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Abstract

Recent developments in system identification have brought attention to regularized kernel-based methods. This type of approach
has been proven to compare favorably with classic parametric methods. However, current formulations are not robust with
respect to outliers. In this paper, we introduce a novel method to robustify kernel-based system identification methods. To this
end, we model the output measurement noise using random variables with heavy-tailed probability density functions (pdfs),
focusing on the Laplacian and the Student’s t distributions. Exploiting the representation of these pdfs as scale mixtures of
Gaussians, we cast our system identification problem into a Gaussian process regression framework, which requires estimating
a number of hyperparameters of the data size order. To overcome this difficulty, we design a new maximum a posteriori
(MAP) estimator of the hyperparameters, and solve the related optimization problem with a novel iterative scheme based on
the Expectation-Maximization (EM) method. In presence of outliers, tests on simulated data and on a real system show a
substantial performance improvement compared to currently used kernel-based methods for linear system identification.
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1 Introduction

Regularization techniques for linear regression have a
very long history in statistics and data analysis [39], [32],
[44]. Recently, in a series of papers, new regularization
strategies have been proposed for linear dynamic system
identification [29], [28], [13], [31]. The basic idea is to de-
fine a nonparametric estimator of the impulse response
of the system. As compared to classic parametric meth-
ods such as the prediction error method (PEM) [20], [38],
the main motivation for this alternative approach is to
avoid the model order selection step, which is usually re-
quired in parametric methods. If no information about
the structure of the system is given, in order to estab-
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lish the number of parameters required to describe the
dynamics of the system, one has to rely on complexity
criteria such as AIC and BIC [1], [37] or cross validation
[20]. However, results of these criteria may not be satis-
factory when only short data sets are available [30].

To circumvent model order selection issues, one can use
regularized least-squares that avoid high variance in the
estimates using a regularization matrix, related to the so
called kernels introduced in the machine learning litera-
ture. In the context of system identification, several ker-
nels have been proposed, e.g. the tuned/correlated (TC),
diagonal/correlated (DC) kernels [13], [12], and the fam-
ily of stable spline kernels [29,27]. Stable spline kernels
have also been employed for estimating autocorrelation
functions of stationary stochastic processes [9].

In order to guarantee flexibility of regularized kernel-
based methods, the kernel structure always depends on
a few parameters (in this context usually called hyperpa-
rameters), which are selected using available data; this
process can be seen as the counterpart to model order
selection in parametric approaches. An effective tech-
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Figure 1. Introductory example. Left panel: the noiseless output and the measured outputs in the no-outliers situation
(measurements shown using green dots) and when outliers are present (shown using red asterisks). Right panel: the true
impulse response and its estimate in the no-outliers situation and when outliers are present (the dashed lines represent the

99% credibility bounds).

nique for hyperparameter selection is based on the Em-
pirical Bayes method [22]. Exploiting the Bayesian in-
terpretation of regularization [44], the impulse response
is modeled as a Gaussian process whose covariance ma-
trix corresponds to the kernel. Hyperparameters are cho-
sen by maximizing the marginal likelihood of the out-
put data, obtained by integrating out the dependence on
the impulse response, see e.g. [11,40] for algorithms for
marginal likelihood optimization in system identification
and Gaussian regression contexts. Then, the unknown
impulse response is retrieved by computing its minimum
mean square error Bayesian estimate. However, this ap-
proach, by relying on Gaussian noise assumptions, uses
a quadratic loss to measure adherence to experimental
data. As a result, it can be non-robust when outliers cor-
rupt the output data [4], as described in the following
example.

1.1 A motivating example

Suppose we want to estimate the impulse response of a
linear system fed by white noise using the kernel-based
method proposed in [29]. We consider two different situ-
ations, depicted in Figure 1. In the first one, 100 samples
of the output signal are measured with a low-variance
Gaussian additive noise (left panel); note that the esti-
mated impulse response is very close to the truth (right
panel). In the second situation we introduce 5 outliers in
the measured output, obtaining a much poorer estimate
of the same impulse response. This suggests that outliers
may have a significant detrimental effect if kernel-based
methods are not adequately robustified.

1.2 Statement of contribution and organization of the
paper

We derive a novel outlier-robust system identification
algorithm for linear dynamic systems. The starting point

of our approach is to establish a Bayesian setting where
the impulse response is modeled as a Gaussian random
vector. The covariance matrix of such a vector is given
by the stable spline kernel, which encodes information
on the BIBO stability of the unknown system.

To handle outliers, we model noise using independent
identically distributed random variables with heavy-
tailed probability densities. Specifically, we make use of
the Laplacian and the Student’s t distributions. In order
to obtain an effective system identification procedure,
we exploit the representation of these noise distributions
as scale mixtures of Gaussians [3]. Each noise sample is
seen as a Gaussian variable whose variance is unknown
but has a prior distribution that depends on the choice
of the noise distribution. The variance of each noise
sample needs to be estimated from data. To accomplish
this task, we propose a novel maximum a posteriori
(MAP) estimator able to determine noise variances and
kernel hyperparameters simultaneously. Making use of
the Expectation-Maximization (EM) method [16,7], we
derive a new iterative identification procedure based
on a very efficient joint update of all the optimization
variables. The performance of the proposed algorithm is
evaluated by numerical experiments. When outliers cor-
rupt the output data, results show that there is a clear
advantage of the new method compared to the kernel-
based methods proposed in [29] and [13]. This evidence
is supported by an experiment on a real system, where
the collected data are corrupted by outliers.

