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Abstract

This paper provides a novel approach to the problem of attitude tracking for a class of almost globally asymptotically stable
feedback laws on SO(n). The closed-loop systems are solved exactly for the rotation matrices as explicit functions of time,
the initial conditions, and the gain parameters of the control laws. The exact solutions provide insight into the transient
dynamics of the system and can be used to prove almost global attractiveness of the identity matrix. Applications of these
results are found in model predictive control problems where detailed insight into the transient attitude dynamics is utilized
to approximately complete a task of secondary importance. Knowledge of the future trajectory of the states can also be used
as an alternative to the zero-order hold in systems where the attitude is sampled at discrete time instances.
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1 Introduction

The nonlinear control problem of stabilizing the attitude
dynamics of a rigid body has a long history of study
and is important in a diverse range of engineering ap-
plications related to e.g. quadrotors (Lee et al., 2010),
inverted 3-D pendulums (N.A. Chaturvedi et al., 2009),
and robotic manipulators (Hu et al., 2009). It is interest-
ing from a theoretical point of view due to the nonlinear
state equations and the topology of the underlying state
space SO(3). An often cited result states that global
asymptotical stability on SO(3) cannot be achieved by
means of a continuous, time-invariant feedback (S.P.
Bhat andD.S. Bernstein, 2000). The literature does how-
ever provide results such as almost global asymptoti-
cal stability through continuous time-invariant feedback
(N.A. Chaturvedi et al., 2011; Sanyal et al., 2009), al-
most semi-global stability (Lee, 2012), or global stabil-
ity by means of a hybrid control approach (C.G. May-
hew et al., 2011b). The parameterizations used to rep-
resent SO(3) has important implications for the limits
of control performance (N.A. Chaturvedi et al., 2011;
S.P. Bhat and D.S. Bernstein, 2000; C.G. Mayhew et al.,
2011a). In particular, the use of local representations
yields local results. In most cases, it is preferable to ei-
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ther use global representations such as the unit quater-
nions or to work with the space of rotation matrices di-
rectly (N.A. Chaturvedi et al., 2011).

The exact solutions of a closed-loop system gives a de-
tailed picture of both its transients and asymptotical
behaviour and can hence be of use in control applica-
tions. The literature on solutions to attitude dynamics
can be divided into two categories. Firstly, in a number
of works the solutions are obtained during the control
design process, e.g. using exact linearization (Dwyer III,
1984) or optimal control design techniques such as the
Pontryagin maximum principle (Spindler, 1998). Sec-
ondly, there are works whose main focus is solving the
equations defining rigid-body dynamics under a set of
specific assumptions (Elipe and Lanchares, 2008; M.A.
Ayoubi and J.M. Longuski, 2009; A.V. Doroshin, 2012).
This paper falls into the second category.

There is a considerable literature on the kinematics and
dynamics of n-dimensional rigid-bodies. This literature
includes works on attitude stabilization (D.H.S. Maithri-
pala et al., 2006), attitude synchronization (Lageman
et al., 2009), distributed averaging (Matni andHorowitz,
2014), and generalized Newtonian equations of motion
(J.E. Hurtado and A.J. Sinclair, 2004). It also includes
the authors previous work (Markdahl et al., 2013; Mark-
dahl and Hu, 2014), which we shall comment on shortly.
A key difference between the study of SO(3) and SO(n)
is that parameterizations such as the unit quaternions
cannot be used. Another is the motivation: work on
SO(3) is usually motivated by applications concerning
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the attitude of rigid bodies. Work on SO(n) is not only
of theoretical concern however, it also finds applications
in the visualization of high-dimensional data (Thakur,
2008).

The main contribution of this paper is to provide exact
solutions to differential equations representing closed
feedback loops on SO(n). Recent work on this problem
include (Markdahl et al., 2012, 2013; Markdahl and Hu,
2014). Other works such as (Elipe and Lanchares, 2008;
M.A. Ayoubi and J.M. Longuski, 2009; A.V. Doroshin,
2012) are related in spirit but address somewhat dif-
ferent problems. The work (Markdahl et al., 2012)
considers the solutions to closed-loop kinematics on
SO(3). An application towards model predictive con-
trol (MPC) is proposed but left unexplored. The more
general problem of solving two differential equations on
SO(n) is treated in (Markdahl et al., 2013). An applica-
tion towards the problem of continuous actuation under
discrete-time sensing is considered. The work (Mark-
dahl and Hu, 2014) generalizes the results of (Markdahl
et al., 2013) to a greater class of feedback laws. This
paper in turn generalizes (Markdahl and Hu, 2014) and
explores the applications proposed in (Markdahl et al.,
2012) and (Markdahl et al., 2013). Note that many of
the results of this paper easily extends to the case of
SE(n) and may be combined with position control laws
in an inner-outer loop feedback scheme to achieve pose
stabilization on SE(n) (Roza and Maggiore, 2012).

This paper is structured as follows. Section 2 recalls the
notation and some basic properties of matrix analysis, it
can be skipped if the reader is familiar with that topic.
Section 3 presents the attitude stabilization problem and
introduces Problem 1, the problem of solving the closed-
loop state equations. Section 4.1 generalizes a class of
known control laws on SO(3) to the case of SO(n). It con-
tains the main result of this paper, the solution to Prob-
lem 1. It also makes use of the exact solutions to prove
that the proposed algorithms stabilize System 1 almost
globally. Section 6 explores practical applications of the
exact solutions to problems of model predictive control
and continuous feedback in sampled systems. Section 8
provides some brief concluding remarks.

