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cUniversity of Luxembourg, Faculté des Sciences, de la Technologie et de la Communication, 7 Avenue des Hauts Fourneaux,
L-4362 BELVAL, Luxembourg

Abstract

The problem of identifying sparse solutions for the link structure and dynamics of an unknown linear, time-invariant network
is posed as finding sparse solutions x to Ax = b. If the sensing matrix A satisfies a rank condition, this problem has a unique,
sparse solution. Here each row of A comprises one experiment consisting of input/output measurements and cannot be freely
chosen. We show that if experiments are poorly designed, the rank condition may never be satisfied, resulting in multiple
solutions. We discuss experimental strategies for designing experiments such that the sensing matrix has the desired properties
and the problem is therefore well posed. This formulation allows prior knowledge to be taken into account in the form of known
nonzero entries of x, requiring fewer experiments to be performed. A number of simulated examples are given to illustrate
the approach, which provides a useful strategy commensurate with the type of experiments and measurements available to
biologists. We also confirm suggested limitations on the use of convex relaxations for the efficient solution of this problem.
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1 Introduction

Compressed Sensing (CS) refers to the ability to find a
sparse solution x to the underdetermined set of equations
Ax = b [1]. This problem is relevant in applications in
computer vision and signal processing, where a signal
often has a representation that is sparse in some domain
and can hence be recovered by making relatively few
samples in that domain [2]. Specifically, suppose some
signal θ ∈ Rn can be expressed in an orthonormal basis
Φ ∈ Rn×n such that x = Φθ where x is sparse in the
sense that ‖x‖0 = k < n and ‖·‖0 denotes the number of
nonzero entries of a vector. By taking m < n samples of
x via an appropriately chosen sensing matrixA ∈ Rm×n,
we may recover x and hence θ.

A related problem is that of identifying the link struc-
ture and dynamics of an unknown network from cer-
tain observations of it. This is a general inverse problem,
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currently of particular importance in cell-biological ap-
plications, such as identifying Genetic Regulatory Net-
works (GRNs) [3–7]. In this context the problem is typ-
ically underdetermined due to both a paucity of data
and limitations on the number of experiments that can
be performed. The underlying network is often known
to be sparse in the sense that the degree of each node is
bounded, and the assumption of sparsity is commonly
used as an heuristic to obtain a solution [8–18]. This
problem is fundamentally different from typical CS ap-
plications in that the sensing matrix cannot be chosen
freely, but arises based on the experiments applied and
the underlying system itself.

The problem was considered for Linear, Time-Invariant
(LTI) systems with full state measurement in [14] using
time-series data of a single perturbation to the network.
If sufficiently many time points are observed, the solu-
tion is shown to be unique and hence only one such ex-
periment is required. By assuming that the solution is
sparse, the required number of time points can be re-
duced. In [13], sparse networks of FIR filters are treated,
again with the aim of reducing the number of data points
required. The parameters of the filters are estimated us-
ing Block Orthogonal Matching Pursuit [19] and the no-
tion of network coherence is introduced, referring to the
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coherence (see [20]) of a network-derived sensing ma-
trix. The network coherence is observed to have a lower
bound for some cases, which suggests a possible limita-
tion to the use of CS for network reconstruction.

Other examples from the literature include [17], in which
the problem is posed as sparse input selection for MISO
LTI systems and [18] which concerns the estimation of
sparse MISO Wiener filters. For general MIMO LTI sys-
tems with deterministic inputs, it was shown in [21] that
a certain number of targeted inputs are required in or-
der for the problem to be well posed. This is equivalent
to performing experiments to probe the network, for ex-
ample in a biological context using genetic mutations
to identify GRNs [22]. Here we suppose that sufficient
data points are available and consider whether the as-
sumption of sparsity can be used to reduce the number
of such experiments required. Our focus is therefore on
the identifiability of the network, rather than a partic-
ular method, although the approach naturally provides
an algorithm for steady-state or frequency-domain iden-
tification.

