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Abstract

In this paper, incremental exponential asymptotic stgbif a class of switched Carathéodory nonlinear systensudied based on
the novel concept of measure of switched matrices via nfeltiprms and the transaction coefficients between thesesndrhis model
is rather general and includes the case of staircase sngtaignals as a special case. Sufficient conditions areetefr incremental
stability allowing for the system to be incrementally expotially asymptotically stable even if some of its modes @mstable in some
time periods. Numerical examples on switched linear systswitching periodically and on the synchronization of stvitd networks of
nonlinear systems are used to illustrate the theoreticalltsee
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1 Introduction can be obtained by studying the matrix measure of its Jaco-
bian induced by some vector norm. It is possible to prove,

Studying incremental stability of nonlinear systems is-par @S done bk;oMer_&Sﬂmhé_(;Q_D&L&Ls_s_o_et al. (2010),
ticularly important in many application areas, including t_hat if such measure is negative definite in ;hat set for all
observer design and, more recently, consensus and synchrdime then any two trajectories will exponentially converge
nisation problems in network control where convergence towards each other; the rate of convergence being estimated
analysis is a fundamental step (Wang & Slatine, 2005: by the negative upper bound on the Jacobian measure.
[Russo & di Bernardo, 2009a,b; Russo et al., 2010, 12011,

2013). Numerous applications of contraction analysis have been
presented in the literature from observer design to thehgynt

Since the early work by Lewis (1949); Demidovich (1967), sis of network control systems. See e.g. Lohmiller & Slotine
contraction theory has been highlighted as a promising ap-(1998); Forni & Sepulchfe (20114); Russo et al. (2011). Re-

proach to study incremental exponential asymptotic stgbil  markably, the problem of studying incremental stability of
(SEAS) of nonlinear systems (Lohmiller & Sloting, 1998; switched and hybrid systems has attracted relatively lit-
Forni & Sepulchre, 2014; Angkli, 2002); also see Jouffroy tle attention despite the large number of potential appli-
(2005) for an historical overview. In particular, as shown b cations, e.g. power electronic networks, variable stmectu
Lohmiller & Slotine (1998), sufficient conditions faiEAS systems, walking and hopping robots, to name just a few
of a given nonlinear system over an invariant set of interest (di Bernardo et all, 2008; Liberzon, 2003; Corfes, 2008).
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2014).

One limitation of the existing extensions of contractioa-th

In this paper,| - |, stands for a specific vector norm in
Euclidean space and the matrix norm induced by it, which
can be defined in different ways that are all equivalent. The

ory to switched systems, (elg. di Bernardo ét[al., 2014), is transaction coefficientsom the norm - |, to |- |, is defined

that they rely on the use of a unique matrix measure to as-

asfBu = SUp|y,=1 ||, (Bourbaki, 1978).

sess the Jacobian of each system modes. This is a particu-

larly restricting assumption as it would be desirable to use A continuous functionv : [0,a) — [0, c0) is said to belong
measures induced by different norms to evaluate the Jaco-+o classK if (l) it is strictly increasing; (I1)a(0) = 0. And,
bian of each of the system modes. This would correspond toa continuous functior(p, t) : [0,a) x [0, 00) — [0,00) IS

studying incremental stability of the switched system with
multiple incremental Lyapunov functions rather than using
a common one (which is much harder to find).

said to belong telassiCL if (1) for each fixed, the function
B(p,t) belongs to clask’; (2) for each fixedp, the function
B(p,t) is decreasing with respectt@ndlim;_, ., 5(p, t)
0. In addition, if a function3(p, t) of classXCL converges

The aim of this paper is to address this problem and presentt© 0 exponentially ag — oo, 3(p, ) is said to be of class

conditions for contraction and incremental stability ofiegle

class of switched Carathéodory systems. The key idea isStability from

to define a novel concept of matrix measure via multiple
norms and exploit the transaction coefficients betweerethes
norms. In so doing, sufficient conditions are derived for in-
cremental stability that allow for a system to £IEAS even

EKL. Here, we %ive the following definition of incremental

i (2002) with modifications.

Definition 1 System (1) is said to be incrementally asymp-
totically stable § AS for short) withr(¢) in the regionC C
R™ if there exists a functiom(s, t) of classCL such that

if some of its modes are unstable (or not contracting) over for any initial datazo, yo € C' and starting time/, the fol-

some time intervals. The theoretical results are illusttat
via their applications to some representative examples, in
cluding synchronisation in blinking networks.