2 Preliminaries

Let A,B ∈ Rn×n. The spectrum of A is written σ(A).
The transpose and conjugate transpose of A is written
A⊺ and A∗ respectively. The commutator of A and B
is defined by [A,B] = AB −BA. Their inner product
is defined by ⟨A,B⟩ = tr(A⊺B) and the Frobenius norm

by ∥A∥F = ⟨A,A⟩ 12 .
The set of nonsingular matrices over a field F is denoted
by GL(n,F). The unitary group is denoted by U(n) =
{U ∈ GL(n,C) ∣U−1 = U∗}. The orthogonal group is

O(n) = {Q ∈ GL(n,R) ∣Q−1 =Q⊺}. The special orthogo-
nal group is denoted by SO(n) = {R ∈ O(n) ∣ detR = 1}.
In this paper we defineR(n) = {R ∈ SO(n) ∣ −1 ∈ σ(R)}.
It can be shown that {R ∈ SO(n) ∣R⊺ =R}/{I} ⊂R(n).
Equality holds in the cases of n ∈ {2,3}. The Lie algebra
of SO(n) is denoted by so(n) = {S ∈ Rn×n ∣S⊺ = −S}. In
this paper, we use S to denote the matrix LogR ∈ so(n)
for R ∈ SO(n)/R(n).
The principal matrix logarithm Log is defined on the set
{A ∈ GL(n,R) ∣σ(A) ∩ (−∞,0] = ∅} (Culver, 1966). It
satisfies Imσ(LogA) ⊂ {z ∈ iR ∣ ∣z∣ < π} (Higham, 2008).
Since any rotation matrix R is normal, it follows that
R = UΛU∗ and the logarithm of R may be calculated
as LogR = U Log(Λ)U∗. Moreover, Λ = exp(iΘ) for
a diagonal matrix Θ which satisfies Θii ∈ (−π,π) for
all R ∈ SO(n)/R(n). Hence Log(Λ) = iΘ and LogR =
iUΘU∗. Thematrix logarithm allows us to calculate the
geodesic distance betweenR1,R2 ∈ SO(n) using the Rie-
mannian metric dR(R1,R2) = 1√

2
∥Log(R⊺1R2)∥F . The

set of symmetric matrices is S(n) = {P ∈ Rn×n ∣P⊺ = P}.
The set of positive-semidefinite matrices is denoted by
P(n) = {P ∈ S(n) ∣σ(P) ⊂ [0,∞)}. The set of positive-
definite matrices is P(n) ∩ GL(n,R).
By the kth root of a normal matrixA =UΛU∗ we refer

to its principal root, the normal matrix A
1

k =UΛ
1

kU∗.

The principal root satisfies R
1

k = exp( 1
k
S) ∈ SO(n).

Moreover, R
1

k ∉ SO(n)/R(n) if R ∉ SO(n)/R(n).

The solution to a differential equation Ẋ = F(t,X) is
denoted X(t; t0,X0) where t is the time, t0 is the initial
time, andX0 is the initial condition. If the system is time
independent we set t0 = 0 and omit this dependence.
Furthermore, let Φ(X0, t) denote the flow of F(t,X),
i.e. Φ(X0, t) =X(t; t0,X0).

3 Problem Statement

From amathematical perspective it is appealing to strive
for generalization. Consider the evolution of a positively
oriented n-dimensional orthogonal frame represented by
R ∈ SO(n). The dynamics on SO(n) are given by Ṙ =
ΩR. This paper concerns the following system.

System 1 Consider the system Ṙ =Ω(R)R where R ∈
SO(n) and Ω ∶ SO(n)→ so(n). The input is given by Ω,
i.e. the system is fully actuated on a kinematic level.

The kinematic level stabilization problem on SO(n) con-
cerns the design of an Ω that stabilizes the identity ma-
trix. The matrix R can be actuated along any direction
of so(n), its tangent space at the identity. Note that

SO(n) is invariant under the kinematics Ṙ = Ω(R)R,
i.e. any solution R(t;R0) remains in SO(n) for all t ∈
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[0,∞) if R0 ∈ SO(n). This paper concerns a class of al-
most globally stabilizing feedback lawsΩ that allow the
closed-loop equations to be solved forR as a function of
time, any design parameters, and the initial conditions.
It analyzes the stability of said class of control laws and
discusses possible applications of these results.

An equilibrium of is said to be almost globally asymp-
totically stable if it is asymptotically stable and the re-
gion of attraction is all of SO(n) except for a set of mea-
sure zero. A setN ⊂ SO(n) has measure zero if for every

chart φ ∶ S → R
1

2
n(n−1) in some atlas of SO(n), it holds

that φ(S ∩N ) has Lebesgue measure zero.

Problem 1 For a given almost globally stabilizing
feedback law Ω ∶ SO(n) → so(n), solve System 1 for
R(t;R0), i.e. for R as function of the time t ∈ [0,∞)
and all initial conditions R0 ∈ SO(n) belonging to the
region of attraction of the identity matrix.

