

We first present our result on SI systems. In this case m = 1. Although [6, 17] contain two different

proofs in the case m = 1, a more direct derivation, extendable to MI systems, is provided here.

Assume from now on that RLQ is used for quantization, i.e. W (z) is given by (9).

Theorem 1 The NCS in Fig. 2 with m = 1 and W (z) in (9) is MS stabilizable for all ‖Δ‖H∞ ≤ δ

and E{|N (t)|2} ≤ ν2, if and only if (A,B) is stabilizable and

C :=
1

2
log

(
1 + ν2

ν2 + δ2

)
> h(A) := logM(A). (21)
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Proof: Note that (21) is equivalent to

1 + ν2

ν2 + δ2
> M(A)2 = det(1 +B′XB) (22)

with X ≥ 0 the stabilizing solution to ARE (13). We assume that A has no eigenvalues on the

unit circle throughout the paper. If A has eigenvalues on the unit circle, a standard trick (see for

example [4, 7, 13]) can be used to modify the proof. The inequality (22) can be written as

[
M(A)2 − 1

]
ν2 +M(A)2δ2 < 1.

By taking F to be the same as in (16), the inequality (21) is in turn equivalent to

‖T‖2H2
ν2 + ‖S‖2H∞δ2 < 1. (23)

It is commented that ‖T‖2H2
≥ M(A)2 − 1 and ‖S‖H∞ ≥ M(A) for any F ∈ R

m×n with equality

achieved by taking F in (16) [1, 4, 7, 13]. Next note that for the NCS in Fig. 2 with m = 1, there

holds

v(t) = T (q)N (t)v(t) + S(q)Δ[v(t)] (24)

by the nonlinearity of Δ. The i.i.d. assumption on N (t) and the equality (20) yields

‖T (q)N (t)v(t)‖2P = ‖T‖2H2
ν2Pv. (25)

The property of the H∞ norm implies that

‖S(q)Δ[v(t)]‖2P ≤ ‖S‖2H∞δ2Pv.

Finally computing the mean power for both sides of (24), noting the independence of v(t) and N (t),

and taking F to be the same as in (16) lead to

Pv ≤ (‖T‖2H2
ν2 + ‖S‖2H∞δ2

)Pv < Pv

in light of (23) when Pv �= 0, which is a contradiction. Thus (21) implies Pv = 0 for some controller

F , concluding the MS stabilizability.

Conversely if (21) is violated, then a deterministic uncertainty Δ and random uncertainty N (t)

can be constructed with ‖Δ‖H∞ ≤ δ and E{|N (t)|2} ≤ ν2 such that the feedback system in

Fig. 2 admits a solution v(t) with Pv = ‖v‖2P > 0 no matter which stabilizing controller F is

used. Specifically it is noted that a linear time-invariant (LTI) Δ(z) is a special case of NTVD

uncertainty. Taking Δ(z) with |Δ(z)| = δ for all |z| = 1 implies the existence of v(t) such that

‖S(q)Δ(q)v(t)‖2P = ‖S‖2H∞δ2Pv.
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Such a v(t) admits a PSD equal to PvδD(ω−ωm) that is a multiple of the Dirac Delta function having

the peak at ω = ωm at which |S(ejωm)| achieves the global maximum, i.e., ‖S‖H∞ = |S(ejωm)|. In
connection with (25), it results in the equality

Pv =
(‖T‖2H2

ν2 + ‖S‖2H∞δ2
)Pv. (26)

Since (21) does not hold, ‖T‖2H2
ν2 + ‖S‖2H∞δ2 ≥ 1 in light of (23) and the subsequent comment in

the sufficiency proof. Denote ⇐⇒ for equivalence. Only the critical case of

inf
F

{‖T‖2H2
ν2 + ‖S‖2H∞δ2

}
= 1 ⇐⇒ 1 + ν2

ν2 + δ2
= M(A)2

needs to be considered, because the case “> 1” includes the critical case by taking smaller value

of δ and ν. Recall that the MS stability has to hold for not only the case of ‖Δ‖H∞ = δ and

E{|N (t)|2} = ν2 but also for the case ‖Δ‖H∞ < δ and E{|N (t)|2} < ν2. Clearly the equality (26)

admits a solution Pv > 0, if the optimal F is used. On the other hand if a different stabilizing

F is used, the quantization error δ0 < δ or SNR of the fading channel ν20 < ν2 exists such that