2 Preliminaries

We focus on switched dynamical systems of the form
&= f(z,r(t)) 1)

wherex € R™ and the switching signad(¢) is assumed to be
a real-valued piecewise continuous (PWC for short) fumctio

with respect to time: there exist countable discontinuous [0, 1] — C that linksz, andyy, i.e.,v(0) = z¢ and~(1)

pointsty < ¢t < --- < t; < --- such that(¢;+) exist and
r(t;) = r(t;+) for all ¢;. A typical example is the staircase
functionr(t) = ¢;, fort; <t < t;11, i =0,1,---, for the
increasing time sequendg, } >0, which has been widely
used as switching signal in control systems (Liberzon, 003

Here we make the following hypothesis:

H,: For someC C R™, the vector fieldf(z,r(t)) : C x
R>o — R™ is (i) continuous with respect tar, r); (ii)
continuously differentiable with respect ta and (iii)
there exists a Lebesgue measurable functigi) such
that|f(z,r(t))] < m(t) for all z € C andt € R>o.

It can be seen that under hypothegis, and with r(¢)
defined as above, the vector fie%g,r t)) defines a
Carathéodory switched systemn_(Fili 988). It can be
proved that, given an initial condition i@, a solution of a

lowing property holds

|6(t + tos to, xo, 1) — ¢(t + to; Lo, yo, )| < B(lzo — vol, 1)

for some norni - |. If B(s, t) is picked independently of the
initial time ty, then system (1) is said to be incrementally
uniformly asymptotically stablef{/ AS for short). If 3(s, t)

is of class€CL, then system (1) is said to be incrementally
exponentially asymptotically stablé fAS for short) and
incrementally uniformly exponentially asymptoticallgitse
(OUEAS for short) if 5(s, t) is chosen independently &f.

Definition 2 A setC C R™ is said to be ax-reachable
set if there exists a continuously differentiable cumpe) :
Yo, and satisfiesy’(s) |y (1) < Klzo — Yoly(t,), for all s €
[0,1] and some constart > 0, independently af, andy.

3 Switched matrix measures and general contraction
analysis

The matrix measure induced by the vector norfy, where
x is the index for the norm being used, is defined as

x(4)

=

. 1
Jim [+ R4 — 1]

for a square matrixd € R™™ and was used for the con-
traction analysis of smooth nonlinear systems, see e.g.

Lohmiller & Slotine (199B).

Given a PWC functiory(t), the left (right) limit of |- |, ;) at

Carathédory system exists and is unigue (Hale, [1954). Wetimet is defined asimy, o ||y (+n) (imn—o4 |2y (t4n))

defineg(t; to, xo, 1) as the solution of (1) with:(to) = o
and the switching signal(t), wherer, denotes the trajec-
tory of r(t) up tot, i.e.,r, = {r(s) }y,<s<t-

if it exists for allz € R", and is denoted by |, (;+) respec-
tively. We say that the switched norm|, ) is continuous
attimet if ||,y = 2|y 1) = 2|y forallz € R", i.e.



if - ) is left and right continuousWe say that - |, (¢) is
uniformly equivalentf there exists a constari? > 0 such
that|x|, ) < Dlx|y () forall z € R™ andt, s € R.

Lemma 1 Suppose that- |, is right-regular in [t;, t5].
Consider the following time-varying Carathdory dynam-
ical systemi(t) = A(t)z(t) with some PWC matrix-valued

functionA(t) € R™™ andx(t) € R". If v, ) (A(t)) < a(t)
We can now extend the definition of matrix measure to the for some measurable functier(t) for t € [t;,t,], then
case of multiple norms, taking the time-varying nature of
x(t) into consideration, as follows. t2
|2(t2)](1,) < €xp </ Oé(f)dt) |2 (t1) x(tr)- 3)
Definition 3 The switched matrix measure with respect to "
multiple normg - |, is defined as

Proof For anyt € (¢1,t2) except discontinuous points of

[|(I, + hA)z| (r4ny — 1] (2) A(t), consider the following quotient

I(h) = ~[lz(t + ) lx(e+n) — [2()] )]

if the limit exists, wheréim stands for the limit superior. on
[ (t) +/t A(s)z(s)ds|y(+n) — [2(0)] )]

== ==

It can be seen that if(¢) is constant over an interval, say
[t,t 4 9), thenv, ) (A) = () (A) over that interval.