It is worth stressing that robust estimation is a clas-
sic and well studied topic in applied statistics and data
analysis. Popular methods for robust regression hinge
on the so-called M-estimators (such as the Huber esti-
mator) [19] or on outlier diagnostics techniques [35]. In
the context of Gaussian regression, recent contributions
that exploit Student’s t noise models can be found also
in [41,43]. In the system identification context, some out-



lier robust methods have been developed in recent years
[25,34,4,36]. In particular, [15,8] use non-Gaussian de-
scriptions of noise, while [5] describes a computational
framework based on interior point methods. In compar-
ison with all these papers, the novelty of this work is
to combine kernel-based approaches, noise mixture rep-
resentations and EM techniques, to derive a new effi-
cient estimator of the impulse response and kernel /noise
hyperparameters. In particular, we will show that the
MAP estimator of the hyperparameters can be imple-
mented solving a sequence of one-dimensional optimiza-
tion problems, defined by two key quantities which will
be called a posteriori total residual energy and a posteri-
ort differential impulse response energy. All of these sub-
problems, except one involving a parameter connected
with the dominant pole of the system, can be solved in
parallel and admit a closed-form solution. This makes
the proposed method computationally attractive, espe-
cially when compared to possible alternative solutions
such as approximate Bayesian methods (e.g., Expecta-
tion Propagation [24] and Variational Bayes [6]), or full
Bayesian methods [8].

The organization of the paper is as follows. In Section 2,
we introduce the problem of linear dynamic system iden-
tification. In Section 3, we give our Bayesian description
of the problem. In Section 4, we introduce the MAP-
based approach to the problem and describe how to ef-
ficiently handle it. Numerical simulations and a real ex-
periment to evaluate the proposed approach are in Sec-
tion 6. Some conclusions end the paper while the Ap-
pendix gathers the proof of the main results.

2 Problem statement

We consider a SISO linear time-invariant discrete-time
dynamic system (see Figure 2)

+oo
Yg = Zgiutﬂ‘ + v, (1)
i=0

where {g;}=% is a strictly causal transfer function (i.e.,
go = 0) representing the dynamics of the system, driven
by the input u;. The measurements of the output y; are
corrupted by the process v;, which is zero-mean white
noise with variance 2. For the sake of simplicity, we will
also hereby assume that the system is at rest until ¢ = 0.

We assume that N samples of the input and output mea-
surements are collected, and denote them by {ut}fv:f)l,
{y:}1¥,. Our system identification problem is to obtain
an estimate of the impulse response g; for n time in-

stants, namely {g:}7; (9o = 0).

Remark 1 The identification approach adopted in this
paper allows setting n = +oo (at least theoretically), in-

dependently of the available data set size. For computa-
tional speed we will considern as large enough to capture
the system dynamics, meaning that g,+1 =~ 0, i.e., the
unmodeled tail of the impulse response is approrimately
zero (see also [13] for further details on the implications
of this approximation). Recall that, by choosing n suffi-

ciently large, we can model {g; };->5 with arbitrary accu-

racy [21].
UVt
4%?/;,

Figure 2. Block scheme of the system identification scenario.

Introducing the vector notation

Y1 g1 V1

YN 9n UN

and defining U as the N x n Toeplitz matrix of the input
(with null initial conditions), the input-output relation
for the available samples can be written

y=Ug+wv, (2)

so that our estimation problem can be cast as a linear
regression problem. We shall not make any specific re-
quirement on the input sequence (i.e., we do not assume
any condition on persistent excitation in the input [20]),
requiring only wu; # 0 for some t.

Remark 2 The identification method we propose in this
paper can be derived also in the continuous-time setting,
using the same arguments as in [29]. However, for ease of
exposition, here we focus only on the discrete-time case.

Often, in the system identification framework the distri-
bution of the noise samples is assumed to be Gaussian.
We consider instead the following two models for the
noise:

e the Laplacian distribution, where the probability den-
sity function (pdf) is given by

1 VZ|vg |

p(v) = EG_T ; (3)

e the Student’s t distribution, where the pdf is given by

) (ot )
vlv) = 14 —+45t .
= gy e -2
(4)
The above equation represents a family of densities
parameterized by v, which is usually called degrees of



freedom of the distribution. We will discuss choice of
this parameter in Section 5.1.

In both cases we have E[v?] = 02; note that the variance
of the Student’s t-distribution is defined only for v > 2.
Independently of the model employed in our identifica-
tion scheme, we shall assume that the noise variance o2
has been consistently estimated by first fitting a long
FIR model to the data (using standard least-squares)
and then computing the sample variance of the residuals.

3 Bayesian modeling of system and noise

In this section we describe the probabilistic models
adopted for the quantities of interest in the problem.

3.1 The stable spline kernel and system identification
under Gaussian noise assumptions

We hereby briefly review the standard kernel-based sys-
tem identification technique under Gaussian noise as-
sumptions. We first focus on setting a prior on g. Fol-
lowing a Gaussian process regression approach [33], we
model g as a zero-mean Gaussian random vector, i.e.

plg) ~ N(0, AKp), ()

where Kp is a covariance matrix whose structure de-
pends on the parameter 5, and A > 0 is a scaling factor.
In this context, K g is usually called a kernel (due to the
connection between Gaussian process regression and the
theory of reproducing kernel Hilbert space, see e.g. [44]
and [33] for details) and determines the properties of the
realizations of g. In this paper, we choose Kz from the
class of the stable spline kernels [29], [28]. In particular
we shall make use of the so-called first-order stable spline
kernel (or TC kernel in [13]), defined as

(K} = gm0 0

In the above equation, § is a scalar in the interval [0, 1)
and regulates the velocity of the decay of the generated
impulse responses.

Let us assume that the noise v is Gaussian (see e.g. [29],
[13], [31]). In this case, the joint distribution of the vec-
tors y and g, given values of A and f3, is jointly Gaussian.
It follows that the posterior of g, given y (and values of
A and f) is Gaussian, namely

p(gly, A, B) =N (Cy, P), (7)
where
P=(UTS;'U+ (AKp) ) (8)
C=PUTS;!.

