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Abstract

This paper presents a consensus-based robust cooperative control framework for a wide class of linear time-invariant (LTI)
systems, namely Negative-Imaginary (NI) systems. Output feedback, dynamic, Strictly Negative-Imaginary (SNI) controllers
are applied in positive feedback to heterogeneous multi-input-multi-output (MIMO) plants through the network topology to
achieve robust output feedback consensus. Robustness to external disturbances and model uncertainty is guaranteed via NI
system theory. Cooperative tracking control of networked NI systems is presented as an corollary of the derived results by
adapting the proposed consensus algorithm. Numerical examples are also given to demonstrate the effectiveness of proposed
robust cooperative control framework.
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Nomenclature

In
1n

M > (≥)0
M < (≤)0
Ker(M)
Im(M)
rank(M)
λi(M), λ̄(M)
λ(M), det(M)
MT

M∗

Rm×n,Cm×n

Re[s]
L2

ImL2
(G)

RH∞

[P (s), Ps(s)]

n× n identity matrix
n× 1 vector with all elements being 1
M is a positive (semi-) definite matrix
M is a negative (semi-) definite matrix
Kernel of a matrix M
image of a matrix M
rank of a matrix M
the ith, largest eigenvalue of M
spectrum, determinant of matrix M
transpose of matrix M
complex conjugate transpose of matrix M
set of m× n real, complex matrices
real part of s ∈ C

abbreviation for L2[0,∞)
image of system G(s) under all L2 inputs
set of real-rational stable transfer functions
positive feedback interconnection of 2 plants
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1 Introduction

Cooperative control of heterogeneous LTI systems has
been widely studied in the literature and there is now
a wealth of methods to handle different aspects of the
nominal cooperative control problem. Robust coopera-
tive control is however less studied due to the inherent
complexities associated with robustness. For example,
[2] studies a cooperative control problem for a string
of coupled heterogeneous subsystems. Such systems can
arise in vehicle platoons. However, the systems consid-
ered are constrained to SISO systems (due to the mathe-
matics of the continued fractions used) and do not allow
poles on the imaginary axis, and also the graph is on-
ly restricted to string connections. On the other hand,
[17] solves a cooperative robust output regulation prob-
lem for a class of LTI systems with minimum phase dy-
namics. A combination of simultaneous high-gain state
feedback control and a distributed high-gain observer is
adopted to achieve cooperative output regulation under
particular parameter uncertainty as well as particular
external disturbances. From a different perspective, [22]
discusses a full-state feedback robust consensus proto-
col for heterogeneous second-order multi-agent systems.
Existing published literature on robust cooperative con-
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trol of heterogeneous multi-agent systems is hence re-
stricted to either only SISO plants, or minimum phase
LTI plants or full-state feedback second order plants.

NI systems theory has drawn much attention (e.g.
[4,12,19]) since it was introduced in [7]. This is because
there are a wide class of LTI systems with negative imag-
inary frequency response, for which applications can be
easily found in a variety of fields including aerospace,
large space structures, multi-link robotic arms usually
with co-located position sensors and force actuators
[13] and nano-positioning [9], etc. Also the NI systems
class is invariant to additive NI model uncertainty and
other type interconnections as discussed in [3]. Thus,
result based on NI systems theory immediately yield
robustness to spill-over dynamics [7,13,16].

A square, real, rational, proper transfer function ma-
trix P (s) is NI if the following conditions are satisfied
([7,20,10]): (1) P (s) has no pole in Re[s] > 0; (2) ∀ω > 0
such that jω is not a pole of P (s), j(P (jω)−P (jω)∗) ≥
0; (3) If s = jω0 where ω0 > 0 is a pole of P (s), then it
is a simple pole and the residue matrix K = lim

s→jω0

(s −

jω0)jP (s) is Hermitian and positive semi-definite; (4) If
s = 0 is a pole of P (s), then lim

s→0
skP (s) = 0 ∀k ≥ 3 and

P2 = lim
s→0

s2P (s) is Hermitian and positive semi-definite.

This definition includes free body dynamics which lead-
s to dynamical models with poles at the origin, such as

s2+1
s2(s2+2) . Examples of NI systems can be found in [10,13],

and these include a single-integrator system, a double-
integrator system, second-order systems such as those
that arise in undamped and damped flexible structures
or inertial systems, to name a few typically considered in
the consensus literature. Cooperative control of multiple
NI systems arise with the development of NI systems’
applications where one single NI system is incapable of
achieving the mission goals, for example, the load is too
heavy to be carried by one multi-link robotic arm.

This paper solves the general problem, robust output
feedback cooperative control of heterogeneous MIMO
NI systems (possibly with poles on the imaginary ax-
is) under external disturbances and model uncertainty.
Unlike the literature, we impose no minimum phase as-
sumption; the communication graph can be any general
undirected and connected graph rather than any specif-
ic graph; we allow MIMO agents; we consider explicitly
robustness to both unmodelled dynamics of arbitrary or-
der and energy-bounded disturbances; we handle output
feedback rather than full state feedback; and explicitly
characterise a family of control laws that could be tuned
for performance. Toward this end, NI system theory is
adopted to first derive conditions for robust output feed-
back consensus and then transport the proposed results
to cooperative tracking to obtain a robust output feed-
back cooperative control framework for a wide class of
LTI systems.

Preliminaries of graph theory: G = (V , E) where

V = {v1, v2, . . . , vn} and E ⊆ V × V mathematically de-
scribes a graph with n nodes and l edges. An undirected
and connected graph requires that there exists at least
one bidirectional path in E connecting all nodes in V .
The incidence matrix Q of G is a |V|× |E| (n× l) matrix,
which can be attained by first letting each edge in the
graph have an arbitrary but fixed orientation and then

Q :=

⎧⎨
⎩
qve = 1 if v is the initial vertex of edge e,

qve = −1 if v is the terminal vertex of edge e,

qve = 0 if v is not connected to e.