1 t+h
== {|(1n + hA®))z(t) + /t [A(s)x(s)

—A()z(t)]ds|ern) — )] }
[[(In + hA®) () x(4n) — [2(E)|xe) + o(h)],

The existence of the switched matrix measure is related to
the partial differential of the switched norm- |, ;) defined

as follows
<

S

(|- ly) = Tm sup M

X h=0+ 2] =1 h which implies thatlim,Sol(h) < vy (AE)] ()]0 -
Thatis,D*[z(t) ] 1) < V) (A2 ()] ) < ()2 (t)]y )
holds for almost every € [t1, t2], where D™ stands for the
Dini derivative. Thus, Ineq. (3) holds, noting thaft) is
continuous with respect to [ |

We say that the multiple norm/|, ;) is right regularat time
tif 9¢(| - |y+)) exists. Thus, we have

Proposition 1 If |- |,.«;) is right regular att, then (i).| - |, _ _ _
is right continuous at; (ii). v, (A) exists att. We make the following hypothesis on the multiple norm.

Proof The fi . iahif qf he d f}lgz |- |x(+) is right-regular everywhere but at the time instants
roo e first statement Is straightiorward from the defi- {t,}, itis right-continuous and uniformly equivalent, and

nitions of 9, (| - |,.()) and right continuity of - |, (). its left-limit exists at each.

The quotient term of the definition of, ;) (A) gives Thus, we denote by (¢, s) — #{i : s < & < ¢}, the num-

ber of time instantg; in the time interval(s, t); obviously,

N(t) = N(t, to). Here,# stands for the cardinality of a set.

[|(In + hA)x|x(t+h) - |(In + hA)xlX(t) L . .
In addition, we make the following assumption.

1
— sup
h [2] 5 (1)=1

+(In + hA)z| (1) — 1]

Hs: There exists a-reachable set (Russo el al., 2010)c

<5 sup [[(In + hA)z|ysn) — |(Tn + RA)Z|y 1) R™ which is a forward-invariant for (1).
‘w‘x(t)zl
1 A Then, we have a general result@i AS of switched dynam-
*n | |SuP 1 (1@ +h )zl —1] ical system (1) by contraction analysis in multiple norms.
Tlx ()=
1 -
< - (10 (] - o)) (In + hA) gty + fxey (A) + o(h)] Theorem 1 Suppose that hypothesgs » 3 hold and that

r(t) is PWC. If there exist a measurable functieft), non-
. o o negative constants;, j = 1,2,---, ¢ > 0, andTy > 0,
whereo(h) is an infinitesimal term withimy, .o o(h)/h = such that, for allz € C, the following conditions hold

0. S0, vy (1) (A) < ity (A) + e (| - 1)) (Statement (ii))m

Vx(t) (g(%?‘(t))) <a(t),Vt#t;, r€C (4)
Using the definition of switched matrix measure, we extend Oz

Coppel inequality (Coppel, 1965) as follows. L i) < Bil - i@ —y» VI (5)



and, for allT > Ty,

N(to+T)

> 1og(6j)] <-—c, (6)

1 T+to
a(t)dt +
TA) (t

then system (1) isEAS in C with respect tor(¢); if (6)
holds for some > 0 independent ofy, then (1) iISSEU AS
with respect tor(¢) in C. In addition, the exponential con-
vergence rate can be estimated@&xp(—c(t — tg))).

J=1

Proof For anyzg,yo € C, C beingk-reachable for some
k > 0 implies, from Definition 2, that there exists a con-
tinuously differentiable curve(s) : [0,1] — C such that
7(0) = zo and (1) = yo, and [v'(s)lx(e) < lzo —
Yolx(t), forall s € [0, 1].