Previous work on global level attitude stabilization
apply the stable-unstable manifold theorem (N.A.
Chaturvedi et al., 2011; Sanyal et al., 2009; Lee, 2012)
or use Lyapunov function arguments (C.G. Mayhew
et al., 2011b) to establish the region of attraction of
the identity matrix. The stable-unstable manifold the-
orem (S.S. Sastry, 1999) is however ineffective to prove
almost global asymptotical stability for systems that
are actuated on a kinematic level when the unstable
equilibrium manifold corresponds to the uncountable
set {R ∈ SO(n) ∣R⊺ =R}/{I} ⊂ R(n).
This paper presents a novel approach to establishing al-
most global asymptotical stability by means of exact so-
lutions to the closed-loop system kinematics. It is pos-
sible to establish global existence and uniqueness of the
solutions, see Lemma 1 in Appendix A. Statements re-
garding control performance can hence be based on the
properties of the exact solutions. This paper uses the
solutions to show that the region of attraction of the
identity matrix for the closed-loop systems generated by
Algorithm 1–2 below is SO(n)/R(n). The desired result
follows since R(n) is a set of measure zero in SO(n).
Remark 1 The attitude dynamics of a rigid body is of-
ten described by a second order system consisting of a
kinematic equation coupled with Euler’s equation of mo-
tion. In that case, the input signal is a torque vector.
Kinematic level control design may however be prefer-
able under certain circumstances, for example when an
application programming interface restricts actuation to
velocity level control commands or as a prerequisite in ap-
plying the backstepping control design technique (Krstic
et al., 1995). Models with kinematic level actuation are
also common in certain fields such as visual servo con-
trol (Chaumette and Hutchinson, 2006, 2007). What is
more, there is no compelling reason to impose Newtonian
mechanics in the general SO(n) case.

4 Main Results

This section contains the main results of the paper, the
exact solutions to the closed-loop systems resulting from
feedback by Algorithm 1 and 2 defined below.

4.1 Closed-Loop System 1

The following algorithm is well-known in the literature.

Algorithm 1 (Positive-semidefinite gain matrix)
The input signal Ω ∶ SO(n) × P(n) → so(n) is given by
Ω = PR⊺ −RP, where P ∈ P(n) is either a rank n − 1
or a rank n matrix.

The closed-loop system resulting from Algorithm 1 is
Ṙ = P −RPR.

Theorem 1 The trajectory of the closed-loop sys-
tem generated by Algorithm 1 is given by R(t;R0) =(sinh(Pt) + cosh(Pt)R0)(cosh(Pt) + sinh(Pt)R0)−1.

PROOF. Equation (4.1) is a matrix valued differential
Ricatti equation that can be solved using the adjoint
equations technique. Introduce two matrices X,Y ∈

GL(n,R) that satisfy Ẋ = PY, Ẏ = PX with initial
conditions X(0;R0) = R0, Y(0;R0) = I. Note that

R = XY−1 since R(0;R0) = X(0;R0)Y−1(0; ) = R0

and d

dt
(XY−1) = ẊY−1−XY−1ẎY−1 = P−RPR = Ṙ.

The state equation of X and Y is linear and has the
transition matrix

exp
⎛
⎝
⎡⎢⎢⎢⎢⎣
0 P

P 0

⎤⎥⎥⎥⎥⎦
t
⎞
⎠ =
⎡⎢⎢⎢⎢⎣

cosh(Pt) sinh(Pt)
sinh(Pt) cosh(Pt)

⎤⎥⎥⎥⎥⎦
.

By reversing the change of variables we find R(t;R0).∎
Proposition 1 The identity matrix is an almost glob-
ally asymptotically stable equilibrium of System 1 under
Algorithm 1. The rate of convergence is locally exponen-
tial and the region of attraction is SO(n)/R(n).

PROOF. The proof for the cases of rankP = n and
rankP = n − 1 are carried out separately. The proofs
rely on the uniqueness property established in Lemma
1 which allows us to draw conclusions regarding control
performance based on the exact solutions.

Consider the positive-definite case. The Frobenius norm
is submultiplicative whereby ∥XY−1 − I∥F = ∥(X −
Y)Y−1∥F ≤ ∥X −Y∥F ⋅ ∥Y−1∥F . That limt→∞ ∥XY−1 −
I∥F = 0 hence follows from limt→∞X − Y = limt→∞
exp(−Pt)(R0 − I) = 0 and limt→∞Y−1 = limt→∞(I +
tanh(Pt)R0)−1 cosh−1(Pt) = 0. The last limit is given
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by Lemma 2 in Appendix A. It requires the assump-
tion of R0 ∉ R(n), i.e. −1 ∉ σ(R). Hence we have
shown that I attracts all system trajectories such that
R0 ∈ SO(n)/R(n). That R(n) does not belong to the
region of attraction of I follows from Lemma 3 in Ap-
pendix A.

Use the first method of Lyapunov to show that I is a
locally exponentially stable equilibrium of R. Take Z
to be the matrix corresponding to the linearization of
R − I around 0. Then Ż = −PZ −ZP, with Z(0) = Z0 =
R0− I. Hence Z(t;Z0) = exp(−Pt)Z0 exp(−Pt), i.e. the
linearized system is exponentially stable.

Consider the positive-semidefinite case. The eigenvec-
tors v1, . . . ,vn of P ∈ P(n) form an orthogonal basis of
R

n by virtue of the spectral theorem. Let 0 be the eigen-
value corresponding to vn. Let V = [n1⋯vn and denote
P expressed in the basis {v1, . . . ,vn} by

Q =V⊺PV =

⎡⎢⎢⎢⎢⎣
Q11 0

0 0

⎤⎥⎥⎥⎥⎦
.

Denote R expressed in the basis {v1, . . . ,vn} byX, and
write

X =

⎡⎢⎢⎢⎢⎣

X11 x12

x21 x22

⎤⎥⎥⎥⎥⎦
.

It can be shown that Ẋ11 = Q11 − X11Q11X11,
whereby Theorem 1 gives X11 = (sinh(Q11t) +
cosh(Q11t))(cosh(Q11t) + sinh(Q11t)X11,0)−1.