For an undirected graph G, Q is not unique but the
corresponding Laplacian matrix is unique and given by
Ln = QQT . Similarly, the edge-weighted Laplacian is
also unique given by Le = QKQT , where K ≥ 0 is the
diagonal edge weighting matrix. It is also shown in [1]
that rank(Q) = n− 1 = rank(Ln) when G is connected
and rank(Q) = n − 1 = rank(Le) when G is connect-
ed and det(K) �= 0. It is well-known [14] that Ln and
Le will both have one unique zero eigenvalue associated
with the eigenvector 1n and all the other eigenvalues are
positive and real, when det(K) �= 0, G is undirected and
connected. In this case, Ln ≥ 0,Le ≥ 0, and

Ker(Ln) = Ker(Le) = Ker(QT ) = span{1n}. (1)

Note also that, for an undirected and connected graph
G, any row removal ofQ or column removal of QT yields
a full row rank Q or a full column rank QT respectively
by inspecting the relation of Laplacian matrix with Q
and the property of positive semi-definite matrices with
a kernel dimension of 1 [5].

2 Robust Output Feedback Consensus

In this section, we will consider robust output feedback
consensus for multiple heterogeneous NI systems under
L2 external disturbance and additive SNI model uncer-
tainty (as would arise in spill-over dynamics for trun-
cated order flexible structures). Two cases will be dis-
cussed to cover all the heterogeneous cases. First of al-
l, let us begin with the problem formulation with the

following notation:
n

max
i=1

{ai} is the maximum value of

ai, i ∈ {1, · · · , n} and
n

diag
i=1

{Ai} is a block-diagonal ma-

trix withAi, i ∈ {1, · · · , n} on the diagonal. A square, re-
al, rational, proper transfer function matrix Ps(s) is SNI
if the following conditions are satisfied: (1) Ps(s) has no
pole in Re[s] ≥ 0; (2) ∀ω > 0, j(Ps(jω)− Ps(jω)

∗) > 0.
Examples of SNI systems include 1

s+a
where a > 0,

a
s2+bs+c

where a, b, c > 0 or non-minimum phase systems

such as 1−s
2+s

. See [7,13] for further examples.

For multiple heterogeneous NI systems (in general MI-
MO) with n > 1 agents, the transfer function of agent
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i ∈ {1, · · · , n} is given as

ŷi = P̂i(s)ûi, (2)

where ŷi ∈ Rmi×1 and ûi ∈ Rmi×1 are the output and
input of agent i respectively. In order to deal with the
consensus of different dimensional inputs/outputs, P̂i(s)

can be padded with zeros up to m =
n

max
i=1

{mi} and the

locations of padding zeros depend on which output needs

to be coordinated, for instance, Pi(s) =

[
P̂i(s) 0

0 0

]
has

dimension of m such that the first mi outputs are to be

coordinated, or Pi(s) =

[
0 0

0 P̂i(s)

]
also has dimension of

m, but now the last mi outputs are to be coordinated
instead. Accordingly, the input ûi and output ŷi are

extended to be ui =
[
û
T
i 0

]T
or

[
0 û

T
i

]T
∈ Rm×1, and

yi =
[
ŷ
T
i 0

]T
or

[
0 ŷ

T
i

]T
∈ Rm×1, respectively. Note

that interleaving zero rows and corresponding columns
within P̂i(s) is also permissible. It can be easily seen that
the above manipulation would preserve the NI property
by checking the definition. Therefore, without loss of
generality, the overall plant can be described as Fig. 1:

Fig. 1. Multiple Heterogeneous NI Plants

where y =
[
y
T
1 , · · · , yT

n

]T
∈ Rnm×1 and u =[

u
T
1 , · · · , uT

n

]T
∈ Rnm×1. We now define robust out-

put feedback consensus as follows:

Definition 1 A distributed output feedback control law
achieves robust output feedback consensus for a network
of systems if for a family of plant dynamics and for all
L2[0,∞) disturbances on the plant input and/or plant
output, yi −yss ∈ L2[0,∞) ∀i ∈ {1, · · · , n}. Here yss is
the final convergence trajectory, which can be a function
of time depending on the plant and controller dynamics.

Remark 2 Note that since transfer functions in RH∞

map L2[0,∞) to L2[0,∞) and due to the superposition
theorem of linear systems [21], if there are no distur-
bances, then yi − yss → 0 ∀i ∈ {1, · · · , n} in Definition
1 retrieving the typical consensus meaning in the litera-
ture.

Observe that if one were to construct the overal-
l networked plant dynamics involving the heteroge-
neous multiple agents Pi(s) and the communication-

s graph represented by a Laplacian matrix Ln as

(Ln ⊗ Im) ·
n

diag
i=1

{Pi(s)}, then the overall networked

plant is not NI any more due to asymmetry despite each
heterogeneous agent being individually NI. This would
then make NI systems theory inapplicable. Instead, we
can utilize the incidence matrixQ instead of Ln to refor-
mulate the overall networked plant as shown in Fig. 2:

Fig. 2. Overall Network Plant

The reason for adopting the incidence matrix Q before
and after the plant dynamics instead of a Laplacian ma-
trix Ln = QQT totally before or after the plant dynam-
ics is to guarantee that the resultant controller is dis-
tributed and only uses local information. This will be
explained in more detail later in this section. The aug-
mented system can be derived as

ȳ = P̄ (s)ū = (QT ⊗ Im)
n

diag
i=1

{Pi(s)}(Q⊗ Im)ū (3)

where ȳ =
[
ȳ
T
1 , · · · , ȳT

l

]T
∈ R

lm×1 and ū =[
ū
T
1 , · · · , ūT

l

]T
∈ R

lm×1 are the output and input

vectors for the overall system. It can be concluded that
the overall system P̄ (s) is still NI due to the following
lemmas:

Lemma 3
n

diag
i=1

{Pi(s)} is NI if and only if Pi(s) are all

NI ∀i ∈ {1, · · · , n}.

The proof of Lemma 3 is straightforward from the def-
inition of NI systems. The same argument also applies
for SNI functions. The following lemma which is also s-
traightforward from the definition of NI systems allows
further manipulation.