Let ¢(t,s) = @(t;to,v(s), ), s € [0,1], be the solution
of (1) with initial value ¥ (tg,s) = ~(s). Since f(x,r(t))

is continuous with respect ta, t) except for the switching
time points{¢; } and continuously differentiable with respect
to x, theno(t; to, xo, r¢) is continuously differentiable with
respect to the initial value,. Let 2o = ~v(s). Then,w =

‘?9“’ is well defined and continuous. By the same algebra|c
manipulations first presented by Russo etlal. (2010), except

for {t;}, w(t, s) is the Carathéodory solution of:

(7)

Consider the sequente(?;, $)ly(,) of Eq. (7). For alls €

[0, 1], by the extended Coppel inequality (3) and condition
(4), we have

t;
[w(ts, 8)lyi,—) < exp [/ Oé(t)dt] lw(ti—1,8)y(i,_1)-
1

.

Using inequality (5) betweep |, ;,_,) and|- |, j,), gives
[w(ty, )]y, < Bilw(ts, )|y, -

t;
< fBjexp l/t Oé(t)dt] lw(tj—1,8) |y, 1)
j—1

Then, iterating down té < j, we have

l/{l oz(t)dt] |w(£i7s)|X(£i)'

For anyt, noting that from definitiort g,y | >t > 5,

J
iy < 11 Brexp

k=i+1

lw(t;,

we have

t
m@mmsﬂ%[ mwﬂmmwmwm>

tN

t N(#)
< exp [/ a(r)dr] - exp Z log 3;
i=1

tR ()

EN(t)
+/ a()dr | [wlto, s)|(a)-
to

Hence, we obtain

|w(t, s)lxo) < exp(—c(t = to))V' (5)]x(to), (8)

for all t > tg + Ty. Sincec is independent ok, dEAS

can be derived by following similar arguments as presented
by|Russo et al[ (2010). In detail, sinte|, ) is uniformly
equivalent, there exist® > 0 such thatz|, ) < Dlx|, )

for anyxz € R™ andt, ¢ > to. Then, by (8), we have

|¢(t; x(O), Tt) - (b(t; y(O), Tt)|x(to)
< Dlp(t;2(0),7¢) — d(t5y(0),7¢) |y ()

) 1
/ Mds gD/ [w(t, s)lxds
0 t) 0

0s
1
< D/ exp(—c(t — t0)) |7 (5)|x (o) ds
0

= Drexp(—

)

=D

c(t —t0))|zo — yolx(te) (10)
which converges to zero exponentially. This proves that sys
tem (1) isOEAS.

If (6) holds for somec > 0 independently ot,, then (8)
holds independently of, if ¢t — to > 1y, which implies
limg o0 [w(t)]y(t,) = 0 is uniform with respect td,. By
the arguments above, system (1)§iS EAS. In addition,
inequality (10) implies that the exponential convergerate r
can be estimated a3(exp(—c(t — tg))). [ |

Note thatc is an estimate of the exponential convergence
rate and also an index of the average contraction rate of (1).

As a simple example to illustrate this result, define a
switched matrix measure based on the following multi-
ple norms:|z|pyy = +/x"P(t)z. Here, P(t) € R™"

is a differentiable matrix-value function where each
P(t) is a symmetric positive definite matrix such that
its largest eigenvalue\,.x(P(t)) the smallest eigen-
value Ay (P(t)) is upper bounded and lower-bounded
positive respectively. Then, for angd € R™", by
simple algebraic manipulations, it can be shown that
the induced switched matrix measure i% ) (A) =

3Amax[P~H2()(P(t) A + ATP(t) + P())P~1/2(t)].



Now, consider the linear time-varying (LTV) systein= and, for allT > Ty,

A(t)x + I(t) with some PWC matrix functionl(t). Then,

(6) in Theorem 1 can be fulfilled by assuming that it holds N(to+T)

that P(t)A(t) + A(t) T P(t) + P(t) < 0 for almost every. _{ Z [ A; 4 log(5:)]
A similar condition can also be obtained by using the theory T =0

of convergent systems (Pavlov et al., 2007).