In (), X, represents the covariance matrix of the noise
vector v; in this case we have ¥, = 02 I y. Equation (7) is
instrumental to derive our impulse response estimator,
which can be obtained as its minimum mean square error
(MSE) (or Bayesian) estimate [2]

g =Elgly, \, 8] =Cy. 9)

The above equation depends on hyperparameters A and
(. Estimates of these parameters, denoted by A and /3’,
can be obtained by exploiting the Bayesian problem for-
mulation. More precisely, since y and g are jointly Gaus-
sian, an efficient method to choose A and B is given by
maximization of the marginal likelihood [26], which is
obtained by integrating out g from the joint probability
density of (y, g). Then we have

(\, B) = arg maxp(y|, )

= arg Iiuﬁn log det(%,) + yTEljly ) (10)

)

where X, = AUKpg UT + 3, is the variance of the vector
Y.

3.2  Modeling noise as a scale mizture of Gaussians

The assumptions on the noise distribution adopted in
this paper imply that the joint probabilistic description
of g and y is not Gaussian, and so the method briefly
described in the previous section does not apply. In this
section, we show how to deal with this problem. The
key idea is to represent the noise samples {v;}Y; as a
scale mixture of normals [3]. Specifically, with the noise
models adopted in this paper, the pdf of each variable
vy can always be expressed as

+oo 1 w2
= T d 11
b= [ e Fpmin, (1)

where p(7¢) is a proper pdf for 7. Since

+oo +oo
p(ve) =/ p(vg, 7¢)dr =/ p(ve|Te)p(Te)ds
0 0

(12)
by comparing (12) with (11) we have
1 o
=3 (13)

P(Ut|7't) = \/ﬁ

which is a Gaussian random variable. Hence, each sample
v can be thought of as generated in two steps.

(1) A random variable 7; is drawn from the pdf p(7;)
(2) vy is drawn from a Gaussian distribution with vari-
ance 7.



The distribution of 73 depends on the model of v;.

(1) When v; is Laplacian, we have

1 ¢

(1) = 2¢ 2,1 >0, (14)

i.e., ¢ is distributed as an exponential random vari-
able with parameter 2.

(2) When wv; is modeled using the Student’s t-
distribution, it follows that

7Tt20a

(15)
which is the probability density of an Inverse

2
Gamma of parameters (%, (”722)" )

Independently of the noise model, if the value of 7, is
given, the distribution of the noise samples becomes
Gaussian.

Let
0:=[ABm ... 7] €RVFZ, (16)

Due to the representation of noise as scale mixture of
Gaussians, the joint distribution of the vectors y and g,
given values of , is jointly Gaussian. Furthermore, by
rewriting the noise covariance matrix as follows

¥, =diag{m, ..., v}, (17)
Equations (7) and (8) hold, so that our impulse response
estimate can still be written as the Bayesian estimate of

g, i.e.

g =Elgly,0] = Cy. (18)
Note that this estimator, compared to the estimator in
the Gaussian noise case (9), depends on the (N +2) - di-
mensional vector 6, which we shall call the hyperparam-
eter vector. Hence, our Bayesian system identification
algorithm consists of the following steps.

(1) Compute an estimate of 6.
(2) Obtain § by computing (18).

In the remainder of the paper, we discuss how to effec-
tively compute the first step of the algorithm.

4 MAP estimate of hyperparameters via Expec-
tation Maximization

4.1  MAP estimation of the hyperparameters

In the previous section we have seen that the joint de-
scription of the output and the impulse response is pa-
rameterized by the vector 6. In this section, we discuss

how to estimate it from data. First, we give a Bayesian
interpretation to the constraints on the kernel hyperpa-
rameters. To this end, let us denote by xs(-) the indica-
tor function with support S and introduce the following
notation

p(A) o xz+(A), (19)

which represents a flat (improper) prior accounting for
the positivity of the scaling factor A. Similarly, we define

P(ﬂ) = X[o,l)(ﬁ) » (20)

according to the constraint 8 € [0, 1). Hyperparameters
A, B are then assumed independent of each other and of
all the variances ;.

A natural approach to choose the hyperparameter vector
6 is given by its maximum a posteriori (MAP) estimate,
which is obtained by solving

6 = arg maxlog (p(y|9)p(9)) , (21)

where p(0) is the prior distribution of the hyperparam-
eter vector. In view of the stated assumptions, recall-
ing also that all the 7, are independent identically dis-
tributed, we have

p(0) = p(Np(B) [ [ p(72)- (22)

t=1

4.2 The EM scheme

Solving (21) in that form can be hard, because it is a
nonlinear and non-convex problem involving N + 2 de-
cision variables. For this reason, we propose an iterative
solution scheme using the EM method. To this end, we
introduce the complete likelihood log(p(y, g|0)p(6)); the
solution of (21) is obtained by iteratively marginalizing
over g, which plays the role of missing data or latent
variable. Each iteration of the EM scheme provides an
estimate of the hyperparameter vector, which we denote
by 8% (where k indicates the iteration index). Let us
define

L(y’g|0) = Ing(yag‘e)v (23)

where g here is the latent (unavailable) variable. For ease
of notation, we also define

L(7) »= log p(7¢) - (24)

Then, the EM method provides 6 by iterating the fol-
lowing steps:



(E-step) Given an estimate §(), compute

Q8,0W) =K, .\, g

N
L(y,g0) + Zum] ;

t=1
(25)
(M-step) Compute

O+ — arg max Q, 6%)). (26)

The main advantage of employing the EM method is
that convergence to a (local or global) maximum of the
objective function is guaranteed [23], [42].

4.8 A posteriori total residual and differential impulse
TESPONSE ENETqy

As will be seen in the following subsection, our EM
scheme for robust system identification procedure relies
on two key quantities which will be defined below and
called a posteriori total residual energy and a posteriori
differential impulse response energy.

