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An Improved Stability Condition for Kalman

Filtering with Bounded Markovian Packet Losses

Junfeng Wu, Ling Shi, Lihua Xie, and Karl Henrik Johansson

Abstract

In this paper, we consider the peak-covariance stability of Kalman filtering subject to

packet losses. The length of consecutive packet losses is governed by a time-homogeneous

finite-state Markov chain. We establish a sufficient condition for peak-covariance stability

and show that this stability check can be recast as a linear matrix inequality (LMI) feasibility

problem. Comparing with the literature, the stability condition given in this paper is invari-

ant with respect to similarity state transformations; moreover, our condition is proved to be

less conservative than the existing results. Numerical examples are provided to demonstrate

the effectiveness of our result.
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1 Introduction

Networked control systems are closed-loop systems, wherein sensors, controllers and actuators

are interconnected through a communication network. In the last decade, advances of modern

control, micro-electronics, wireless communication and networking technologies have given birth

to a considerable number of networked control applications.

In networked control systems, state estimation such as using a Kalman filter is necessary

whenever precise measurement of the system state cannot be obtained. When a Kalman filter

is running subject to intermittent observations, the stability of the estimation error is affected

by not only the system dynamics but also by the statistics of the packet loss process. The

stability of Kalman filtering with packet drops has been intensively studied in the literature.
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In [1–5], an independently and identically distributed (i.i.d.) Bernoulli packet loss has been

considered. Some other research works assume the packet drops are due to the Gilbert-Elliott

channel [6, 7], which are governed by a time-homogeneous Markov chain. Huang and Dey [8]

introduced the notion of peak covariance, which describes the upper envelope of the sequence of

error covariance matrices for the case of an unstable scalar system. They focused on its stability

with Markovian packet losses and gave a sufficient stability condition. The stability condition

was further improved in [9, 10]. In [11], the authors proved that the peak-covariance stability

implies mean-square stability for general random packet drop processes, if the system matrix

has no defective eigenvalues on the unit circle. In addition to the peak-covariance stability, the

mean-square stability was considered for some classes of linear systems in [12, 13], and weak

convergence of the estimation error covariance was studied in [14].

In the aforementioned packet loss models, the length of consecutive packet losses can be

infinitely large. In contrast, some works also consider bounded packet loss model, whereby the

length of consecutive packet losses is restricted to be less than a finite integer. A real example of

bounded packet losses is the WirelessHART (Wireless Highway Addressable Remote Transducer)

protocol, which is the state-of-the-art wireless communication solution for process automation

applications. In WirelessHART, there are two types of time slots: one is the dedicated time slot

allocated to a specific field device for time-division multiple-access (TDMA) based transmission

and the other is the shared time slot allowing contention-based transmission. A contiguous group

of time slots during a constant period of time forms a superframe, within which every node is

guaranteed at least one time slot for data communication. Various networked control problems

with bounded packet loss model have been studied, e.g., [15, 16]; while the stability of Kalman

filtering with the bounded packet loss model was rarely discussed. In [17], the authors gave

a first attempt to the stability issue related to the Kalman filtering with bounded Markovian

losses. They provided a sufficient condition for peak-covariance stability, the stability notion

studied in [8–10]. Their result has established a connection between peak-covariance stability and

the dynamics of the underlying system and the probability transition matrix of the underlying

packet-loss process. In this paper, we consider the same problem as in [17] and improve the

condition thereof. The main contributions of this work are summarized as follows:

1. We present a sufficient condition for peak-covariance stability of the Kalman filtering

subjected to bounded Markovian packet losses. Different from that of [17], this stability
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check can be recast as a linear matrix inequality (LMI) feasibility problem.

2. We compare the proposed condition with that of [17]. We show both theoretically and

numerically that the proposed stability condition is invariant with respect to similarity

state transformations, while the one given in [17] may generate opposite conclusions under

different similarity transformations. Moreover, the analysis also suggests that our condition

is less conservative than the former one.

The remainder of the paper is organized as follows. Section 2 presents the mathematical models

of the system and packet losses, and introduces the preliminaries of Kalman filtering. Section 3

provides the main results. Comparison with [17] and numerical examples are presented in

Section 4. Some concluding remarks are drawn in the end.