+an(orr)+1lto + T — tN(t0+T)]} < —c, (13)
Remark 1 Analogous arguments to those presented by

ILohmiller & Slotine (1998) and Russo et al. (2010) can be then (1) iss EAS with respect ta-(¢) in C; if (13) holds for
followed to prove that the contracting system converges somec > 0 independently of,, then (1) iséU EAS with
towards a periodic solution if(¢) is periodic. Indeed, in  respect tar(t) in C. Moreover, the exponential convergence
this case the time instants wherét) switches, say(¢;}, rate is estimated a@ (exp(—c(t — to))).

are also periodic with periodl’ and so is the function

N(t,s) = N({t+T,s+T) for all £ > s. Then, inequality

(6) can be fulfilled by assuming that Proof Leta(t) =« if t € [t;, t;41). We have
0 0
1 T+to J Vr(t) (Fi(xagl)) = Mr(t) (Fi(xagl)) S a(t)7 vt 7é ti-
T / a(t)dt + Z log(B;)| <—c.  (11)
to i
=t Note that
where J is the number of switches in one period. (Note that | (7 1

this inequality holds independently of the initial timedue = | a(t)dt= |:04N(to+T)+1(t0 + T = tN(to+T)) T 00
to the periodicity.) From Theorem 1, one can conclude that to

system (1) i9 £ AS. The existence of a periodic solution of N(to+T)
(1) follows by using the contraction mapping theorem. + Z OéiAi:|-
i=0

Under condition (13), one can conclude that there exists
4 Contraction analysis of staircase switching and trans- 73 > 0 such that
action coefficients between norms

1 to+T N(t0+T)
As a special case and an important application, in this sec- T /t alt)dt + Z Bi| <—c (14)
tion, we assume that the switching signgl) of the switched ’ =0

system (1) is a staircase function:
for all T" > T;. By employing Theorem 1§ EAS of (1)

, . can be proved. Furthermore, if (13) holds independently of
Haor(t) = &, ti <t < tiyy, 4 = 0,1, with an the initial time ¢y, and therefore (14) holds independently
Increasing time point squent{ei}ﬁwnh ti = 0 and of to, then (1) isOUEAS with respect tor(¢) in C. The
lim;, 0 ; = 00, whereg; € Zwhere=isacountableset.  oynonential convergence rate can be derived as done in the
proof of Theorem 1. ]
Let A; = t;41 — t; > 0 be the interval between two points,
and N (t,s) = #{i: s < t; < t}, be the number of time
instants whem(t) switches that fall in the time intervé, ¢],
in particular,N (t) = N (t, to).

We can exploit Corollary 1 when considering the case where
r(t) (&) takes values in a finite set= {1,--- , K'}. Specif-
ically, define for anyt > s > 0

By using multiple norms- |, ;) with x(¢) = r(t), we obtain Te(s,t) ={1 € [s,t] : v(7) =k},
the following result as a consequence of Theorem 1. Nia(s,t)=#{i: r(t;i—) =k, and r(t;+) =1, s < t; < t}

Corollary 1 Suppose that hypothesHs 2 5 4 hold. If there and constants;, andfgy; > 0, k,l =1,--- , K such that
exists constants;, nonnegative constants, i = 1,2, - -,

¢ > 0 and T, > 0 such that, for alli andx € C, the af

following conditions hold ks (%(f&k)) <k, |- [ < Bl - [k (15)

of . Then lettinga(t) = «; whent € [t;,t;11), it can be seen
He; <%<x’§j)> <aj, g <Billg, Y5 (12) that inequality (13) in Corollary 1 can be derived if the



following condition holds for alll’ > Ty:

aTe (to, to + 1) + Zlog Bri)Nii (to, to +T)
=1

IN S|~

(16)

Alternatively, condition (16) can be replaced by the assump
tion that there exists song, > 0 such that for each-
length interval [nT7y, (n + 1)T1], it holds that

?Z {a;ﬂ} nTy, (n+ 1)T71) +
k=

K

Z 08 (B )Nii (nT, (n + 1)T1)

< ¢, ¥n>0. (17)

Remark 2 From Ineq. (17), in the case that afl; < 0,

k =1,---, K, which implies that all subsystems are con-
tracting and hence incrementally stable, the switchecdesyst
is incrementally stable if the duration of the mode in which
each subsystem is active is sufficiently long.

More specifically, if all norms$- |, are identical —and simply
denoted by - | — thenjy; = 1, and inequality (13) can be
fulfilled by simply assuming thatl/T) Zszl apT (t,t +

T) < —choldsforallt > 0. Thus, one can see thatif, < 0
holds for allk = 1, - - - , K (with respect to the same norm),
then (1) is mcrementally stable, which coincides with the

results b)LRLlss_oﬁ_dl_B_emaddb_(ZOll)

for somec > 0.