Our contributions are as follows: first we show that for
a poor choice of experiments even the sparsest solution
may not be unique; then the problem of experiment de-
sign to ensure solution uniqueness is addressed; finally,
simulated examples demonstrate the effectiveness of the
experiment design but reveal similar limitations to those
observed in [13] with regards to the network coherence.
Hence although the sparse solution may be unique, it
may be difficult to find using, for example, basis pursuit.

In Section 2 we review some standard results in CS and
network reconstruction for LTI systems. Then in Section
3 we discuss how prior knowledge can be incorporated
directly into the CS framework and how this reduces the
number of experiments needed for exact reconstruction.
Section 4 addresses the problem of underdetermined net-
work reconstruction, first showing that the standard as-
sumptions of CS are not sufficient for exact reconstruc-
tion, then proposing experimental procedures to ensure
exact reconstruction. In Section 5 a number of simula-
tion examples are presented to support the results and
conclusions are given in Section 6.

Notation

Denote by A(i, j), A(i, :) and A(:, j) entry (i, j), row i
and column j respectively of matrix A and by AT its
transpose. The diagonal matrix comprising the diagonal
entries of A is denoted Diag(A). The function ‖x‖0 (the
l0 “norm”) returns the number of nonzero entries in the
vector x.

2 Background

2.1 Compressed Sensing

Sparse solutions, x ∈ Rn, are sought to the following
problem:

Ax = b (1)

where A ∈ Rm×n and b ∈ Rm are known and m < n.
The sparsest such solution (or set of solutions) are the
minimizing argument(s) of:

min
x
‖x‖0 subject to Ax = b (2)

The following well-known lemma provides a sufficient
condition that the solution to (2) is unique:

Lemma 1 If the sparsest solution to (2) has ‖x‖0 = k
and m ≥ 2k and all subsets of 2k columns of A are full
rank, then this solution is unique.

PROOF. Suppose two solutions exist: Ax(1) = b and
Ax(2) = b, where ‖x(1)‖0 = ‖x(2)‖0 = k and subtract
one equation from the other: A(x(1) − x(2)) = 0. Since

‖x(1)−x(2)‖0 ≤ 2k, this equation is equivalent to: Âx̂ =

0, where Â ∈ Rm×l, 0 6= x̂ ∈ Rl, l ≤ m and Â is full
rank, which is a contradiction.

Convex relaxations of (2) are typically sought, such as
l1 minimization (basis pursuit [2]), which can be solved
by linear programming:

min
x
‖x‖1 subject to Ax = b (3)

It has been shown that l1 minimization solves exactly (2)
if m is sufficiently large and the matrix A is sufficiently
incoherent [20,23]. The coherence of a matrix is defined
as follows:

µ(A) = max
i<j

|AT
i Aj |

‖Ai‖2‖Aj‖2

where Ai denotes the ith column of A. Numerical sim-
ulations suggest that in practice, most k-sparse signals
require m ≥ 4k in order to be recovered exactly [20].

2.2 Dynamical Networks

Consider a vector of directly observed variables y(t) ∈
Rp, whose entries yi(t) are governed by the following set
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of LTI equations for i = 1, . . . p:

yi(t) =
∑
j 6=i

qij(t) ∗ yj(t) +

r∑
k=1

pik(t) ∗ uk(t) (4)

for causal impulse response functions qij(t) and pik(t)
and vector of inputs u(t) ∈ Rr. Equation (4) defines a di-
rected graph among observed variables and inputs with
no self-loops and in which there is an edge from yj (uk)
to yi if and only if qij(t) 6≡ 0 (pik(t) 6≡ 0). The functions
qij(t) and pik(t) therefore define both the topology and
edge dynamics of the graph.