Lemma 4 Given any NI MIMO P (s), then P̄ (s) =
FP (s)F ∗ is NI for any constant matrix F .

The output y ∈ R
nm×1 reaches consensus (i.e. yi = yj

∀i, j) when ȳ → 0 ∈ Rlm×1 by noticing the properties
of the incidence matrix Q given in (1). This formulation
converts the output consensus problem to an equivalent
internal stability problem. Then robustness properties
can be studied via standard control theoretic methods
to yield robust consensus results. We now impose the
following assumptions throughout the rest of this paper:

Assumption 5 G is undirected and connected.

Assumption 6 Let Δi(s) ∀i ∈ {1, · · · , n} be arbitrary

3



SNI systems satisfying λ̄(Δi(0)) < μ,Δi(∞) = 0 ∀i ∈
{1, · · · , n}, and 0 < μ ∈ R.

In the sequel, robust output feedback consensus will be
discussed along two directions: NI plants without or with
free body dynamics to cover all the heterogeneous types
of NI systems.

2.1 NI plants without free body dynamics

In this subsection, NI plants without free body dynamics
will be firstly considered, which also means P̂i(s) has no
poles at the origin. The following lemmas are needed:

Lemma 7 ([5]) Given M ∈ Rn×m, λ̄(MMT ) =
λ̄(MTM).

Lemma 8 Assume M is Hermitian with λ̄(M) ≥ 0 and
N ≥ 0, we have λ̄(MN) ≤ λ̄(M)λ̄(N).

PROOF. Since M ≤ λ̄(M)I, we obtain N
1

2MN
1

2 ≤

λ̄(M)N . With the conditon of λ̄(M) ≥ 0, N
1

2MN
1

2 ≤

λ̄(M)N ≤ λ̄(M)λ̄(N)I. Thus, λ̄(MN) = λ̄(N
1

2MN
1

2 ) ≤
λ̄(M)λ̄(N). �

Lemma 9 ([7,20]) Given an NI transfer function
P (s) and an SNI function Ps(s) with P (s) hav-
ing no pole(s) at the origin, P (∞)Ps(∞) = 0 and
Ps(∞) ≥ 0. [P (s), Ps(s)] is internally stable if and only
if λ̄(P (0)Ps(0)) < 1.

Next we present the first main result of this paper with

the definition of P̄s(s) =
l

diag
j=1

{Ps,j(s)} where Ps,j(s) are

arbitrary SNI compensators.

Theorem 10 Given a graph G with incidence matrixQ,
satisfying Assumption 5 and modelling the communica-
tion links among multiple NI agents P̂i(s) with no pole(s)
at the origin which are appropriately padded with rows
and columns of zeros to give Pi(s) in Fig. 3. Robust out-
put feedback consensus is achieved via the output feedback
control law

u = (Q⊗ Im)P̄s(s)(Q
T ⊗ Im)y (4)

(or in a distributed manner for agent i via

ui =

n∑
k=1

aikPs,j(s)(yi − yk), (5)

where aik are the elements of the adjacency matrix 1 and
j is the edge connecting vertex i to vertex k) under any
external disturbances w1 ∈ ImL2

(Q⊗Im) and w2 ∈ L2 if
∃i ∈ {1, · · · , n} : λ̄(Pi(0)) ≥ 0 and ∀i ∈ {1, · · · , n}, j ∈

1 See [14] for definition

{1, · · · , l} all the following conditions hold:

λ̄(Pi(0))λ̄(Ps,j(0)) <
1

λ̄(Ln)
, (6)

Pi(∞)Ps,j(∞) = 0 (where i is the vertex of edge j) and
Ps,j(∞) ≥ 0. The output feedback consensus control law
(4) will be robust to all model uncertainty Δi(s), i ∈
{1, · · · , n} satisfying Assumption 6 if the D.C. gain of the
SNI compensator P̄s(s) is tuned more stringently such
that ∀i ∈ {1, · · · , n}, j ∈ {1, · · · , l}

λ̄(Pi(0)) + μ <
1

λ̄(Ln)λ̄(Ps,j(0))
. (7)

Fig. 3. Positive feedback interconnection with SNI compen-
sators through the network topology

PROOF. From Fig. 3, Lemmas 3 and 4, it can be seen
that P̄ (s) is NI without pole(s) at the origin and P̄s(s)
is SNI. Applying Lemma 8, we obtain

λ̄(P̄ (0)P̄s(0))

=λ̄((QT ⊗ Im)
n

diag
i=1

{Pi(0)}(Q ⊗ Im)
l

diag
j=1

{Ps,j(0)})

≤λ̄((QT ⊗ Im)
n

diag
i=1

{Pi(0)}(Q ⊗ Im))
l

max
j=1

{λ̄(Ps,j(0))}

≤
n

max
i=1

{λ̄(Pi(0))}λ̄(Q
TQ)

l
max
j=1

{λ̄(Ps,j(0))} (since ∃i : λ̄(Pi(0)) ≥ 0)

=
n

max
i=1

{λ̄(Pi(0))}
l

max
j=1

{λ̄(Ps,j(0))}λ̄(Ln) (by Lemma 7)

since λ̄(P̄ (0)) ≥ 0 (because ∃i : λ̄(Pi(0)) ≥ 0) and
Ps,j(0) > Ps,j(∞) ≥ 0 ∀j ∈ {1, · · · , l} (due to Lem-
ma 2 in [7] with the assumption of Ps,j(∞) ≥ 0).
Thus, since ∃i ∈ {1, · · · , n} : λ̄(Pi(0)) ≥ 0 and
∀i = 1, · · · , n and j = 1, · · · , l, all of the following hold:
λ̄(Pi(0))λ̄(Ps,j(0)) < 1

λ̄(Ln)
, Pi(∞)Ps,j(∞) = 0 (where

i is the vertex of edge j) and Ps,j(∞) ≥ 0, [P̄ (s), P̄s(s)]
is internally stable via NI systems theory in Lemma 9.
This then implies nominal output consensus when the
disturbances w1 and w2 are set to zero by noting that
ȳ → 0 ⇔ y− 1n ⊗yss → 0, i.e., yi −yss → 0 since the
graph G is undirected and connected.
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In addition, internal stability of [P̄ (s), P̄s(s)] and super-
position principle of linear systems ([21]) guarantee that
yi → yss + δ with δ ∈ L2 for all L2 exogenous sig-
nal injections perturbing signals ū and ȳ, which in turn
means that any w1 ∈ ImL2

(Q ⊗ Im) and any w2 ∈ L2

can be injected in Fig. 3. Hence, the control protocol (4)
will achieve a perturbed L2 consensus signal on output
y (due to superposition principle of linear systems) for
all disturbances w1 ∈ ImL2

(Q⊗ Im) and w2 ∈ L2.