Since rankQ = rankP, we find that Q11 ∈ P(n − 1) ∩
GL(n − 1,R). What is more, −1 ∉ σ(X11,0) follows from
R ∉ R(n) by Lemma 6. The almost global attractive-
ness and stability of I as an equilibrium of X11 follows
by reasoning analogously as done in the case of a posi-
tive definiteP. The corresponding properties of x12,x21,
and x22 follow from the constraints on X ∈ SO(n). This
carries over to R. ∎

Remark 2 A key step in the above proof makes use of the
constraints on X ∈ SO(n) to conclude the attractiveness
and stability properties of x12,x21, and x22 based on those
of X11. This would not be possible if rank P ≤ n − 2.

4.2 Closed-Loop System 2

The following closed-loop systems are generated by a
class of control laws which all share the property that
the state and the input signals commute. This class is
of interest since it reduces Problem 1 to Problem 2 (see
below). Instead of solving a systemwith n2 variables and
1

2
n(n− 1) degrees of freedom on the Lie group SO(n), a

system that evolves on the Lie algebra so(n) is solved.
The Lie algebra is a linear space where the number of
variables equals the number of degrees of freedom.

Problem 2 For a given almost globally stabilizing feed-
back law Ω ∶ SO(n) → so(n), solve the autonomous sys-

tem Ṡ =Ω(exp(S)) for S(t;S0), i.e. for S as function of
the time t ∈ [0,∞), and any initial condition S0 ∈ so(n).

Algorithm 2 (Input and state commutes) Let F ∶
so(n)→ so(n) be a mapping that satisfies [F(S),S] = 0.
Moreover, suppose that the zero matrix is a glob-
ally asymptotically stable equilibrium of Ṡ = F(S),
which is required to have a known, unique, and con-
tinuously differentiable solution S(t;S0). The input
matrix Ω ∶ SO(n)/R(n) × P(n) → so(n) is given by
Ω(R) = F(LogR), where Log ∶ SO(n)/R(n) → so(n)
denotes the principal matrix logarithm.

The resulting closed-loop system is Ṙ = F(LogR)R.

Theorem 2 The trajectories generated by Algorithm 2
are given by R(t;R0) = exp(S(t; Log(R0))).

PROOF. Note that R(0;R0) = R0. Since [Ω,S] = 0,
it follows that [Ṡ,S] = 0, see Lemma 4 in Appendix A.

Hence ΩR = Ṙ = d

dt
exp(S) = d

dt ∑
∞
i=1

1

i!
Si = ṠR. By

multiplying the above identity by R−1 from the right,

we are left with Ṡ = Ω = F. Also note that R(0;R0) =
R0. The expression for R(t;R0) is obtained from the
exponential mapping. ∎

Proposition 2 Algorithm 2 stabilizes System 1 almost
globally. The region of attraction is SO(n)/R(n).

PROOF. The exact solution is unique by Lemma 1.
Since the zero matrix is a globally asymptotically sta-
ble equilibrium of the system on so(n), we find that
limt→∞ S(t; Log(R0)) = 0, limt→∞R(t;R0) = I,i.e. the
identity matrix is almost globally attractive. The region
of attraction is SO(n)/R(n) since Algorithm 2 is re-
stricted to this domain.

The identity matrix being a stable equilibrium follows
from the stability of the system on so(n) and the conti-
nuity of the exponential mapping. More precisely, we re-
quire a pair (δ, ε) such that dR(I,R(t;R0)) ≤ ε for all t ∈[0,∞) when dR(I,R0) ≤ δ. Note that dR(I,R(t;R0)) =
1√
2
∥ logR(t;R0)∥F = 1√

2
∥S(t;S0) − 0∥F . The stability

of 0 as an equilibrium of S implies the existence of a
pair (δ′, ε′) such that ∥S(t;S0) − 0∥F ≤ ε′ for all t ∈
[0,∞) when ∥S0 − 0∥F ≤ δ′. Hence we may take (δ, ε) =
1/√2(δ′, ε′). ∎
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5 Examples

Algorithm 2 cannot be implemented without choosing
a specific function F which satisfies the stated require-
ments. The class of feedback laws satisfying the commu-
tativity requirement includes anyF ∶ so(n)→ so(n) that
extends an analytic function f ∶ R → R so that F(S)
can be defined in terms of the Taylor expansion of f
(Higham, 2008). Since it can be a nontrivial task to find
suchF that also stabilize the zero matrix, we provide the
following three control laws, Algorithm 2.A–2.C, which
are special cases of Algorithm 2.

5.1 Geodesic Feedback

An important special case of Algorithm 2 is the geodesic
feedback based on the matrix logarithm (Bullo andMur-
ray, 1995).

Algorithm 2.A The geodesic feedback Ω = −LogR
yields F(S) = −S on so(n).
The closed-loop system resulting from use of the feed-
back in Algorithm 2.A is Ṙ = −Log(R)R.

Theorem 2.A The trajectories generated by Algorithm
2.A are given by R(t;R0) = exp(e−t Log(R0)).

PROOF. Note that [logR,R] = 0 (Higham, 2008).

Moreover, the solution to Ṡ = −S is given by S(t;S0) =
e−t S0.Algorithm2.A is hence a special case of Algorithm
2 wherefore the desired result follows by Theorem 2. ∎

5.2 Matrix Root

Algorithm 1withP = I satisfies [Ω, logR] = 0. This also
holds when R is replaced by its kth root R

1

k for k ∈ N.

