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Distributed Continuous-time Approximate

Projection Protocols for Shortest Distance

Optimization Problems∗

Youcheng Lou, Yiguang Hong, Shouyang Wang

Abstract

In this paper, we investigate the distributed shortest distance optimization prob-

lem for a multi-agent network to cooperatively minimize the sum of the quadratic

distances from some convex sets, where each set is only associated with one agent.

To deal with the optimization problem with projection uncertainties, we propose

a distributed continuous-time dynamical protocol based on a new concept of ap-

proximate projection. Here each agent can only obtain an approximate projection

point on the boundary of its convex set, and communicate with its neighbors over

a time-varying communication graph. First, we show that no matter how large the

approximate angle is, the system states are always bounded for any initial condi-

tion, and uniformly bounded with respect to all initial conditions if the inferior limit

of the stepsize is greater than zero. Then, in the two cases, nonempty intersection

and empty intersection of convex sets, we provide stepsize and approximate angle

conditions to ensure the optimal convergence, respectively. Moreover, we give some

characterizations about the optimal solutions for the empty intersection case and

also present the convergence error between agents’ estimates and the optimal point

in the case of constant stepsizes and approximate angles.

Keywords: distributed optimization; convex intersection; shortest distance optimiza-

tion; approximate projection

1 Introduction

In recent years, distributed optimization of a sum of convex functions has attracted much

attention due to its wide applications in resource allocation, source localization, and robust
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estimation (referring to [5, 19, 20, 21, 23, 28, 29, 30]). A whole optimization task can be

accomplished cooperatively by a group of autonomous agents via simple local information

exchange and distributed protocol design even when the communication graph among

agents is time-varying.

Although many existing distributed optimization works have been done by discrete-

time algorithms, more and more attention has been paid to continuous-time algorithms

in recent years [18, 31, 32, 33, 34, 35, 36], partially because the continuous-time models

can be studied by various well-developed continuous-time methods or make the algorithms

easily implemented in physical systems. A distributed continuous-time computation model

was proposed to solve an optimization problem for a fixed undirected graph in [31], with

the optimization achieved by controlling the sum of subgradients of convex functions to

make the state enter the optimal solution set, and later this model was generalized to

the weight balanced graph case in [33], for differentiable objective functions with globally

Lipschitz continuous gradient. Another continuous-time distributed algorithm with con-

stant stepsize was developed in [35] for optimization problems with positivity constraints

in a fixed undirected graph case, where a lower bound of convergence rate and an upper

bound on the agents’ estimate error were presented. Moreover, the relationship between

the existing dual decomposition and consensus-based methods for distributed optimiza-

tion was revealed in [36], where both approaches were based on the subgradient method,

but one with a proportional control term and the other with an integral control term.

When the optimal solution sets of agents’ individual objective functions have a nonempty

intersection, the distributed optimization problem is equivalent to the convex intersection

problems (CIP) [11, 12, 14, 15, 17, 18, 20]. A projected consensus algorithm was proposed

in [20] for a network to solve the CIP, and the authors showed that all agents converge to a

common point in the intersection set for weight-balanced and jointly connected communi-

cation graphs. Later, a continuous-time dynamical system was designed and connectivity

conditions were discussed for the optimal convergence in [18]. In addition, a random sleep

algorithm was proposed with providing conditions to converge almost surely to a com-

mon point in the intersection set in [14], where agents randomly take the neighbor-based

average or projection onto their individual sets based on a Bernoulli process. Almost all

the existing optimization results were obtained based on the assumption that the exact

projection point onto the convex sets can be obtained [11, 12, 17, 18, 20, 22, 27].

On the other hand, the intersection of the considered convex sets may be empty in

practice. In this case, how to seek a point with the shortest (quadratic) distance to these

sets is also important. For instance, the supply center location problem is concerned with

how to seek the location of raw materials supply center so that the average transportation

cost from the supply center to the multiple factories is minimal ([9, 10]); the source
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localization in a sensor network is related to estimate the location of the source emitting

a signal based on the received signals of multiple sensors in a noisy environment ([4, 27]).

In fact, the problem for both the empty and nonempty intersection case is referred to

as the shortest distance optimization problem (SDOP). Obviously, CIP is a special case

of SDOP, and the average consensus problem is also a special case of SDOP since the

optimal solution of the minimum of the sum of quadratic functions from some points is

exactly the average of these points. Some distributed algorithms were proposed to discuss

SDOP. For example, [27] formulated the source localization problem as the SDOP in a

plane and proposed a discrete-time distributed algorithm, with the adjacency matrices

of communication graphs required to be doubly stochastic. Moreover, [22] proposed two

distributed continuous-time algorithms to solve SDOP in the empty intersection case

for connected graphs: the first one was designed for optimal consensus based on sign

functions, and the second one was modified to avoid chattering but only to achieve the

optimal consensus approximately.

The objective of this paper is to design a continuous-time distributed protocol to

solve SDOP based on approximate projection. Note that the exact projection is usually

hard to obtain in practice. Therefore, approximate projection may have to be discussed

in different situations, and, in fact, [15] proposed a discrete-time approximate projected

consensus algorithm to solve CIP. The motivation of the current research aims at analysis

and distributed design to cooperatively solve SDOP with projection uncertainties and

continuous-time dynamics. For example, in a practical robotic network to solve the SDOP,

a continuous-time robot may not always obtain the exact projection point of its own

convex set, but only spot some point on the set surface near the exact projection point.

The contribution of this paper can be summarized as follows.

• We propose a new concept of approximate projection, which is related to some

points on the convex set’s boundary surface and close to the exact projection point

when the exact projection is hard to obtain. In other words, we consider an approx-

imate projection related to set boundary surfaces, different from that defined in a

“triangle” in [15]. To overcome the analysis difficulties resulting from this new ap-

proximate projection, we employ a geometric method to convert the original problem

to a heterogeneous stepsize problem.

• Given any approximate angle, we show that, with the proposed continuous-time

algorithm, the agent states are always bounded for any initial condition, and uni-

formly bounded with respect to all initial conditions if the stepsize is not too small.

The result with respect to the continuous-time algorithm is different from some

results based on some discrete-time ones. In fact, π/4 was shown to be the criti-

cal approximate angle for the boundedness of the discrete-time algorithm with the
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approximate projection defined in a triangle in [15].

• We study SDOP in both the nonempty and empty intersection cases, and propose

a unified protocol based on the approximate projection. In fact, the proposed con-

vergence conditions and proofs in the two cases are quite different. Note that our

result is different from that in [22] because we handle approximate projections with-

out assuming that the communication graph is always connected, and ours tackles

both the nonempty and empty intersection cases, while [15] only does the nonempty

intersection case. Moreover, we also discuss the convergence error between agents’

estimates and the optimal point in the case of constant stepsizes and approximate

angles. Our results are certainly consistent with those discrete-time algorithms in

the literature such as [19, 20] based on the exact projection.

The paper is organized as follows. Section 2 shows some basic concepts and prelim-

inary results. Section 3 defines an approximate projection concept and formulates our

shortest distance optimization problem (SDOP), followed by Section 4 for the discus-

sions on boundedness and stepsizes. Section 5 presents the main convergence results for

the nonempty intersection case, while Section 6 for the empty intersection case. Section

7 discusses the constant stepsize and approximate angle case. Then Section 8 provides

numerical simulations. Finally, Section 9 gives some concluding remarks.

Notations: ⊗ denotes the Kronecker product; 1 denotes the vector with all ones; (A)ij

denotes the i-th row and j-th column entry of matrix A; yT denotes the transpose of

a vector y ∈ R
m; |y| denotes the Euclidean norm of y; [v, z] denotes the line segment

connecting the two points v, z; line(v, z) denotes the line passing the two points v, z; for

a set K ⊆ R
m, int(K) and bd(K) = K\int(K) denote the sets of interior points and

boundary points of K, respectively; for a closed convex set K ⊆ R
m, PK(·) denotes the

projection operator onto K; |y|K := |y − PK(y)| denotes the distance between y and K;

〈·, ·〉 denotes the Euclidean inner product in R
m; the angle between nonzero vectors y

and z is denoted as ∠(y, z) ∈ [0, π], where cos∠(y, z) = 〈y, z〉/(|y||z|); span{v1, ..., vp}
(aff{v1, ..., vp}) denotes the subspace (affine hull) generated by vectors v1, ..., vp.

2 Preliminaries

In this section, we give preliminaries on graph theory [1], convex analysis [2], the consensus

model with disturbances [26].
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2.1 Graph Theory

A multi-agent network can be described by a directed graph G = (V, E), where V =

{1, 2, ..., n} is the node (or agent) set and E ⊆ V × V the arc set with the arc (j, i) ∈ E
describing that node i can receive the information of node j. Here (i, i) 6∈ E for all i. Let

Ni = {j ∈ V|(j, i) ∈ E} be the set of neighbors of node i. A path from node i to node

j in G is a sequence (i, i1), (i1, i2), ..., (ip, j) of arcs in E . Graph G is said to be strongly

connected if there exists a path from i to j for each pair of nodes i, j ∈ V. Graph G is

undirected when (j, i) ∈ E if and only if (i, j) ∈ E .
The communication over the network under consideration is switching and character-

ized by a directed graph process Gσ(t) = (V, Eσ(t)), t ≥ 0, with Eσ(t) the arc set of the graph
at time t. Here σ : [0,∞) → Q is a piecewise constant function to describe the time-varying

graph process, where Q is the index set of all possible graphs on V. Let ∆ := {tk, k ≥ 0}
with t0 = 0 denote the set of all switching moments of switching graph Gσ. As usual, we

assume there is a dwell time τ > 0 between two consecutive graph switching moments,

i.e., tk+1− tk ≥ τ for all k. The switching graph Gσ is uniformly jointly strongly connected

(UJSC) if there exists T > 0 such that the union graph (V,∪t≤s<t+TE(s)) is strongly

connected for t ≥ 0.