Additive model uncertainties Δi(s) ∀i ∈ {1, · · · , n} sat-
isfying Assumption 6 can be dealt with as in [16], which
is shown in Fig. 4.

Fig. 4. Robustness to model uncertainty via NI system theory

Fig. 4 (top) can be manipulated to Fig. 4 (bottom) with
M(s) = (Q ⊗ Im)P̄s(s)(I − P̄ (s)P̄s(s))

−1(QT ⊗ Im).
Internal stability already yieldsM(s) ∈ RH∞ andM(s)
is NI via Theorem 6 in [3] in general, or via Theorem 6 in
[13] when Pi(s) have no poles on the imaginary axis. This
NI system M(s) is connected with Δ̄(s) which fulfills
Assumption 6. Now

λ̄(Δ(0)M(0))

≤λ̄(Δ(0))λ̄[(Q⊗ Im)P̄s(0)(I − P̄ (0)P̄s(0))
−1(QT ⊗ Im)]

≤μλ̄(Ln)λ̄[P̄s(0)(I − P̄ (0)P̄s(0))
−1]

≤
μλ̄(Ln)λ̄(P̄s(0))

1− λ̄(P̄ (0)P̄s(0))

≤

μλ̄(Ln)
l

max
j=1

{λ̄(Ps,j(0))}

1−
n

max
i=1

{λ̄(Pi(0))}λ̄(Ln)
l

max
j=1

{λ̄(Ps,j(0))}

It is then clear that inequality (7) guarantees λ̄(Δ(0)M(0)) <
1 which in turn implies robust stability for all uncer-
tainties that satisfy Assumption 6. �

Remark 11 Inequality (6) only provides a sufficient
condition due to the heterogeneousness of systems. It al-
so implies λ̄(Pi(0)Ps,j(0)) ≤ λ̄(Pi(0))λ̄(Ps,j(0)) <

1
λ̄(Ln)

due to Lemma 8, which gives a more stringent condition

than that of internal stability of [Pi(s), Ps,j(s)], i.e.,
λ̄(Pi(0)Ps,j(0)) < 1 (on noting that λ̄(Ln) > 1 due to
[6]). This coincides with engineering intuition since the
stability condition for networked systems is always more
stringent than that of single agent system ([8]).

Remark 12 Since we assume that ∃i : λ̄(Pi(0)) ≥ 0 and
since values of i such that λ̄(Pi(0)) ≤ 0 automatically ful-
fill inequality (6), only values of i such that λ̄(Pi(0)) > 0
need to be checked. For values of i such that λ̄(Pi(0)) > 0,
the D.C. gain of the SNI controllers always need to be
tuned for small eigenvalues in order to satisfy inequal-
ity (6). SNI control synthesis for robust performance is
beyond the scope of this paper. Interested readers are re-
ferred to [15,16].

Remark 13 There is clearly a huge class of permissible
dynamic perturbations to the nominal dynamics as As-
sumption 6 only imposes a restriction on Δi(s) at the
frequency ω = 0 and ω = ∞ and the SNI class has no
gain (as long as it is finite gain) or order restriction [7].
The result in Theorem 10 is for additive perturbations,
but similar analysis can be performed for other types of
perturbations that preserve the NI class. A few examples
of permissible perturbations that preserve the NI class
include additive perturbations where uncertainty is also
NI [7], feedback perturbations where both systems in the
feedback interconnection are NI [13] and more general
perturbations based Redheffer Star-products and Linear
Fractional Transformations [3]. For example, 1

s+5 and
(2s2+s+1)

(s2+2s+5)(s+1)(2s+1) are SNI with the same D.C. gain.

2.2 NI plants with free body dynamics

In this subsection, we will consider more general NI
plants by including free body dynamics (i.e. poles at
the origin) under the assumption of strict properness,
i.e. Pi(∞) = 0. Hence, this subsection covers the cases
where the NI plant has poles at the origin. The NI class
restricts the number of such poles at the origin to be at
most 2. The following residue matrices carrying infor-
mation about the properties of the free body motion for
the NI system y = P (s)u where P (s) ∈ Rm×m ([10]):
P2 = lims→0 s

2P (s), P1 = lims→0 s(P (s) − P2

s2
), P0 =

lims→0(P (s) − P2

s2
− P1

s
). It can be observed that P1 =

0, P2 = 0 means there is no free body dynamics, P1 �=
0, P2 = 0 means there is free body dynamics with 1 pole
at the origin, P2 �= 0 means there is free body dynam-
ics with 2 poles at the origin. Then, we can define the

Hankel matrix Γ as Γ =

[
P1 P2

P2 0

]
∈ R2m×2m, where

P1, P2 ∈ Rm×m . In the subsection, we assume Γ �= 0 s-
ince either P1 �= 0 or P2 �= 0. Then Γ can be decomposed
by Singular Value Decomposition (SVD) as

Γ =
[
U1 U2

] [S 0

0 0

] [
V T
1

V T
2

]
= U1SV

T
1 = HV T

1 =

[
H1

H2

]
V T
1 ,
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where the diagonal matrix S > 0, the matrices
[
U1 U2