Assume that, at iteration k£ + 1 of the EM scheme, the

estimate %) of 6 is available. Using the current esti-
mate of the hyperparameter vector, we construct the
matrices C®) and P®) using (8) and, accordingly, we
denote by §(®) the estimate of g computed using (18),
e g = C'(k)y. The linear predictor of y is

g =ug®, (27)
with covariance matrix
Sk —yptyT, (28)

Then, we define the a posteriori total residual energy at
time instant ¢ as

~(k ~(k ~(k
&)= (g — g2 45 (29)

where égf ) is the ¢-th diagonal element of $®). Note that

égk) is the sum of a component related to the adherence

to data and a term accounting for the model uncertainty
(represented by S*)).

Now, let
1 -1 0
1
A= , (30)
-1
0 1
and define .
6g = Agh (31)
and

H® .= APFIAT, (32)

~(k
Note that A acts as a discrete derivator, so that 69( )
represents the estimate of the discrete derivative of the
impulse response g (using the current hyperparameter
vector ). The matrix H* is its a posteriori covari-
ance. Then, denoting by Bgf ) the i-th diagonal element
of H®) | we define the a posteriori differential impulse
response energy at i as

n ~m\? .
dF) = (692» ) + AP, (33)

Note that this quantity is the sum of the energy of the
estimated impulse response derivative and a term ac-
counting for its uncertainty.

4.4 Robust EM kernel-based system identification pro-
cedure

The following theorem states how to solve (21) using the
EM method.

Theorem 3 Let 0% be the estimate of the hyperparam-
eter vector at the k-th iteration of the EM method, em-
ployed to solve (21). Then, the estimate 6*+1) is obtained
with the following update rules:

e Depending on the noise model, for any 7,t =
1, ..., N we have
(1) In the case of Laplacian distribution,

2 (k)
8
i—t(kﬂ) =Z 1+ ot

4 o2 -1

(2) In the case of Student’s t-distribution,

(k) 2
~(k+1) &+ (V — 2)0’
Tt v+3 ’ (35)

o The hyperparameter B is obtained solving

A(k+1) _ . 36
64 arg min, Q(A), (36)

where

n(n+1)

Q(8) = nlog F(B)+"

log f+(n—1)log(1-5),
(37)

and

n—1
F(B) =Y "dPa " +dP (1 - g (38)
=1



e The hyperparameter X is obtained computing

AL Z d w5<k+1> (39)

where

1
1-p

w[; =

g - g (o)

and Wty 4 ATE the elements of wg when f = ﬂ(kJrl

The result of the above theorem is remarkable. It estab-
lishes that, employing the EM method to solve (21), at
each iteration of the EM the estimate of the hyperpa-
rameter vector 6 can be obtained by solving a sequence
of simple scalar optimization problems. All of them
crucially depend on the a posteriori total residual and
differential impulse response energy, as defined in (29)
and (33). Furthermore, the update of any 7 admits a
closed-form expression which depends on the adopted
noise model. As for the kernel hyperparameters, 8 needs
to be updated by solving a problem which, at least in
principle, does not admit a closed-form solution. How-
ever, the objective function (37) can be evaluated using
only computationally inexpensive operations and, since
B is constrained into the interval [0, 1), its minimum can
be obtained quickly using a grid search. Once g is cho-
sen, the updated value of A is available in closed-form.

Algorithm 1 below summarizes our outlier robust sys-
tem identification algorithm. The initial value of the hy-

perparameter vector 0O can be set to
0 = 5\ML BML o? ... 02] ) (41)

where A7 and BML are obtained from (10), i.e. by max-
imizing the marginal likelihood related to the Gaussian
noise case, while the choice o2 is motivated by the fact
that E[r;] = % in both the Laplacian and Student’s t
noise modelﬂ In our experimental analysis (see Section
6), this choice of initialization has always led the EM
method to attain the global maximum of the objective
function.

Algorithm 1 :
identification

uput: {y()}0, {u(t)}5!
Output: {gs }iy

EM-based outlier robust system

(1) Initialization: Set (©);

1 The expectation here is w.r.t. pdf of the 7.

! |6+ gy
16¢) |
or a prescribed number of iterations is reached:

(2) Repeat unti is below a given threshold

(a) Update the a posteriori total residual s( ) and

the differential impulse response energy dl(. ) ac-
cording to (29) and (33), respectively;

(b) Update 7‘( T ysing (34) or (35);

(¢) Update S*+1) solving (36);

(d) Update AFHD computing (39);
(3) Compute g as in (18).

Remark 4 Note that the iteration complexity depends
also on the number of operations required to update the a

(k)

posteriori total residual €, and the differential impulse

TesSponse energy cigk) In view of the definitions (29) and
(33), this is related to the computation of the posterior
covariance P*) which, recalling (8), requires the inver-
ston of ann xn matrixz. Sincen is the number of unknown
impulse response coefficients, this result is also computa-
tional appealing since, in system identification, typically
one hasn < N, where N 1is the data set size.

Remark 5 Regarding the noise model induced by the

Student’s t distribution, when the parameter v is set to

2, the prior (15) becomes flat, i.e. p(1¢) x x+(1¢), t =
, N. Hence, the update rule (35) becomes

7D = ek (42)

i.e., no information on the noise variance is used and the
values of the 7 are completely estimated from the data.
This is in accordance with the fact that the Student’s t-
distribution has infinite variance for v = 2, which means
that the prior on noise is not carrying information (from
the second order moments point of view). Conversely,
when v = 400 Equation (35) becomes

T =02, (43)

which means that all the noise samples must have the
same variance, equaling o2. This reflects the fact that a
Student’s t- dzstmbutzon wzth v =400 is in fact a Gaus-
sian distribution (in this case with variance equal to o2),
so that no outliers are expected by this noise model.

5 Extensions of the algorithm

5.1 FEstimating the degrees of freedom of the Student’s
t-distribution

The parameter v of the Student’s t-distribution (4) af-
fects the algorithm capability of detecting outliers. It is
thus desirable to have an automatic procedure for tun-
ing this parameter. In this section we show how to in-
clude the estimation of v in the proposed EM scheme.