2.2 Convex Analysis

A set K ⊆ R
m is convex if λz1 + (1 − λ)z2 ∈ K for any z1, z2 ∈ K and 0 < λ < 1. For a

closed convex set K in R
m, we can associate with any z ∈ R

m a unique element PK(z) ∈ K

satisfying |z−PK(z)| = infy∈K |z− y| =: |z|K , where PK is called the projection operator

onto K. We have the following properties for the projection operator PK .

Lemma 2.1 Let K be a closed convex set in R
m. Then

(i) 〈y − PK(y), z − PK(y)〉 ≤ 0 for any y and z ∈ K;

(ii) |PK(y)− z| ≤ |y − z| for any y ∈ R
m and any z ∈ K;

(iii) 〈y − PK(y), z − y〉 ≤ |y|K(|z|K − |y|K) for any y and z;

(iv) |PK(y)− PK(z)| ≤ |y − z| for any y and z.

Proof. (i) is an equivalent definition of convex projection; (ii) comes from Lemma 1

(b) in [20]. We now show (iii). First of all, 〈y − PK(y), PK(z) − PK(y)〉 ≤ 0 by (i). It is

also clear that 〈y − PK(y), z − PK(z)〉 ≤ |y|K|z|K . Then
〈

y − PK(y), z − y
〉

=
〈

y − PK(y), z − PK(z) + PK(z)− PK(y) + PK(y)− y
〉

≤ |y|K|z|K − |y|2K.
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Thus, the inequality (iii) follows. (iv) is the standard non-expansive property. �

The following lemma characterizes the distance between convex sets and their nonempty

intersection, which can be found from Proposition 5.6.1 on page 72 in [6].

Lemma 2.2 Let K1, ..., Kn be closed convex sets in R
m. If

⋂n
i=1 int(Ki) 6= ∅, then for

every bounded set S, there exists κS > 0 such that

|x|2⋂n
i=1 Ki

≤ κS max
1≤i≤n

|x|2Ki
, ∀x ∈ S.

The following lemma can be found from Proposition 1 on page 24 in [3].

Lemma 2.3 Let K be a closed convex set in R
m. Then |x|2K is continuously differentiable

and

∇|x|2K = 2(x− PK(x)).

A function ϕ(·) : Rm → R is said to be convex if ϕ(λz1 + (1 − λ)z2) ≤ λϕ(z1) + (1 −
λ)ϕ(z2) for any z1, z2 ∈ R

m and 0 < λ < 1, and it is ℓ-strongly convex if ϕ(λz1+(1−λ)z2) ≤
λϕ(z1) + (1 − λ)ϕ(z2) − 1

2
ℓλ(1 − λ)|z1 − z2|2 for any z1, z2 ∈ R

m and 0 < λ < 1. The

following two inequalities hold for a continuously differentiable convex and ℓ-strongly

convex function ϕ, respectively:

ϕ(y) ≥ ϕ(x) + 〈y − x,∇ϕ(x)〉, ∀x, y ∈ R
m, (1)

ϕ(y) ≥ ϕ(x) + 〈y − x,∇ϕ(x)〉+ ℓ

2
|y − x|2, ∀x, y ∈ R

m. (2)

The upper Dini derivative of function g : (a, b) → R at t ∈ (a, b) is defined as

D+g(t) = lim sup
s→0+

g(t+ s)− g(t)

s
.

g is non-increasing on (a, b) if D+g(t) ≤ 0, ∀t ∈ (a, b). The following result was shown in

[8].

Lemma 2.4 Let gi(t, x) : R × R
m → R, i = 1, ..., n be continuously differentiable

and g(t, x) = max1≤i≤n gi(t, x). Then D+g(t, x(t)) = maxi∈I(t) ġi(t, x(t)) with I(t) =
{

i|gi(t, x(t)) = g(t, x(t)), 1 ≤ i ≤ n
}

.

2.3 Consensus

Consider the following consensus model with disturbance wi,

żi(t) =
∑

j∈Ni(t)

(zj(t)− zi(t)) + wi(t), i = 1, ..., n, (3)

6
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where the disturbance wi(t) : [0,∞) → R is continuous. System (3) has a continuous

solution, which satisfies (3) for almost all t except at the switching moments of switching

graph Gσ. Consensus is said to be achieved for system (3) if for any initial condition,

limt→∞ |zi(t)− zj(t)| = 0 for all 1 ≤ i, j ≤ n.

The next two lemmas can be obtained from the proofs of Theorem 4.2 and Proposition

4.10 in [26], respectively.

Lemma 2.5 If the switching graph Gσ is UJSC for system (3), then there exist 0 < β < 1

and B0, B1 > 0 such that

H((k + 1)B0) ≤ βH(kB0) +B1

∫ (k+1)B0

kB0

max
1≤i≤n

|wi(t)|dt, ∀k ≥ 0,

H(t) ≤ H(kB0) +B1

∫ (k+1)B0

kB0

max
1≤i≤n

|wi(t)|dt, ∀t : kB0 ≤ t < (k + 1)B0,

where H(t) = max1≤i,j≤n |zi(t)− zj(t)|.

Lemma 2.6 Suppose the switching graph Gσ of system (3) is UJSC and limt→∞wi(t) = 0

for all i. Then consensus is achieved for system (3).

In the following consensus analysis, we need to extend the standard Barbalat’s Lemma

to switching cases. A function g : [0,∞) → R is uniformly continuous with respect to time

intervals (sk, sk+1), s ≥ 0 with sk+1−sk ≥ υ for some υ > 0, if, for any ε > 0, there is δ > 0,

which depends on {sk}k≥0 and g, such that, for any k and r1, r2 with sk < r1 < r2 < sk+1,

|g(r2)− g(r1)| ≤ ε when |r2 − r1| ≤ δ. We now introduce an extended Babalat’s Lemma,

which can be found in [16].

Lemma 2.7 For a continuous function g, suppose limt→∞ g(t) = g0 exists and g is contin-

uously differential on each interval (sk, sk+1), whose derivative ġ is uniformly continuous

with respect to time intervals (sk, sk+1) for k ≥ 0. Then limt→∞ ġ(t) = 0.

3 Approximate Projection and Problem Formulation

In this section, we introduce the distributed SDOP and the distributed continuous-time

approximate projected algorithm.

Consider a network of n agents (or nodes) and bounded closed convex sets Xi ⊆ R
m

for i = 1, ..., n, with Xi only associated with (or known by) agent i. The goal of the

network is to cooperatively find a point x∗ with the shortest quadratic distance from the

n closed convex sets:

x∗ ∈ argmin f(x), f(x) =

n
∑

i=1

|x|2Xi
. (4)

7
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Projection-based methods have been widely adopted in the literature to solve CIP

and constrained optimization problems, and almost all methods require that the exact

projection can be obtained [6, 17, 18, 20, 22, 23, 27]. Since the exact projection may

be difficult to obtain in practice, each agent may only obtain an approximate projection

point located on the convex set surface and near the exact projection point. To be strict,

we give the following definition.

Definition 3.1 Let 0 ≤ θ < π/2 and K be a closed convex set in R
m. Define sets

CK(v, θ) = v +
{

z| 〈z, PK(v)− v〉 ≥ |z||v|K cos θ
}

,

b(v,K) =
{

z
∣

∣z ∈ bd(K), [v, z] ∩ bd(K) = {z}
}

.

The approximate projection Pa
K(v, θ) of point v onto K is defined as the following set:

Pa
K(v, θ) =

{

CK(v, θ) ∩ b(v,K), if v 6∈ K;

{v}, otherwise.

Figure 1: The approximate projection of point v onto closed convex set K.

As shown in Fig. 1, the cone CK(v, θ)− v consists of all vectors having angle with the

direction PK(v)− v less than θ, and b(v,K) is the region on the boundary of K that the

agent can “see” starting from point v. Obviously, the exact projection PK(v) ∈ Pa
K(v, θ)

for any v ∈ R
m and 0 ≤ θ < π/2 and Pa

K(v, 0) = {PK(v)}.

Remark 3.1 The approximate projection is more “practical” than the exact projection.

For example, a robot likes to get its exact projection point on its convex target set when it

approaches the set. However, in reality, it may select another point on the set surface as the

exact one by mistake or to avoid expensive measurement or tedious computation. Then

the selected projection point becomes an approximate one. In other words, this concept

8
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captures the situation when agents can only obtain some point on the set surface, which

may not be but close to the exact projection point. Note that this concept is different from

that given in [15], where the approximate projection point is located in a “triangle” region

specified by v, the hyperplane of K on PK(v) and the approximate angle θ.

We next give some basic assumptions for our following analysis.

A1 (Connectivity) The switching graph Gσ is UJSC.

A2 (Convex Sets) (i) The boundary surfaces of convex sets Xi, i = 1, ..., n are regular (or

smooth);

(ii) The convex set Xi contains nonempty interior points for i = 1, ..., n.

The definition of regularity or smoothness of a manifold can be easily found (referring

to Definition 1 on page 52 in [7] for more details). Note that the Gaussian curvature of

regular (or smooth) surfaces of closed bounded sets are bounded. In fact, A2 is quite

mild. The boundaries of many well-known sets, such as the surfaces of spheres, ellipsoids,

are regular; and moreover, the assumption that set Xi ⊆ R
m contains nonempty interior

points is equivalent to dim(Xi) = m (where dim(Xi) denotes the dimension of the affine

hull of set Xi), which was also widely used in the literature.

Let P a
Xi
(·) : Rm → R

m be a continuous map with P a
Xi
(v) ∈ Pa

Xi
(v, θi(v)) for any v,

where

θi(v) = ∠(P a
Xi
(v)− v, PXi

(v)− v),

0 ≤ θi(v) < π/2. Let θi(v) = 0 for simplicity when v ∈ Xi. In this paper, θi(v) is referred

to as the approximate angle of v onto Xi. The following assumption was used in Lou et

al. (2014).