]
and

[
V1 V2

]
are orthogonal, H = U1S ∈ R2m×ñ,

H1, H2 ∈ Rm×ñ and the matrices H and V1 have or-
thogonal columns. Then, the matrix HT

1 H2 can be

further decomposed by SVD as HT
1 H2 = Û ŜV̂ T =

Û

[
S1 0

0 0

][
V̂ T
1

V̂ T
2

]
, where Û , V̂ =

[
V̂1 V̂2

]T
∈ Rñ×ñ

are orthogonal matrices, V̂2 ∈ Rñ×ñ and the diago-
nal matrix S1 > 0. Also, define F = H1V̂2 ∈ Rm×ñ

and Nf = Ps(0) − Ps(0)F (FTPs(0)F )−1FTPs(0),
where Ps(s) is an SNI controller. When P2 �= 0, de-
fine N2 = Ps(0)− Ps(0)J(J

TPs(0)J)
−1JTPs(0), where

J is a full column rank matrix satisfying JJT = P2.
When P2 = 0 and P1 �= 0, P1 can be decomposed

by SVD as P1 =
[
Ũ1 Ũ2

] [S2 0

0 0

] [
V T
1

V T
2

]
= F1V

T
1 ,

where
[
Ũ1 Ũ2

]
and

[
V1 V2

]
are orthogonal ma-

trices, the diagonal matrix S2 > 0 and F1 and
V1 have orthogonal columns. Then, define N1 =
Ps(0)− Ps(0)F1(F

T
1 Ps(0)F1)

−1FT
1 Ps(0). Next, internal

stability of [P (s), Ps(s)] with free body dynamics can
be summarised in the following lemma.

Lemma 14 ([10]) Let P (s) be a strictly proper NI plant
and Ps(s) be an SNI controller.

(1) Suppose P2 �= 0, Nf is sign definite and FTPs(0)F
is non-singular. Then, [P (s), Ps(s)] is internally
stable if and only if FTPs(0)F < 0 and either

I−N
1

2

f P0N
1

2

f −N
1

2

f P1J(J
T J)−2JTPT

1 N
1

2

f > 0 (8)

when Nf ≥ 0 or

det(I + ÑfP0Ñf + ÑfP1J(J
TJ)−2JTPT

1 Ñf ) �= 0
(9)

when Nf ≤ 0 where Ñf = (−Nf )
1

2 .
If furthermore P1 = 0, N2 is sign definite

and JTPs(0)J is non-singular, the necessary
and sufficient conditions for the internal sta-
bility of [P (s), Ps(s)] reduce to JTPs(0)J < 0

and either I − N
1

2

2 P0N
1

2

2 > 0 when N2 ≥ 0

or det(I + Ñ2P0Ñ2) �= 0 when N2 ≤ 0 where

Ñ2 = (−N2)
1

2 .
If additionally Ker(P2) ⊆ Ker(PT

0 ), the neces-
sary and sufficient condition for the internal sta-
bility of [P (s), Ps(s)] reduces to JTPs(0)J < 0.
When P2 > 0, the necessary and sufficient condi-
tion for the internal stability of [P (s), Ps(s)] reduces
to Ps(0) < 0.

(2) Suppose P2 = 0, P1 �= 0, N1 is sign definite and
FT
1 Ps(0)F1 is non-singular. Then [P (s), Ps(s)] is

internally stable if and only if FT
1 Ps(0)F1 < 0 and

either I − N
1

2

1 P0N
1

2

1 > 0 when N1 ≥ 0 or det(I +

Ñ1P0Ñ1) �= 0 when N1 ≤ 0 where Ñ1 = (−N1)
1

2 .
If furthermore Ker(PT

1 ) ⊆ Ker(PT
0 ), the neces-

sary and sufficient condition for the internal stabil-
ity of [P (s), Ps(s)] reduces to F

T
1 Ps(0)F1 < 0. when

P1 is invertible, the necessary and sufficient condi-
tion for the internal stability of [P (s), Ps(s)] reduces
to Ps(0) < 0.

Next we present the second main result of this paper
with the following notation: P̄2 = lims→0 s

2P̄ (s), P̄1 =

lims→0 s(P̄ (s)− P̄2

s2
), and P̄0 = lims→0(P̄ (s)− P̄2

s2
− P̄1

s
).

Theorem 15 Given a graph G with incidence matrixQ,
satisfying Assumption 5 and modelling the communica-
tion links among multiple strictly proper NI agents P̂i(s)
(allowing possible poles at the origin) which are appropri-
ately extended to Pi(s) as in Fig. 3, robust output feedback
consensus is achieved via the feedback control law in (4) or
(5) under any external disturbances w1 ∈ ImL2

(Q⊗ Im)
and w2 ∈ L2 as well as under any model uncertainty
Δi(s), i ∈ {1, · · · , n} satisfying Assumption 6 if and on-
ly if the necessary and sufficient conditions in Lemma 14
are satisfied for [P̄ (s), P̄s(s)].

PROOF. Lemma 14 guarantees the internal stability of
[P̄ (s), P̄s(s)]. Nominal output consensus is then achieved
without considering the external disturbancesw1 andw2

via internal stability as discussed in the proof of Theo-
rem 10. Then, similar analysis as in the proof of Theorem
10 guarantees robustness against both external distur-
bances as well as additive SNI model uncertainty. �

One could enquire whether the conditions in Lemma 14
simplify or not in some cases. The answer is positive as
we present next.