We treat the estimation of such a parameter as a model
selection problem [14], where we aim at choosing v max-
imizing the joint distribution of y and g, obtained by
integrating out the 7. More precisely, we have

N
p(ya g|1/):/p(ya g|7_13"'7TN7 Hp Tt|1/ Hth
t=1
N
oc/p(y|g, Tly eevy TN, V Hp (1¢|v) Hth
t=1 =
=p(vlv), (44)

where the second step follows from the fact that g is
independent of the 7 and thus the terms p(g|r¢) can
be neglected. We now suppose that also v is included
in the iterative scheme and we assume that at the k-th
iteration we have obtained the estimate 7). At each
EM iteration, we can compute an estimate of the noise
samples given by

o =y — g™, (45)

where §*) is the linear predictor introduced in (27).
Since each sample v; follows a Student’s t-distribution
(and is independent of vj, j # t), it is natural to choose
the value of ¥ maximizing the log-likelihood

pt1) @)

r () ) )

I'(%) Vro?(v —2)

arg max log H p(0
t=1

= argmax N log (

V+1N (yt ?Qt())
_ Zlg<1+(y—2) .

t=1

Although this selection criterion does not rigourously
follow the paradigm of the EM method, in the next sec-
tion we will see that its performance is rather satisfac-
tory.

5.2  Reducing the number of hyperparameters in the
identification process

As seen in Section 3, the unknown vector 6 contains N 42
hyperparameters to be estimated. If the data set size is
large, e.g. N ~ 10* — 10°, even if all of the updates of the
74 are decoupled and consist of one simple operation, it
might be desirable to have an even faster identification
process. This could be obtained by reducing the size of
f, that is, by constraining groups of 7; to assume the
same value. Given an integer p > 0, let us assume that

= N/p is integer. Then, it is possible to readapt

Theorem 3 in order to impose the constraints
Tl =T =...=

Tg = Tm41 = ... =

Tp =Tp—1)m+1 = --- =TN,

so that the new hyperparameter vector

6=[rp 1.7, errt?

consists in p + 2 components (with possibly p < N).

To this aim, let us introduce the following partition of
the matrix S*) introduced in (28)

&k &k
s L gm

(k) _ &(k) mxm
Stk — , i) e R™ (48)

alk alk
5 W
and, similarly,
Y f/l(k)
Y, v
The following result then holds.

Proposition 6 Let 0%) be the estimate of the hyperpa-
rameter vector at the k-th iteration of the EM method.
Define

=i =Y+ ee{SPY Li=1,....p. (50)
Then, depending on the noise model adopted, the esti-

mates Tgkﬂ), 1=1, ...,
ing update rules:

p are obtained with the follow-

(1) In the case of Laplacian distribution,

2 86(k)

S (k+1 mao i
T ):T Lt S -1 (1)

(2) In the case of Student’s t-distribution,

N (k+1) _ él(k) + (V — 2)0'2

T, 52
K3 V+2+m ( )



The proof uses arguments similar to those of Theorem
3. Note that the update rules for A\**1) and S*+1) re-
main the same as in Theorem 3. The value of the T;
can be interpreted as an averaging among the 74 “shar-
ing” the same T;. Clearly, the price to pay for reducing
the number of hyperparameters is a lower capability by
the algorithm to detect outliers. Note that in principle
each Y; can be defined so that it corresponds to non-
consecutive output measurements. Any choice of groups
of 74 associated with one Y; can be considered, provided
that (48), (49) are partitioned accordingly.

Remark 7 In the limit case p = 1, i.e. m = N, it is
reasonable to expect that, at least for large indices k,

(Al.(k) ~ No2. Then, if N is large, from (51) we get

(53)
whereas (52) can be approzimated as
o (k No? + (v —2)o?

TZ(-H): CTOT N ~ 2. (54)

Hence, when p = 1, i.e. when all the 74 are forced to
converge to the same value, the estimated variance will
converge to the nominal noise variance o2 and thus the
algorithm will behave as in the Gaussian noise case (see
Section 3.1).

6 Experiments

In this section we present results of several numerical
simulations and describe an experiment on a real system.

6.1 Monte Carlo studies in presence of outliers

We first perform Monte Carlo simulations to assess the
performance of the proposed method. We set up four
groups of numerical experiments of 100 independent
runs each. At each Monte Carlo run, we generate ran-
dom dynamic systems of order 30 as detailed in Section
7.2 of [31]. In order to simulate the presence of outliers
in the measurement process, the noise samples v; are
drawn from a mixture of two Gaussians, i.e.

vy ~ (1 —c)N(0,0%) + eN(0,1000?%) . (55)

In this way, outliers are measurements with 100 times
higher variance, generated with probability ¢, where ¢
assumes the values 0, 0.01, 0.05 and 0.1, depending on
the experiment. The value of o2 is such that the noise has
variance equal to 0.1 times the variance of the noiseless
output. For ease of comparison, the input is always a
white noise sequence with unit variance.

Random trajectories of input and noise are generated at
each run. The data size is N = 200, while the number
of samples of the impulse response to be estimated is
n = 50. The performance of an estimator § is evaluated
at any run by computing the fitting score, i.e.

Fir, =1 19 = gill2 , (56)

lgill2
where g; and g; represent, respectively, the true and the
estimated impulse responses (truncated at the n-th sam-
ple) obtained at the i-th Monte Carlo run. In particular,
the following estimators g are tested:

(1) EM-L: this is the new kernel-based method pro-
posed in this paper adopting a Laplacian model for
noise. Algorithm 1 is used to estimate hyperparam-

1696V _ 4 0-3
oo <1075,

(2) EM-S: the same as before except that a Student’s
t-distribution is used as noise model. The degrees
of freedom v are chosen according to the pro-
cedure described in Section 5.1, within the grid
{2.01, 2.25, 2.5, 2.75, 3, 5, 7.5, 10, 15, 50, +o0};
the symbol +oo indicates the Gaussian noise case,
to which the Student’s t-distribution collapses
when v = +o0.

