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Abstract

Block-oriented models are often used to model nonlinear systems. These models consist of linear dynamic (L) and nonlinear
static (N) sub-blocks. This paper addresses the generation of initial estimates for a Wiener-Hammerstein model (LNL cascade).
While it is easy to measure the product of the two linear blocks using a Gaussian excitation and linear identification methods, it
is difficult to split the global dynamics over the individual blocks. This paper first proposes a well-designed multisine excitation
with pairwise coupled random phases. Next, a modified best linear approximation is estimated on a shifted frequency grid. It
is shown that this procedure creates a shift of the input dynamics with a known frequency offset, while the output dynamics do
not shift. The resulting transfer function, which has complex coefficients due to the frequency shift, is estimated with a modified
frequency domain estimation method. The identified poles and zeros can be assigned to either the input or output dynamics.
Once this is done, it is shown in the literature that the remaining initialization problem can be solved much easier than the
original one. The method is illustrated on experimental data obtained from the Wiener-Hammerstein benchmark system.

Key words: Block-oriented nonlinear system; Dynamic systems; Nonlinear systems; Phase-coupled multisines; System
identification; Wiener-Hammerstein model.

1 Introduction

Even if all physical dynamic systems behave nonlinearly
to some extent, we often use linear models to describe
them. If the nonlinear distortions get too large, a linear
model is insufficient, and a nonlinear model is required.

One possibility is to use block-oriented models (Billings
& Fakhouri, 1982; Giri & Bai, 2010), which combine lin-
ear dynamic (L) and nonlinear static (N), i.e. memory-
less, blocks. Due to this highly structured nature, block-
oriented models offer insight about the system to the
user. This can be useful in e.g. fault detection, to de-
tect in which part of the system a fault occurred, e.g.
changing dynamics in only part of the model. Block-
oriented models are preferred when there are localized
nonlinearities in the system, thus leading to a sparse
representation of the system in terms of interconnected
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blocks. Due to the separation between the dynamics
and the nonlinearities, block-oriented models also al-
low for an easy discretization (i.e. the conversion from a
continuous-time to a discrete-time representation). We
refer the reader to Giri & Bai (2010) for an elaborated
discussion. The simplest block-oriented models are the
Wiener model (LN cascade) and the Hammerstein model
(NL cascade). They can be generalized to a Wiener-
Hammerstein model (LNL cascade, see Fig. 1). Appli-
cations of Wiener-Hammerstein models can mainly be
found in biology (Korenberg & Hunter, 1986; Dewhirst,
Simpson, Angarita, Allen & Newland, 2010; Bai, Cai,
Dudley-Javorosk & Shields, 2009), but also in the model-
ing of RF power amplifiers (Isaksson, Wisell & Rönnow,
2006).

Several identification methods have been proposed
to identify Wiener-Hammerstein systems. Early work
can be found in Billings & Fakhouri (1982); Koren-
berg & Hunter (1986). The maximum likelihood esti-
mate is formulated in Chen & Fassois (1992). Wiener-
Hammerstein systems are modeled as the cascade of
well-selected Hammerstein models in Wills & Nin-
ness (2012). The recursive identification of error-in-
variables Wiener-Hammerstein systems is considered in
Mu & Chen (2014). Both Chen & Fassois (1992) and
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Wills & Ninness (2012) indicate the importance of good
initial estimates, but not how to obtain them. Sjöberg
& Schoukens (2012) indicates the importance of good
initial estimates on an example. The optimization of
the model parameters can either converge extremely
slowly or get trapped in a local optimum, even if the
correct number of poles and zeros is assigned to both
the input and the output dynamics, leading to Wiener-
Hammerstein models that only fit about as well as a
linear model.

Some approaches obtain initial estimates by using specif-
ically designed experiments. For example, Vandersteen,
Rolain & Schoukens (1997) proposes a series of exper-
iments with large and small signal multisines. Weiss,
Evans & Rees (1998) uses only two experiments with
paired multisines, but the approach requires the esti-
mation of the Volterra kernels of the system. Crama
& Schoukens (2005) proposes an iterative initialization
scheme that only requires one experiment of a well-
designed multisine excitation.

A major difficulty is the generation of good initial values
for the two linear blocks R(q) and S(q) of the Wiener-
Hammerstein system (see Fig. 1). An initial estimate for
the static nonlinearity can be obtained using a simple
linear regression if a basis function expansion, linear-
in-the-parameters, for the nonlinearity is used, and if
the dynamics are initialized. The poles and the zeros of
both R(q) and S(q) can be obtained from the best lin-
ear approximation (BLA) (Pintelon & Schoukens, 2012)
of the Wiener-Hammerstein system. To obtain initial
estimates for R(q) and S(q), the poles and the zeros
of the BLA should be split over the individual trans-
fer functions R(q) and S(q). Several methods have been
proposed to make this split. The brute-force method in
Sjöberg, Lauwers & Schoukens (2012) scans all possible
splits, leading to an exponential scanning problem. The
advanced method in Sjöberg et al. (2012) uses a basis
function expansion for the input dynamics and one for
the inverse of the output dynamics. A scanning proce-
dure over the basis functions is proposed as well. Com-
pared to the brute-force method, the number of scans
is lower, but the computational time can still be large.
The approach in Westwick & Schoukens (2012) not only
uses the BLA, but also the so-called quadratic BLA
(QBLA), a higher-order BLA from the squared input
to the output residual of the first-order BLA. By doing
so, the number of possible splits is reduced significantly.
Due to the higher-order nature of the QBLA, however,
long measurements are needed to obtain an accurate
estimate. The nonparametric separation method pro-
posed in Schoukens, Pintelon & Rolain (2014b) avoids
the pole/zero assignment problem completely, but also
uses the QBLA.