A3 (Approximate Angle) There exists 0 < θ∗ < π/2 such that 0 ≤ θi(v) ≤ θ∗ for all i, v.

Here we propose a distributed continuous-time approximate projected algorithm:

ẋi(t) =
∑

j∈Ni(t)

(xj(t)− xi(t)) + αt(P
a
Xi
(xi(t))− xi(t)), i = 1, ..., n, (5)

where xi ∈ R
m is the state estimate of agent i for the optimal solution, Ni(t) is the

neighbor set of node i at time t, {αt} is the stepsize (0 ≤ αt ≤ α∗, α∗ > 0) and is

uniformly continuous over t. The continuity of stepsize αt and maps P a
Xi
(·) guarantees

that (5) has a solution that is continuous over [0,∞) and continuously differentiable

except at the switching moments of switching graph Gσ.

Remark 3.2 The term P a
Xi
(x) − x can be viewed as a negative “approximate” gradient

because it becomes the negative gradient of 1
2
|x|2Xi

by noting that ∇|x|2Xi
= 2(x − PXi

(x))

in the exact projection case (i.e., P a
Xi
(xi(t)) = PXi

(xi(t))). In fact, (5) with taking αt ≡ 1

and exact projection was proposed in [18] to solve the CIP.

9
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The convergence analysis of (5) is not easy because the gradient term is corrupted

with state-dependent approximation and there is no explicit expression to describe the

relationship between the approximate projection point and the exact one. To handle the

problem, we make some transformation. In the case of v 6∈ Xi, we define by P h
Xi
(v) the

intersection point of the hyperplane of Xi at PXi
(v) (the tangent plane of bd(Xi) at

PXi
(v)) with PXi

(v)−v as the normal direction and the line segment [v, P a
Xi
(v)], as shown

in Fig. 2. Clearly, P h
Xi
(v) = PXi

(v) when P a
Xi
(v) = PXi

(v). In the case of v ∈ Xi, we define

P h
Xi
(v) = P a

Xi
(v) = v. Then we can find that P h

Xi
(v) = v if and only if v ∈ Xi. We write

P a
Xi
(v)− v = γXi

(v)(P h
Xi
(v)− v),

where γXi
(v) =

|P a
Xi

(v)−v|
|Ph

Xi
(v)−v| ≥ 1 if P h

Xi
(v) 6= v, and γXi

(v) = 1 otherwise.

Figure 2: An illustration for P h
Xi
(v).

Rewrite αt(P
a
Xi
(xi(t)) − xi(t)) = αi,t(P

h
Xi
(xi(t)) − xi(t)), with the virtual stepsize of

agent i defined as

αi,t =







γXi
(xi(t))αt =

|P a
Xi

(xi(t))−xi(t)|
|Ph

Xi
(xi(t))−xi(t)|αt, if P h

Xi
(xi(t)) 6= xi(t);

αt, otherwise.

Clearly, αi,t ≥ αt. Although the designed stepsize αt is the same for all agents, agent i

has its own virtual stepsize αi,t based on its own approximate projection. We express (5)

in another form with heterogeneous virtual stepsizes:

ẋi(t) =
∑

j∈Ni(t)

(xj(t)− xi(t)) + αi,t(P
h
Xi
(xi(t))− xi(t)), i = 1, ..., n. (6)

Then we give a definition for our problem as follows.

10
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Definition 3.2 The shortest distance optimization problem (SDOP) is solved by (5) or

(6) if, for any initial condition xi(0) ∈ R
m, i = 1, ..., n, there exists x∗ ∈ argmin

∑n
i=1 |x|2Xi

such that

lim
t→∞

xi(t) = x∗, i = 1, ..., n.

In the following three sections, we first establish some basic results, and then present

the convergence results in the nonempty intersection and empty intersection cases.

4 Discussions on Boundedness and Stepsizes

In this section, we show the state boundedness and establish an “equivalent” relationship

between the designed stepsize αt and the virtual stepsize αi,t.

4.1 Boundedness of System States

Denote θi,t = θi(xi(t)) for simplicity. Note that θi,t is also equal to ∠(P h
Xi
(xi(t)) −

xi(t), PXi
(xi(t)) − xi(t)). Here we study the boundedness of xi(t), i ∈ V, t ≥ 0 of (6)

with the approximate angle θi,t.

Let Xc = co{Xi, i = 1, ..., n} be the convex hull of the sets Xi, i = 1, ..., n, ξ :=

supz1,z2∈Xc
|z1 − z2|, which is finite due to the boundedness of Xis.

Theorem 4.1 (i) For any initial condition xi(0), i ∈ V, the system states xi(t), i ∈ V, t ≥
0 are bounded;

(ii) Suppose lim inft→∞ αt > 0. Then, for any 0 < θ < π/2 and any initial condition

xi(0), i ∈ V,

lim sup
t→∞

|xi(t)|Xc
≤ max

{ ξ

sin θ
, ξ
(

tan θ +
√

(tan θ)2 + 2 tan θ
)}

.

Furthermore, if A3 holds, then for any initial condition xi(0), i ∈ V,

lim sup
t→∞

|xi(t)|Xc
≤ ξ

(

tan θ∗ +
√

(tan θ∗)2 + 2 tan θ∗
)

.

Remark 4.1 A discrete-time algorithm was proposed in [15] to solve CIP with approx-

imate projection, where π/4 was found to be a critical approximate angle ensuring the

boundedness of system states in the case of αi,k ≡ 1 and θi,k ≡ θ, 0 ≤ θ < π/2. To be spe-

cific, the states are uniformly bounded with respect to all initial conditions when θ < π/4

and unbounded for most all initial conditions when θ > π/4. Different from this critical

approximate angle result, Theorem 4.1 shows that the continuous-time system states are

always bounded for any initial condition no matter how large θ is, and moreover, the states

are uniformly bounded for all initial conditions with fixing αi,t ≡ 1.

11
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Remark 4.2 Notice that the boundedness results in Theorem 4.1 do not require any

connectivity of communication graph. Moreover, when the exact projection is obtained

(θi,t = 0), Theorem 4.1 (ii) implies that all agents converge to the convex hull spanned by

all the convex sets, which is related to the target aggregation and leader-following problems

[13, 24, 25].

Here we present a result for a simple case: there is only one node in the network. Its

set is bounded and denoted as X∗. We denote the states of this node as x∗(t), t ≥ 0 driven

by the continuous-time approximate projected dynamical system:

ẋ∗(t) = αt(P
a
X∗
(x∗(t))− x∗(t)),

where P a
X∗
(x∗(t)) ∈ Pa

X∗
(x∗(t), θ∗(x∗(t))). Noticing that

〈

x∗(t)− PX∗
(x∗(t)), P a

X∗
(x∗(t))−

PX∗
(x∗(t))

〉

≤ 0, we have

d|x∗(t)|2X∗

dt
= 2

〈

x∗(t)− PX∗
(x∗(t)), ẋ∗(t)

〉

≤ −2αt|x∗(t)|2X∗
.

Then for any initial condition x∗(0) and any stepsize {αt}, |x∗(t)|X∗
≤ |x∗(0)|X∗

always

holds.

Now we present the proof of Theorem 4.1.

Proof. Let t 6∈ ∆. Denote ~i(t) = 1
2
|xi(t)|2Xc

, ~(t) = max1≤i≤n ~i(t). By Lemmas 2.3

and 2.4, we have

D+
~(t) = max

i∈I(t)
〈xi(t)− PXc

(xi(t)), ẋi(t)〉

= max
i∈I(t)

〈

xi(t)− PXc
(xi(t)),

∑

j∈Ni(t)

(xj(t)− xi(t)) + αi,t(P
h
Xi
(xi(t))− xi(t))

〉

, (7)

where I(t) =
{

i|i ∈ V, ~i(t) = ~(t)
}

. Take i ∈ I(t). Lemma 2.1 (iii) implies that, for any

j,

〈xi − PXc
(xi), xj − xi〉 ≤ |xi|Xc

(|xj |Xc
− |xi|Xc

) ≤ 0. (8)

According to Lemma 2.1 (i), 〈xi − PXc
(xi), PXi

(xi) − PXc
(xi)〉 ≤ 0 due to Xi ⊆ Xc.

Therefore,

〈xi − PXc
(xi), PXi

(xi)− xi〉 ≤ −|xi|2Xc
. (9)

Moreover, recalling the definitions of P h
Xi
(xi(t)) and θi,t, we have 〈xi(t)−PXi

(xi(t)), P
h
Xi
(xi(t))−

12
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PXi
(xi(t))〉 = 0 and |P h

Xi
(xi(t))− PXi

(xi(t))| = tan θi,t|xi(t)|Xi
. Then

〈xi(t)− PXc
(xi(t)), P

h
Xi
(xi(t))− PXi

(xi(t))〉
= 〈xi(t)− PXi

(xi(t)) + PXi
(xi(t))− PXc

(xi(t)), P
h
Xi
(xi(t))− PXi

(xi(t))〉
≤ |PXi

(xi(t))− PXc
(xi(t))||P h

Xi
(xi(t))− PXi

(xi(t))|
≤ ξ tan θi,t|xi(t)|Xi

≤ ξ tan θi,t(|xi(t)|Xc
+ ξ), (10)

where the last inequality follows from the relation |xi|Xi
≤ |xi − PXc

(xi)| + |PXc
(xi) −

PXi
(xi)| ≤ |xi|Xc

+ ξ. Thus, based on (9) and (10), we have

〈xi(t)− PXc
(xi(t)), P

h
Xi
(xi(t))− xi(t)〉 ≤ −|xi(t)|2Xc

+ ξ tan θi,t(|xi(t)|Xc
+ ξ). (11)

With (7), (8), (11) and i ∈ I(t), we obtain

D+
~(t) ≤ αi,t(−2~(t) + ξ tan θi,t(

√

2~(t) + ξ)).