(3) EM-S-opt: this estimator also makes use of the Stu-
dent’s t-distribution as noise model. The parame-
ter v is selected within the grid introduced above
by taking the value that maximizes the fit (56). To
perform this operation, this estimator must have
access to the true impulse response and thus it is
not implementable in practice.

(4) SS-ML: this is the kernel-based identification
method proposed in [27], revisited in [13] and
briefly described in Section 3.1. The impulse re-
sponse is modeled as in (5) and the hyperparame-
ters A and (3 are estimated by marginal likelihood
maximization (10). Note that this estimator does
not attempt to model the presence of outliers.

eters. The EM run stops when

Figure 3 shows the results of the simulations. It can be
seen that, in general, accounting for outliers pays off in
terms of accuracy. Both the proposed robust estimators
perform better than the estimator SS-ML, which does
not account for the possible presence of outliers. In par-
ticular, as the rate of outliers increases, the improve-
ments given by the proposed estimators become more
and more significant. Details on the results of the sim-
ulations are given in Table 1, which reports the confi-
dence intervals for the average fits of the methods. It is
shown that the robust methods give a statistically sig-
nificant improvements in the performance compared to
the estimator SS-ML. A further evidence is given by the
one-tailed paired t-test between the estimator SS-ML
and the other estimators. For the cases ¢ = 0.05, ¢ = 0.1
all the three robust estimators significantly outperform
SS-ML method (p-value less than 10721). For the case
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Figure 3. Monte Carlo in presence of outliers (Section 6.1): Box plots of the fits achieved by the estimators when outliers

are present with increasing probability.

¢ = 0.01 only EM-S and EM-S-opt significantly outper-
form SS-ML method (p-value less than 10~8) while EM-
L has comparable performances (p-value equal to 0.797).
Modeling noise using the Student’s t-distribution seems
to give better results in terms of fitting. The choice of
the degrees of freedoms seems to be very accurate, as
the estimator EM-S is very close to EM-S-opt: there is
a slight degradation in the performance, which can be
motivated as a price to pay for estimating the additional
parameter v.

6.2 System identification under Student’s t-distributed
noise

As suggested by an anonymous reviewer, the method
proposed in this paper may also by employed in
situations where the noise follows the Student’s t-
distribution. Applications of this scenario are found in
model misspecification problems. To this end, we per-
form an experiment of 100 Monte Carlo runs where
the noise samples are drawn from the Student’s t-
distribution with v = 3 degrees of freedom. The exper-
imental conditions (input and noise variance) are as in
the previous experiments. Figure 4 shows the box plots
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Method c=0 c=0.01
EM-L 84.63 +0.66 | 83.92 +0.73
EM-S 86.63 + 0.65 | 86.8 +0.61

EM-S-opt | 88.05+0.5 | 87.75+0.55

SS-ML 87.92+ 0.5 | 84.23+0.96

Method c=0.05 c=0.1
EM-L 81.63+0.99 | 79.69 &+ 1.03
EM-S 86.11 +0.84 | 85.97 + 0.64

EM-S-opt | 87.23 +£0.55 | 86.54 + 0.59

SS-ML 74.65+1.61 | 67.74+1.72

Table 1

Monte Carlo in presence of outliers (Section
sec:numericall): Confidence intervals of the average fits in
percent when outliers are present with increasing probabil-
ity.

of the 100 Monte Carlo simulations. The estimator EM-
S offers a higher accuracy than the other estimators,
since it is able to capture the true noise model. The
estimators EM-L and SS-ML offer approximately the
same performance. This may be explained by the fact
that these two distributions capture different features of



the Student’s t-distribution: the Laplacian r.v. is heavy-
tailed, while the Gaussian r.v. is smooth around zero.

1
095}« *
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EM-L EM-S EM-S-opt SS-ML
Figure 4. Monte Carlo simulations of model misspec-
ification (Section 6.2): Box plots of the fits of the tested

estimators.

6.3 Monte Carlo studies in presence of outliers: reduc-
tion of the number of hyperparameters

We test the performance of the estimator described in
Section 5.2, where the size of the hyperparameter vector
is reduced, setting ¢ = 0.3 and the noise variance equal
to 0.01 the noiseless output variance. We compare, by
means of 100 Monte Carlo runs, the estimator SS-ML
with a new class of estimators, dubbed EM-L-p. These
estimators employ the Laplacian model of noise but, in-
stead of attempting the estimation of NV distinct values
of the noise variances 7, they estimate p values, as de-
scribed in Section 5.2. In this experiment, we choose 4
different values of p, namely p = 1, 20, 40, 200, so that
the same noise variance Y;, i = 1, ..., p, is shared be-
tween 200, 10, 5 and 1 output measurements, respec-
tively. Note that the case p = 200 corresponds to the es-
timator EM-L described above (since m = N), while the
case p = 1 forces all the noise variances to be the same
(this thus corresponds to the Gaussian noise case).

Figure 5 shows the result of the experiment. As expected,
there is a degradation of the accuracy of the estima-
tors EM-L-p as p decreases: there is a loss of outlier de-
tectability due to the reduction in the number of noise
hyperparameters. However, EM-L-p, with p # 1, still
compares favorably with respect to the non-robust esti-
mators. Note that, in accordance with Remark 7, when
p = 1 the estimator gives almost exactly the same per-
formance of SS-ML (little mismatch is due to different
numerical optimization procedures).

6.4 Comparison with other outlier robust method

We compare the performance of the proposed method
with the outlier robust system identification algorithm
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Figure 5. Monte Carlo in presence of outliers using
a Laplacian noise model with a reduced number of
hyperparameters (Section 6.3): Box plots of the fits with
the number p of estimated noise variances ranging from 200
to 1.

proposed in [8]. In this work, the noise is modeled as in-
dependent Laplacian r.v.’s; a Gaussian description is ob-
tained via the scale mixture of Gaussians introduced in
Section 3.2. Under a fully Bayesian framework, a Markov
Chain Monte Carlo (MCMC) integration scheme based
on the Gibbs sampler (see e.g. [17] for details) is used to
estimate the impulse response g.