The method proposed in Schoukens, Tiels & Schoukens
(2014a) and further developed in this paper uses again
the first-order BLA. Using a well-designed excitation

Fig. 1. A Wiener-Hammerstein system (R and S are linear
dynamic systems and f is a nonlinear static system).

signal, the poles and the zeros of the input dynamics
R(q) shift with a frequency offset that can be chosen
by the user, while the poles and the zeros of the out-
put dynamics S(q) remain invariant. Long measurement
times can be avoided, because no use is made of higher-
order BLAs. This paper generalizes the basic ideas in
Schoukens et al. (2014a) from cubic nonlinearities to
polynomial nonlinearities. Moreover, experimental re-
sults on the Wiener-Hammerstein benchmark system
(Schoukens, Suykens & Ljung, 2009) are reported.

The rest of this paper is organized as follows. The basic
setup is described in Section 2. A brief overview of the
BLA is presented in Section 3. The proposed method is
presented in Section 4. The experimental results on the
Wiener-Hammerstein benchmark system are reported in
Section 5. Finally, the conclusions are drawn in Section 6.

2 Setup

This section introduces some notation. It also presents
the considered Wiener-Hammerstein system and the as-
sumptions.

2.1 Notation

Without loss of generality, discrete-time systems are con-
sidered. Hence, the integer t denotes the time as a num-
ber of samples. The results in this paper generalize to
continuous-time systems with some minor modifications.

Notation 1 (X(k) and x(t)). The discrete Fourier
transform (DFT) of a time domain signal x(t) is de-
noted by X(k) = X(ejωk), and is given by

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2π
k
N t . (1)

The inverse DFT is given by

x(t) =
1√
N

N/2∑
k=−N/2+1

X(k)ej2π
k
N t . (2)

Notation 2 (q−1). The backward shift operator is de-
noted by q−1, i.e. q−1x(t) = x(t− 1).

Notation 3 (O(·)). The notation h is an O(Nα) indi-
cates that for N big enough, |h(N)| ≤ cNα, where c is a
strictly positive real number.
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Notation 4 ((·)∗). The complex conjugate of a complex
number X is denoted by X∗.

2.2 The Wiener-Hammerstein system

Consider the Wiener-Hammerstein system in Fig. 1,
given by

x(t) = R(q)u(t) ,

w(t) = f(x(t)) ,

y(t) = S(q)w(t) + v(t) ,

(3)

where R(q) and S(q) are linear time-invariant (LTI)
discrete-time transfer functions, i.e.

R(q) =
BR(q)

AR(q)
=

∑nR

l=0 bR,lq
−l∑mR

l=0 aR,lq
−l ,

S(q) =
BS(q)

AS(q)
=

∑nS

l=0 bS,lq
−l∑mS

l=0 aS,lq
−l ,

(4)

and where f(x) is a static nonlinear function. Only the
input u(t) and the noise-corrupted output y(t) are avail-
able for measurement.

2.3 Assumptions

This paper addresses the generation of initial estimates
for the linear dynamics R(q) and S(q). To do this, as-
sumptions (A1)–(A4) are made.

(A1) The static nonlinearity f(x) can be arbitrarily
well approximated by a polynomial in the interval
[min(x(t)),max(x(t))]. Hence, f(x) can be thought
of as f(x) =

∑∞
D=0 γDx

D.

Note that a uniformly convergent polynomial approxi-
mation of a continuous nonlinearity is always possible
on a closed interval due to the Weierstrass approxima-
tion theorem (Weisstein, n.d.). The type of convergence
can be relaxed to mean-square convergence, thus allow-
ing for some discontinuous nonlinearities as well.

(A2) At least one nonlinear odd term is present, i.e. there
exists an odd D ≥ 3 for which γD 6= 0.

Assumption (A2) is slightly stricter than the assump-
tion of non-evenness of the nonlinearity, which is typi-
cally made in other BLA approaches. When facing an
even nonlinearity, a slight DC offset is typically added
to the input, such that the nonlinearity is no longer
even around the new set-point. If the nonlinearity only
has polynomial terms up to second degree, i.e. it is a
parabola, then adding a DC offset to the input can make
the nonlinearity non-even, but it will not create a non-
linear odd term.

(A3) The additive output noise v(t) is a sequence of zero-
mean filtered white noise that is independent of the
excitation signal u(t).

Under this assumption, the classical least-squares frame-
work is known to result in consistent estimates of the
BLA (Pintelon & Schoukens, 2012). To simplify the no-
tation, and without loss of generality, the results in this
paper are presented in the noise-free case. Input and pro-
cess noise are not considered here. In general, this would
result in biased estimates. A more involved errors-in-
variables approach (e.g. Mu & Chen (2014)) is required
to obtain unbiased estimates in this more general case.