We complete the proof by the following analysis.

(i) It is easy to see that for any 0 < θ̂ < π/2, θi,t ≤ θ̂ when |xi(t)|Xc
≥ ξ/ sin θ̂. Then

D+
~(t) ≤ 0 when t 6∈ ∆ and

~(t) ≥ max

{

ξ2

2(sin θ̂)2
,
ξ2(tan θ̂)2

4
+
ξ2 tan θ̂

2

(

1 +

√

(tan θ̂)2 + 4 tan θ̂

2

)

}

.

Hence, system states are bounded for any initial condition.

(ii) Let α∗ = (lim inft→∞ αt)/2 > 0 and t̂ be the moment such that when t ≥ t̂,

αi,t ≥ αt ≥ α∗. Then D+
~(t) ≤ −α∗~(t) once t ≥ t̂, t 6∈ ∆ and

~(t) ≥ max

{

ξ2

2(sin θ)2
, ξ2(tan θ)2 + ξ2 tan θ

(

1 +
√

(tan θ)2 + 2 tan θ
)

}

.

Therefore, ~(t) is not greater than the number in the preceding inequality when t ≥ t̂ and

t 6∈ ∆. The second conclusion can be obtained directly based on the above arguments.

Thus, the conclusion follows from the continuity of xi(t). �

4.2 Equivalence between Stepsizes

To obtain the convergence conditions, we establish a relationship between the designed

stepsize αt and virtual stepsizes αi,t. To show that they are equivalent in the sense that

they can be bounded by each other, it suffices to establish the boundedness of γXi
(·).

Let S = Xc + B(0, r0), where B(0, r0) denotes the ball with center zero and radius

r0 > 0. Denote µi(v) = ∠(PXi
(v)− P a

Xi
(v), v − P a

Xi
(v)).

13



Lou et al. Distributed Continuous-time Approximate Projection Protocols

Lemma 4.1 If the map P a
Xi
(·) satisfies

inf
v∈S\Xi,P a

Xi
(v)6=PXi

(v)
µi(v) > 0, (12)

then supv∈S γXi
(v) <∞.

Its proof is in the Appendix. The following result provides a condition to guarantee

the condition (12).

Lemma 4.2 Suppose A2 and A3 hold. Then (12) holds.

The proof is also in the Appendix. Because the states of (6) are bounded by Theorem

4.1, we take sufficiently large r0 such that S contains all the system states. We next show

that A2 and A3 imply the equivalence between {αt} and {αi,t}.
Clearly, αt = αi,t when xi(t) ∈ Xi or P

a
Xi
(xi(t)) = PXi

(xi(t)). Then we only need to

focus on the case when xi(t) 6∈ Xi and P
a
Xi
(xi(t)) 6= PXi

(xi(t)). By (39) in the Appendix,

γXi
(xi(t)) ≤ 1 + 1

sinµi,t
sin θi,t, where µi,t := µi(xi(t)). Then we have

Theorem 4.2 Under A2 and A3,

αt ≤ αi,t ≤ Ci,tαt ≤ Ciαt, ∀t, (13)

where Ci,t = 1 + 1
sinµi

sin θi,t, Ci = 1 + 1
sinµi

,

µi := inf
t≥0,xi(t)6∈Xi,P a

Xi
(xi(t))6=PXi

(xi(t))
µi,t

≥ inf
v∈S\Xi,P a

Xi
(v)6=PXi

(v)
µi(v) > 0. (14)

Note that the first inequality of (14) follows from xi(t) ∈ S and the second one from

Lemma 4.2. In fact, (13) somehow characterizes the bounded bending property of smooth

surfaces, which helps convert the convergence conditions on αi,t into the conditions on αt.

Remark 4.3 As Theorem 4.2 shows, A2 and A3 guarantee the equivalence between the

designed stepsize and the virtual stepsize. In fact, with (13), we found that under A1, the

optimal convergence established in the next two sections hold for general convex sets (not

necessary to satisfy A2 and A3).

14
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5 Nonempty Intersection Case

In this section, we show the convergence result in the nonempty intersection case, ∩n
i=1Xi 6=

∅. Clearly, X0 := ∩n
i=1Xi is the optimal solution set of min

∑n
i=1 |x|2Xi

.

Theorem 5.1 Suppose A1-A3 hold and
⋂n

i=1Xi 6= ∅. Then SDOP is solved by system (6)

if
∫∞
0
αtdt = ∞,

∫∞
0
αt tan θ

+
t dt <∞. Furthermore, in the special case when θi,t = 0 ∀i, t,

SDOP is solved by (6) if and only if
∫∞
0
αtdt = ∞.

Remark 5.1 When the intersection set of all Xis is nonempty, SDOP (4) is equivalent

to CIP of finding a point in X0 [11, 12, 14, 15, 17, 18, 20, 27]. The optimal consensus

algorithm based on the exact projection presented in [18] is a special case of (5) with

taking αt ≡ 1 and θi,t ≡ 0, which is consistent with Theorem 5.1. Theorem 5.1 is also

consistent with the convex intersection computation results of discrete-time algorithms in

[15, 20, 27].

Denote α+
t = max1≤i≤n αi,t, θ

+
t = max1≤i≤n θi,t, and the distance functions

h(t) = max
1≤i≤n

hi(t), hi(t) =
1

2
|xi(t)|2X0

, i = 1, ..., n, t ≥ 0.

Lemma 5.1 Suppose ∩n
i=1Xi 6= ∅. Then D+h(t) ≤ 2α+

t tan θ+t h(t) for any t 6∈ ∆.

Proof. Let t 6∈ ∆. Similar to (7), we have

D+h(t) = max
i∈I(t)

〈

xi(t)− PX0(xi(t)),
∑

j∈Ni(t)

(xj(t)− xi(t)) + αi,t(P
h
Xi
(xi(t))− xi(t))

〉

, (15)

where I(t) =
{

i|i ∈ V, hi(t) = h(t)
}

. Take i ∈ I(t). Similar to (8), we also have
〈

xi(t)− PX0(xi(t)), xj(t)− xi(t)
〉

≤ |xi(t)|X0

(

|xj(t)|X0 − |xi(t)|X0

)

≤ 0. (16)

From
〈

xi(t)− PXi
(xi(t)), P

h
Xi
(xi(t))− PXi

(xi(t))
〉

= 0, we have
〈

xi(t)− PX0(xi(t)), P
h
Xi
(xi(t))− PXi

(xi(t))
〉

=
〈

PXi
(xi(t))− PX0(xi(t)), P

h
Xi
(xi(t))− PXi

(xi(t))
〉

≤ |xi(t)|X0 tan θi,t|xi(t)|Xi

≤ tan θi,t|xi(t)|2X0
, (17)

where the inequalities follow from Lemma 2.1 (ii) by setting K = Xi, y = xi(t), z =

PX0(xi(t)) ∈ Xi, and |xi(t)|Xi
≤ |xi(t)|X0 (due to X0 ⊆ Xi). Moreover, it follows from

Lemma 2.1 (i) that
〈

PXi
(xi(t))− PX0(xi(t)), PXi

(xi(t))− xi(t)
〉

≤ 0 and then
〈

xi(t)− PX0(xi(t)), PXi
(xi(t))− xi(t)

〉

= −|xi(t)|2Xi
+
〈

PXi
(xi(t))− PX0(xi(t)), PXi

(xi(t))− xi(t)
〉

≤ −|xi(t)|2Xi
. (18)

15
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Therefore, based on (17) and (18) we have

〈

xi(t)− PX0(xi(t)), P
h
Xi
(xi(t))− xi(t)

〉

=
〈

xi(t)− PX0(xi(t)), PXi
(xi(t))− xi(t)

〉

+
〈

xi(t)− PX0(xi(t)), P
h
Xi
(xi(t))− PXi

(xi(t))
〉

≤ −|xi(t)|2Xi
+ tan θi,t|xi(t)|2X0

≤ tan θi,t|xi(t)|2X0
. (19)

From (15), (16) and (19), D+h(t) ≤ 2αi,t tan θi,th(t) ≤ 2α+
t tan θ+t h(t). Thus, the

conclusion follows. �

Lemma 5.2 If ∩n
i=1Xi 6= ∅ and

∫∞
0
α+
t tan θ+t dt <∞, then limt→∞ h(t) is a finite number.

Proof. Lemma 5.1 implies h(t) ≤ e2
∫
∞

0 α+
s tan θ+s dsh(0) and then h̄ := supt≥0 h(t) is a

finite number. We then show the conclusion by contradiction. Hence suppose there are

two limit points h̄1 6= h̄2 of {h(t)}t≥0 such that limk→∞ h(s1k) = h̄1 and limk→∞ h(s2k) =

h̄2. Without loss of generality, we assume h̄1 < h̄2. Clearly, for any ε > 0 for which

(1 + ε)(h̄1 + ε) ≤ h̄1+h̄2

2
, there is an integer T0 > 0 such that e

2
∫
∞

s1
k
α+
s tan θ+s ds ≤ 1 + ε and

|h(s1k)− h̄1| ≤ ε for k ≥ T0. According to Lemma 5.1, for any t ≥ s1k with k ≥ T0,

h(t) ≤ e
2
∫
∞

s1
k
α+
s tan θ+s ds

h(s1k) ≤ (1 + ε)(h̄1 + ε) ≤ h̄1 + h̄2
2

< h̄2,

which contradicts that h̄2 is also a limit point of {h(t)}t≥0. Thus, the conclusion follows.

�

By Lemma 5.2, if
∫∞
0
α+
t tan θ+t dt < ∞, then the sequence {h(t)}t≥0 converges to a

finite number denoted as h∗,

lim
t→∞

h(t) = h∗.

Denote h+i = lim supt→∞ hi(t), h
−
i = lim inft→∞ hi(t), i ∈ V. Clearly, 0 ≤ h−i ≤ h+i ≤ h∗

for all i.