We test the method EM-L of Section 6.1 against the
aforementioned algorithm, dubbed GS-L (Gibbs sam-
pler with a Laplacian model of noise), on 100 randomly
generated systems under the same conditions as the pre-
vious subsection (white noise input, ¢ = 0.3, noise vari-
ance equal to 0.01 the noiseless output variance). We also
evaluate the performance of the method SS-ML. Table 2
reports the median of the fitting scores together with the
average computational times required by the two meth-
ods. It can be seen that, although the performance of
the two robust methods are very close to each other, the
computational burden of the method proposed in this
paper is much lower. The non-robust method SS-ML is
faster, however it returns a lower fit of the impulse re-
sponses.

Method ‘ Fit % (median) ‘ Avg. computational time [s]

EM-L 91.28 2.18
GS-L 90.78 93.77
SS-ML 76.59 0.18
Table 2

Comparison of three different identification methods
(Section 6.4): Fitting scores and average computational
times.

6.5 Robust solution of the introductory example

We apply the proposed algorithm also to solve the moti-
vating example shown in Section 1.1. Results are visible



in Figure 6: in comparison with the estimates reported in
Figure 1, the quality of the reconstruction is clearly im-
proved. This can be appreciated also by inspecting Table
3, which reports the fitting scores of the proposed meth-
ods, also comparing them with the non-robust identifica-
tion method SS-ML applied also in absence of outliers.

Method Fit %
EM-S 97.15
SS-ML (no outliers) | 97.05
EM-L 95.81
SS-ML (with outliers) | 70.45

Table 3

Robust solution of the introductory example (Section
6.5): Fitting scores of several estimators ranked w.r.t. their
performance.
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Figure 6. Robust solution of the introductory example
(Section 6.5): Impulse response estimates obtained with
the proposed method (the dashed lines represent the 99%
credibility bounds).

6.6 FExperiment on a real data set

We test the proposed method on a real data set. The
data are collected from a water tank system. A tank is
fed with water by an electric pump. The water is drawn
from a lower basin and then flows back to it through a
hole in the bottom of the tank. The input of the system
is the applied voltage to the pump and the output is the
water level in the tank, measured by a pressure sensor
placed at the bottom of the tank (see also [18] for details).
Both the input and the output are rescaled in the range
[0, 100], where 100 is the maximum allowed for both
the voltage and water level. The input signal consists
of samples of the type u; = 45 + /bwy, with w; being
Gaussian random samples of unit variance. Each input
sample is held for 1 second, and one input/output pair
is collected each second, for a total of 1000 pairs. The
obtained trajectories are depicted in Figure 7. As can be
seen, the second part of the output signal is corrupted
by outliers caused by perturbations of the pressure in
the tank (air is occasionally blown in the tank during
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the experiment, altering the pressure perceived by the
sensor). Using the methods EM-L, EM-S and SS-ML,

0 100

200

300 400 500 600 700 800 900 1000

0 100 200 300 400 500

Time

600 700 800 900 1000

Figure 7. Experimental data (Section 6.6): Input and
output signals collected during the experiment on the water
tank system.

we estimate models of the system using the second part
of the data set, i.e. {y, u;}12%0;. The performance of
each method is evaluated by computing the fit of the
predicted output on the first part of the data set, i.e.

FIT,=1- |Ytest — :?test||2 7 (57)

||ytost — Ytest ||2
where yest 1S the vector containing the output of the test
set, Jrest 1ts mean, and Jres; = Usest§ the value predicted
by the methods. To get a reference for comparison, we
also compute the fit obtained by the method SS-ML
when using the test set as training data. Table 4 reports
the obtained fits, showing a clear advantage in using
the robust methods; in particular, the method EM-S
return a fit close to the fit obtained using the test set for
identifying the model with the method SS-ML.

Method Fit % on test set
SS-ML (estimated using test set) 70.06
EM-S 67.40
EM-L 51.81
SS-ML 41.49

Table 4
Experiment on a real data set (Section 6.6): Fitting
scores on the test set.

7 Conclusions

We have proposed a novel regularized identification
scheme robust against outliers. The recently proposed
nonparametric kernel-based methods [29], [13] consti-
tute our starting point. These methods use particular
kernel matrices, e.g. derived by stable spline kernels,
and Gaussian noise assumptions. This can be a limita-
tion if outliers corrupt the output measurements. In this



paper, we instead model the noise using heavy-tailed
pdf’s, in particular Laplacian and Student’s t. Exploit-
ing their representation as scale mixture of Gaussians,
we have shown that joint estimation of noise and kernel
hyperparameters can be performed efficiently. In partic-
ular, our robust kernel based method for linear system
identification relies on EM iterations which are essen-
tially all available in closed form. Numerical results and
a real experiment show the effectiveness of the proposed
method in contrasting outliers.

A Appendix
A.1 Preliminaries

First, we show how to compute the E-step of the EM
scheme introduced in Section 4.2, i.e., which form

Q(8, é(k)) assumes in our problem. The computation of
the M-step corresponds to the proof of Theorem 3 and
is given in the next section.