(A4) The system operates in steady-state.

3 The BLA of a Wiener-Hammerstein system
using random-phase multisines

This section briefly reviews the BLA of a system. Ex-
plicit expressions for the output spectrum of the BLA
of a Wiener-Hammerstein system, excited by a random-
phase multisine, are provided. These expressions will be
convenient to set the ideas for the proposed method in
Section 4, where phase-coupled multisines are proposed.

3.1 Random-phase multisine excitation

This paper considers multisine excitations.

Definition 1 (multisine). A signal u(t) is a multisine if

u(t) =

N/2∑
k=−N/2+1

Uke
j2π k

N t for t = 0, 1, . . . , N − 1 ,

(5)
where the Fourier coefficients Uk = U∗−k = |Uk|ejφk are
either zero (no excitation present at frequency line k) or
have a normalized amplitude |Uk| = 1√

N
Ǔ
(
k
N

)
, where

Ǔ
(
ω
2π

)
∈ R+ is a uniformly bounded function.

Definition 2 (random-phase multisine). A signal u(t)
is a random-phase multisine if it is a multisine (see Def-
inition 1) where the phases φk are independently and
identically distributed with the property E

{
ejφk

}
= 0.

3.2 The best linear approximation

The BLA of a system is defined as the linear system
whose output approximates the system’s output best in
mean-square sense around the operating point (Pintelon
& Schoukens, 2012), i.e.

Definition 3 (best linear approximation).

GBLA(k) := arg min
G(k)

Eu

{
‖Ỹ (k)−G(k)Ũ(k)‖2

}
, (6)
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with {
ũ(t) = u(t)− E {u(t)}
ỹ(t) = y(t)− E {y(t)} , (7)

where GBLA is the frequency response function (FRF)
of the BLA, and where the expectation in (6) is taken
with respect to the random input u.

Remark 1. In the remainder of this paper, it is assumed
that the mean values are removed from the signals when
a BLA is calculated. The notations u and y will be used,
instead of ũ and ỹ.

It can be shown that

GBLA(k) =
SY U (k)

SUU (k)
, (8)

where the expectation in the cross-power and auto-
power spectra is again taken with respect to the random
input u. Note that for periodic excitations, (8) reduces
to (Schoukens, Pintelon & Rolain, 2012)

GBLA(k) = Eu

{
Y (k)

U(k)

}
. (9)

It follows from (8) and Bussgang’s theorem (Buss-
gang, 1952) that the BLA of the considered Wiener-
Hammerstein system for Gaussian excitations is pro-
portional to the product of the underlying dynamics.
This is summarized in the following theorem.

Theorem 1. TheBLA of the Wiener-Hammerstein sys-
tem in (3), excited by Gaussian noise or by a random-
phase multisine, is equal to

GBLA(k) = cBLAR(k)S(k) +O(N−1) , (10)

where cBLA is a constant that depends upon the odd
nonlinearities in f(x) and the power spectrum of the
input signal.

Proof. This is shown in Pintelon & Schoukens (2012,
pp. 85–86).

The constant cBLA is nonzero if f(x) is non-even
around the operating point. Theorem 1 shows that it
is easy to measure the product R(k)S(k) of a Wiener-
Hammerstein system by measuring its BLA for an
(asymptotically) Gaussian excitation.

3.3 The output spectrum of the BLA

An explicit expression for the output spectrum of the
BLA of a Wiener-Hammerstein system, excited by a
random-phase multisine, is derived in this subsection.

For the more complex case of a phase-coupled multisine,
a similar derivation will be used (see Theorem 2).

Under Assumptions (A1) and (A4), the noise-free output
spectrum of the Wiener-Hammerstein system in (3) is
equal to

Y (k) = γ0 +

∞∑
D=1

γDYD(k) , (11)

where YD(k) is the noise-free output spectrum of a
Wiener-Hammerstein system that contains a pure Dth-
degree nonlinearity (f(x) = xD). The multiplication in
the time domain corresponds to a convolution in the
frequency domain, and thus (also keeping in mind the
normalization factor in the inverse DFT in (2))

YD(k)

=

(
1√
N

)D−1

S(k)

N/2∑
l1,l2,...,lD=−N/2+1

D∏
i=1

R(li)U(li) ,

(12)

such that
∑D
i=1 li = k. The only terms in YD(k) that

contribute to the BLA are those where the product∏D
i=1 U(li) has a phase φk = ∠U(k). Terms that also de-

pend on φl 6=k will be eliminated in the expected value
Eu {Y (k)U∗(k)} in (8) or in the expected value in (9).
The contributing terms are those where one of the lis is
equal to k, and where the other factors combine pairwise
to X(l)X(−l) = |X(l)|2. Note that this is only possible
if D is odd. Summing up all the terms in (12) that con-
tribute to the BLA results in

YD,BLA(k) = D!S(k)R(k)U(k)

 1

N

N/2∑
l=−N/2+1

|X(l)|2


D−1
2

+O(N−1) .
(13)

For example, for f(x) = x3, the BLA is equal to

GBLA(k) = 6S(k)R(k)

(
1

N

N/2∑
l=−N/2+1

|X(l)|2
)

+O(N−1) .