By taking the Laplace transform of (4), the system is
represented compactly in matrix form as follows:

Y = QY + PU (5)

where Y (s) and U(s) are the Laplace transforms of y(t)
and u(t) respectively; Q(s) is a strictly-proper transfer
matrix with entry (i, j) equal to the Laplace transform
of qij(t) and diagonal entries equal to zero; P (s) is a
strictly-proper transfer matrix with entry (i, k) equal to
the Laplace transform of pik(t). The couple (Q,P ) is
termed the Dynamical Structure Function (DSF) and is
uniquely defined for any partially-observed LTI system
[21].

A state-space realization of (4) can always be made in
which the state vector is partitioned into manifest states,
corresponding to the observed variables yi and latent
states, which provide the dynamics of the impulse re-
sponse functions qij and pik. By observing more of the
states, a different DSF will be obtained that represents
the system in greater detail, hence the DSF may be re-
garded as a representation of the system at the resolution
( p
n , where n is the total number of states) of the mani-

fest states. Similarly, manifest states may be treated as
latent in order to obtain a coarser DSF at a lower reso-
lution.

2.3 Network Reconstruction

We pose the network reconstruction problem as obtain-
ing (Q,P ) from input/output data (U, Y ). Suppose m
independent experiments have been performed in each
of which a different input (or set of inputs) has been ap-
plied. The largest number of independent experiments
is r, the dimension of the inputs, so m ≤ r. Denote the
Laplace transforms of the inputs and outputs in the ith

experiment as U (i) and Y (i) and concatenate these to
form the following matrices:

Y :=
[
Y (1) Y (2) · · · Y (m)

]
U :=

[
U (1) U (2) · · · U (m)

]

of dimension p × m and r × m respectively. Note that
Y = QY + PU and rearrange this to give:

[
Y T UT

] [QT

PT

]
= Y T (6)

where
[
Y T UT

]
has dimension m× (p+ r) and we wish

to solve for Q and P . By applying the vectorization op-
erator we can write (6) in the form of (1):

A ← I ⊗
[
Y T UT

]
x ← vec

([
QT

PT

])
b ← vec

(
Y T
)

(7)

where A(s) ∈ CM×N , x(s) ∈ CN and b(s) ∈ CM for
M = mp and N = p(p+ r).

With no other information about the system, in order
for (6) to be well posed it is therefore required that:

M ≥ N ⇔ m ≥ p+ r ⇔ 0 ≥ p (8)

since r ≥ m, and hence additional information is always
necessary. The assumption that rows of Q and P are
sparse may be sufficient to ensure a unique sparse solu-

tion. In particular, if each row of
[
Q P

]
is k-sparse then

the solution to (6) is unique if:

M ≥ 2kp ⇔ m ≥ 2k

and the condition of Lemma 1 is satisfied forA. However,
this may not be the case due to the particular way in
which the matrix A is constructed in (7).

Alternatively, we may assume some knowledge of how
the inputs target the network, for example that P is
square (r = p) and diagonal. This defines an experimen-
tal setup in which each input is associated with a partic-
ular manifest state and affects it via the corresponding
diagonal entry of P . By removing the p− 1 known zero
entries in each row of P and the zero diagonal entries of
Q, the condition for solution uniqueness (8) becomes:

m ≥ p ⇒ m = p

since m ≤ r = p. This is the main result of [21] – that
with P diagonal and no other a priori information, r = p
is necessary and sufficient for solution uniqueness.

3



3 Compressed Sensing with prior knowledge

Here we treat the problem of finding a solution x ∈ Rn

to the following:
Ax = b (9)

where A ∈ Rm×n and b ∈ Rm are known, m < n and
where x is partitioned into sparse and nonzero compo-
nents. Without loss of generality, we can write (9) as:

[
A1 A2

] [x1
x2

]
= b (10)

where x1 ∈ Rn1 satisfies ‖x1‖0 = k, x2 ∈ Rn2 satisfies
‖x2‖0 = n2 and n1 + n2 = n. The vector x is therefore
(k + n2)-sparse – it satisfies ‖x‖0 = k + n2.