Notations: N is the set of positive integers and C is the set of of complex numbers. S
n
+

is the set of n by n positive semi-definite matrices over the field C. For a matrix X ∈ C
n×n,

σ(X) denotes the spectrum of X, i.e., σ(X) = {λ : det(λI − X) = 0}, and ρ(X) denotes the

spectrum radius of X. ‖X‖ means the L2-norm on C
n or the matrix norm induced by L2-norm.

The symbol ⊗ represents the Kronecker product operator of two matrices. For any matrices

A, B, C with compatible dimensions, we have vec(ABC) = (C ′ ⊗ A)vec(B), where vec(·) is

the vectorization of a matrix. Moreover, the indicator function of a subset A ⊂ Ω is a function

1A : Ω → {0, 1} where 1A(ω) = 1 if ω ∈ A, otherwise 1A(ω) = 0.

2 Problem Setup

2.1 System Model

Consider the following discrete-time LTI system:

xk+1 = Axk +wk, (1)

yk = Cxk + vk, (2)

where A ∈ R
n×n and C ∈ R

m×n, xk ∈ R
n is the process state vector, yk ∈ R

m is the

observation vector, wk ∈ R
n and vk ∈ R

m are zero-mean Gaussian random vectors with

E[wkwj
′] = δkjQ (Q ≥ 0), E[vkvj

′] = δkjR (R > 0), E[wkvj
′] = 0 ∀j, k. Note that δkj is
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2.2 Bounded Markovian Packet-loss Process

the Kronecker delta function with δkj = 1 if k = j and δkj = 0 otherwise. The initial state x0

is a zero-mean Gaussian random vector that is uncorrelated with wk and vk. Its covariance is

Σ0 ≥ 0. It can be seen that, by applying a similarity transformation, the unstable and stable

modes of the LTI system can be decoupled. An open-loop prediction of the stable mode always

has a bounded estimation error covariance, therefore, this mode does not play any key role in

the problem considered below. Without loss of generality, all eigenvalues of A are assumed to

have magnitudes not less than 1. We also assume that (A,C) is observable and (A,Q1/2) is

controllable. We introduce the definition of the observability index of (A,C), which is taken

from [18].

Definition 1 The observability index Io is defined as the smallest integer such that

[C ′, A′C ′, . . . , (AIo−1)′C ′]′ has rank n. If Io = 1, the system (A,C) is called one-step observable.

2.2 Bounded Markovian Packet-loss Process

In this paper, we consider the estimation scheme, where the raw measurements of the sensor

{yk}k∈N are transmitted to the estimator over an erasure communication channel: packets may

be randomly dropped or successively received by the estimator. Denote by a random variable

γk ∈ {0, 1} whether or not yk is received at time k. If γk = 1, it indicates that yk arrives

error-free at the estimator; otherwise γk = 0. Whether γk equals 0 or 1 is assumed to have

been known by the estimator before time k+1. In order to introduce the packet loss model, we

further define a sequence of stopping times based on {γk}k∈N, which presents the time instants

at which packets are received by the estimator:

t1 , min{k : k ∈ N, γk = 1},

t2 , min{k : k > t1, γk = 1},

... (3)

tj , min{k : k > kj−1, γk = 1}, (4)

where we assume t0 = 0 by convention. Then at the jth time instant the estimator successfully

receives a measurement from the sensor. The packet-loss process, τj, is defined as

τj , tj − tj−1 − 1.
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2.3 Kalman Filtering with Packet Losses

As for the model of packet losses, we assume that the packet-loss process {τj}j∈N is modeled by

a time-homogeneous ergodic Markov chain, where S = {0, . . . , s} is the finite-state space of the

Markov chain with s being the maximum length of consecutive lost packets allowed. Here this

Markov chain is characterized by a known transition probability matrix Π , [πij ]i,j∈S in which

πij , P(τk+1 = j|τk+1 = i) ≥ 0. (5)

Denote by π , [π0, . . . , πs] the stationary distribution of {τj}j∈N. Without loss of generality, we

assume that the initial distribution is P(τ1 = j) = πj and other cases can be treated in the same

manner.