(14)
The error term O(N−1) is due to the fact that there
are six permutations of (k, l,−l) if k 6= l, while there are
only three permutations of (k, k,−k).

4 The proposed method

In this section, we propose to use a special type of mul-
tisines, namely phase-coupled multisines. After defining
phase-coupled multisines, it is shown how the use of these
signals makes it possible to separate the input and the
output dynamics. Finally, a practical issue when work-
ing with phase-coupled multisines is addressed.
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4.1 Phase-coupled multisine excitation

Phase-coupled multisines are multisines where specifi-
cally selected pairs of frequency lines where excitation
is present have the same phase. Depending on whether
excitation is present at both even and odd, or only at
odd frequency lines, we are dealing with a full or an odd
phase-coupled multisine, respectively.

Definition 4 (full phase-coupled multisine). A signal
u(t) is a phase-coupled multisine if it is a multisine (see
Definition 1) where excitation is only present at fre-
quency lines k for which

± k ∈
{(

d

2
+ di,

d

2
+ di+ s

)}
for i = 0, 1, . . . , imax ,

(15)
where d and s are integers (more details below), and
if each of the frequency couples gets assigned an in-
dependently and identically distributed random phase

φ d
2 +di = φ d

2 +di+s with the property E
{
e
jφ d

2
+di

}
= 0.

For a full phase-coupled multisine, the even integer
d ≥ 4 determines the frequency resolution (excitation is
present only every dth frequency line, starting from the
frequency lines d

2 and d
2 + s), and s = cshiftd+ 1 will de-

termine the shift of the poles and the zeros of R(q) with
respect to those of S(q), where cshift > 0 is an integer.

It can be useful to only have excitation present at the odd
frequency lines, just as with random-phase multisines
(Schoukens, Pintelon, Dobrowiecki & Rolain, 2005). The
definition of the phase-coupled multisine then slightly
changes.

Definition 5 (odd phase-coupled multisine). A signal
u(t) is an odd phase-coupled multisine if it is a phase-
coupled multisine (see Definition 4) where d

2 ≥ 5 is an
odd integer, and where s = cshiftd+ 2.

To simplify the notation in the rest of the paper, define

m :=
d

2
+ di . (16)

Remark 2. Although this is not really necessary, the
requirement d ≥ 4 for a full phase-coupled multisine, and
d
2 ≥ 5 for an odd phase-coupled multisine makes sure
that there is no excitation present at the frequency lines
k = m− s and k = m+ 2s. Hence, the output spectrum
at these frequency lines will not be disturbed by linear
contributions.

4.2 New terms in the output spectrum of the BLA

Since U(m) and U(m + s) have the same phase in a
phase-coupled multisine, also other terms than the ones

reported in (13) will contribute to the BLA at the fre-
quency lines m and m + s. Moreover, the output spec-
trum will contain terms that are proportional to S(k)
and shifted versions of R(k) at some frequency lines
where no excitation is present. This is explained below.

Let us take a look at the terms in YD(k) in (12) where

the product
∏D
i=1 U(li) has a phase ∠U(m). These

are the terms where one of the frequency lines li is
equal to m or m + s (U(m + s) has the same phase as
U(m)), and where the remaining factors in the prod-

uct
(

1√
N

)D−1∏D
i=1R(li)U(li) combine pairwise to a

constant. The possible values for these D−1
2 (complex)

constants are either

c0 =
1

N

N/2∑
l=−N/2+1

X(l)X(−l) , (17a)

c−s =
1

N

N/2∑
l=−N/2+1

X(l)X(−(l + s)) , (17b)

or

cs =
1

N

N/2∑
l=−N/2+1

X(−l)X(l + s) . (17c)

Note that whenever a pair of factors combines to
c−s, a frequency shift −s is introduced in the sum∑D
i=1 li = k. Likewise, a frequency shift s is introduced

whenever a pair of factors combines to cs = (c−s)
∗
.

There are thus D + 1 frequency lines k that range from
m− D−1

2 s to m+ D+1
2 s in steps of s where the product∏D

i=1 U(li) has a phase ∠U(m). The smallest frequency

line (k = m− D−1
2 s) is obtained when one frequency

line li is equal to m, and when all the other frequency
lines form pairs (l,−(l + s)). The largest frequency line
(k = m+ D+1

2 s) is obtained when one frequency line
li is equal to m+ s, and when all the other frequency
lines form pairs (−l, l + s). From the discussion above,
the following theorem follows:

Theorem 2. Under Assumptions (A1) and (A4), and
for i = −D−1

2 ,−D−1
2 + 1, . . . , D+1

2 , the expectation

Eu

{
YD(m+is)
U(m)

}
is equal to

D!S(m+ is)

R(m)
∑∑
k
sk=is

D−1
2∏

k=1

csk

+ R(m+ s)
|U(m+ s)|
|U(m)|

∑∑
k
sk=(i−1)s

D−1
2∏

k=1

csk


+O(N−1) ,

(18)
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andEu

{
YD(−(m+is))

U(−m)

}
=
(
Eu

{
YD(m+is)
U(m)

})∗
is equal to

D!S(−(m+ is))

R(−m)
∑∑

k
sk=−is

D−1
2∏

k=1

csk

+ R(−(m+ s))
|U(m+ s)|
|U(m)|

∑∑
k
sk=−(i−1)s

D−1
2∏

k=1

csk


+O(N−1)

(19)
for the Wiener-Hammerstein system in (3), excited by
a phase-coupled multisine (see Definitions 4 and 5), and
where each sk ∈ {−s, 0, s}.