This will be applied to the sparse reconstruction problem
in the following section, where rows ofQ in (7) are sparse
and part of P is nonzero. Equation (9) has a unique
(k + n2)-sparse solution by Lemma 1 if m ≥ 2(k + n2)
and all subsets of 2(k + n2) columns of A are full rank.
By making use of the known structure of x, we can solve
for x1 and x2 separately and hence reduce the number
of experiments, m, required.

This problem has been considered in the CS literature
(see for example [24], [25]) where it is well known that the
number of experiments required for exact reconstruction
can be reduced by n2, the number of known nonzero
entries of x. However, it is generally assumed that the
matrix A can be chosen to satisfy Lemma 1, which is
not the case in our application. Here we derive a lemma
analogous to Lemma 1 that gives conditions for exact
reconstruction.

3.1 Conditions for Exact Reconstruction

Take the QR decomposition of A2 ∈ Rm×n2 :

A2 =
[
Q1 Q2

] [R1

0

]
(11)

where
[
Q1 Q2

]
∈ Rm×m is orthogonal andR1 ∈ Rn2×n2

is upper triangular. Pre-multiply (10) by
[
Q1 Q2

]T
:

[
QT

1 A1 R1

QT
2 A1 0

][
x1

x2

]
=

[
QT

1 b

QT
2 b

]
(12)

(a) Fixed n2

m

2n2

n2

0
0 k

m ≥ 2(k + n2)

m ≥ 2k + n2

(b) Fixed k

m

2k

0
0 n2

m ≥ 2(k + n2)

m ≥ 2k + n2

Fig. 1. Values of m that satisfy Lemma 1 (gray) and Lemma
2 (blue) for different values of k (a) and n2 (b). The blue
region represents the increased number of problems that can
be solved by incorporating prior information.

We can now solve first for x1 using the second block row:

QT
2 A1x1 = QT

2 b (13)

where QT
2 A1 ∈ R(m−n2)×n1 and ‖x1‖0 = k. From

Lemma 1, (13) has a unique, k-sparse solution if
m− n2 ≥ 2k and all subsets of 2k columns of QT

2 A1 are
full rank. The number of experiments, m, required for
solution uniqueness has therefore been reduced by the
number of known components of x from 2(k + n2) to
2k + n2.

Given x1, we may then solve for x2 from the first block
row of (12):

R1x2 = QT
1 (b−A1x1)

This has a unique solution if and only if R1 is full rank,
requiring A2 to be full column rank. In this case, x2 is
given by:

x2 = R−11 QT
1 (b−A1x1) (14)

The following lemma summarizes the above conditions
for sparse solution uniqueness.

Lemma 2 Suppose the sparsest solution to (10) is
known to have ‖x1‖0 = k and ‖x2‖0 = n2 and let
the QR decomposition of A2 be given by (11). Then if
m ≥ 2k + n2, if A2 is full rank and if all subsets of 2k
columns of QT

2 A1 are full rank, then the (k + n2)-sparse
solution to (10) is unique.

By incorporating prior knowledge the number of exper-
iments m required for k-sparse solution uniqueness is
reduced by n2, the number of known nonzero compo-
nents. Equivalently, for a given number of experiments,
the sparse solution for a higher value of k may be unique.
These ideas are illustrated in Fig. 1.
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4 Underdetermined Reconstruction

Consider an unknown system defined by its Dynami-
cal Structure Function (DSF): (Q0, P 0) where for inputs
U(s) and outputs Y (s) we have:

Y = Q0Y + P 0U

Given some set of inputs and outputs we seek to identify
Q0 under the following assumptions.

Assumption 1 The matrix P 0 is square, diagonal and
full rank.

Assumption 2 The number of experiments m is fewer
than the number of measured states p.