2.3 Kalman Filtering with Packet Losses

Sinopoli et al. [1] shows that, when performed with intermittent observations, the optimal linear

estimator is a modified Kalman filter. The modified Kalman filter is slightly different from the

standard one in that only time update is performed when the data packet is lost at that time.

Define the minimum mean-squared error estimate and the one-step prediction at the estimator

respectively as x̂k|k , E[xk|γ1y1, . . . , γkyk] and x̂k+1|k , E[xk+1|γ1y1, . . . , γkyk]. Let Pk|k and

Pk+1|k be the corresponding estimation and prediction error covariance matrices, i.e.,

Pk|k , E[(xk − x̂k|k)(·)
′|γ1y1, . . . , γkyk]

Pk+1|k , E[(xk+1 − x̂k+1|k)(·)
′|γ1y1, . . . , γkyk].

These parameters can be computed recursively by a modified Kalman filter (see [1] for more

details). In particular,

Pk+1|k = APk|k−1A
′ +Q (6)

−γkAPk|k−1C
′(CPk|k−1C

′ +R)−1CPk|k−1A
′.

To simplify notations, we denote Pk , Pk|k−1 for shorthand and define the functions h, g, hk

and gk: Sn+ → S
n
+ as follows:

h(X) , AXA′ +Q, (7)

g(X) , AXA′ +Q−AXC ′(CXC ′ +R)−1CXA′, (8)

hk(X) , h ◦ h ◦ · · · ◦ h
︸ ︷︷ ︸

k times

(X) and gk(X) , g ◦ g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

(X), where ◦ denotes the function com-

position.
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2.4 Problems of Interest

2.4 Problems of Interest

To study the stability of Kalman filtering with packet losses, one way is to study the asymptotic

behavior of the expected prediction error covariance sequence. In the following we introduce

the concept of peak-covariance stability, which is first studied in [8]. To this end, we need the

following auxiliary definitions, which are also introduced in [8],

α1 , min{k : k ∈ N, γk = 0},

β1 , min{k : k > α1, γk = 1}, (9)

...

αj , min{k : k > βj−1, γk = 0},

βj , min{k : k > αj, γk = 1}, (10)

where β0 = 0 by convention. It is straightforward to verify that {αj}j∈N and {βj}j∈N are two

sequence of stopping times (cf., [19]).

Definition 2 The Kalman filtering system with packet losses is said to be peak-covariance stable

if supj∈N E‖Pβj
‖ <∞.

Note that E‖Pβj+1‖, the mean of one-step prediction error covariance at stopping time βj , reflects

the stability of Kalman filtering at packet reception times. In the literature, stability of Kalman

filtering with binary Markovian packet losses (driven by a two-state Gilbert-Elliott packet loss

model) [8, 10, 12] and with i.i.d. packet losses [1, 3] has been intensively studied. The main

problem of this work is to study stability of Kalman filtering with boundedMarkovian packet-loss

process. As the packet loss is modelled differently, the stability also behaves differently. Due to

the nonlinearity of the Kalman filter, it seems challenging to find necessary and sufficient stability

conditions for a general LTI system. In Section 3, we manage to give a sufficient peak-covariance

stability condition for general LTI systems with bounded Markovian packet-loss process. Our

result is mainly built on the prior work [17]. Compared with the result thereof, ours prevails

from at least two aspects. We will discuss in details later in Section 4.
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3 Main Result

In the following theorem, we will present a sufficient condition for peak-covariance stability of

Kalman filtering with bounded Markovian packet-loss process.

Theorem 1 Consider the system described in (1) and (2), and the bounded Markovian packet-

loss process described by a probability transition matrix Π in (5). If there exists K , [K(1), . . . ,K(Io−1)],

where K(i)’s are matrices with compatible dimensions, such that ρ(HK) < 1, where

HK , diag
(

A⊗A, . . . , (A⊗A)s
) [

P′ ⊗H+Q′ ⊗K
]
, (11)

and

H , (A+K(1)C)⊗ (A+K(1)C),

K ,

Io−1∑

l=2

(π00)
l−2(Al +K(l)C(l))⊗ (Al +K(l)C(l)),

P , [πij ]i,j∈S/{0} and Q , [πi0π0j]i,j∈S/{0}; then the state estimator is peak-covariance stable,

i.e., supj∈NE‖Pβj
‖ <∞.