Theorem 16 Given a graph G with incidence matrixQ,
satisfying Assumption 5 and modelling the communica-
tion links among n2 strictly proper NI agents P̂i(s) (al-
lowing possible poles at the origin) with double poles at
the origin (i.e. no single pole at the origin) and n1 (at
least 1) agents without free body dynamics (i.e. without
poles at the origin) in Fig. 3, a necessary and sufficien-
t condition for robust output feedback consensus via the
feedback control law in (4) or (5) under external distur-
bances w1 ∈ ImL2

(Q⊗ Im) and w2 ∈ L2 and under any
model uncertainty satisfying Assumption 6 is

JT
n2
Le,11Jn2

< 0,

where Jn2
�

n2

diag
i=1

{J2,i} with J2,i being full column rank

matrices satisfying J2,iJ
T
2,i = lim

s→0
s2Pi(s) �= 0 for n2

agents and Le,11 ∈ Rn2m×n2m is part of the weighted
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Laplacian matrix constructed as follows:

Le =

[
Le,11 Le,12

LT
e,12 Le,22

]
= χ(Q⊗Im)

l

diag
j=1

{Ps,j(0)}(Q
T⊗Im)χT

where χ is a permutation matrix such that

χ lim
s→0

s2
n

diag
i=1

{Pi(s)}χ
T =

⎡
⎣

n2

diag
i=1

{P2,i} 0

0 0mn1×mn1

⎤
⎦

and Ps,j(s) ∀j ∈ {1, · · · , l} are SNI compensators.

PROOF. It can be seen that this case corresponds to
P̄2 �= 0, P̄1 = 0 and Ker(P̄2) ⊆ Ker(P̄T

0 ) in Theorem
15. The necessary and sufficient condition in this case is
J̄T P̄s(0)J̄ < 0 due to Lemma 14, where P̄2 = J̄ J̄T with
J̄ being full column rank. Since

P̄2 = lim
s→0

s2P̄ (s)

= lim
s→0

(QT ⊗ Im)s2
n

diag
i=1

{Pi(s)}(Q ⊗ Im)

= (QT ⊗ Im)χT

⎡
⎢⎣

n2

diag
i=1

{P2,i} 0

0 0mn1×mn1

⎤
⎥⎦χ(Q⊗ Im)

= (QT ⊗ Im)χT

⎡
⎢⎣

n2

diag
i=1

{J2,i}

0

⎤
⎥⎦

︸ ︷︷ ︸
JP

[
n2

diag
i=1

{JT
2,i} 0

]
︸ ︷︷ ︸

JT

P

χ(Q⊗ Im)

= J̄ J̄T ,

where χ is a permutation matrix which also has a rep-
resentation of χ = (Υ ⊗ Im) with Υ also being a per-
mutation matrix, P2,i = lim

s→0
s2Pi(s) �= 0 for the n2 a-

gents Ps(s) that have a double pole at the origin and
J2,iJ

T
2,i = P2,i where J2,i is full column rank matrix. It

can be seen that JP has at least m zero rows due to the
existence of at least one m×m agent without free body
dynamics. Thus

J̄ = (QT ⊗ Im)χT JP = (QTΥT ⊗ Im)JP

= (
[
Q̂T

1 Q̂T
2

]
⊗ Im)JP = (Q̂T

1 ⊗ Im)
n2

diag
i=1

{J2,i}
,

where Q̂1, Q̂2 are row submatrices of ΥQ =

[
Q̂1

Q̂2

]
.

According to Assumption 5, the rank property of Q and
the invertibility of permutation matrix Υ, the removal
of Q̂2 ⊗ Im yields a full column rank of Q̂T

1 and thus

rank(J̄) = rank(
n2

diag
i=1

{J2,i}), which also implies that J̄

is full column rank due to the full column rank matrix

J2,i. Then, with the notation of Jn2
�

n2

diag
i=1

{J2,i},

J̄T P̄s(0)J̄ < 0

⇔
[
JT
n2

0
]
χ(Q⊗ Im)

l

diag
j=1

{Ps,j(0)}(Q
T ⊗ Im)χT

⎡
⎣Jn2

0

⎤
⎦ < 0

⇔
[
JT
n2

0
]
Le

⎡
⎣Jn2

0

⎤
⎦ =

[
JT
n2

0
]⎡⎣Le,11 Le,12

LT
e,12 Le,22

⎤
⎦
⎡
⎣Jn2

0

⎤
⎦ < 0

⇔JT
n2

Le,11Jn2
< 0

.

Similar steps as in the proof of Theorem 10 then shows
that robustness against external disturbances as well as
additive SNI model uncertainty also holds here. �

The above theorem gives a necessary and sufficient con-
dition for robust output feedback consensus directly on
the graph information and on the D.C. gain of the SNI
controllers. The edge weights (i.e. the D.C. gains of the
SNI controllers that are connected with agents that have
a double pole at the origin) are important in determin-
ing the sign definiteness of JT

n2
Le,11Jn2

, in other words,
the internal stability of the networked system. The D.C.
gains of the remaining SNI controllers are irrelevant and
can be freely chosen as long as they are nonsingular.

Remark 17 When the SNI controllers are homo-
geneous, the consensus law (4) simplifies to u =
(Q ⊗ Im)(In ⊗ Ps(s))(Q

T ⊗ Im)y = Ln ⊗ Ps(s)y, or
in a distributed manner, ui = Ps(s)

∑n

k=1 aik(yi − yk).
It can be seen that this captures the main result of
[18] in the homogeneous plant case but also generalis-
es the results to the heterogeneous plant case. In the
case of heterogeneous SNI controllers, the controller is
given by u = (Q ⊗ Im)P̄s(s)(Q

T ⊗ Im)y = L̄e(s)y,
which can be interpreted as a weighted graph G with
the edges weighted by the controller transfer function-
s Ps,j(s), j = 1, · · · , l, or in a distributed manner:
ui =

∑n

k=1 aikPs,j(s)(yi − yk), where j is the edge
connected vertex i and k. The above facts give a nice
intuitive interpretation and explain why we adopt the
incidence matrix for the distributed property rather than
the Laplacian matrix as indicated earlier.

2.3 Illustrative Examples

Two cases are given to illustrate the main results of this
paper, Theorems 10 and 15 respectively. The first case
considers multiple NI systems without poles at the o-
rigin but allowing the plants to be biproper, while the
second case is to show the more general case by includ-
ing NI systems with poles at the origin but under the
requirement of strictly proper plants.