Assumption 3 The rows of Q0 are k-sparse:

‖Q0(i, :)‖0 ≤ k < p for i = 1, . . . , p

Assumption 1 asserts that the dimension of the input
vector is equal to that of the manifest state vector (r = p)
and that each input directly and uniquely affects one
manifest state. Assumption 2 then states that we can
only perform m < p experiments, and hence without
additional assumptions the reconstruction problem is ill
posed.

By Assumption 3, each node in the graph defined by Q0

has maximum in-degree of k and the sparse solution to
the reconstruction problem may be unique. In this case
we seek sparse solutions Q and diagonal P to:

[
Y T UT

] [QT

PT

]
= Y T (15)

This may be converted into the form of (10) either by
taking the vectorization operator as in (7) or by solving

for each row of
[
Q P

]
separately:

[
Y T UT (:, i)

] [QT (:, i)

PT (i, i)

]
= Y T (:, i) (16)

where P (i, i) 6= 0. The (k + 1)-sparse solution to (16) is
unique if the conditions of Lemma 2 are satisfied.

This problem is fundamentally different to typical com-
pressed sensing applications in that we do not have free
choice of the sensing matrix. First we will demonstrate
that for a näıve choice of U , the condition of Lemma 2
may never be met; then we will consider the design of
the sensing matrix by choice of U .

4.1 Single Inputs

Suppose that in each experiment only one input is ap-
plied, such that U can be written as:

U =

[
U1

0

]
(17)

where U1 is square, diagonal and of dimension m ×m.
Partitioning Q and P accordingly, the system equations
can be written as:[

Y1

Y2

]
=

[
Q11 Q12

Q21 Q22

][
Y1

Y2

]
+

[
P11

0

]
U1 (18)

where P11 is square and diagonal and the manifest states
are therefore partitioned into “perturbed” (Y1) and “un-
perturbed” (Y2) 1 . Denote the DSF with respect to the
p manifest states (Q,P ) as the p-DSF; then by elimi-
nating Y2 from the right hand side of (18) we can derive
two further representations of the system.

From the first block row we can obtain the DSF with re-
spect to only the m perturbed states and denote this the
m-DSF. This is a representation of the same system but
at a lower resolution (m

n ) of manifest states. Eliminating
Y2 gives:

Y1 =
(
Q11 +Q12 (I −Q22)

−1
Q21

)
Y1 + P11U1

=: Q̄11Y1 + P11U1

(19)

where in order to obtain a hollow Q matrix (diagonal
entries equal to zero) we must subtract the diagonal part
of Q̄11 from both sides. Let D11 = Diag(Q̄11), then:

Y1 = Q̄11Y1 +D11Y1 −D11Y1 + P11U1

= (I −D11)
−1 ((

Q̄11 −D11

)
Y1 + P11U1

)
=: Q̂11Y1 + P̂11U1

(20)

The m-DSF is defined as (Q̂11, P̂11), which treats only Y1
as manifest states and Y2 as additional latent states. This
can be equivalently defined from a state-space realization
by changing the partitioning of the state vector to reflect
the change in manifest states. The m-DSF can therefore
be obtained uniquely from Y1 and U1 since U1 is square,
diagonal and full rank [21].

1 A state is unperturbed if it is not directly driven by an
input – it may still be indirectly affected via other perturbed
states.
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The second block row of (18) gives:

Y2 = (I −Q22)−1Q21Y1

=: Q̂21Y1
(21)

where the transfer function Q̂21 describes causal rela-
tions from states in Y1 to those in Y2 that are direct in
the sense that they do not involve other states in Y1. The
matrix Q̂21 is also identifiable from input/output data.

Lemma 3 A particular solution to the sparse network
reconstruction problem (15) is:

Q̂ =

[
Q̂11 0

Q̂21 0

]
, P̂ =

[
P̂11 0

0 0

]

where (Q̂11, P̂11) is defined in (20) and Q̂21 in (21).