Before proceeding to the proof, we first present a few supporting definitions and lemmas.

Consider k compositions of g together. We introduce the following lemma.

Lemma 1 Consider the operator

φi(K
(i), P ) , (Ai +K(i)C(i))X(·)∗ + [A(i) K(i)]




Q(i) Q(i)(D(i))′

D(i)(Q(i)) D(i)(Q(i))(D(i))′ +R(i)



 [A(i) K(i)]∗,

∀i ∈ N,

where C(i) , [C ′, A′C ′, · · · , (A′)i−1C ′]′, A(i) , [Ai−1, · · · , A, I], D(i) = 0 for i = 1 otherwise

D(i) ,











0 0 · · · 0

C 0 · · · 0
...

...
. . .

...

CAi−2 CAi−3 · · · 0











, Q(i) , diag(Q, · · · , Q
︸ ︷︷ ︸

i

), R(i) , diag(R, · · · , R
︸ ︷︷ ︸

i

), and K(i)

are of compatible dimensions. For any X ≥ 0 and K(i), the following statement always holds

gi(X) = min
K(i)

φi(K
(i),X) ≤ φi(K

(i),X).
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Proof. The result is readily established when setting B = I in Lemmas 2 and 3 in [17]. For

i = 1, The result is well known as Lemma 1 in [1]. �

The following lemma is about the nonlinearity of g operator: for k ≥ Io+1, gk(X) is uniformly

bounded no matter what the postive semidefine matrix X is.

Lemma 2 (Lemma 5 in [8]) Assume that (A,C) is observable and (A,Q1/2) is controllable.

Define

S
n
0 , {P : 0 ≤ P ≤ AP0A

′ +Q, for some P0 ≥ 0},

Then there exists a constant L > 0 such that

(i). for any X ∈ S
n
0 , g

k(X) ≤ LI for all k ≥ Io;

(ii). for any X ∈ S
n
+, g

k+1(X) ≤ LI for all k ≥ Io.

According to the definitions of αj and βj , we can further define the sojourn times at the

state 1 and 0 respectively as follows

α∗
j , αj − βj−1 ∈ N,

β∗j , βj − αj ∈ {1, . . . , s}.

The distribution of sojourn times α∗
j and β∗j is given in the following lemma.

Lemma 3 (Lemma 4 in [17]) Denote the joint distribution of α∗
j and β∗j by

π(l) , P (α∗
1 = a1, β

∗
1 = b1, . . . , α

∗
l = al, β

∗
l = bl) ,

for any αj ∈ N and βj ∈ {1, . . . , s}. Then it holds that

π(1) =







πb1 , if a1 = 1;

π0(π00)
a1−2π0b1 , if a1 ≥ 2,

π(l + 1) =







πblbl+1
π(l), if al+1 = 1;

πbl0(π00)
al+1−2π0bl+1

, if al+1 ≥ 2,
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Proof of Theorem 1. We compute E[Pβ1 ] as follows:

E[Pβ1 ] =

∞∑

a1=1

s∑

b1=1

Pβ1π(1)

=

s∑

b1=1

πb1h
b1 ◦ g(Σ0)

+

Io∑

a1=2

s∑

b1=1

π0(π00)
a1−2π0b1h

b1 ◦ ga1(Σ0)

+

∞∑

a1=Io+1

s∑

b1=1

π0(π00)
a1−2π0b1h

b1 ◦ ga1(Σ0)

≤

s∑

b1=1

πb1A
b1(A+K(1)C)Σ0(A+K(1)C)∗(Ab1)′

+

s∑

b1=1

Ab1

[
Io∑

a1=2

π0(π00)
a1−1π0b1(A

a1 +K(a1)C(a1))Σ0( · )
∗

]