2.3.1 2 lightly damped and 1 undamped flexible struc-
tures

Fig.2 in [7] depicts a flexible structure that can also be
studied in this paper. The dynamics can be expressed
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as: Miẍi + Ciẋi +Kixi = ui, yi = xi, i ∈ {1, · · · , 3},

where xi =

⎡
⎣xi,1

xi,2

⎤
⎦ , ui =

⎡
⎣ui,1

ui,2

⎤
⎦, Mi =

[
mi,1 0

0 mi,2

]
,

Ci =

[
ci,1 + ci −ci

−ci ci,2 + ci

]
, Ki =

[
ki,1 + ki −ki

−ki ki,2 + ki

]
. The

undamped flexible structure is given by letting the
damped term Ci = 0. The parameters are given as
follows:

System 1: k1 = k1,1 = k1,2 = 0.5, c1 = c1,1 =
c1,2 = 0.2, m1,1 = m1,2 = 1 with initial condition of[
0.5 0.1 1 0.2

]T
System 2: k2 = k2,1 = k2,2 = 1, c2 = c2,1 = c2,2 =
0.1, m2,1 = 1,m2,2 = 0.5 with initial condition of[
1 0.1 1.5 0.2

]T
;

System 3: k3 = k3,1 = k3,2 = 1, c3 = c3,1 = c3,2 = 0,
m3,1 = 1,m3,2 = 0.5 with initial condition of[
1.5 0.1 2 0.2

]T
.

Fig. 5. Graph for 3 and 4 NI systems

The communication topology is given in Fig. 5 and thus

Q =

⎡
⎢⎣ 1 0

−1 1

0 −1

⎤
⎥⎦ and Ln =

⎡
⎢⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎥⎦. It can easi-

ly be seen that
3

max
i=1

λ̄(Pi(0)) = 2 > 0. Both the S-

NI controllers are chosen as 1
s+8 with an initial condi-

tion of −1 such that λ̄(Pi(0))λ̄(Ps,j(0)) = 2 ∗ 1
8 = 1

4 <
1
3 = 1

λ̄(Ln)
∀i ∈ {1, · · · , n}, j ∈ {1, · · · , l}. In addition,

∀i ∈ {1, · · · , n}, j ∈ {1, · · · , l}, Pi(∞)Ps,j(∞) = 0,
Ps,j(∞) = 0, which all satisfy the suppositions of The-
orem 10. First, without disturbances and model uncer-
tainty, nominal output feedback consensus is achieved
via the control law in (4) or (5) as shown in the top two
figures of Fig. 6. Then introducing additive SNI model
uncertainty, for example given by 1

s+4 as well as L2 ex-
ternal disturbances, robust output feedback consensus
is also achieved as shown in the bottom two figures of
Fig. 6.

2.3.2 1 single integrator, 1 double integrator, 1 un-
damped and 1 lightly damped flexible structure

In order to illustrate Theorem 15, systems with free body
dynamics will be included in this example. Therefore, a
complicated case containing 1 single integrator, 1 dou-
ble integrator, 1 MIMO undamped and 1 MIMO lightly
damped flexible structure is considered in this example.
For consistency of dimension, the single integrator and
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Fig. 6. Robust output consensus of heterogeneous NI systems

the double integrator are extended as follows: diag{ 1
s
, 0}

and diag{0, 1
s2
}, which also means that the output of s-

ingle integrator will be coordinated with first outputs
of both the undamped and the lightly damped flexible
structures, while the output of double integrator will be
coordinated with second outputs of both the undamped
and the lightly damped flexible structures. The param-
eters of all NI systems are as follows:

System 1: 1
s2

with initial condition of
[
1 0.1

]T
;

System 2: 1
s
with initial condition of 2;

System 3: k3 = k3,1 = k3,2 = 1, c3 = c3,1 = c3,2 = 0,
m3,1 = 1,m3,2 = 0.5 with initial condition of[
3 0.1 3 0.2

]T
;

System 4: k4 = k4,1 = k4,2 = 1, c4 = c4,1 = c4,2 =
0.1, m4,1 = 1,m4,2 = 0.5 with initial condition of[
4 0.1 4 0.2

]T
.

The communication topology is given in Fig. 5 and

thus Q =

⎡
⎢⎢⎢⎣

1 0 0

−1 1 0

0 −1 1

0 0 −1

⎤
⎥⎥⎥⎦ and Ln =

⎡
⎢⎢⎢⎣

1 −1 0 0

−1 2 −1 0

0 −1 2 1

0 0 −1 1

⎤
⎥⎥⎥⎦. Al-

l three SNI controllers are chosen as − s+1
s+2 with an

initial condition of 0.1. Through the calculation pro-
cess discussed earlier in subsection 2.2, the inequality
condition (9) can be verified as det(I + Ñf P̄0Ñf +

Ñf P̄1J(J
TJ)−2JT P̄T

1 Ñf ) = 3.7813 �= 0, which indi-
cates internal stability of [P̄ (s), P̄s(s)]. Firstly, without
disturbances and model uncertainty, nominal output
feedback consensus is achieved via the output feedback
control law (4) or (5) as shown in the top two figures
of Fig. 7. If the same external disturbances and model
uncertainty as in subsection 2.3.1 are inserted, robust
output feedback consensus is also achieved via output
feedback control law (4) or (5) as shown in the bottom
two figures of Fig. 7. The left two figures of Fig. 7 in-
dicate the output of the single integrator (System 2) is
coordinated with the first output of undamped flexi-
ble structure (System 3) and the first output of lightly
damped flexible structure (System 4) even under exter-
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nal disturbances and model uncertainty. Similarly, the
right two figures of Fig. 7 indicate the output of the
double integrator (System 1) is coordinated with the
second output of undamped flexible structure (System
3) and the second output of the lightly damped flexible
structure (System 4) even under external disturbances
and model uncertainty.
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Fig. 7. Robust output consensus of heterogeneous NI systems