‖T‖2H2
ν20 +‖S‖2H∞δ20 = 1. Thus a nonzero solution Pv > 0 to Pv =

(‖T‖2H2
ν20 + ‖S‖2H∞δ20

)Pv exists

again. Consequently the NCS in Fig. 2 is not MS stable for any stabilizing F which concludes the

proof. �

The proof of Theorem 1 shows that the MS stabilizability is hinged on

inf
F

{‖T‖2H2
ν2 + ‖S‖2H∞δ2

}
< 1. (27)

Since the optimal F achieving the infimum of ‖T‖H2 coincides with that of ‖S‖H∞ [13] (see (15)

and (17) also), the inequality (21) is equivalent to the MS stabilizability. It is important to observe

that in the case when quantization is absent, the MS stabilizability condition (21) reduces to

1 + ν−2 > M(A)2 that is the same as reported in [2]. When the fading channel is absent, the

condition (21) reduces to δ−1 > M(A) that is first obtained in [4] under the MLQ method for

quantization, and in [13] under the RLQ method for quantization.

Remark 1 The inequality (21) is also derived in [16] for the NCS using MLQ for quantization.

However [16] claims only that the underlying NCS is MS stabilizable, if and only if (21) holds for

some δ > 0 and ν > 0, contrasting to Theorem 1 that applies to any δ > 0 and ν > 0 satisfying (21).

In fact the MS stabilizability under MLQ and packet drop may require that either δ be close to zero

(δ = 0 corresponds to absence of quantization) or ν close to zero (ν = 0 corresponds to absence

of packet drop) in addition to satisfying the inequality (21). For this reason the RLQ method in

[13] is preferred for quantization if the quantized signal is to be transmitted in packets, which will

be able to offer a true trade-off between the quantization error and packet drop rate. Nonetheless,
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we still conjecture that the corresponding result to Theorem 1 for MLQ can be obtained by our

approach and is extendable to the MI case. We will continue to work on this. �

4 MI System Stablization

In this section we consider MI systems. Let ν = det(Dν) and δ = det(Dδ) be the total uncertainty

bounds, where

Dν = diag(ν1, · · · , νm), Dδ = diag(δ1, · · · , δm). (28)

Then ν = det(Dν) and δ = det(Dδ) represent the total uncertainty bounds of {Ni(t)} and {Δi},
respectively. Still assume that W (z) is given by (9).

As commented at the beginning of the paper, channel resource allocation will be used to pursue

the minimum channel capacity required for stabilization. In (21) we have defined the capacity for a

single channel. In the MI case, since multiple independent channels are used, we define the capacity

of the kth channel Ck in the same way as in (21), i.e.

Ck :=
1

2
log

(
1 + ν2k
ν2k + δ2k

)

and the capacity of the whole channel is defined to be their sum C :=
∑m

k=1 Ck. Note that Ck

for each k is determined by δk and νk, which can be influenced by the resource allocated to the

kth channel. For instance, channels with more resource could have finer quantizer and introduce

less fading effect, and hence have higher capacity. Assume that the information constraint is given

in terms of only C instead of each Ck. In this case, the controller designer has extra freedom

and can pursue the minimum channel capacity by allocating Ck judiciously among the channels so

that a stabilizing controller can be constructed. We refer to this procedure as channel/controller

co-design, which is demonstrated in the proof to the following theorem.

Theorem 2 The NCS in Fig. 2 with W (z) in (9) and m > 1 can be MS stabilized by some

allocation {Ck} and some feedback controller F for all ‖Δk‖H∞ ≤ δk and E{|Nk(t)|2} ≤ ν2k where

1 ≤ k ≤ m, if and only if (A,B) is stabilizable and

C > h(A). (29)

Proof: The sufficiency will be proved constructively by using channel resource allocation as

explained above. Assume that (29) holds and that (A,B) are in Wonham decomposition form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 ∗ · · · ∗
0 A2

. . .
...

...
. . .

. . . ∗
0 · · · 0 Am

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 ∗ · · · ∗
0 b2

. . .
...

...
. . .