Lemma 8 Let C®) and P®) be defined as in (8), com-
puted using the vector 0%) . Then,

~ 1 ~
Q0,0 = —3 (yTM(e, %))y + log det AK 5

+tr (UTS7MU + (\Kp) ™) PW)
{(s; 8

N N
+ Zlogn - 22 L(Tt)) ,
i=1 i=1

(A1)

where

M8, %) .= o711 — 2uC™)

+CWT (UTS U + (AKg) ™Y CW).
(A.2)

Proof:
where

First, note that p(y,g|0) =

p(ylg, 0) ~ N (Ug, )
and p(g|@) is given by (5). Hence

p(ylg, O)p(gl0),
(A.3)

L(y, g10) +

“MZ

N
Zognf*y Ug)'s, (y —Ug)

[\D\H

N
1 T -1
- 51og det A5 — 29" (AK5) g +;L(Tt)
1 1
o Tv—1 Ty —1
*7§;IOth7§y Ev y+y Ev Ug

13

- %gT (UTS;'U + (AK)™Y) g

N
1
~3 log det AKp + ;L(Tt)

=A+B+C+D+E+F. (A.4)

Now, we have to take the expectation of the above terms

with respect to p(gly, é(k)), which is given by (7). We
have the following results (we make use of the symbol
E[] to denote such an expectation).

| N
Al = _§;IOth

1 _
_7yTEv ly

E[B] = -3

E[C] = y"5; 'UE[g] = y" ;' UCHy

EIp] = - 1B [ (775270 + () ")
— —%tr{(UTZ,le + (AKp) ™) PO

Lo

—%1og det AK g

N

= L(n).

Summing up all these elements we obtain (A.1). O

(U710 + (AK5) ™) CBy

E[E] =

A.2  Proof of Theorem 3

The proof is composed of two parts: (1) We rewrite
Q(#, 0™ in a convenient form; (2) we compute the vec-
tor # maximizing Q(#, §)).

Part (1): We show that the function Q(6, %)) can
be rewritten
. 1 i
Q(0, e<’“>>:—2<c20( B, 6®) +ZQt (2, 0 )) +e,
t=1
(A.6)
where c¢ is a constant,
Qo(\, B, 0%)) = yTCPT(AK ) "LCWy 4 log det AK 5
+tr {(AKﬁ)*PU@)} (A7)
is a function of A and 8 only and, fort =1, ..., N,
Qi(rs, W) = eMrt Llogr —2L(7),  (AB)

are t distinct functions, each depending only on 73, t =
1 N.

g ey



For convenience, we rewrite the matrix in (A.2) as
M0, 0%)) = Mg (60 + M, (0*)), where

My (P .= CPT(\Kz)~tC®) (A.9)

does not depend on the 74 and, conversely,

M, (0P .= 271 (1 —20CP)) + CWTyTs -ty C*)

(A.10)

depends only on the ;. Rearranging (A.1), it follows that

~ 1 ~
Q6. 9% = —2 (yTMH(H(k))y +log det AK 5

+tr{(AKp) PO} o {UTs U PO
N N

+y " MA(0F)y + ) logT —2) L(n)) :
- = aa

where the first part corresponds to Qo(A, 5, ok
fined in (A.7). Now, let S*) be as in (28); then

))7 de-

tr{UTS; T UP®} = tr{SPx 1} = Z gk
t=1
(A.12)
where s( ) denotes the element of S in position (t,1).

Recall also that (%) = Ué'(k)y; thus

N
yTCWTUTSluC®y = 3" g%t (A13)
t=1
furthermore, since y” Zt Lyir ! and
N
— 2yt oWy = 23" gyt (A14)
it follows that
N o2
YT MMy =S ( _ >) ! (A.15)

t=1

o(F)

Recalling that égk) = (yt — gjt(k)) + 384, (A.8) and (A.6)
follow.
Part (2): First, we proceed with the minimization

of each Q¢(7, é(k))7 t=1,...,
deal with (A.7).

N; then, we show how to

Depending on the noise model adopted, Q; (7, é(k)), t=
1, ..., N, has two different forms.
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(1) If the noise is modeled with the Laplacian density,
from (14) we have L(7;) = —Z57 + ¢, where ¢ is
constant so that, for everyt =1, ..., N

. 2

Q¢ (7e, g(k)) = él(gk)thl +logm + ﬁTt, (A.16)
which is minimized by (34).

If noise is modeled with the Student’s t-distribution,
from (15) we have L(r;) = —(4¥+1)logm —

(v=2)0* + ¢, where c is constant so that, for every

27T¢
t=1, , N

(A(k) (v 2)02) T 1—|—(1/+3) log 74 .
(A.17)

The minimizer (35) follows from solving the above
equation.

Qi(rs, 6P =

We now deal with Qq(), 3, é(k)). Its derivative with re-

spect to A is

0Qo 1 (1 AT =1 Alk) 1
S =- A2( CWTRIC y+tr{K plk } 3,
(A.18)

which is equal to zero for
o _ L AT =1 AR —1H(k)
X = = (yFCOTRF My o {15 PO

(A.19)

Plugging back such value into Qo (A, 8, o) ), one obtains

Qo(X", B, 60) = nlog (y" CHIT K 1My

+tr {Kglﬁ(’“)}) +logdet K + ¢,
(A.20)

where c is a constant. Now consider the following factor-
ization of the first order stable spline kernel [10]:

Kg = A71W5A7T, (A.21)
where A is defined in (30) and
Ws = (1 — B)diag {5, Y L b ﬂ} . (A.22)

Note that the nonzero elements of Wy correspond to the
inverse of those of (40). According to (31) and (32), let

~ (k ~ ~ ~
59( ) = ACHFy, HF) .= APH®) AT Then it can be seen

that
k
)2)@”5;@)

(A.23)

Qo(\", B, 6 = nlog (ZUEE?) + 59,

=1

n
+ Zlogwg’ii +c,

=1



where iLEf) and wg; are the i-th diagonal elements of
. ~(k

H) ind Wg, respectively, while 5g£ ) is the i-th entry
of (SAg( ). A further rewriting of (A.23) yields

Q) 1= Qo 8. 6%) = mog £(3) + " 1og
+(n—1)log(1—p8)+c
(A.24)
where
n—1
FB) =3 (b 6981+ (W) +dg0 ) (1-8)8 ™,
- (A.25)

so that (37) and (38) are obtained. Using similar argu-
ments, one can see that (A.19) can be rewritten as (39).
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