Proof. The theorem follows immediately from the dis-
cussion above.

From here on, the error term O(N−1) will be dropped.
For example, for D = 3, there are four frequency lines

where Eu

{
Y3(k)
U(m)

}
has a nonzero mean. These are listed

below.

(1) At frequency line k = m− s:

Eu

{
Y3(k)

U(m)

}
= 6S(m− s)R(m)c−s (20a)

(2) At frequency line k = m:

Eu

{
Y3(k)

U(m)

}
= 6S(m)R(m)c0

+ 6S(m)R(m+ s)
|U(m+ s)|
|U(m)|

c−s

(20b)
(3) At frequency line k = m+ s:

Eu

{
Y3(k)

U(m)

}
= 6S(m+ s)R(m+ s)

|U(m+ s)|
|U(m)|

c0

+ 6S(m+ s)R(m)cs
(20c)

(4) At frequency line k = m+ 2s:

Eu

{
Y3(k)

U(m)

}
= 6S(m+ 2s)R(m+ s)

|U(m+ s)|
|U(m)|

cs

(20d)

The results at the frequency lines k = m− s and
k = m+ 2s are of particular interest. At these frequency

lines, Eu

{
Y3(k)
U(m)

}
is proportional to S(k)R(k + s) and

S(k)R(k − s), respectively. The frequency shift of the
input dynamics R over a frequency −s (or s) creates a

shift of the poles and the zeros of R over a frequency
−s (or s). Note that the shifted poles and zeros are
no longer real nor paired in complex conjugated cou-
ples. Hence, the rational transfer functions related to

Eu

{
Y3(m−s)
U(m)

}
and Eu

{
Y3(m+2s)
U(m)

}
will have complex

coefficients instead of real coefficients. This will be used
in the next subsection.

4.3 The shifted BLA and parametric smoothing

For simplicity, we continue to explain the idea on a
third-degree nonlinearity. The generalization to an arbi-
trary degree D is explained in Subsection 4.4. First, the

FRF measurements Eu

{
Y3(k)
U(m)

}
and Eu

{
Y3(k)
U(−m)

}
will

be collected at appropriate frequency lines k, such that
only contributions are selected where the input and out-
put dynamics shift over a unique frequency offset. Next,
a parametric transfer function model will be identified to
get direct access to the poles and the zeros of the system.
As the shifted poles result in a transfer function model
with complex coefficients, an adapted frequency domain
estimator (Peeters, Pintelon, Schoukens & Rolain, 2001)
will be used. Finally, the input and the output dynamics
will be split by separating the shifting poles and zeros
from those that do not move.

From (19), it follows that

Eu

{
Y3(−(m− s))

U(−m)

}
= 6S(−(m− s))R(−m)cs (21)

and that

Eu

{
Y3(−(m+ 2s))

U(−m)

}
= 6S(−(m+ 2s))R(−(m+ s))

× |U(m+ s)|
|U(m)|

c−s

(22)

Hence, Eu

{
Y3(k)
U(−m)

}
is proportional to S(k)R(k − s)

at the frequency lines k = −(m− s), while it is pro-
portional to S(k)R(k + s) at the frequency lines
k = −(m+ 2s). Therefore, by analogy with (9), define
the shifted BLAs G+

SBLA(k) and G−SBLA(k) by collect-

ing Eu

{
Y (k)
U(m)

}
and Eu

{
Y (k)
U(−m)

}
at the appropriate

frequency lines k, such that contributions proportional
to S(k)R(k + s) and S(k)R(k − s), respectively, result:

Definition 6 (shifted best linear approximation). For a
system excited by a phase-coupled multisine (see Defini-
tions 4 and 5), the shifted BLA G+

SBLA(k) is defined as

G+
SBLA(k) :=

Eu
{
Y (k)
U(m)

}
at k = m− s

Eu

{
Y (k)
U(−m)

}
at k = −(m+ 2s)

(23)
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while the shifted BLA G−SBLA(k) is defined as

G−SBLA(k) :=

Eu
{
Y (k)
U(m)

}
at k = m+ 2s

Eu

{
Y (k)
U(−m)

}
at k = −(m− s)

(24)

with m defined in (16).

Since G−SBLA(k) = (G+
SBLA(−k))

∗
, we can focus com-

pletely on one of both, e.g. G−SBLA(k).

Next, a parametric transfer function model is identified
on G−SBLA(k), using a weighted least-squares estimator
(Peeters et al., 2001)

θ̂ = arg min
θ

K(θ) , (25a)

where the cost function K(θ) is equal to

1

N

∑
k∈{m+2s,−(m−s)}

|G−SBLA(k)−G−SBLA(k, θ)|2

σ2
G−

SBLA

(k)
.