3 Extension to Robust Cooperative Control

In this section, we exploit the proposed consensus re-
sults for cooperative tracking to obtain a robust coop-
erative control framework for multiple NI systems. An
famous rendezvous problem is presented to show the ef-
fectiveness of the proposed framework. Other coopera-
tive problems can be obtained analogously by adapting
the proposed consensus algorithm. The objective of co-
operative tracking is to achieve the convergence of all a-
gents’ outputs to a pre-defined constant reference while
the objective of rendezvous is its direct application for
all the agents to converge to a pre-defined point. To solve
this problem, let us first define a matrix B to express
the connections between agents following reference [11]:

B =
n

diag
i=1

{bi}, where bi = 1 if agent i is connected with

a reference, otherwise bi = 0. From Ln = QQT , we can
similarly decompose B as QbQ

T
b where Qb is full colum-

n rank matrix. It can be seen that Qb is defined analo-

gously asQ byQb =
[
β1 , · · · , βlb

]
, where lb is the num-

ber of agents connected to the reference and βjb ∀jb ∈
{1, · · · , lb} is a vector in Rn with the ith element being
a 1 if agent i is connected to the reference. Then, the
incidence matrix Q can be augmented with Qb to give[
Q Qb

]
which also shows the additional links from the

reference to agents. The augmented matrix
[
Q Qb

]
still

guarantees that (
[
Q Qb

]T
⊗ Im)P̄ (s)(

[
Q Qb

]
⊗ Im) is

NI in Fig. 2 and thus NI system theory can be applied to
the robust output feedback consensus problem as shown
in the previous section. The main result of this section
is given next.

Theorem 18 Given a graph G with incidence matrixQ,

satisfying Assumption 5 and modelling the communica-
tion links among multiple NI agents P̂i(s) which are ap-
propriately extended to Pi(s) as in Fig. 3, robust coopera-
tive output tracking of a constant reference r is achieved
via the output feedback control law

uct = (
[
Q Qb

]
⊗ Im)P̄s(s)(

[
Q Qb

]T
⊗ Im)(y−1n⊗r),

(10)
or in a distributed manner ∀i ∈ {1, · · · , n} by

u
ct
i =

n∑
k=1

aikPs,j(s)(yi − yk) + biPs,jb(s)(yi − r) (11)

where j ∈ {1, · · · , l} corresponds to the edge number con-
necting agents i and k, and jb ∈ {1, · · · , lb} corresponds
to the link number connecting reference r to agent i, un-
der any external disturbances w1 ∈ ImL2

(Q ⊗ Im) and
w2 ∈ L2 as well as under any model uncertainty satisfy-
ing Assumption 6 if and only if the relevant conditions in
Theorem 10 or Lemma 14 are satisfied for [P̄ (s), P̄s(s)].

PROOF. Given a constant reference r, the matrix[
Q Qb

]T
has the property that

ȳ = (

⎡
⎣QT

QT
b

⎤
⎦⊗ Im)(y − 1n ⊗ r) =

⎡
⎣ (QT ⊗ Im)y

(QT
b
⊗ Im)(y − 1n ⊗ r)

⎤
⎦

since (QT ⊗ Im)(1n⊗r) = 0 due to the null space prop-
erty of incidence matrix in Section 1. Therefore, inter-
nal stability guaranteed by Theorem 10 or Lemma 14
leads to ȳ → 0, which is equivalent to yi → yk ∀i �=
k ∈ {1, · · · , n} due to (QT ⊗ Im)y → 0 and yjb

→

r ∀jb ∈ {1, · · · , lb} due to (QT
b ⊗ Im)(y − 1n ⊗ r) → 0.

This then implies robust cooperative output tracking
is achieved, i.e., yi = yk = r ∀i ∈ {1, · · · , n} and
k ∈ {1, · · · , n}/{i} via arguments like those in the proof
of Theorem 10. �

3.1 3D Rendezvous Missions

A direct application of cooperative tracking, ro-
bust rendezvous is shown in a 3D scenario. We
use plants composed of 1

s2
I3,

1
s2
I3,

1
s
I3 with the ini-

tial conditions in 3 axis being
[
1 0.1 1 1 1 −0.1

]T
,[

2 0.2 2 −1 2 −0.2
]T

and
[
0.3 0.5 0.8

]T
respective-

ly. The pre-defined rendezvous point is
[
1 −0.5 0

]T
.

The graph is exactly the same as Fig. 5 and the ref-
erence only sends information to agent 3, which gives

B = diag{0, 0, 1} and Qb =
[
0 0 1

]T
. Comparing with

the cases in Theorem 15, it can be seen that this is
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the case when P1 �= 0 and P2 �= 0. Therefore, Lem-
ma 14 is used and it is easy to see that Nf ≤ 0 and

det(I + ÑfP0Ñf + ÑfP1J(J
TJ)−2JTPT

1 Ñf ) = 1 �= 0.
Robust rendezvous is then guaranteed via the coopera-
tive tracking controller (10) or (11) in Theorem 18. It
can be seen from Fig. 8 that the cooperative tracking
control law (10) or (11) is able to drive the agents from
the initial positions marked as diamonds to the final
rendezvous point even under the same external distur-
bances and model uncertainty as in subsection 2.3.1.
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Fig. 8. 3D robust rendezvous of heterogeneous NI systems

4 Conclusion Remarks

Robust cooperative control for heterogeneous NI sys-
tems is proposed via NI systems theory. Robust output
feedback consensus against external disturbances andNI
model uncertainty is studied first and then the result-
s are exploited for cooperative tracking to derive a co-
operative control framework. The key contributions of
this paper can be summarised as: (1) cooperative con-
trol which is robust to exogenous disturbances and SNI
model uncertainty for general heterogeneous network of
MIMO NI systems under any undirected and connected
graph; (2) only exploiting output feedback information
in contrast to full state information commonly used in
the literature; (3) providing a whole class of cooperative
control laws, i.e. SNI controllers, that can be tuned for
performance and characterising conditions that can be
easily checked for robust output feedback consensus; (4)
showing how consensus and cooperative control prob-
lems can exploit powerful internal stability and robust
stability results available in the literature.
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