(Ab1)′

+

s∑

b1=1

πb1A
b1
(

[A K(1)]J1[A K(1)]∗
)

(Ab1)′

+

s∑

b1=1

Io∑

a1=2

π0(π00)
a1−2π0b1A

b1
(

[Aa1 K(a1)]Σ0[A
a1 K(a1)]∗

)

(Ab1)′

+

s∑

b1=1

(
Io∑

a1=2

π0(π00)
a1−2π0b1 + πb1

)
b1−1∑

i=0

AiQ(Ai)′

+

∞∑

a1=Io+1

s∑

b1=1

π0(π00)
a1−2π0b1h

b1(LI)

, Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6, (12)

where Ji ,




Q(i) Q(i)(D(i))′

D(i)(Q(i)) D(i)(Q(i))(D(i))′ +R(i)



 and the inequality is from Lemmas 1 and 2.

One can verify that Λ3, Λ4, Λ5 and Λ6 are all bounded matrices. Then U , Λ3 +Λ4 +Λ5 +Λ6

is also bounded. To facilitate the analysis in the following, we will impose (12) to take equality.

Without loss of generality, the conclusions in this paper still hold for other cases as (12) renders

us an upper bound of E[Pβ1 ]. Next we vectorize both sides of (12). One has

E[vec(Pβ1)] =

s∑

b1=1

(A⊗A)b1
[ Io∑

a1=2

π0(π00)
a1−2π0b1(A

a1 +K(a1)C(a1))⊗ (Aa1 +K(a1)C(a1)) +

πb1(A+K(1)C)⊗ (A+K(1)C)
]

vec(Σ0) + vec(U) (13)
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Similarly, for any j ≥ 1, E[Pβj+1
] can be calculated as

E[Pβj+1
] =

∞∑

a1=1

s∑

b1=1

· · ·

∞∑

aj+1=1

s∑

bj+1=1

Pβj+1
(l + 1)π(l + 1)

=
∞∑

a1=1

s∑

b1=1

· · ·
∞∑

aj+1=Io

s∑

bj+1=1

Pβj+1
(l + 1)π(l + 1)

+

∞∑

a1=1

s∑

b1=1

· · ·

Io−1∑

aj+1=2

s∑

bj+1=1

πbl0(π00)
al+1−2π0bl+1

hbl+1 ◦ gal+1
(
Pβj

(l)
)
π(l)

+

∞∑

a1=1

s∑

b1=1

· · ·

s∑

bj=1

s∑

bj+1=1

πblbl+1
hbl+1 ◦ g

(
Pβj

(l)
)
π(l)

, Γ1 + Γ2 + Γ3.

Next we will analyze the boundness of Γ1,Γ2 and Γ3 one by one.

Γ1 ≤

∞∑

a1=1

s∑

b1=1

· · ·

∞∑

aj+1=Io

s∑

bj+1=1

hbl+1(LI)π(l + 1)

, W1,

where the inequality is derived from Lemma 2 and W1 is a bounded matrix.

Γ2 ≤
∞∑

a1=1

s∑

b1=1

· · ·
Io−1∑

aj+1=2

s∑

bj+1=1

πbl0(π00)
al+1−2π0bl+1

hbl+1 ◦ φal+1

(
K(al+1), Pβj

(l)
)
π(l)

=

∞∑

a1=1

s∑

b1=1

· · ·

Io−1∑

aj+1=2

s∑

bj+1=1

πbl0(π00)
al+1−2π0bl+1

Abl+1(Aal+1 +K(al+1)Cal+1)Pβj
(l)( · )∗(Abl+1)′π(l)

+

∞∑

a1=1

s∑

b1=1

· · ·

Io−2∑

aj+1=2

s∑

bj+1=1

πbl0(π00)
al+1−2π0bl+1

bl+1−1
∑

i=0

AiQ(Ai)′π(l)

+

∞∑

a1=1

s∑

b1=1

· · ·

Io−1∑

aj+1=2

s∑

bj+1=1

πbl0(π00)
al+1−2π0bl+1

Abl+1

(

[Aal+1 K(al+1)]Jal+1
[ · ]∗

)

(Abl+1)′π(l)

, Γ′
2 +W2 +W3.
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It is straightforward to verify that W2 and W3 is bounded.