Algorithm 2.B (Matrix root) The input matrix for

this control law is given by Ω = k(R− 1

k − R
1

k ), where
the proportional gain factor k is used to scale the time
dependence of R, i.e. F(S) = −2k sinh( 1

k
S).

The closed-loop system generated by Algorithm 2.B is

Ṙ = k(R1− 1

k −R1+ 1

k ). The scalar gain k ∈ N is introduced
so that the limit limk→∞Ω = −2LogR; without it the
limit would be zero.

Theorem 2.B The trajectories generated by Algorithm

2.B are given by R(t;R0) = (tanh(t) I + R
1

k

0
)k(I +

tanh(t)R 1

k

0
)−k.

PROOF. Introduce the variable X = R
1

k ∈ SO(n).
Then Ẋ = 1

k
ṘR

1

k
−1 = 1

k
k(R1− 1

k −R1+ 1

k )R 1

k
−1 = I−R

2

k =

I−X2, which also results from settingP = I in Algorithm
1. Reversing the change of variables in the solution for
X given by Theorem 1 yields the desired expression. ∎

5.3 Cayley Transform

Another special case of Algorithm 2 is the Cayley trans-
form and the higher order Cayley transforms.

Algorithm 2.C (Cayley transform) The input ma-

trix is given by Ω = k(I −R 1

k )(I +R 1

k )−1, i.e. the kth
order Cayley transform up to a scalar gain factor k ∈ N.
It yields F(S) = −k tanh( 1

2k
S).

The closed-loop system resulting from use of the feed-

back in Algorithm 2.C is Ṙ = k(I −R 1

k )(I +R 1

k )−1R.
The scalar gain k ∈ N is introduced so that the limit
limk→∞Ω = − 1

2
LogR; without it the limit would be the

zero matrix.

Theorem 3 The trajectories generated by Algorithm
2.C are given by R(t;R0) = exp(2kAtanhY(t,X0)),
where Y(t;X0) = sinh (X0) (sinh2 (X0) + et I)−

1

2 , and

X0 =
1

2k
LogR0.

PROOF. ThatY(t;X0) and AtanhY(t;X0) are well-
defined follows from Lemma 5 in Appendix A. Change
variables from R to X = 1

2k
LogR where the scaling

is just a matter of notational convenience. Note that
Ω = −k tanhX, whereby [X,Ω] = 0 and Ẋ = 1

2k
Ω by

Lemma 4.

Note that Ẏ(t;X0) = − 1

2
sinh(X0)(sinh2X0 + et I)− 3

2

et = − 1

2
Y(t;X0)(sinh2X0 + et I)−1 et = − 1

2
Y(t;X0)

(sinh2X0 + e
t I)−1(sinh2X0 + e

t I − sinh2X0) = − 1

2
Y(t;

X0)(I −Y(t;X0)2) as required.
It remains to verify that X(t;X0) = AtanhY(t;X0)
solves Ẋ = − 1

2
tanhX. Note that X(0;X0) = Atanh

(tanh (X0)) =X0. Moreover, Ẋ(t;X0) = (I −Y2(t;X0)
)−1Ẏ(t;X0) = − 1

2
Y(t;X0) = − 1

2
tanhX(t;X0), where

the dynamics of Y(t;X0) are used. ∎

Proposition 2 reduces the stability analysis for Algo-
rithm 2.A–2.C to proving the global asymptotical sta-
bility of the zero matrix on so(n). Further details are
omitted for the sake of brevity.
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5.4 Discussion

Algorithm 1 and 2 differ in several respects. Algorithm 1
have a constant positive-definite gain matrix that can be
tuned for desired performance. It provides a continuous
feedback but has a low input norm for rotations that are
far from the identity, the disadvantage of which is slow
convergence in the case of large errors (Lee, 2012). Algo-
rithm 2.A provides a geodesic control law. The feedback
laws of Algorithm 2.A and 2.B have input norms that are
increasing functions of ∥S∥F . This property can for ex-
ample be useful in attitude control of satellites that are
required to make large angle manoeuvres (Lee, 2012).
The input norm of Algorithm 2.C diverges as the error is
maximized. Althought such behaviour is normally unde-
sired in practice, it does exemplify the width of the class
of algorithms contained in Algorithm 2. The disadvan-
tage of Algorithm 2.A–2.B as compared to Algorithm
1 is the discontinuity when R ∈ R(n). Fig 1 illustrates
some of these considerations for R ∈ SO(3).

0 1 2 3
0

1

2

3

‖ log(R)‖F

‖
Ω
‖

F

 

 
1
2.A
2.B
2.C

Fig. 1. Input norms for Algorithm 1, 2.A–2.C. The parameter
P = I in Algorithm 1, k = 2 in Algorithm 2.B, and k = 1
in Algorithm 2.C. The gains have been scaled to have equal
slope at the origin.

6 Applications

The results of this paper have applications in the field
of visual servo control with regards to model predictive
control problems and sampled systems.

6.1 Model Predictive Control

The exact solutions can be used to pose a model pre-
dictive control (MPC) problem in terms of the feedback
gain parameters of the control law. Algorithm 1 provide
a gain matrix, P ∈ P(n)∩GL(n,R). The potential ben-
efit using optimization techniques in lieu with the so-
lutions provided in this paper is hence greater than in
(Markdahl et al., 2012) where only two parameters are
available for tuning. This problem is of interest in visual

servo control for the case of n = 3 and in applications
that require the visualization of high dimensional data
for the case of general n (Thakur, 2008).