Hence we can always construct at least one solution for
Q, in which the unperturbed states, Y2, have no outputs
to any other measured states. Clearly if ‖Q̂(i, :)‖0 ≤ k
for any i then the k-sparse solution to (16) is not unique.

Remark 4 Given Q for which maxi ‖Q(i, :)‖0 = k and

maxi ‖Q̂(i, :)‖0 = k̂, it is possible that either k̂ ≤ k or

k̂ > k. This result can be easily seen by example, and in
the former case the k-sparse solution will not be unique.

The assumption of sparsity for any network must there-
fore be firmly justified a priori for the representation in
question – when viewed at a different resolution of man-
ifest states, the sparsity of the network can change.

4.2 Constraints on Q

Assume single inputs of the form (17) have been applied

and partition Q and Q̂ of Lemma 3 as follows:

Q =
[
Q1 Q2

]
, Q̂ =

[
Q̂1 0

]
, Q̂1 :=

[
Q̂11

Q̂21

]

such that Q1 has the same dimension as Q̂1. From the
identifiable quantity Q̂1 we may infer something about
whether entries of Q are zero or not.

Lemma 5 For every i 6= j, if Q̂1(i, j) 6= 0, then

Q1(i, j) 6= 0 or Q2(i, k)Q̂21(k, j) 6= 0

for some k. Else Q̂1(i, j) = 0, then

Q1(i, j) = 0 and Q2(i, k)Q̂21(k, j) = 0

for every k unless the graph defined by Q contains mul-
tiple paths that sum to zero.

PROOF. From the definition of Q̂11 in (20), for i 6= j:

Q̂11(i, j) 6= 0 ⇔ Q̄11(i, j) 6= 0

Then from (20) and (21) we have:[
Q̄11

Q̂21

]
=

[
Q11

Q21

]
+

[
Q12

Q22

]
Q̂21 = Q1 +Q2Q̂21 (22)

If Q̂1(i, j) 6= 0, the result now follows directly from (22).

If Q̂1(i, j) = 0 it is possible that Q1 + Q2Q̂21 = 0 and
the condition of the lemma not be satisfied. However,
Q̂1(i, j) comprises the sum of a direct link Q1(i, j) and
a sum of paths:

Q2(i, :)Q̂21(:, j) = Q2(i, :) (I −Q22)
−1
Q21(:, j)

in Q. Hence this case necessitates that this direct link
and all the paths sum to zero.

The case of multiple paths summing to zero in Q is con-
sidered unlikely to occur in practice. Lemma 5 may be
interpreted as low resolution structure Q̂1 having to be
consistent with the structure of Q – a connection that
exists in Q̂1 must be preserved (directly or indirectly)
in Q. The following example illustrates how this can be
used to place constraints on the unknown Q.

Example 1 Consider the network of Fig. 2(a) with p =
6 and m = 3. The matrix Q and the particular solution
Q̂ from Lemma 3 are:

Q =



0 0 0 0 0 ×
× 0 0 0 0 0

0 × 0 0 0 0

0 0 × 0 0 0

0 0 0 × 0 0

0 0 0 0 × 0


, Q̂ =



0 0 × 0 0 0

× 0 0 0 0 0

0 × 0 0 0 0

0 0 × 0 0 0

0 0 × 0 0 0

0 0 × 0 0 0
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(a) Q

y1

y2

y3

y4

y5

y6

(b) Q̂

y1

y2

y3

y4

y5

y6

Fig. 2. Network with p = 6 and m = 3 in which the first
three manifest states are perturbed. Solid circles denote per-
turbed states (Y1), dashed circles unperturbed states (Y2)

and arrows denote nonzero entries of (a) Q and (b) Q̂.

where× denotes a nonzero entry. The matrix Q̂ is a valid
1-sparse solution to (16) and is shown in Fig. 2(b). Using
Lemma 5 we can obtain a matrix Qc which describes
constraints on the solution set of Q:

Qc =



0 0 ? ? ? ?

× 0 0 0 0 0

0 × 0 ? ? ?