Lemma 5.3 Suppose A1 holds and ∩n
i=1Xi 6= ∅. If

∫∞
0
α+
t tan θ+t dt <∞ and there exists

some node i0 ∈ V such that h−i0 < h∗, then h∗ = 0.

The proof of Lemma 5.3 can be completed with similar arguments in Lemma 4.3 in

[18], which is omitted here.

Now it is time to prove Theorem 5.1.

Proof of Theorem 5.1. Denote α+
t = max1≤i≤n αi,t. From (13), we find that

∫∞
0
αtdt =

∞,
∫∞
0
αt tan θ

+
t dt < ∞ are equivalent to

∫∞
0
α+
t dt = ∞,

∫∞
0
α+
t tan θ+t dt < ∞, respec-

tively.

Based on the similar arguments in Lemmas 5.1 and 5.2, we can show that, for any

z ∈ X0, the limit limt→∞ max1≤i≤n |xi(t) − z|2 exists. Therefore, if consensus is achieved

16
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and h∗ = 0, all agents will converge to a common point in X0. Thus, it suffices to show

that consensus is achieved and h∗ = 0.

Because

|P h
Xi
(xi(t))− xi(t)| =

|xi(t)|Xi

cos θi,t
≤

√

2h(t)

cos θ∗
, (20)

it follows that, if h∗ = 0, the second term on the right-hand side of (6) tends to zero as

t → ∞ and then the consensus is achieved for system (6) by Lemma 2.6. Therefore, it

suffices to show h∗ = 0 in what follows.

In fact, if there is some node i0 with h
−
i0
< h∗, then h∗ = 0 from the previous statements.

Therefore, we need to prove h∗ = 0 from h+i = h−i = h∗, ∀i by contradiction. Clearly, for

any ε > 0, there is t̄ > 0 such that when t ≥ t̄, |xi(t)|X0 ≤
√
2h∗ + ε =: φ. We complete

the proof by the following two steps.

Step (i). Suppose h+i = h−i = h∗ > 0, ∀i. We claim that consensus can be achieved for

system (6).

We first show that limt→∞ αi,t|xi(t)|2Xi
= 0 by contradiction. Hence suppose there exist

i0 and an increasing subsequence {sk}k≥0 with limk→∞ sk = ∞ such that αi0,sk|xi0(sk)|2Xi0
≥

c for some c > 0. Without loss of generality, we assume s0 is sufficiently large such that

s0 ≥ t̄ and
∫∞
s0
α+
t tan θ+t dt ≤ ε/

√
2h∗.

From Lemma 2.3, the boundedness of system states and (20), we know that |xi0(t)|2Xi0

is uniformly continuous on [0,∞). This along with the uniform continuity of αt again

implies that αt|xi0(t)|2Xi0
is also uniformly continuous on [0,∞). Therefore, there is δ > 0

such that αi0,t|xi0(t)|2Xi0
≥ c/2 when sk ≤ t ≤ sk+δ. Without loss of generality, we assume

[sk, sk + δ] ∩∆ = ∅ for all k. We have

dhi0(t)

dt
≤

∑

j∈Ni0
(t)

|xi0(t)|X0(|xj(t)|X0 − |xi0(t)|X0)− αi0,t|xi0(t)|2Xi0
+ αi0,t tan θi0,t|xi0(t)|2X0

and then for sk ≤ t ≤ sk + δ,

D+|xi0(t)|X0 ≤
∑

j∈Ni0
(t)

(|xj(t)|X0 − |xi0(t)|X0)−
αi0,t|xi0(t)|2Xi0

φ
+ αi0,t tan θ

+
t φ (21)

≤ (n− 1)
(

φ− |xi0(t)|X0

)

− c

2φ
+ α+

t tan θ+t φ,

which leads to

|xi0(t)|X0 ≤ e−(n−1)(t−sk)|xi0(sk)|X0 + (1− e−(n−1)(t−sk))
(

φ− c

2(n− 1)φ

)

+ φ

∫ t

sk

e−(n−1)(t−s)α+
s tan θ+s ds

17
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and then

|xi0(sk + δ)|X0 ≤ ζ(
√
2h∗ + ε) + (1− ζ)

(√
2h∗ + ε− c

2(n− 1)φ

)

+ ε

√
2h∗ + ε√
2h∗

, (22)

where 0 < ζ = e−(n−1)δ < 1. We can find that the right-hand side of (22) is less than√
2h∗ − c(1−ζ)

4(n−1)
√
2h∗

when ε is sufficiently small, which contradicts limt→∞ hi0(t) = h∗.

Thus, limt→∞ αi,t|xi(t)|2Xi
= 0, ∀i. From Theorem 4.2 we have 0 ≤ αi,t ≤ Ciα

∗, and hence

limt→∞ αi,t|xi(t)|Xi
= 0, ∀i. According to the equality in (20) and Lemma 2.6, consensus

is achieved for system (6).

Step (ii). Suppose h+i = h−i = h∗ > 0, ∀i. We will show that lim inft→∞
∑n

i=1 |xi(t)|2Xi
=

0 by contradiction.

Hence suppose there is b > 0 such that
∑n

i=1 |xi(t)|2Xi
≥ b for all sufficiently large t.

Let |x(t)|X0 = (|x1(t)|X0 , ..., |xn(t)|X0)
T , y(t) = (|x1(t)|2X1

, ..., |xn(t)|2Xn
)T ,

D(t) = diag{α1,t, ..., αn,t} (a diagonal matrix with diagonal entries αi,t). Then by (21) we

have

D+|x(t)|X0 ≤ −Lσ(t)|x(t)|X0 −
1

φ
D(t)y(t) + φα+

t tan θ+t 1, (23)

where Lσ(t) is the Laplacian of graph Gσ(t) with (Lσ(t))ij = −1 if j ∈ Ni(t), (Lσ(t))ij = 0 if

j 6= i, j 6∈ Ni(t) and (Lσ(t))ii = |Ni(t)|. Recall that tk, k ≥ 0 are all the switching moments

of switching graph Gσ with tk+1 − tk ≥ τ, ∀k. It is easy to see that we can add some new

“switching moments” in {tk}k≥0, denoted as {t′k}k≥0, such that 2τ ≥ t′k+1 − t′k ≥ τ, ∀k.
From (23) we have

|x(t′k+1)|X0 ≤ e
−Lσ(t′

k
)(t

′

k+1−t′
k
)|x(t′k)|X0+

∫ t′
k+1

t′
k

e
−Lσ(t′

k
)(t

′

k+1−t)(− D(t)y(t)

φ
+ φα+

t tan θ+t 1
)

dt.

Note that for any s > 0, e
−sLσ(t′

k
) is a stochastic matrix (with nonnegative entries and

all row sums are ones) and the graph Gσ(t′
k
) is a subgraph of the graph associated with

matrix e
−sLσ(t′

k
) . Then applying the similar arguments given in the proof of Theorem 4.1

in [15] we can show that lim inf t→∞
∑n

i=1 |xi(t)|2Xi
= 0.

Then there is a subsequence {sk}k≥0 with limk→∞ sk = ∞ such that limk→∞ |xi(sk)|Xi
=

0 for all i. Because we have shown that consensus is achieved in Step (i), limk→∞ |xi(sk)|Xj
=

0 for all i, j, which leads to limk→∞ hi(sk) = 0 for all i. Thus, h∗ = limt→∞ hi(t) = 0, which

contradicts h+i = h−i = h∗ > 0. It follows that h+i = h−i = h∗ = 0 and then the first con-

clusion is proved.

Notice that αi,t = αj,t = αt ∀i, j, t and P h
Xi
(xi(t)) = P a

Xi
(xi(t)) = PXi

(xi(t)) in the case

of θi,t = 0 ∀i, t. Let ̟i(t) = αt

(

PXi
(xi(t))− xi(t)

)

. Then (6) can be written as

ẋ(t) = −(Lσ(t) ⊗ Im)x(t) +̟(t),

18
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where x(t) = (xT1 (t), ..., x
T
n (t))

T and ̟(t) = (̟T
1 (t), ..., ̟

T
n (t))

T . Hence,

x(t′k+1) = e
−(Lσ(t′

k
)⊗Im)(t′

k+1−t′
k
)
x(t′k) + ϕ(t′k),

where ϕ(t′k) =
∫ t′

k+1

t′
k

e
−(Lσ(t′

k
)⊗Im)(t′

k+1−t)
̟(t)dt. Clearly, |̟i(t)| ≤

√
2h̄αt, and then |ϕ(t′k)| ≤√

2nh̄
∫ t′

k+1

t′
k

αtdt. Similar to the arguments given in Theorem 4.2 in [15], we can show the

second conclusion. �

6 Empty Intersection Case

In this section, we discuss the convergence in the empty intersection case (i.e., ∩n
i=1Xi = ∅)

and then show some properties of the optimal solution set in the following two subsections.

6.1 Convergence Analysis

The following is the convergence result for the case when ∩n
i=1Xi = ∅.

Theorem 6.1 Suppose A1-A3 hold, Gσ(t), t ≥ 0 are undirected and ∩n
i=1Xi = ∅. Then

SDOP is solved by system (6) if
∫∞
0
αtdt = ∞,

∫∞
0
α2
t dt < ∞ and

∫∞
0
αt tan θ

+
t dt < ∞;

Furthermore, if θi,t = 0 ∀i, t, then it is necessary that limt→∞ αt = 0 for (6) to solve

SDOP.

Remark 6.1 In the case of the exact projection (i.e., θi,t ≡ 0), the stepsize conditions

in Theorem 6.1 become
∫∞
0
αtdt = ∞ and

∫∞
0
α2
t dt <∞, which is a continuous-time ver-

sion of the discrete-time stochastic approximation stepsize condition
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞ given in [20] to solve the optimization problem min

∑n
i=1 fi. Therefore,

the result in Theorem 6.1 is consistent with those in [20]. Note that [22] proposed dis-

tributed continuous-time algorithms for the empty intersection case when the graphs kept

connected, which is more restrictive than the UJSC given in this paper.