. . . ∗
0 · · · 0 bm

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Since (A,B) is stabilizable, each pair (Ak, bk) is stabilizable. Hence M(A) =
∏m

k=1M(Ak), and

C =

m∑
k=1

Ck > h(A) =⇒ Ck :=
1

2
log

(
1 + ν2k
ν2k + δ2k

)
> h(Ak) (30)

can be made true. Let ni × ni be dimension of Ai. Denote

Dε = diag(1, ε, · · · , εm−1), Sε = diag(In1 , εIn2 , · · · , εm−1Inm),

with ε > 0. Note that constant diagonal scalings are allowed, which do not change the feedback

stability in light of the μ analysis [12]. Thus the MS stability of the NCS in Fig. 2 remains the

same when W (z) is replaced by

Wε(z) = D−1
ε

[
T (z)Dε S(z)Dε

]
=

[
0 I

]
+D−1

ε T (z)Dε

[
I I

]
.

It can be verified that under the similarity transform matrix Sε for the state vector of W (z) or

equivalently T (z),

D−1
ε T (z)Dε = D−1

ε FSε[sI − S−1
ε (A+BF )Sε]

−1S−1
ε BDε.

By taking D−1
ε FSε = diag(f1, · · · , fm) and ε → 0, there holds [13]

Wε(z) → diag[W1(z), · · · ,Wm(z)], D−1
ε T (z)Dε → diag[T1(z), · · · , Tm(z)]

where Tk(z) = fk(zI − Ak − bkfk)
−1bk. Hence the MI feedback system in Fig. 2 is asymptotically

diagonalizable by tweaking ε. Because C > h(A), Ck > h(Ak) can be made true for each k. See

(30). In light of Theorem 1, Ck > h(Ak) in turn implies the existence of the stabilizing fk such

that ‖Sk‖2H∞δ2k + ‖Tk‖2H2
ν2k < 1 for 1 ≤ k ≤ m where Sk(z) = 1 + Tk(z). Consequently Pvk = 0

is the only possible solution for each k to Pvk = (‖Sk‖2H∞δ2k + ‖Tk‖2H2
ν2k)Pvk , which concludes the

MS stability and thus the sufficiency proof for (29).

For the necessity proof, assume that (29) is violated. An LTI Δ(z) = diag[Δ1(z), · · · ,Δm(z)]

satisfying ‖Δk‖H∞ ≤ δk and a diagonal i.i.d. N (t) satisfying E{|Nk(t)|2} ≤ ν2k will be constructed

such that the NCS in Fig. 2 admits a solution v(t) with Pv > 0 no matter what stabilizing controller

F is used, i.e., the NCS is not MS stabilizable. For this purpose assume that F is stabilizing and

thus (A+BF ) is a Schur matrix. Note that for the feedback system in Fig. 2 with Δ replaced by

an LTI uncertainty Δ(z), there holds

v(t) = T (q)N (t)v(t) + S(q)Δ(q)v(t). (31)
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Recall Dν and Dδ in (28). The independence of the i.i.d. processes N (t) and v(t) yields

Pv = ‖v‖2P = ‖T (q)N (t)v(t) + S(q)Δ(q)v(t)‖2P
≤ Tr

{
1

2π

∫ π

−π
T (ejω)DνRv(0)DνT (e

jω)∗ dω

}

+ sup
ω

Tr
{
S(ejω)DδRv(0)DδS(e

jω)∗
}
.

Equality is achievable by constructing an appropriate LTI dynamic uncertainty Δ(z). For instance

a stable LTI Δ(z) = diag[Δ1(z), · · · ,Δm(z)] can be constructed satisfying |Δk(e
jω)| = δk for all ω

and 1 ≤ k ≤ m, leading to

Tr

{[
I −

(
DδS(e

jωm)∗S(ejωm)Dδ +
1

2π

∫ π

−π
DνT (e

jω)∗T (ejω)Dν dω

)]
Rv(0)

}
= 0 (32)

by taking v(t) whose PSD is an appropriate multiple of Dirac Delta having the peak at ωm and

using (19). The above can be written as Tr{(I −Π1)Rv(0)} = 0 by denoting

Π1 = DδS(e
jωm)∗S(ejωm)Dδ +

1

2π

∫ π

−π
DνT (e

jω)∗T (ejω)Dν dω.

Clearly eigenvalues of Π1 decrease as δk and ν2k decrease. On the other hand

MΠ := I −Π1 = (I +D2
ν)−Π2

by the property in (14) where

Π2 = DδS(e
jωm)∗S(ejωm)Dδ +

1

2π

∫ π

−π
DνS(e

jω)∗S(ejω)Dν dω. (33)

The equality (32) is now equivalent to Tr
{[(

I +D2
ν

)−Π2

]
Rv(0)

}
= 0. If the optimal stabilizing

F in (16) is used so that equality holds for (15), and (17) is also true, then

Π2 = Dδ(I +B′XB)Dδ +Dν(I +B′XB)Dν .