Before turning to the MPC problem, consider a switched
feedback control based on the extension of Algorithm 1
to the case of SO(n), where a time-dependence is intro-
duced by replacing the gain matrix P by a piece-wise
constant matrix valued function of time.

Algorithm 3 Consider a feedback Ω = ΣR⊺ − RΣ,
where Σ ∶ [0,∞) → P(n) is a matrix valued switch-
ing signal. The matrix Σ ∈ P(n) is piece-wise constant,
right-continuous, has a strictly positive dwell time ∆t,
and satisfies Σ ⪰ εI for some constant ε ∈ (0,∞). The
closed-loop system is Ṙ =Σ −RΣR.

Proposition 3 (Stability under switches) Suppose
System 1 with R0 ∈ SO(n)/R(n) is governed by Algo-
rithm 3. The identity matrix is a uniformly asymptoti-
cally stable equilibrium of R. Its region of attraction is
SO(n)/R(n).

PROOF. Consider the Lyapunov function V =

tr(I − R) = n − trR. It satisfies V̇ = − tr Ṙ =

− tr(Σ − RΣR) = − tr(Σ(I − R2)) = −⟨Σ, I − R2⟩ =
− ⟨Σ, I − 1

2
(R2
+R−2) − 1

2
(R2
−R−2)⟩ = −⟨Σ, I − 1

2
(

R2
+R−2)⟩ = −⟨Σ,− 1

2
(R−R⊺)2⟩ ≤ −ε⟨I,− 1

2
(R−R⊺)2⟩ =

ε
2
⟨− (R −R⊺) ,R −R⊺⟩ = − ε

2
∥R −R⊺∥2F , where the in-

equality follows from utilizing that Σ = X + εI ⪰ for
some X ⪰ 0.

Note that V̇ ≤ 0, and V̇ = 0 if and only ifR =R⊺, i.e. only
if R ∈ {I}∪R(n). The set SO(n)/R(n) is invariant un-
der Algorithm 3 by Lemma 7. The function V̇ is therefore
negative-definite independently of Σ over SO(n)/R(n),
making V a common Lyapunov function for all switching
modes. It follows that the identity is uniformly asymp-
totically stable (Liberzon, 2003). The invariance implies
that all trajectories starting in SO(n)/R(n) must con-
verge to I. ∎

Let the switching times be given by {ti}∞i=0. Since Σ
is constant on each interval Ii = [ti, ti+1), the switched
system has a solution on Ii given by Theorem 1. Set
R(ti;R0) = limt↑ti R(t;R0) at isolated switching times.
This yields left continuity. Piece together such solutions
for[0,∞) = {ti}∞i=0 ∪ ⋃∞i=0 Ii to find a solution to the
switched system. The function thus obtained is not con-
tinuously differentiable at the switching times but it is a
solution in the sense of Carathéodory (Filippov, 1988).

Problem 3 (MPC) Let a set of time instances
{ti}mi=0 ⊂ [0,∞), m ∈ N ∪ {∞}, tm = ∞ and an initial
condition R0 ∈ SO(n) be given. Suppose System 1 is
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governed by Algorithm 3. Denote τ = t− t0. Consider the
problem of minimizing a continuous function f with re-
spect to the inputΣ =Σi ∈ P(n)∩GL(n,R), t ∈ [ti, ti+1),
i.e. to minimize f(R,Σ) with respect to Σ subject
to the constraints R(t; t0,R0) = Φ(R(ti; t0,R0), t),
Σ = Σi, εI ⪯ Σ, and Σ ⪯ ρI for all t ∈ [ti, ti+1) and all
i = 0, . . . ,m.

The first constraint is obtained from solving the closed-
loop system. The lower bound is imposed in Algorithm
3 to ensure convergence under arbitrary switching. It
then follows that limt→∞R(t, t0;Σ,R0) = I for any fea-
sible solution {Σi}mi=0 to the MPC problem. This frees
the specification of f from any concerns regarding the
asymptotical stability of the system. The upper bound
confineΣ to a compact set whenm ∈ N, thereby guaran-
teeing the existence of a solution to the MPC problem by
virtue of Weierstrass’ theorem. Note that the assump-
tion ofm ∈ N pose no restriction in practice (it does make
the attractiveness property of Proposition 3 trivial).

The MPC problem utilizes the transient phase of the
system’s evolution to carry out a task of secondary im-
portance. The MPC problem could also be posed with
the first constraint replaced by the state-equations of
the switched system. The benefit gained by using the
solution obtained from Theorem 1 as compared to not
having access to them is to eliminate the computational
cost of solving the switched system numerically.

Example 1 Consider the problem of stabilizing the ori-
entation of a camera while at some points in time wishing
to see a desired view corresponding to the camera orien-
tation Rd ∈ SO(3). A possible choice of f is f(R,Σ) =
minΣ,t dR(Rd,R) for a constant switching matrix Σ ∈
P(3)∩GL(3,R), i.e. the choice ofΣ is made at time zero.

Note that the problem addressed in Example 1 is not
solved by tracking a curve in SO(3) that interpolates
the points R0,Rd, and I. The key idea is to utilize the
transient phase of the system for additional benefit. This
can also be done for the case of trajectory tracking.