0 0 ? 0 ? ?

0 0 ? ? 0 ?

0 0 ? ? ? 0



where ? denotes an unknown entry. Approximately half
of the structure of Q can therefore be found, but the 1-
sparse solution is unique for rows two and three only. For
any such ring network with m < p, only rows 2, . . . ,m
have a unique sparse solution and hence the solution for
Q is unique if and only if m = p.

With single inputs described by (17), the assumption of
sparsity alone is not sufficient to ensure uniqueness of
the sparse solution (Q,P ) to the network reconstruction
problem. This is illustrated by Example 1 in which Q is
1-sparse (unit in-degree) and has multiple 1-sparse so-
lutions for any m < p. Applying inputs in this manner
does however yield lower resolution structural informa-
tion that can impose constraints on Q by Lemma 5. In
addition, we have not considered the minimality or sta-
bility of the solutions – for small problems it may be
clear, for example, that the solution of minimal dimen-
sion is unique. Next we consider the design ofU to satisfy
Lemma 2 and hence ensure sparse solution uniqueness.

(a) Experiment 1

y1

y2

y3

y4

y5

y6

(b) Experiment 2

y1

y2

y3

y4

y5

y6

(c) Experiment 3

y1

y2

y3

y4

y5

y6

Fig. 3. The network of Fig. 2(a) with p = 6, m = 3 and
three inputs applied in each experiment denoted by the blue
dashed arrows.

4.3 Experiment Design

The problem with the diagonal inputs of (17) is that
the unperturbed states have no variation independent
of their parent states. As a result, subsets of columns of
Y T in (16) may not be full rank and hence may not sat-
isfy Lemma 2. Figure 3 shows the same network as in
Fig. 2(a) with three inputs applied in each of the three
experiments. It is straightforward to verify that any sys-
tem with this structure generically satisfies Lemma 2 for
k = 1 for any particular s = jω and therefore has a
unique 1-sparse solution. However, without first know-
ing the structure, one would not be able to design such
inputs.

Perturbation design was considered in [26] for fully-
observed linear systems using steady-state data. An
algorithm is presented in which perturbations are first
applied at random until every state has been perturbed
in at least one experiment. Then all solutions of a cer-
tain sparsity consistent with the data are constructed
and a measure of variance for each state is obtained
based on how much the outputs of this state vary across
all the solutions. The state(s) with the highest variance
are then perturbed and the procedure iterated. Simu-
lation results suggested that the more states that are
perturbed in each experiment, the fewer experiments
are needed.

A similar procedure is presented in [27] for acyclic
Boolean networks. At each stage of the algorithm, the
next experiment is selected as that which maximizes
the decrease in entropy in terms of reducing the set of
possible solutions. The set of possible experiments to
choose from is taken as given. In [21] and [28] targeted
inputs are considered but the number of experiments
must be equal to the number of manifest states. In the
former, single inputs are considered such that each state
is perturbed in turn; in the latter the opposite: every
state except one must be perturbed in each experiment.
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Three strategies are presented here along similar lines
to [26]; in each, experiments are performed iteratively
until the solution at a given level of sparsity is unique,
according to Lemma 2. At each iteration, a fixed number
of inputs, l, are chosen according to:

(1) Random – inputs are chosen with equal probability
(2) Biased Random – inputs are chosen at random with

a bias towards those that have been applied the
least in previous experiments

(3) Targeted – inputs are chosen to target rank-
deficient subsets of columns of the sensing matrix
in Lemma 2. Each column of the sensing matrix
corresponds to a manifest state and therefore to
an input; having identified a deficient subset, the
input in this subset that has been applied the least
in previous experiments is selected

The third approach will be seen in Section 5 to require
the fewest experiments on average to ensure a unique
solution; it does however incur the additional computa-
tional cost of searching for rank-deficient subsets.