It is claimed that MΠ = (I − Π1) =
[(
I +D2

ν

)−Π2

]
is an indefinite matrix, i.e., MΠ has both

positive and negative eigenvalues, by the hypothesis that (29) is violated. To prove the claim with

the argument of contradiction, assume that MΠ is a definite matrix. If MΠ > 0, it is equivalent to

(
I +D2

ν

)
> Π2 = Dδ(I +B′XB)Dδ +Dν(I +B′XB)Dν . (34)

In light of Minkowski’s inequality (page 482 of [10]), det(P1 + P2) ≥ det(P1) + det(P2) for any

two positive definite matrices P1 and P2. Taking determinant on both sides of (34) with P1 =

Dδ(I +B′XB)Dδ and P2 = Dν(I +B′XB)Dν yields

det(I +D2
ν) > det(D2

ν +D2
δ ) det(I +B′XB) = M(A)2 det(D2

ν +D2
δ ).
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The above is the same as condition (29), thereby contradicting the hypothesis that (29) is violated.

The case MΠ < 0 is not meaningful because as {δk} and {ν2k} decrease, MΠ > 0 is true eventually,

leading to the same contradiction. Recall that MΠ = I − Π1 and the eigenvalues of Π1 decrease

as δk and ν2k decrease with limit Π1 = 0 if δk → 0 and ν2k → 0 for all k. See also the necessity

proof of Theorem 1. It follows that MΠ is indefinite and there is a nonzero solution Rv(0) ≥ 0

satisfying Pv > 0 to MΠRv(0) = 0 which concludes the instability of the NCS in Fig. 2. Now

if F is stabilizing but F is different from the optimal one in (16), then the strict inequality (34)

cannot hold anymore, i.e., MΠ > 0 is not true. Because MΠ < 0 is not possible (which otherwise

contradicts MΠ → I and Π1 → 0 as δk → 0 and ν2k → 0 for all k), MΠ must be indefinite for some

{Δk} and {Nk(t)} satisfying ‖Δk‖H∞ ≤ δk E{|Nk(t)|2} ≤ ν2k . Hence there again exists some WSS

process v(t) satisfying Rv(0) ≥ 0 and Pv > 0 to Tr{MΠRv(0)} = Tr{(I − Π1)Rv(0)} = 0, thereby

concluding the necessity proof. �

The sufficiency part of the above proof is constructive, and detailed procedure of the chan-

nel/controller co-design is showcased by using channel resource allocation. Indeed for a given total

capacity C > h(A) =
∑m

k=1 h(Ak), it is always possible to find an allocation of C1,C2, . . . ,Cm such

that C =
∑m

k=1 Ck and Ck > h(Ak) for all k, where all Ak’s are given by the Wonham decom-

position in the proof. Now with the allocated C1, a controller f1 can be designed to stabilize all

unstable modes controllable from the first input; similarly with C2, a controller f2 can be designed

to stabilize all remaining unstable modes controllable from the second input; · · · ; finally with Cm, a

controller fm can be designed to stabilizing all remaining unstable modes. It’s easy to see from the

Wonham decomposition that there is no other unstable modes left, and thus the channel/controller

co-design is accomplished and the underlying NCS is stabilized.

5 Numerical Examples

We present two numerical examples with the first for the SI case and the second for the MI case.

Example 1 Consider the second-order system x(t+ 1) = Ax(t) +Bu(t) where

A =

⎡
⎣ 0 1

1.8 −0.3

⎤
⎦ , B =

⎡
⎣ 0

1

⎤
⎦ .

Assume F(t) is a Bernoulli process satisfying P{F(t) = 0} = 0.25 and P{F(t) = 1} = 0.75 for

all time index t. Hence μ = 0.75. This example is adopted from [16] in which the MLQ quantizer

with δ = 0.2565 and packet drop with equivalent SNR ν2 = 1/0.75− 1 = 0.3333 (see (8)) are both
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present. Our design uses RLQ with the same δ and ν2. The capacity is thus given by

C =
1

2
log

1 + 1/0.75− 1

0.25652 + 1/0.75− 1
= 0.8701 > h(A) = 0.8480.