(25b)
Here, G−SBLA(k, θ) is a parametric transfer function
model with the complex coefficients bSBLA,l and aSBLA,l

collected in the parameter vector θ:

G−SBLA(k, θ) =

∑nR+nS

l=0 bSBLA,le
−j2π k

N l∑mR+mS

l=0 aSBLA,le−j2π
k
N l

, (26)

and σ2
G−

SBLA

(k) is the sample variance ofG−SBLA(k). Since

G−SBLA(k) is proportional to S(k)R(k − s), the poles
(and the zeros) of R will be shifted over a frequency s,
and will no longer be real, nor complex conjugated. By
comparing the poles (and the zeros) of G−SBLA(k, θ) and
their complex conjugates, the poles (and the zeros) of R

and S can be separated. Indeed, a frequency shift ej2π
2s
N

will be visible in the complex plane between the shifted
poles (and zeros) of R and their complex conjugates,
while the poles (and zeros) of S will not show this shift.
Fig. 2 shows an example of the pole shifting.

This approach has the potential to discriminate between
a Wiener, a Hammerstein, and a Wiener-Hammerstein
model, based on whether there are shifting poles/zeros
(and thus input dynamics), fixed poles/zeros (and thus
output dynamics), or both. A more detailed discussion
on structure discrimination is provided in Schoukens,
Pintelon, Rolain, Schoukens, Tiels, Vanbeylen, Van Mul-
ders & Vandersteen (2015).

4.4 Generalization to an arbitrary degree D

The basic idea, that was explained for a cubic nonlinear-
ity in the previous subsection, is now generalized to an

Fig. 2. Example of shifting poles (Left: original poles; Middle:
shifted poles; Right: Shifted and conjugated poles).

arbitrary degree D. Under Assumption (A2), the result
in Theorem 2 can be used to separate the input and the
output dynamics. The main concern, however, is that
the shifted BLAs will contain contributions where the
input and the output dynamics are shifted over distinct
frequencies if D ≥ 5. This will be addressed now.

The results in Theorem 2 show that the shifted BLA
G−SBLA(k) will not only contain terms that are propor-
tional to S(k)R(k − s) for D ≥ 5, but also terms that
are proportional to S(k)R(k − 2s). One way to deal with
this is to redefine the shifted BLA, thereby only con-
sidering the outer frequency lines k = m− Dmax−1

2 s and

k = m+ Dmax+1
2 s, where a unique frequency shift of R

is present. The main disadvantage of this approach is
that it requires knowledge of the maximal degree of non-
linearity Dmax. Moreover, in order not to be disturbed
by linear contributions at these frequency lines, the fre-
quency resolution of the phase-coupled multisine exci-
tation should be lowered (cfr. Remark 2). Therefore, a
different approach is followed here.

Both the contributions proportional to S(k)R(k − s)
and S(k)R(k − 2s) will make the poles of R shift over
a positive frequency offset, while those of S will remain
fixed. Hence, the poles and the zeros of R and S can still
be separated. Since two distinct frequency shifts of the
input dynamics are present in the shifted BLA, its para-
metric model should have a larger model order, namely
the model order of S plus two times the model order of
R. This will not be done, however, because the contri-
butions that are proportional to S(k)R(k − s) are dom-
inant over those that are proportional to S(k)R(k − 2s)
(see Appendix A), certainly if we assume that the cubic
nonlinearities dominate the higher-order contributions.
Hence, the terms in G−SBLA(k) that are not proportional
to S(k)R(k − s) will simply be considered as nuisance
terms.

4.5 Time origin

Since phase-coupled multisines rely on the fact that some
frequency lines have equal phase, the time origin is im-
portant. This synchronization issue is addressed now.

Suppose that the input and the output measurements
are shifted over a time δ, i.e. t becomes t− δ. This results
in a frequency-dependent phase shift in the input and the

7



Fig. 3. The Wiener-Hammerstein benchmark system con-
sists of a diode-resistor network sandwiched in between two
third-order Chebyshev filters.

output spectrum. For example, U(k) becomes U(k)ejk∆,
with ∆ = − 2πδ

N . Since the shifted BLA is defined as the
expected value of the ratio of the input and the output
spectrum at distinct frequency lines (see Definition 6),
a phase shift is present in this shifted BLA:

Eu

{
Y (k)

U(m)

}
→ Eu

{
Y (k)

U(m)
ej(k−m)∆

}
. (27)

Since δ does not need to be an integer, the compensation
for a shifted time origin will be done in the frequency
domain. The phase shift ∆ can be determined for each
pair of frequency lines at which excitation is present as

∆(m) =
∠U(m+ s)− ∠U(m)

s
, (28)

and the expected values in the shifted BLAs can be com-

pensated by multiplying Eu

{
Y (k)
U(m)

}
with ej(m−k)∆(m),

and Eu

{
Y (k)
U(−m)

}
with ej(−m−k)∆(m).

5 Experimental results

This section illustrates the proposed method on exper-
imental data obtained from the Wiener-Hammerstein
benchmark system (Schoukens et al., 2009).