6.2 Sampled Systems

Consider the problem of continuous time actuation sub-
ject to sensing that is either piece-wise unavailable in
time or discrete time. The relevance of this problem in
the context of attitude stabilization may e.g. be motived
by cases where the attitude is calculated from images
obtained by a camera for which (i) the reference used to
obtain the attitude from the image is temporarily ob-
scured or outside the image, or (ii) images are shot at a
slow frame rate. Problem (i) arise in the field of visual
servo control. The approach of this paper is well-suited
for applications in visual servo control since it adopts the
same kinematic systemmodel (Chaumette and Hutchin-
son, 2006, 2007). Problems of type (ii) are commonly

addressed using piece-wise constant input signals (K.J.
Åström and Wittenmark, 1997), i.e. by applying a zero-
order hold (ZOH). This section discuss the ZOH ap-
proach and an approach based on the flow of ΩR, i.e.
the exact solutions to the closed-loop kinematics.

Assume that an output Y = R ∈ SO(n) is available for
use in feedback control at times t such that t ∈ I and that
it is unavailable when t ∉ I, where I ⊂ [0,∞) is closed
and contains 0 (i.e. a sample Y0 = R0 is taken at time
t0 = 0). In the case of continuous sensing, suppose that I
is such that the corresponding switching sequence has a
dwell-time. In the case of discrete time sensing the states
are sampled at each time instance of a sequence {ti}mi=0,
m ∈ N ∪ {∞}.

System 2 Consider the system Ṙ = ΩR where R0 ∈
SO(n) and Ω ∶ SO(n) → so(n) is the input signal. An
output given byY =R is available for use in any feedback
loop when t ∈ I.

Problem 4 Design a feedback algorithm for System 2
that stabilizes the identity matrix.

Algorithm 4 (Zero-order hold) The zero-order hold
control is a time-varying feedback law given byU(Y, t) =
Ω(Y(t)) for t ∈ I and U(Y, t) = Ω(Y(s)) otherwise,
where Ω is any control law that stabilizes System 1 and
s =max I ∩ [0, t].
Proposition 4 Consider System 2 under Algorithm 4
with sample times {ti}∞i=0 and U = −ki LogR for t ∈
[ti, ti+1). The identity is attractive if and only if ∏∞i=0 1−
ki∆ti = 0, where ∆ti = ti+1 − ti.

PROOF. The resulting closed-loop system is a
switched linear system which can be integrated to
yield R(tj+1) = exp(−kj∆tj Log(R(tj)))R(tj) =
R1−kj∆tj(tj) =R∏

j

i=0
1−ki∆ti

0
. ∎

Proposition 4 places requirements on {ki}∞i=0 and
{∆ti}∞i=0. A deadbeat control, i.e. finite time conver-
gence, is obtained if ki∆ti = 1 for at least one i. In
practice however, {∆ti}∞i=0 is typically not a design pa-
rameter. Moreover, there are upper and lower bounds on
{ki}∞i=0 due to requirements on the minimum and max-
imum angular speed that arise from time constraints
and saturation effects. For large sample times, there
may not be any choice of {ki}∞i=0 that both satisfies the
requirements of Proposition 4 and accommodates the
additional constraints.

Algorithm 5 (Flow) The flow algorithm is a time-
varying feedback law given by U(Y, t) = Ω(Y(t)) for
t ∈ I and U(Y, t) = Ω(Φ(Y(s), t)) otherwise, where Ω
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is a stabilizing feedback law under which the closed-loop
system has a known solution and s =max I ∩ [0, t].
Algorithm 2 generates the same system trajectory as the
stabilizing feedback would subject to continuous time
sensing for all t ∈ [0,∞). It is clear that the flow ap-
proach have advantages over the ZOH. Algorithm 2 may
e.g. be applied as an open loop control based on a sin-
gle measurement in which case the ZOH approach would
fail. It is also clear that Algorithm 4 have problems
with large hold times which are tolerable for Algorithm
2 (neither algorithm guarantees robustness under such
circumstances but that is a different matter).

7 Numerical Example

Numerical quadrature transfers System 1 to a discrete-
time system that generates a sequence {Ri}mi=0. The
use of Lie group variational integrators ensures that
Ri ∈ SO(n) at all discrete time instances {ti}mi=0 of the
simulation (Lee et al., 2009). This is accomplished by
setting Ri+1 = exp(Ωi(ti+1 − ti))Ri, where Ωi =Ω(Ri).
System 2 under Algorithm 4 and 5 with the negative
matrix logarithm, i.e. Algorithm 2.A, as the underlying
attitude control law is simulated on SO(3). The sample
time is constant and the gains are set to one, i.e. ki =
1, ∀ i ∈ N, in Proposition 4. The initial condition is

R0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
2

1√
6

1√
3
−

1√
2

1√
6

1√
3

0 −
√
2√
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The results are displayed in Fig. 2. Note that Algorithm
4 behaves as predicted by Proposition 4 with a deadbeat
control for ∆t = 1, asymptotical stability for ∆t = 1.5,
and critical stability for ∆t = 2. The trajectory the sys-
tem generated by Algorithm 5 is invariant of the sample
time. Although the deadbeat control yields faster con-
vergence than Algorithm 5 it is not robust to changes in
the sample time. Moreover, Algorithm 5 yields a feed-
back that is continuous in time whereas Algorithm 4 is
discontinuous in time and gives rise to chattering be-
haviour.