It follows that the underlying NCS is MS stabilizable. In [16] the input u(t) = F(t)Q[Fx(t)] where

the controller F is

[ −1.800 0.656 ] ,

while in our method u(t) = 1
μF(t)Q[Fx(t)] = [1 +N (t)]Q[Fx(t)] with the controller F computed

according to Theorem 1 being

[ −1.2444 0.4667 ] .

The simulation result is shown in Fig. 1. The two NCSs begin from the same initial condition

x(0) = [ 1 1 ]′, and also share the same F(t), i.e. the packets arrive or drop exactly the same

at each time sample in both NCSs. Note also that although the state x(t) := [ x1(t) x2(t) ]
′ is

2-dimensional, only one of the state variables is plotted, because for the given (A,B), there holds

x1(t+ 1) = x2(t) for all t ≥ 0. Hence it suffices to observe only one of the two state variables.

0 5 10 15 20 25 30 35 40 45 50

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Tsumura et al.
This paper

Figure 1: Simulation Result (δ = 0.2565, ν2 = 0.3333)

The figure shows that both the controller in [16] and our controller stabilize the NCS.

Next a multiple input system is used to demonstrate how channel resource is allocated in the

channel/controller co-design. We use the same example as the one in [13] in which only one channel

uncertainty is considered, contrasting to multiple channel uncertainties studied in this paper.

Example 2 Consider the unstable system (A,B) with

A =

⎡
⎢⎢⎣

4 0 0

0 2 0

0 0 2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0

1 1

0 1

⎤
⎥⎥⎦ .
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Figure 2: All possible realizations of the allocated capacity

Obviously (A,B) is stabilizable and is already in the Wonham decomposition form with

A1 = diag(4, 2), b1 = [ 1 1 ]′ , A2 = 2, b2 = 1.

As a result h(A) = h(A1)+h(A2) = 3+1 = 4. Hence if the total given capacity is C = 4+2×10−2,

then it is possible to allocate sufficient resource to each channel such that Ci > h(Ai), in light

of Theorem 2. One possible allocation sets C1 = 3 + 10−2 and C2 = 1 + 10−2. It is worth to

mentioning that for the NCS problems dealing solely with quantization [13] or fading errors [18],

{δi} or {νi} is determined once the channel capacity is allocated. However in this paper, there

exists an additional trade-off between {δi} and {νi} for a fixed capacity. That is, realizations of

the allocated capacity are not unique, nor is there any preferred choice among them. Fig. 2 shows

all possible combinations of {δi} and {νi} satisfying the required capacity for each channel.

0 5 10 15 20 25 30 35 40 45 50

−10
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0

2

4
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Figure 3: Simulation Result

Take ν1 = ν2 = 0.1 for instance, then δ1 = 0.0746 and δ2 = 0.4889. Solve the optimization
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problem described in (27) for [A1|b1] and [A2|b2], respectively, to obtain f1 and f2. They are exactly

given by the standard expensive controllers [13], i.e. f1 = [ −6.5625 1.3125 ] and f2 = −1.5, i.e.,

F = diag(f1, f2) =

⎡
⎣ −6.5625 1.3125 0

0 0 −1.5

⎤
⎦ .

With the above channel/controller co-design, the closed-loop evolution of the plant states starting

from the initial condition x(0) = [ 1 1 1 ]′ is shown in Fig. 3. Clearly all the system state

variables converge to zero asymptotically. It is commented that if the resource is not allocated

correctly, thereby violating Ci > h(Ai) for some i, then the stabilizing controller does not exist for

the corresponding [Ai|bi], and the underlying NCS cannot be stabilized.

6 Conclusion

This paper studies the MS stabilizability for NCSs over the quantized fading (actuator) channel.

By assuming the RLQ method for logarithmic quantization and the NTVD uncertainty for the

quantization error, we are able to provide a satisfactory solution and derive a necessary and sufficient

condition for the MS stabilizability for MI systems under state feedback. Our result generalizes

the one in [6, 17] for SI systems to MI systems, and strengthens the one in [16] to enable the

true tradeoffs between the quantization error and packet drop rate for design of the state feedback

controller. The problem of MS stabilizability under output feedback control is more difficult. While

a result is available in [6] for SISO systems, it contains only a sufficient condition. Hence the MS

stabilizability for MIMO systems over quantized fading channels poses a major challenge to the

NCS, which deserves further study in the future.
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