We now discuss the relationship between different classes
of vector norms in greater detail.

Quadratic norms. The quadratic norm is defined agp =
Va T Pz for some positive definite matri®. For another
|zl = /T Qx with symmetric positive definite matrig.
Then, we have

2lo < \/ Amax(P~Y2QP=1/2)[a]p (20)

for all z € R™, where\,,.x(A) denotes the largest eigen-
value of a symmetric square matrix. The proof of this
statement is straightforward and omitted here for the sake

of brevity.
0 -1
= , A2
(o2 e

). It is easy to see that, using the matrix mea-

A a first example, we taked(1)

0 —11
2 -33
suresy;(+) induced by the quadratic weighted vector norm

|z]o, == |©iz|2, i = 1,2 respectively, the matrix measures
i [A(D)) with

o _ (0707 0.447 B 0.998 0.322)
"7\ 0707 0.894

o <0.0618 0.947

The conditions of Theorem 1 and Corollary 1 as well as (16) are negative fof = 1 andi = 2. In particular,u; [A(1)] <

depend on two quantities: the matrix measusigsof the

—1:=m andug [A(t, 2)] < —0.6807 := .

Jacobian of the dynamical system for each constant value

of r(¢), and the transaction coefficients; between norms.

From the results reported in Sec. 2, we get from Ineq. (20)

As system (1) is defined in a finite dimensional Euclidean that: |2|o, < 1. 796|z]e, and |z|e, < 1.05|z|e,; there-
space, these vector norms are equivalent, i.e., there exXistore condition (5) remains satisfied with- := 1.796 and

positive constantsy,; such thatx|; < Bi|x|xk hoIds for all
x € R™. The role of such transaction coefficients will be
further investigated below.
For illustration, consider the LTV system

(1)
[0,00[— C = {1,2} with A = A(1) or A(2)

A(r(t))z(t) + B (18)

wherer(t) :

(21 := 1.05. Assuming a switching frequency ¢f. = 1 Hz
between the two modes, we hate = 1 s for all 7. There-
fore (19) is satisfied and (18) is incrementally stabl&h

The evolution of the norm of the error for two trajectories
starting at initial condition$0.5,0.1] and[0.4, 0.1] respec-
tively is shown in Fig. 1 wheB = [0 0] and B = [1 1] re-
spectively. In both cases we observe incremental stabigity
expected. Note that the use of two different weighted norms

and B € R?. We assume that the linear system is switched makes proving incremental stability much simpler than if

between two constant matrices periodically with identical
frequencyp,.. Consider two vector nornis|; 2, correspond-
ing to matrix measureg, » respectively, with transaction
coefficientss;o andBs;. Corollary 1, specifically condition
(17), yields that the following inequality is a sufficientrco
ditions for SUEAS of system (18):

5 I (AQ) + 12(A(2)) + o - (log frz + Tog )]

< —c (19)

one common metric had to be used for both modes as re-

quired by previous results (elg. Russo & di Bernardo, 2011;

[di Bernardo et all, 2014).

Next, we takeA(l) = =

—1.3481 —2.9306
» AQ2)
—2.4538 —1.2755

(—11.2237 7.0628

. It can be seen thati(1) is Huwitz
—1.7413 1.5119
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Fig. 1. Evolution of the Euclidean norm of the erf(¢) —
whenB = [0 0]" (top panel) andB =

y(0)|l
[11]7 (bottom panel).
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Fig. 2. Dynamics of the average errdfrr(t) over M = 10
independent realizations of random initial values that are
picked from [-10,10)> following the uniform distribu-
tion. Err(t) e 23{:1 V@l —71)2 + (2§ — Z2)2 with
Ty = (1/M) Zq 1 2% with w = 1,2, wherez{ , stands for the
state components of thea-th realization.

stable i.e., with all e|genvalues having negative realgart

but A(2) is unstable, i.e., with some eigenvalues possessing™a¥i E1/

positive real parts. Choosw@l 2 as follows:
0.0644

<0.3797 0.0061> < —0.1475)

0, = , O = .
0.0061 0.4534 —0.1475 0.8267

we find that the matrix measuregs, (A(1)) and u2(A(2)),
induced by the2-norms| - |o, and| - |e, are:u1(A(1)) =
—2.6178, u2(A(2)) = 0.9188. The transaction coefficients
between the two norms |e, , can be calculated by (20) as
| |O1 < 512| |O2 and| |02 < ﬂ21| |()1 with 512 = 1.9079
andf; = 10.4207. The LTV system switches between these
two modes with an identical frequengy. (¢, = 0.25 Hz in
this example). Then (19) holds fer= 1.1010. Therefore,

the LTV system (18) i9UEAS, as shown in Fig. 2, despite
one of its modes being unstable.