5 Numerical Simulations

5.1 Experimental Design for Solution Uniqueness

Here we compare in simulation the number of experi-
ments required for a unique solution by the three strate-
gies of Section 4.3. Random networks of p = 20 measured
states were generated with maximum in-degree sparsity
of k = 1, 2, 3, 4. For each network, we performed experi-
ments with exactly l step inputs applied, for l = 1, . . . , p
following each of the three strategies. In each case, the
steady-state response of the network was used to assess
whether the conditions of Lemma 2 were satisfied. The
results are given here for k = 2; the same trends were
observed for the other values of k.

Figure 4 shows the average number of experiments
needed for Lemma 2 to be satisfied over 100 trials for
k = 2. If only one input is applied in each experiment,
the maximum number of experiments is always required
and CS hence offers no improvement. Substantial re-
duction in the number of experiments is observed if
more than one input can be applied, and applying these
in a biased or targeted manner is more effective than
applying them at random. The best results are seen for
the targeted approach, although as mentioned this in-
curs higher computational cost. For a sufficiently large
number of inputs per experiment, the number of exper-
iments required for a unique solution is determined by
m = 2k + 1, independent of the strategy.

5.2 Exact Reconstruction using Basis Pursuit

For 100 random networks of the type treated in Fig. 4
with four inputs per experiment, we attempt to solve
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Fig. 4. Mean number of experiments needed for solution
uniqueness (Lemma 2) for different numbers of inputs per
experiment for three different strategies. The mean was taken
over 100 random networks of p = 20 manifest states with
maximum in-degree sparsity of k = 2.

for the 2-sparse solution using basis pursuit (l1 mini-
mization). A sufficient condition for the success of ba-
sis pursuit is that the coherence of the sensing matrix is
sufficiently small. In [13], lower bounds on the network
coherence of simple networks were derived and also ob-
served in simulation as the number of measurements was
increased. In particular the lower bound was increasing
in the magnitude of the parameters of the impulse re-
sponse functions. A similar phenomenon was observed
here: increasing the steady-state gain of the entries of Q
and P increased the coherence.

For |Qij(0)|, |Pii(0)| < 0.5, Fig. 5 shows the mean co-
herence of the sensing matrix against the number of ex-
periments. Fig. 6 then shows the success rate of each
of the three strategies at recovering the entire network
from steady-state data using basis pursuit. The success
rate is one if all links are recovered with no false posi-
tives and is zero otherwise; for this quite stringent met-
ric, the performance is promising, particularly for the
targeted experiments. The relative performance of each
of the strategies is consistent with the solution unique-
ness results of Fig. 4. The actual number of experiment
required for exact reconstruction using basis pursuit can
be seen to be higher than that required for a unique so-
lution, as is normally the case [20].

6 Conclusions

We have investigated Compressed Sensing (CS) as a tool
for reconstructing dynamical networks from data with a
deficient number of experiments. The application differs
from the typical use of CS in that the sensing matrix
cannot be freely chosen and exact reconstruction hence
necessitates appropriate choice of experiments. We pro-
vide a formulation of the problem that incorporates prior
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Fig. 5. Mean coherence of the sensing matrix for 100 random
networks of p = 20 manifest states with maximum in-degree
sparsity of k = 2 and four inputs applied in each experiment.
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Fig. 6. Mean success rate using basis pursuit for the 100
networks of Fig. 5.

knowledge and present strategies for experimental de-
sign to attain sparse solution uniqueness with fewer ex-
periments.

The problem is motivated by biological applications
where data are typically scarce; in this context we
provide an algorithm for reconstruction at particular
frequencies, for example at steady state, where a small
number of data points suffice. It is also straightforward
to apply this approach when the inputs are unknown,
as may be the case in practice. Simulations demonstrate
that the problem may be solved efficiently using a con-
vex relaxation, such as basis pursuit, if the network
coherence metric is sufficiently small. We also observe
previously identified lower bounds on the network co-
herence, which highlight a potential limitation of the
use of CS for this application.
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