Γ3 ≤

∞∑

a1=1

s∑

b1=1

· · ·

s∑

bj+1=1

πblbl+1
hbl+1 ◦ φ1

(
K(1), Pβj

(l)
)
π(l)

=
∞∑

a1=1

s∑

b1=1

· · ·
s∑

bj+1=1

πblbl+1
Abl+1(A+K(1)C)Pβj

(l)( · )∗(Abl+1)′π(l)

+
∞∑

a1=1

s∑

b1=1

· · ·
s∑

bj+1=1

πblbl+1

bj+1−1
∑

i=0

AiQ(Ai)′π(l)

+

∞∑

a1=1

s∑

b1=1

· · ·

s∑

bj+1=1

πbl0πblbl+1
Abl+1

(

[A K(1)]J1 [A K(1)]∗
)

(Abl+1)′π(l)

, Γ′
3 +W4 +W5,

where W4 and W5 can be readily shown to be bounded. In summary,

E[Pj+1] ≤ Γ′
2 + Γ′

3 + V, for j ≥ 1, (14)

where V ,W1 +W2 +W3 +W4 +W5. By a similar argument, we impose (14) to take equality

and take vectorization. From (13) and (14), we can calculate E[vec(Pβl+1
)] recursively as follows

E[vec(Pβl+1
)] = T (HK)lΨvec(Σ0) + T (HK)l−1Ψvec(Θl−1) + · · ·+ vec(Θ0).

where Θ0, . . . ,Θl−1 are the functions of Q, A, K(i)’s and are bounded for V is bounded,

T = [ 1, . . . , 1
︸ ︷︷ ︸

s numbers

]⊗ In2×n2

and Ψ = [ψ
′

1, . . . , ψ
′

s]
′

∈ C
sn2×n2

with

ψi = (A⊗A)i
[ Io∑

a1=2

π0(π00)
a1−2π0b1(A

a1 +K(a1)C(a1))⊗ (Aa1 +K(a1)C(a1)) +

πb1(A+K(1)C)⊗ (A+K(1)C)
]

, for i ∈ {1, . . . , s}.

Therefore, E[vec(Pβl+1
)] is bounded as l → ∞ if ρ(HK) < 1. By some basic algebraic manipula-

tions, one obtains that E‖Pβl+1
‖ is uniformly bounded if ρ(HK) < 1, which completes the proof.

�

The stability condition in Theorem 1 is difficult to test. In the following, we provide an

equivalent condition. In view of this result, Theorem 1 can be recast as an LMI feasibility

problem. As for the conversion to LMIs using Schur complements, we refer readers to [20] for

details.
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Proposition 1 The following statements are equivalent:

(i). There exists K , [K(1), . . . ,K(Io−1)], where K(i)’s are matrices with compatible dimen-

sions, such that ρ(HK) < 1, where HK is defined in (11);

(ii). There exist X1 > 0, . . . ,Xs > 0 and K1, . . . ,KIo−1 such that

s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−2Aj(Al +KlC

(l))Xi(A
l +KlC

(l))∗(Aj)′

+
s∑

i=1

πijA
j(A+K1C)Xi(A+K1C)∗(Aj)′ < Xj , for all j ∈ S/{0}.(15)

Proof. (i) ⇒ (ii) Since ρ(HK) < 1, we have

(I −HK)−1 = I +HK + (HK)2 + · · · . (16)

We define a linear space H
n
+ as

H+ , {[H1, . . . ,Hs] : Hj ∈ S
n
+, ∀ j ∈ S}.

Then define a norm on H
n
+ as

‖H‖∗ ,

s∑

i=1

‖Hi‖

for any H = [H1, . . . ,Hs] ∈ H
n
+. For any G , [G1, . . . , Gs],H , [H1, . . . ,Hs] ∈ H

n
+, we say that

G � H (and G ≻ H) if Gi ≥ Hi (and Gi > Hi) for all i ∈ {1, . . . , s}.