From Theorems 5.1 and 6.1, we find that the sufficient optimal consensus conditions

are essentially different in these two cases. In addition to the conditions in the nonempty

intersection case, the square integrability condition is usually required in the empty in-

tersection case.

Before presenting the proof of Theorem 6.1, we show two lemmas. The first one is

taken from Lemma 7 in [20].

Lemma 6.1 Let 0 < λ < 1 and {bk}k≥1 be a positive sequence. If
∑∞

k=1 bk < ∞, then
∑∞

k=1

∑k
r=1 λ

k−rbr <∞.
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Lemma 6.2 Under A1, if
∫∞
0
α2
tdt <∞ and

∫∞
0
αt tan θ

+
t dt <∞, then

∫ ∞

0

αt|xi(t)− x̄(t)|dt <∞

for all i, where x̄(t) = 1
n

∑n
i=1 xi(t).

Proof. Let H(t) = max1≤i,j≤n |xi(t) − xj(t)|. Since |xi(t) − x̄(t)| ≤ H(t), it suffices to

show
∫∞
0
αtH(t)dt < ∞. By Theorem 4.1 (i), (5) and Lemma 2.5, for any k ≥ 0 and t,

kB0 ≤ t < (k + 1)B0, it holds that

H((k + 1)B0) ≤ βH(kB0) +B2ν(kB0), (24)

H(t) ≤ H(kB0) +B2ν(kB0), (25)

for some B2 > 0, where ν(kB0) =
∫ (k+1)B0

kB0
αtdt. Thus, with (25) we have

∫ ∞

0

αtH(t)dt =

∞
∑

k=0

∫ (k+1)B0

kB0

αtH(t)dt

≤
∞
∑

k=0

∫ (k+1)B0

kB0

αt

(

H(kB0) + B2ν(kB0)
)

dt

=
∞
∑

k=0

ν(kB0)
(

H(kB0) +B2ν(kB0)
)

. (26)

Now we estimate the term in (26). First, by Cauchy-Schwarz inequality
∫

g1g2 ≤
√

∫

g21
∫

g22, we have

∞
∑

k=0

ν2(kB0) ≤ B0

∞
∑

k=0

∫ (k+1)B0

kB0

α2
tdt = B0

∫ ∞

0

α2
t dt <∞. (27)

Second, by (24) we have H(kB0) ≤ βkH(0) +B2

∑k
r=1 β

k−rν((r − 1)B0), ∀k ≥ 1. Thus,

∞
∑

k=1

H(kB0)ν(kB0) ≤ H(0)
∞
∑

k=1

βkν(kB0) +B2

∞
∑

k=1

ν(kB0)
k

∑

r=1

βk−rν((r − 1)B0)

≤ H(0)βα∗B0

1− β
+
B2

2

∞
∑

k=1

k
∑

r=1

βk−r
(

ν2(kB0) + ν2((r − 1)B0)
)

≤ H(0)βα∗B0

1− β
+

B2

2(1− β)

∞
∑

k=1

ν2(kB0) +
B2

2

∞
∑

k=1

k
∑

r=1

βk−rν2((r − 1)B0)

<∞, (28)

where the second inequality follows from ν(kB0) ≤ α∗B0, the third one from
∑k

r=1 β
k−r ≤

1
1−β

, ∀k, and the last one from (27) and Lemma 6.1. Thus, the conclusion follows from

(26), (27) and (28). �
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It is time to give the proof of Theorem 6.1.

Proof of Theorem 6.1. We rewrite (6) as

ẋi(t) =
∑

j∈Ni(t)

(xj(t)− xi(t)) + αt(P
h
Xi
(xi(t))− xi(t)) + φi(t),

where φi(t) = (αi,t−αt)(P
h
Xi
(xi(t))−xi(t)). From the definition of P h

Xi
, we have |P h

Xi
(xi(t))−

xi(t)| = |xi(t)|Xi

cos θi,t
≤ η

cos θi,t
, where

η = sup
i,j,t

{|xi(t)− x∗|, |x̄(t)|Xi
, |xi(t)|Xj

}

is a finite number by Theorem 4.1. Moreover, it follows from (13) that |αi,t − αt| ≤
(Ci,t − 1)αt ≤ 1

sinµi
αt sin θi,t. Then from the preceding two estimates,

|φi(t)| ≤
η

sinµi
αt tan θi,t. (29)

Take x∗ ∈ argmin
∑n

i=1 |x|2Xi
. Let t 6∈ ∆. Clearly,

d|xi(t)− x∗|2
dt

= 2
〈

xi(t)− x∗, ẋi(t)
〉

= 2
〈

xi(t)− x∗,
∑

j∈Ni(t)

(xj(t)− xi(t)) + αt(P
h
Xi
(xi(t))− xi(t)) + φi(t)

〉

.

Because Gσ(t) is undirected,

d
∑n

i=1 |xi(t)− x∗|2
dt

= −2
∑

j∈Ni(t)

∣

∣xj(t)− xi(t)
∣

∣

2
+ 2

n
∑

i=1

〈

xi(t)− x∗, αt(P
h
Xi
(xi(t))− xi(t)) + φi(t)

〉

≤ 2αt

n
∑

i=1

〈

xi(t)− x∗, P h
Xi
(xi(t))− xi(t)

〉

+ 2
n

∑

i=1

〈

xi(t)− x∗, φi(t)
〉

. (30)

Then we estimate the first term in (30). Note that

〈

xi(t)− x∗, P h
Xi
(xi(t))− PXi

(xi(t))
〉

≤ |xi(t)− x∗| tan θi,t|xi(t)|Xi
≤ η2 tan θ+t . (31)

We also have

n
∑

i=1

〈

xi(t)− x∗, PXi
(xi(t))− xi(t)

〉

= −
〈

x̄(t)− x∗,
n

∑

i=1

(

x̄(t)− PXi
(x̄(t))

)〉

+ ̺(t), (32)

where

̺(t) =
n

∑

i=1

〈

xi(t)−x̄(t), PXi
(x̄(t))−x̄(t)

〉

+
n

∑

i=1

〈

xi(t)−x∗, PXi
(xi(t))−PXi

(x̄(t))+x̄(t)−xi(t)
〉

.
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Clearly, the first term in ̺(t) is not greater than η
∑n

i=1 |xi(t)− x̄(t)| and the second term

in ̺(t) is not greater than 2η
∑n

i=1 |xi(t)− x̄(t)| by Lemma 2.1 (iv). Moreover, by (29), the

second term in (30) is not greater than 2nη2αt tan θ
+
t / sinµ−, where µ− = min1≤i≤n µi.

Denote ψ(t) = 〈x̄(t) − x∗,
∑n

i=1(x̄(t) − PXi
(x̄(t)))〉, ς(t) = 6η(

∑n
i=1 αt|xi(t) − x̄(t)|) +

2nη2(1 + 1
sinµ−

)αt tan θ
+
t . In light of (30), (31) and (32), we have

d
∑n

i=1 |xi(t)− x∗|2
dt

≤ −2αtψ(t) + ς(t) ≤ ς(t) (33)

because ψ(t) is nonnegative, following from (1) and the convexity of objective function f ,

that is,

ψ(t) =
〈

x̄(t)− x∗,
1

2
∇f(x̄(t))

〉

≥ 1

2
(f(x̄(t))− f(x∗)) ≥ 0. (34)

We next show that limt→∞
∑n

i=1 |xi(t)− x∗|2 is a finite number by contradiction. Let

us suppose there exist {sk}k≥0 with sk → ∞ and ε > 0 such that
∑n

i=1 |xi(s2k+1)−x∗|2−
∑n

i=1 |xi(s2k)−x∗|2 ≥ ε for all k. According to Lemma 6.2,
∫∞
0

∑n
i=1 αt|xi(t)−x̄(t)|dt <∞.

Therefore, there isK0 > 0 such that
∫∞
K0

∑n
i=1 αt|xi(t)−x̄(t)|dt ≤ ε

24η
and

∫∞
K0
αt tan θ

+
t dt ≤

ε
8nη2(1+1/ sinµ−)

. By (33), we have that, for sufficiently large k for which t2k ≥ K0,

ε ≤
n

∑

i=1

|xi(s2k+1)− x∗|2 −
n

∑

i=1

|xi(s2k)− x∗|2

≤ 6η

∫ ∞

K0

αt

(

n
∑

i=1

|xi(t)− x̄(t)|
)

dt+ 2nη2
∫ ∞

K0

αt tan θ
+
t dt

≤ ε

2
,

which yields a contradiction. Hence, limt→∞
∑n

i=1 |xi(t)− x∗|2 is a finite number.

Thus, it follows from (33) that

2

∫ ∞

0

αt

〈

x̄(t)− x∗,
n

∑

i=1

(

x̄(t)− PXi
(x̄(t))

)〉

=

∫ ∞

0

αt

〈

x̄(t)− x∗,∇f(x̄(t))
〉

<∞.

Due to
∫∞
0
αtdt = ∞, there is a subsequence {tr}r≥0 such that limr→∞

〈

x̄(tr)−x∗,∇f(x̄(tr))
〉

=

0. Since the system states are bounded, without loss of generality we assume limr→∞ x̄(tr) =

x̂ for some x̂ (otherwise we can further find a subsequence of {tr}r≥0). Since ∇f is contin-

uous,
〈

x̂− x∗,∇f(x̂)
〉

= 0, which leads to f(x∗) ≥ f(x̂) + 〈x∗ − x̂,∇f(x̂)〉 = f(x̂). Thus,

x̂ ∈ argmin f .