5.1 Device

The Wiener-Hammerstein benchmark system is an elec-
tronic circuit with a Wiener-Hammerstein structure. It
consists of a diode-resistor network sandwiched in be-
tween two third-order filters (see Fig. 3). The input filter
R is a Chebyshev low-pass filter with a ripple of 0.5 dB
and a cut-off frequency of 4.4 kHz. The output filter S
is an inverse Chebyshev filter with a stop-band attenu-
ation of 40 dB starting at 5 kHz. It has a transmission
zero in the frequency band of interest.

5.2 Measurement data

The benchmark data were obtained using a filtered
Gaussian noise excitation (Schoukens et al., 2009) and
are therefore not used in this paper. Here, a random-
phase multisine is used to measure the BLA, and an odd
phase-coupled multisine is used to measure the shifted

Fig. 4. The shifted BLA (black dots) is not symmetric around
the origin. Its standard deviation is shown in black triangles.

BLA. For both excitations, the input and output are
measured at a sample frequency of 78 125 Hz.

The random-phase multisine contains N = 8192 sam-
ples. It has a flat amplitude spectrum with 682 frequen-
cies ranging from 19 Hz to 13 800 Hz where excitation
is present, and an rms level of 380 mV. This relatively
small rms level is chosen to keep the nonlinear distortion
level small. Seven phase realizations and three periods
are applied. The first period is removed to avoid the ef-
fects of transients.

The phase-coupled multisine containsN = 8192 samples
as well, and also has a flat amplitude spectrum. With
d = 10, s = 242, and imax = 111, there are 224 frequen-
cies that range from 47 Hz to 12 941 Hz where excitation
is present. The signal is normalized to have a maximal
amplitude of 2 V. This amplitude level corresponds more
or less to that of the Wiener-Hammerstein benchmark
data. Again, three periods are applied where the first one
is removed to avoid the effects of transients. One thou-
sand phase realizations are applied to almost completely
average out the nonlinear distortions in the shifted BLA
so that we can show a high-quality nonparametric esti-
mate of the shifted BLA (see Fig. 4). However, much
less phase realizations can be used, since the parametric
modeling step will also reduce the impact of the nonlin-
ear distortions (and the noise). For example, ten phase
realizations can be enough (see Subsection 5.4).

5.3 The BLA and the shifted BLA

The BLA is first estimated non-parametrically via
the robust method (Schoukens et al., 2012) using
the random-phase multisine data. Next, a parametric
fourth-order transfer function model is estimated on top
of the non-parametric BLA by minimizing a weighted
least-squares cost function that is similar to (25b), but
with real parameters θ. Although a sixth-order model
is expected (R and S are both third-order filters), a
fourth-order model seems enough for the data at hand
(see Fig. 5). The poles and the zeros of the parametric
model are used as a reference to compare them with
those of the shifted BLA.
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Fig. 5. A parametric fourth-order model (red line) can ex-
plain the non-parametric BLA (green) (the magnitude of the
complex difference between the BLAs (red triangles) coin-
cides with the estimated total distortion level (black)).

Fig. 6. The poles of the shifted BLA are shown in red crosses,
their complex conjugates in blue pluses, and the original
poles of the BLA in black dots. One pole (where red and blue
are not on top of each other) shows a clear shift and can be
assigned to the input filter R. The three other poles (almost)
remain invariant and can be assigned to the output filter S.
This is in good agreement with the internal structure of the
filters in Fig. 3. Their poles are added in gray as a reference
(triangles: R, squares: S).

The shifted BLA is estimated non-parametrically by av-
eraging over the 1000 realizations of the input. The av-
eraged value is shown together with its standard devia-
tion in Fig. 4. Observe that the amplitude characteristic
is not symmetric around the origin. Hence, a paramet-
ric transfer function model with complex coefficients is
required. A fourth-order model is estimated using the
weighted least-squares approach in (25). The poles of
this model, together with their complex conjugates and
the original poles of the BLA are shown in Fig. 6. A
similar picture for the zeros is shown in Fig. 7.

5.4 Discussion of the results

One real pole can be assigned to the input filter R, since
the corresponding pole of the shifted BLA shows a clear
shift of about 21◦ with respect to its complex conjugate.
This shift also nicely corresponds to the expected shift of

Fig. 7. Zeros of the shifted BLA are shown in red circles,
their complex conjugates in blue diamonds, and zeros of the
BLA in black dots. One zero outside the unit circle is not
shown. The complex pair of zeros can clearly be assigned to
the output filter S. The other zeros cannot be classified. The
zeros of the filters in Fig. 3 are added in gray as a reference
(triangles: R, squares: S).

2s
N 360◦ = 21.3◦. The other poles do (almost) not move.
They can be assigned to the output filter S. Considering
the internal structures of the filters (see Subsection 5.1),
the poles are assigned correctly (see also Fig. 6). The
input filter R should have a complex conjugate pole pair
as well, but its effect on the FRFs seems unnoticeable
due to the presence of the transmission zero in S (see
also Subsection 5.3).