Since (I − HK) is nonsingular and vectorization is a bijective mapping, for any H ∈ H
s
+,

there exists a unique matrix X , [X1, . . . ,Xs] ∈ C
n×sn such that

vec(H) = (I −HK)vec(X). (17)

In what follows, we shall show X ∈ H
n
+. From (16), we have

vec(X) = (I −HK)−1vec(H)

=

∞∑

i=0

(HK)ivec(H).

Taking the inverse mapping of vectorization gives X � H, implying X ∈ H
n
+. Similarly, by

taking the inverse mapping of vectorization on (17), we have

Hj = Xj −
s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−2Aj(Al +K(l)C(l))Xi(A

l +K(l)C(l))∗(Aj)′

−
s∑

i=1

πijA
j(A+K(1)C)Xi(A+K(1)C)∗(Aj)′, for all j ∈ S/{0}.

12



where this claim follows as asserted.

(ii) ⇒ (i) Define an operator LK , (LK,1, . . . ,LK,s) : H
n
+ → H

n
+ as

LK,j(H) ,

s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−2Aj(Al +KlC

(l))Hi(A
l +KlC

(l))∗(Aj)′

+
s∑

i=1

πijA
j(A+K1C)Hi(A+K1C)∗(Aj)′, . (18)

where K = [K1, . . . ,KIo−1], and H = [H1, . . . ,Hs] ∈ H
n
+. It is evident that LK(αH) = αLK(H)

for any α ∈ R, and that LK(G) � LK(H) for G � H. From the hypothesis of (ii), we conclude

that there exists a µ ∈ (0, 1) such that LK(X) � µX, where X , [X1, . . . ,Xs]. In addition, for

any given H0 ∈ H
n
+, there always exists an r > 0 such that H0 � rX. Therefore, for k ∈ N,

Lk
K(H0) � rLk

K(X) � rµLk−1
K (X) � · · · � rµkX,

which leads to ‖Lk
K(H0)‖∗ ≤ rµk‖X‖∗. As k → ∞, we have limk→∞ ‖Lk

K(H0)‖∗ = 0. Note that

vec (LK(H0)) = HKvec(H0). Combining all the above observations, we have

lim
k→∞

(HK)kvec(H0) = 0,

which implies ρ(HK) < 1. This completes the proof. �

4 Comparison with [17]

In this part, we compare our result with those in [17] and show the advantages of ours. Recall

that the sufficient condition in [17] is ρ(Φ) < 1 where

Φ ,

[

d
(1)
1 P+

Io−1∑

l=2

(π00)
l−1d

(1)
l Q

]

diag
(
‖A‖2, . . . , ‖As‖2

)
,

with P, Q being defined in (11) and d
(1)
l , minK(l) ‖A(l) +K(l)C(l)‖2.

4.1 Invariance with Respect to Similarity Transformations

Theoretically, a state variable transformation (i.e., a similarity transformation from a linear sys-

tem (A,B,C,D) to (S−1AS,S−1B,CS,D) through the nonsingular matrix S does not change

13



4.2 Conservativity Comparison

the stability considered in this work. However, different state variable transformations may gen-

erate opposite conclusions from the stability condition given in [17]. The invariance of stability

behavior with respect to state variable transformations can be reflected well from the stability

conditions presented by this work.

Proposition 2 Let S ∈ C
n×n be nonsingular. Suppose there exists K , [K(1), . . . ,K(Io−1)],

where K(i)’s are matrices with compatible dimensions, such that ρ(HK) < 1, where HK is defined

in (11) for (A,C). Then, there always exists K̃ , S−1[K(1), . . . ,K(Io−1)] such that ρ(H̃K̃) < 1,

where H̃K̃ is defined for (Ã, C̃) , (S−1AS,CS) in accordance with (11).

The proof follows from Proposition 1 and direct calculation. We use the following example to

illustrate this idea.

Example 1 Consider the system

A =




1.3 0.3

0 1.2



 , C = [ 1 1 ],

Q = I2×2 and R = 1, and the bounded Markovian packet-loss process with transition probability

matrix given by

Π =








0.6 0.2 0.2

0.8 0.1 0.1

0.8 0.1 0.1







. (19)

From [17], we have d
(1)
1 = 1.2200 and ρ(Φ) = 0.7352 < 1. Let

S =




1 5

0 1



 .