Replacing x∗ with x̂, we can similarly show that limt→∞
∑n

i=1 |xi(t)− x̂|2 is also a finite

number, denoted as ρ. Moreover, the uniform continuity of αt and
∫∞
0
α2
tdt < ∞ imply

limt→∞ αt = 0. Therefore, consensus is achieved by Lemma 2.6 and then limr→∞ xi(tr) =
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x̂. Hence ρ = 0, which in return implies limt→∞ xi(t) = x̂ for all i. Then the first part is

completed.

Now we show the second part. Notice that θi,t ≡ 0 implies that αi,t = αj,t = αt ∀i, j, t
and P h

Xi
(xi(t)) = P a

Xi
(xi(t)) = PXi

(xi(t)). Let x∗ ∈ argmin
∑n

i=1 |x|2Xi
be the point

with limt→∞ xi(t) = x∗ for all i. According to the boundedness of system states, the

non-expansive property Lemma 2.1 (iv) and the uniform continuity of αt, ẋi(t) is uni-

formly continuous with respect to time intervals (tk, tk+1), k ≥ 0, which, along with

limt→∞ xi(t) = x∗, leads to limt→∞ ẋi(t) = 0 by Lemma 2.7. Therefore, because the net-

work achieves a consensus,

lim
t→∞

αt(PXi
(xi(t))− xi(t)) = lim

t→∞
αt(PXi

(x∗)− x∗) = 0, i = 1, ..., n.

According to ∩n
i=1Xi = ∅, x∗ 6∈ Xi for at least one i. Thus, limt→∞ αt = 0. �

6.2 Optimal Solutions

Theorem 6.1 showed that all agents consensually converge to an optimal solution of

min
∑n

i=1 |x|2Xi
under certain conditions. Next, we show some properties of the optimal so-

lution set of min
∑n

i=1 |x|2Xi
, denoted as X∗. According to Lemma 2.3, the optimal solution

x∗ ∈ X∗ must satisfy

∇
n

∑

i=1

|x∗|2Xi
= 2

n
∑

i=1

(x∗ − PXi
(x∗)) = 0,

or equivalently, x∗ =
∑n

i=1 PXi
(x∗)

n
. Then we have the following results.

Before showing some properties of the optimal solutions, we give a lemma first.

Lemma 6.3 Let K be a closed convex set in R
m. Then

(i) 〈y − z, PK(y)− PK(z)〉 ≥ |PK(y)− PK(z)|2 for any y and z;

(ii) |PK(y)− PK(z)| = |y − z| if and only if y − PK(y) = z − PK(z).

Proof. (i) follows from

〈y − z, PK(y)− PK(z)〉 = 〈y − PK(y), PK(y)− PK(z)〉+
∣

∣PK(y)− PK(z)
∣

∣

2

+ 〈PK(z)− z, PK(y)− PK(z)〉
≥

∣

∣PK(y)− PK(z)
∣

∣

2

because 〈y− PK(y), PK(y)− PK(z)〉 ≥ 0 and 〈PK(z)− z, PK(y)− PK(z)〉 ≥ 0 by Lemma

2.1 (i).
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For (ii), the sufficiency is obvious. The necessity can be obtained from

∣

∣y − PK(y)− (z − PK(z))
∣

∣

2
= |y − z|2 +

∣

∣PK(z)− PK(y)
∣

∣

2
+ 2〈y − z, PK(z)− PK(y)〉

= 2|y − z|2 + 2〈y − z, PK(z)− PK(y)〉
≤ 2|y − z|2 − 2

∣

∣PK(y)− PK(z)
∣

∣

2

= 0,

where the inequality follows from (i) of this lemma. �

Let X∗ be the optimal solution set of min
∑n

i=1 |x|2Xi
. Then we have the following

results.

Theorem 6.2 (i) For any x∗, y∗ ∈ X∗, we have x∗−PXi
(x∗) = y∗−PXi

(y∗), i = 1, ..., n;

(ii) For any i, either X∗ ⊆ Xi or X
∗ ∩Xi = ∅;

(iii) Let x∗ ∈ X∗, x∗ 6∈ Xi for some i. Then X∗∩line(x∗, PXi
(x∗)) = {x∗}.

Proof. (i) Since x∗ =
∑n

i=1 PXi
(x∗)

n
and y∗ =

∑n
i=1 PXi

(y∗)

n
,

|x∗ − y∗| =
∣

∣

∣

∑n
i=1(PXi

(x∗)− PXi
(y∗))

n

∣

∣

∣

≤
∑n

i=1 |PXi
(x∗)− PXi

(y∗)|
n

≤ |x∗ − y∗|

from Lemma 2.1 (iv). Therefore, |PXi
(x∗) − PXi

(y∗)| = |x∗ − y∗| for all i, which implies

the conclusion by Lemma 6.3 (ii).

(ii) This is straightforward from (i).

(iii) Let z∗ ∈ X∗∩ line(x∗, PXi
(x∗)), z∗ 6= x∗. If z∗ locates the half-line with PXi

(x∗) as

the starting point and x∗ − PXi
(x∗) as the direction, then PXi

(z∗) = PXi
(x∗) by Lemma

2.1 (i) (note that Lemma 2.1 is an equivalent definition of convex projection). Therefore,

x∗ − PXi
(x∗) 6= z∗ − PXi

(z∗), which contradicts what we have proven in (i) since both x∗

and z∗ are optimal solutions. If z∗ locates the half-line with PXi
(x∗) as the starting point

and PXi
(x∗)−x∗ as the direction, then PXi

(x∗) is also an optimal solution since the optimal

solution set X∗ is a convex set and PXi
(x∗) can be written as a convex combination of

x∗, z∗. Then 0 = PXi
(x∗)−PXi

(PXi
(x∗)) 6= x∗−PXi

(x∗), which also yields a contradiction

since both x∗ and PXi
(x∗) are optimal solutions. Thus, the conclusion follows. �

7 Fixed Stepsize and Approximate Angle

In this section, we consider the constant stepsize and approximate angle case. The follow-

ing result is about the convergence error between the agents’ estimates and the optimal

point in terms of the stepsize and approximate angle.
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Theorem 7.1 Consider system (5) with αt ≡ α > 0 and 0 ≤ θi,t ≡ θi < π/2, under

A1-A3 and that Gσ(t) is undirected for t ≥ 0.

(i) Suppose ∩n
i=1int(Xi) 6= ∅ (implies ∩n

i=1Xi 6= ∅). Then

lim sup
t→∞

|xi(t)|X0 ≤
√

κSnηd0

(4− 2β

1− β
B0B1C

√

1 + (tan θ+)2α + C tan θ+
)

+
2− β

1− β
B0B1C

√

1 + (tan θ+)2ηα.

(ii) Suppose ∩n
i=1Xi = ∅ and f(x) =

∑n
i=1 |x|2Xi

is ℓ-strongly convex. Let x∗ be the

unique optimal solution of min f . Then

lim sup
t→∞

|xi(t)− x∗| ≤
√

4nη2

ℓ

(4− 2β

1− β
B0B1C

√

1 + (tan θ+)2α + C tan θ+
)

+
2− β

1− β
B0B1C

√

1 + (tan θ+)2ηα

with S = Xc+B(0, r0), C = max1≤i≤n Ci, θ
+ = max1≤i≤n θi, Ci defined in (13), κS defined

in Lemma 2.2, and β, B0 and B1 defined in Lemma 2.5, where d0 = supi,t |xi(t)|X0, which

is finite by Theorem 4.1.

Proof. Similar to (24), H((k+1)B0) ≤ βH(kB0)+B0B1C
√

1 + (tan θ+)2ηα, and then

H(kB0) ≤ βkH(0) + (1 + β + · · ·+ βk−1)B0B1C
√

1 + (tan θ+)2ηα,

along with H(t) ≤ H(kB0) +B0B1C
√

1 + (tan θ+)2ηα, ∀kB0 ≤ t < (k + 1)B0, implies

H(t) ≤ βkH(0) + (2 + β + · · ·+ βk−1)B0B1C
√

1 + (tan θ+)2ηα

≤ H(0)

β
1

B0

(β
1

B0 )t +
2− β

1− β
B0B1C

√

1 + (tan θ+)2ηα

when kB0 ≤ t < (k + 1)B0. Then

lim sup
t→∞

H(t) ≤ 2− β

1− β
B0B1C

√

1 + (tan θ+)2ηα. (35)

Clearly, (5) can be written as

ẋi(t) =
∑

j∈Ni(t)

(xj(t)− xi(t)) + α(PXi
(x̄(t))− x̄(t)) + ωi(t), i = 1, ..., n, (36)

where x̄(t) = 1
n

∑n
i=1 xi(t),

ωi(t) = α
(

PXi
(xi(t))− PXi

(x̄(t)) + x̄(t)− xi(t)
)

+ α(P a
Xi
(xi(t))− PXi

(xi(t))).
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The first term in ωi(t) is not greater than 2αH(t) by Lemma 2.1 (iv) and the inequality

|x̄(t) − xi(t)| ≤ H(t), and the second term is not greater than Cηα tan θ+ due to the

relation
|P a

Xi
(xi(t))− PXi

(xi(t))|
|P h

Xi
(xi(t))− PXi

(xi(t))|
=

sin(π
2
+ θi,t)

sinµi,t
≤ 1

sin µi
≤ Ci,

where the equality follows from the well-known law of sines:

a1
sinA1

=
a2

sinA2
=

a3
sinA3

with a1, a2, a3 the lengths of the sides of a triangle, and A1, A2, A3 the opposite angles.

Hence,

|ωi(t)| ≤ 2αH(t) + Cηα tan θ+. (37)

Therefore, from (36) and the undirectedness of Gσ(t), we have

˙̄x(t) =
1

n

n
∑

i=1

ẋi(t) =
α

n

n
∑

i=1

(

PXi
(x̄(t))− x̄(t)

)

+
1

n

n
∑

i=1

ωi(t).

We complete the proof for both the nonempty intersection and empty intersection

case.