8 Conclusions

This paper explores the question of whether it is pos-
sible to formulate a closed-loop system on SO(n) that
is almost globally asymptotically stable and admits the
exact solutions to be determined explicitly. The answer
is yes, and it turns out to be possible for a large class
of feedback laws. Moreover, the exact solutions can be
expressed rather elegantly in terms of the matrix expo-
nential. These expression provide complete knowledge of

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

t

‖
R
−

I‖
F

 

 

∆t ∈ {1, 1.5, 2}

∆t = 1

∆t = 1.5

∆t = 2

Fig. 2. The error ∥R − I∥F for System 2 under Algorithm 4
(dashed lines) and Algorithm 5 (solid line).

the transient and asymptotical behaviour of the system.
Applications are found within the field of visual servo
control in problems such as model predictive control and
control of sampled systems.
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A Lemmas

Lemma 1 The closed-loop systems generated by Algo-
rithm 1 and 2 have unique solutions that belong to SO(n)
for all t ∈ R+.

PROOF. The proof in the case of (4.1) is similar to
that in Markdahl et al. (2013). The assumptions made
in Algorithm 2 ensures uniqueness of the solution to the
system on so(n) and hence also to that on SO(n).

Lemma 2 The matrices cosh−1(P) and tanh(P) are
well defined for P ∈ P(n) ∩ GL(n,R) and satisfies

limt→∞ cosh−1(Pt) = 0, limt→∞ tanh(Pt) = I.

PROOF. This follows from the fact that P is normal
(i.e. unitarily diagonalizable) and calculating the corre-
sponding scalar limits (Higham, 2008). ∎

Lemma 3 The set R(n) is invariant under the dynam-
ics (4.1).

PROOF. Consider the time-evolution of σ(R). Take
any eigenpair (λ,v) of R and impose the constraint
∥v∥2 = 1. Recall the following relations Rv = λv,R⊺v =
λ∗v,v∗R = λv∗,v∗R⊺ = λ∗v∗, which hold due to λ−1 =
λ∗ for any complex λ of unit length. The matrix R be-
ing normal and analytic implies, as a consequence of
Rellich’s Theorem, that its eigenpairs are locally ana-
lytic functions of the time (Hinrichsen and Pritchard,

2005). Note that λ̇ = d

dt
v∗Rv = v̇∗Rv+v∗Ṙv+v∗Rv̇ =

v∗Ṙv + λ(v∗v̇ + v̇∗v) = v∗Ṙv + λ d

dt
∥v∥22 = v∗Ṙv =

v∗Σv − v∗RPRv = (1 − λ2)∥P 1

2v∥22. The eigenpair
(−1,v) hence constitute an equilibrium. ∎
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Lemma 4 The statements [Ṡ,S] = 0 and [Ω,S] = 0

are equivalent. Moreover, they imply that Ṡ =Ω.

PROOF. See Markdahl and Hu (2014). ∎

Remark 3 Lemma 4 is important because it allows us
to replace the assumption of [Ṡ,S] = 0 with [Ω,S] = 0.
The latter assumption is preferable since we assume Ω
to be the control input, i.e. we can design Ω. It is not,
however, possible to chose Ṡ in general.

Lemma 5 The expression for Y(t) and AtanhY(t)
given in Theorem 3 are well-defined for all t ∈ [0,∞).

PROOF. Since σ(R) ⊂ {z ∈ C ∣ ∣z∣ = 1}, we may obtain
S = LogR for R ∉ R(n) using the principal logarithm.
Then σ(S) = {iλ ∈ iR ∣ ∣λ∣ < π, eiλ ∈ σ(R)}.4 Since
X = 1

2k
S we find that all λ ∈ σ(X) satisfy ∣λ∣ < 1

2
π. It fol-

lows that σ(sinh2X + et I) = {− sin2 λ + et ∣ iλ ∈ σ(X)}.
These eigenvalues are strictly positive, i.e. sinh2X+et I
is nonsingular. It is also normal, whereby its principal
square root can be calculated as detailed in Section 2.
This shows Y(t) to be well-defined.

Recall the definition of Atanh given in Appendix A. Note
that Y(t) is skew-symmetric, implying that σ(Y(t)) ⊂
iR. Hence Atanh(Y(t)) is well-defined. ∎

Lemma 6 Let R ∈ SO(n) be partitioned as

R =

⎡⎢⎢⎢⎢⎣
R11 r12

r21 r22

⎤⎥⎥⎥⎥⎦
,

then the spectrum of R belongs to the unit disc in C, and
in particular it holds that −1 ∉ σ(R) implies −1 ∉ σR11.

PROOF. We prove that −1 ∈ σ(R11) implies −1 ∈
σ(R). Take any v ∈ Rn−1. The matrix R being orthog-
onal gives

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

R11 r12

r21 r22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

v

0

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

= ∥R11v∥2 + ∥r21v∥2 = ∥v∥2,

Hence ∥R11v∥ ≤ ∥v∥ for all v, i.e. the spectrum ofR11 is
a subset of the unit disc in C. By supposing that R11v =
−v we obtain ∥r21v∥ = 0 whereby

⎡⎢⎢⎢⎢⎣

R11 r12

r21 r22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

v

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

R11 r12

r21 r22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

v

0

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣

v

0

⎤⎥⎥⎥⎥⎦
,

i.e. (−1, [v⊺ 0 ]⊺) is an eigenpair of R. ∎

Lemma 7 The set SO(n)/R(n) is invariant under the
dynamics generated by Algorithm 1.

PROOF. By reasoning as done in the proof of

Lemma 3, it can be shown that Reλ̇ = ∥Σ 1

2v∥22(1 −
(Reλ)2 + (Imλ)2), Imλ̇ = −2∥Σ 1

2v∥22Reλ Imλ. Since

−2∥Σ 1

2v∥22Reλ > ε > 0 for Reλ < − 1

2
(due to Σ ⪰ εI), it

follows that λ cannot converge to −1. ∎
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