The complex pair of zeros can be assigned to the output
filter S, since these zeros do not shift. This pair of zeros is
assigned correctly, as it corresponds to the transmission
zero in the output filter (see Subsection 5.1 and Fig. 7).
The real zero in Fig. 7 cannot be clearly assigned. Al-
though a shift of about 35◦ is present between the corre-
sponding zero of the shifted BLA and its complex con-
jugate, its amplitude is so small that a small uncertainty
on the zero position can completely change its classifi-
cation. The inability to assign most of the zeros is to
be expected, since, except for the transmission zero, the
true zeros are at −1, and there is no excitation present
in that part of the frequency band. Therefore, the uncer-
tainty on these estimated zero positions is large, which
prohibits their classification.

Similar results can be obtained when only ten phase re-
alizations are used instead of one thousand. The 1000
experiments were split in 100 groups of ten phase realiza-
tions. In 61 cases, a correct assignment of the poles and
zeros could clearly be made. In 36 of the remaining cases,
the most damped real pole could have been wrongfully
assigned to S, while the least damped real pole would
then have been wrongfully assigned to R. The wrong as-
signment of these poles is likely to have a small impact
on the further initialization of the Wiener-Hammerstein
model, since both real poles lie close to each other. Only
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in 3 cases, it was unclear whether both real poles should
be assigned to R, to S, or one to R and one to S.

6 Conclusion

The best linear approximation (BLA) of a Wiener-
Hammerstein system that is excited by Gaussian noise
or a random-phase multisine is proportional to the
product of the underlying linear dynamic blocks. By
applying a more specialized phase-coupled multisine,
it is shown that a modified BLA expression is pro-
portional to the product of the output dynamics and
a frequency-shifted version of the input dynamics. On
the basis of the non-parametric measurement of this
modified BLA, it is shown to be possible to assign the
identified poles and zeros to either the input or output
dynamics, provided that the poles and zeros are prop-
erly excited. This is confirmed by experimental results
on the Wiener-Hammerstein benchmark system.

The proposed method has the potential to discriminate
between a Wiener, a Hammerstein, and a Wiener-
Hammerstein model, based on whether there are shifting
poles/zeros (and thus input dynamics), fixed poles/zeros
(and thus output dynamics), or both.

Future work is to derive variance expressions for the
shifted BLA, from which bounds on the estimated
shifted poles/zeros can be calculated. With these
bounds, it will be possible to determine whether a
pole/zero significantly shifted or not. This will enable
an automatic assignment of the poles and the zeros.
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A Dominant terms in the shifted BLA

The contributions in G−SBLA(k) that are proportional to
S(k)R(k − s) are dominant over those that are propor-
tional to S(k)R(k − 2s). This is shown in this appendix.

First, it will be shown that c0 > |cs|. We have that

c0 =
2

N

∑
m

|X(m)|2 + |X(m+ s)|2 , (A.1)

and that

|cs| =
2

N

∣∣∣∣∣∑
m

X(−m)X(m+ s)

∣∣∣∣∣
≤ 2

N

∑
m

|X(−m)X(m+ s)| .

(A.2)

By working out (|X(m)| − |X(m+ s)|)2 and rearrang-
ing the terms, we have

|X(m)|2 + |X(m+ s)|2

= 2|X(m)||X(m+ s)|+ (|X(m)| − |X(m+ s)|)2 ,
(A.3)

and thus c0 ≥ 2|cs|.

Let αD(k) be the ratio of the contributions in YD(k)
that are proportional to S(k)R(k − s) and those that are
proportional to S(k)R(k − 2s). Then we need to show
that |αD(k)| > 1. From Theorem 2, we have

αD(k) =

|U(m+s)|
|U(m)|

∑∑
k
sk=s

∏D−1
2

k=1 csk

∑∑
k
sk=2s

∏D−1
2

k=1 csk

(A.4)

at the frequency lines k = m+ 2s, and

αD(k) =

∑∑
k
sk=s

∏D−1
2

k=1 csk

|U(m+s)|
|U(m)|

∑∑
k
sk=2s

∏D−1
2

k=1 csk

(A.5)

at the frequency lines k = −(m− s). As a factor
|U(m+s)|
|U(m)| > 1 would be advantageous in one case, and

disadvantageous in the other case, simply consider
|U(m+s)|
|U(m)| = 1. Since the sks in the numerator should sum

up to s, at least one factor cs should be present in the
numerator. Likewise, two factors cs should be present
in the denominator. The remaining sks should sum up
to zero. Hence,

αD(k) =
cs
cscs

∑∑
k
sk=0

∏D−3
2

k=1 csk

∑∑
k
sk=0

∏D−5
2

k=1 csk

. (A.6)

A zero-sum of the sks is possible if all of them are zero.
Furthermore, one or more pairs c0c0 can be replaced by
csc−s = |cs|2. Hence,

|αD(k)| =
1

|cs|

bD−3
4 c∑
i=0

c
D−3

2 −2i
0 |cs|2i

bD−5
4 c∑
i=0

c
D−5

2 −2i
0 |cs|2i

≥ c0
|cs|

,

(A.7)

and since c0 ≥ 2|cs|, we have |αD(k)| ≥ 2 > 1. For
D = 3, there are no contributions proportional to
S(k)R(k − 2s), so that α3(k)→∞.
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