For the system (Ã, C̃) , (S−1AS,CS), we have d̃
(1)
1 = 1.3632 and ρ(Φ̃) = 1.5202 > 1.

4.2 Conservativity Comparison

The stability condition given in this work is less conservative compared with that in [17], since

the latter condition implies the former one. To show this, we need the following proposition.

14



4.2 Conservativity Comparison

Proposition 3 Define

ΦK ,

[

d1P+

Io−1∑

l=2

(π00)
l−1dlQ

]

diag
(
‖A‖2, . . . , ‖As‖2

)
,

where P and Q are defined in (11) and dl , ‖A(l) + K(l)C(l)‖2, and K , [K(1), . . . ,K(Io−1)]

with K(l)’s of compatible dimensions. If there exists K such that ρ(ΦK) < 1, then ρ(HK) < 1.

Proof. If treating a scalar as the Kronecker product of two other scalars, similar to Proposition 1,

we can claim that, if and only if ρ(ΦK
′) < 1, there exists a vector

x , [x1, . . . , xs],

where xj > 0 for all j ∈ S/{0}, such that

s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−2dl‖A

j‖2xi +
s∑

i=1

πijd1‖A
j‖2xi < xj.

The submultiplicativity and subadditivity of a matrix norm result in the following inequality

∥
∥
∥

s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−1xiA

j(Al +K(l)C(l))(Al +K(l)C(l))∗(Aj)′

+

s∑

i=1

πijxiA
j(A+K(1)C)(A+K(1)C)∗(Aj)′

∥
∥
∥ < xj , for all j ∈ S/{0}. (20)

Let Xj = xjIn×n. Then we obtain from (20) that

s∑

i=1

πi0π0j

Io−1∑

l=2

(π00)
l−2Aj(Al +K(l)C(l))Xj(A

l +K(l)C(l))∗(Aj)′

+

s∑

i=1

πijA
j(A+K(1)C)Xi(A+K(1)C)∗(Aj)′ < Xj .

Therefore ρ(HK) < 1, which completes the proof. �

In virtue of Proposition 3, it is evident that ρ(Φ) < 1 implies ρ(HK⋆) < 1, where K⋆ ,

[K⋆
1 , . . . ,K

⋆
Io−1] with K

⋆
i , argminK(i) ‖A(i) +K(i)C(i)‖2.

Example 1 (cont′d) We continue to consider Example 1 with an alternative transition proba-

bility matrix

Π1 =








0.6 0.2 0.2

0.6 0.2 0.2

0.6 0.2 0.2







.
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From Theorem 2 in [17], we obtain ρ(Φ) = 1.4704 > 1. By solving an LMI feasibility problem

using the cvx in Matlab, we see that our Theorem 1 still holds with a group of feasible variables

X1 = X2 =




0.1081 0.0243

0.0243 0.1042



 and K =




−0.8079

−0.5914



 .

If we consider the transition probability matrix which only allows the maximum length of

consecutive packet losses to be 1, i.e.,

Π2 =




0.6 0.4

0.8 0.2



 ,

then ρ(Φ) = 0.49 < 1 and the condition in our Theorem 1 holds. When we increase π11 in Π2

from 0.2 to 0.5, one can verify numerically that ρ(Φ) > 1 while Theorem 1 of this paper still

holds.

5 Conclusion

We have considered the bounded Markovian packet-loss process model and the notion of the

peak-covariance stability for the Kalman filtering. A sufficient stability condition with bounded

Markovian packet losses was established. Different from that of [17], this stability check can

be recast as an LMI feasibility problem. Then we compared the proposed condition with that

of [17], showing that our condition prevails from at least two aspects: 1) Our stability condition

is invariant with respect to similarity state transformations, while the previous result is not;

2) More importantly, our condition is proved to be less conservative than the previous one.

Numerical examples were provided to demonstrate the effectiveness our result compared with

the literature.
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