(i) If ∩n
i=1int(Xi) 6= ∅, then, from Lemma 2.3, for any t 6∈ ∆,

d|x̄(t)|2X0

dt
=

2α

n

〈

x̄(t)− PX0(x̄(t)),
n

∑

i=1

(

PXi
(x̄(t))− x̄(t)

)〉

+
2

n

〈

x̄(t)− PX0(x̄(t)),
n

∑

i=1

ωi(t)
〉

≤ −2α

n

n
∑

i=1

|x̄(t)|2Xi
+
(

4αH(t) + 2Cηα tan θ+
)

d0

≤ −2α

n
max
1≤i≤n

|x̄(t)|2Xi
+
(

4αH(t) + 2Cηα tan θ+
)

d0

≤ − 2α

κSn
|x̄(t)|2X0

+
(

4αH(t) + 2Cηα tan θ+
)

d0, (38)

where the first inequality follows from (18) (replacing xi(t) with x̄(t)) and (37); the third

one from Lemma 2.2. As a result, we obtain that for any t ≥ t0 ≥ 0,

|x̄(t)|2X0
≤ e

− 2α
κSn

(t−t0)|x̄(t0)|2X0
+ e

− 2α
κSn

t
∫ t

t0

e
2α
κSn

s(
4αH(s) + 2Cηα tan θ+

)

d0ds,

which combines with (35) imply

lim sup
t→∞

|x̄(t)|2X0
≤ κSnd0

2α

(

4α22− β

1− β
B0B1C

√

1 + (tan θ+)2η + 2Cηα tan θ+
)

.

This implies the conclusion by noticing the relation |xi(t)|X0 − |x̄(t)|X0 ≤ |x̄(t)− xi(t)| ≤
H(t) and (35).
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(ii) If ∩n
i=1Xi = ∅ and f(x) =

∑n
i=1 |x|2Xi

is ℓ-strongly convex, then when t 6∈ ∆,

d|x̄(t)− x∗|2
dt

=
2α

n

〈

x̄(t)− x∗,
n

∑

i=1

(

PXi
(x̄(t))− x̄(t)

)〉

+
2

n

〈

x̄(t)− x∗,
n

∑

i=1

ωi(t)
〉

≤ −α
n
(f(x̄(t))− f(x∗)) +

(

4αH(t) + 2Cηα tan θ+
)

η

≤ −αℓ
2n

|x̄(t)− x∗|2 +
(

4αH(t) + 2Cηα tan θ+
)

η,

where the first inequality follows from (34) and the second one from (2). Thus, the con-

clusion can be obtained with a proof similar to that for (i). �

8 Numerical Examples

In this section, we provide an example to illustrate the above convergence results.

Consider a network of three agents with node set V = {1, 2, 3}. The convex set Xi of

each agent i is the ball in R
2 with center ci and radius ri. Let αt =

20
t+20

, θi,t =
1

t+50
, which

satisfy the conditions in Theorems 5.1 and 6.1. We next present the state trajectories

of the three agents for the nonempty and empty intersection cases from time t = 0 to

t = 2000, respectively.

(i) Nonempty intersection case with

c1 = (−1, 0)T , c2 = (1, 0)T , c3 = (0,−2)T , r1 = 2, r2 = 1, r3 = 2.

The graphs are periodically switching over the two directed graphs G1 = (V, E1), G2 =

(V, E2) with period 1, where E1 = {(2, 1), (3, 2)}, E2 = {(1, 3)}. The initial conditions are

x1(0) = (−4, 3), x2(0) = (3, 5), x3(0) = (−6,−3), which are marked as ◦ in Fig. 3.

(ii) Empty intersection case with

c1 = (−
√
3, 0)T , c2 = (

√
3, 0)T , c3 = (0,−3)T , r1 = r2 = r3 = 1.

In this case, the (unique) optimal solution is (0,−1). The graphs are periodically switching

over the two undirected graphs G1 = (V, E1), G2 = (V, E2) with period 1, where E1 =

{(3, 2)}, E2 = {(1, 2)}. The initial conditions are x1(0) = (−3, 3), x2(0) = (4, 2), x3(0) =

(−5,−3), which are marked as ◦ in Fig. 4.

9 Conclusions

In this paper, a continuous-time method was proposed to cooperatively solve the SDOP by

a group of agents with the help of graph theory, convex analysis and geometric technique.
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Figure 3: In the nonempty intersection case, all agents converge to a common point in the

intersection set.

Figure 4: In the empty intersection case, all agents converge to the unique optimal solution

(0,−1).
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Here agents could only obtain their approximate projections and the communication graph

among agents was UJSC. It was shown that the system states were always bounded for

any approximate angle, and uniformly bounded for any stepsize with inferior limit greater

than zero. Both nonempty intersection and empty intersection cases of convex sets were

investigated with respective sufficient conditions. Moreover, the convergence error between

agents’ estimates and the optimal point was also obtained for the constant stepsize and

approximate angle case.
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Appendix

Denote ϑi(v) = ∠(v − PXi
(v), P a

Xi
(v) − PXi

(v)). By Lemma 2.1 (i), ϑi(v) ≥ π/2 when

P a
Xi
(v) 6= PXi

(v). In the following proofs, we omit all subscript i and simplify θi, ϑi, µi,

Xi as θ, ϑ, µ, X .

Proof of Lemma 4.1. Let v ∈ S\X and P a
X(v) 6= PX(v). We obtain

γX(v) =
|P h

X(v)− v|+ |P a
X(v)− P h

X(v)|
|P h

X(v)− v|

= 1 +
|P a

X(v)− P h
X(v)|

|P h
X(v)− PX(v)|

sin θ(v)

= 1 +
sin(ϑ(v)− π

2
)

sinµ(v)
sin θ(v)

≤ 1 +
1

sin µ(v)
sin θ(v) (39)

≤ 1 +
1

sin µ(v)
.

Then the proof is completed. �

Proof of Lemma 4.2. Consider the following relation

cone(v,CX(v, θ) ∩ b(v,X)) = CX(v, θ) (40)

where cone(v,M) = {v + λ(z − v)|λ ≥ 0, z ∈ M} for some set M ⊆ R
m. We first show

the following three claims:
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Figure 5: An illustration for the proof of Lemma 4.1.

(i) Suppose that, for any v ∈ bd(S), there is θ(v) > 0 such that (40) holds for v, θ(v).

Then (40) holds for θ∗ and any v ∈ S\X with sufficiently small |v|X, θ∗ is the approximate

angle given in A3.

(ii) Suppose int(X)∩line(v, PX(v)) 6= ∅ for any v ∈ bd(S). Then the hypothesis in (i)

holds.

(iii) Suppose the boundary surface of X is regular. Then hypothesis in (ii) holds.

(i) is obvious. For (ii), let z ∈int(X)∩line(v, PX(v)). Then there exists ǫ > 0 such that

B(z, ǫ) ⊆ X . Let y ∈ bd(B(z, ǫ)) be the point for which ∠(y − z, v − z) = π/2. Clearly,

(40) holds for v, θ(v), where θ(v) = ∠(y − v, z − v) > 0.

We prove (iii) by contradiction. For a regular surface, its tangent plane at boundary

point z consists of the tangent vectors at point z of all curves passing z. Suppose that there

is v ∈ bd(S) with int(X)∩line(v, PX(v)) = ∅. Then, by convex set separation Theorem

11.3 on page 97 in [2], there exists a hyperplane H separating X and line(v, PX(v))

properly. As a result, H must contain line(v, PX(v)). Let n be the unit normal vector of

H with ∠(n, z − PX(v)) ≥ π/2 for any z ∈ X , and Hv the tangent plane of bd(X) at

PX(v). Then n ∈ Hv since v−PX(v) is a normal vector of tangent plane Hv. However, it

is not possible that there exists a curve on bd(X) with tangent vector n at PX(v), which

yields a contradiction.

We now show the conclusion by contradiction. Suppose that there is a sequence {vk}k≥0

with vk ∈ S\X and P a
X(vk) 6= PX(vk) such that limk→∞ µ(vk) = 0. Without loss of

generality, we assume limk→∞ vk =: v∗ ∈ S\int(X).

We first consider the case of v∗ ∈ S\X . In the case of P a
X(v

∗) 6= PX(v
∗), by the

continuity we have 0 = limk→∞ µ(vk) = µ(v∗) > 0, which yields a contradiction. In the

case of P a
X(v

∗) = PX(v
∗), we have limk→∞ θ(vk) = 0, which implies limk→∞ ϑ(vk) = π

along with limk→∞ µ(vk) = 0. This, however, is impossible since the surface bd(X) is

regular.

30



Lou et al. Distributed Continuous-time Approximate Projection Protocols

We next consider the case of v∗ ∈bd(X). Let r > 0 be a sufficiently small number

such that (40) holds for θ∗ and any v + rn(v) with |v − v∗| ≤ r and v ∈bd(X), where

n(v) is the unit normal vector of the tangent plane of bd(X) at v. Denote z := v+ rn(v).

Take arbitrarily a point ŷ := ŷ(z) ∈ bd(CX(z, θ
∗)) ∩ b(z,X)∩aff{v, z, P a

X(z)} such that

∠(v − z, ŷ − z) = θ∗. Then

µ(z) ≥ ∠(v − ŷ, z − ŷ). (41)

Moreover, it is not hard to find that, for any z1, z2 such that z1 6∈ X , z2 6∈ X , PX(z1) =

PX(z2), |z2|X > |z1|X , and with (40) holding for both (z1, θ
∗) and (z2, θ

∗), we have

β(z1) ≥ β(z2), (42)

where β(z) = inf ȳ∈bd(CX (z,θ∗))∩b(z,X) ∠(PX(z)− ȳ, z − ȳ).

From (41) and (42) we conclude that for any sufficiently large k,

µ(vk) ≥ inf
v∈bd(X),|v−v∗ |≤r

β(v + rn(v)) > 0,

which yields a contradiction. We complete the proof. �
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