0.3562 0.1182
stable as it has eigenvalues-66.3988 and0.2311. Hence,

—6.2859 2.0661
NoteA,, = w = ( ),which is un-

the results presented by Porfiri et al. (2008) cannot be ap-
plied for this specific situation. Nevertheless our extensi

of contraction analysis to switched systems gives a simple
and viable set of conditions that can be used to prove that
indeed the system is incrementally stable.

More specifically, from the properties of matrix measures,

1/2(u(A(1)) + n(A(2))) = p(Am)
>max{R|(A\): N€a((An))} >0

it is not possible to find a uniform norm such that the average
of the matrix measures of the switched matrices induced by
this matrix norm is negative as required by condition (19).

Therefore, in this case, multiple norms must be utilised for

proving contraction andEAS of the system.

Weighted L,-norms. The weightedL,-type norms with
1 < p < x are defined as follows.

e WeightedL,-norm: |z|¢ , = (3.1, §i|xi|P)1/p for some
p=>1land§ = [,

&) T with & > 0 for all i@ =
1, yn;

o WeightedL.,-norm: |x|¢ - = max; &;|z;| for some¢ =
[€1,---,&] " with& >0foralli=1,---,n

Their transaction coefficients are summarised by the follow
ing proposition.

Proposition 2 For p > ¢ > 1 with p possibly equal to
oo and two component-wise vect@s= [&;,--- ,&,] " and
n=1[, - ,n) with&, n; >0forali=1,--- n,the

1/
following hold: (1) |z|,.c < max; %mm; @) 2lgn <

Va
= (09— M P) x|, er () |2]2e = |z]z with =
dlag[gla"' 75"]

This result can be directly derived from Bourbaki (1978).
Combining 20 and Proposition 2, we can derive all trans-
action coefficients between all quadratic norms|g with
positive definite matr>@, and all| - |¢,, for +00 > p > 1.

The same transaction coefficients hold for the equivalence
between the matrix norms induced by these vector norms.

Structured vector norm. We define a structured vector
norm, following the approach presented lin_Russo et al.
(2013). Specifically, assume = [z1,--- ,z,]" € R" can

be partitioned intoK vectorsz* € R™, k = 1,--- | K,
such thatr = [z% -+, 2% ']T with S g = n. Let
|z*|,, be the norm inR™*. Then, thestructured normof z

is denoted by - | and defined as:

|IK|5k T’ (21)

|I|G:H|Il|517"'7 S

where the norn - |s is defined inR%.



Given the same partition of*, k = 1 , K, consider
another structured nor- |5 based on using the vector
norms| - [, inR™, k=1,--- K, and| - [s in R¥ such
T

that|ZC|G/ = .
S/

(R FIEENC
Proposition 3 Let|- | and| - |¢- be two structured norms
defined as mentioned above. kgtbe the transaction coef-
ficient from the norm - |/ to | - |s and 7, be the the trans-
action coefficient from the norm- |, to [ - |s,. Then, we

haV6|fL'|G/ < TS|U|S|$|G with U = diag[Tk]szl

induced by the vector norm |¢,, in R™ and ug,, be that

of | - |s. in RE. Then, it can be derived that; ,.(A(r)) <
ws.-(A(r)) (Russo et dll, 2013). Proposition 3 implies that
B1, and B}, can be the transactions coefficients between
| |lg.1and| - g2 as well.

Therefore, suppose that switched system (18) is in the
block-wise form (22). Then, Corollary 1, specifically in-
equality (19), can be fulfilled assuming that it holds that
(1/2) |51 (A(1) + pus2(A(2)) + fr - (1og 815 +log B)| <

—C.

This result can be derived as a consequence of those pre-

sented by Russo etlal. (2013).

5 Synchronization in switched networks

[Russo et &l (2013) showed that contraction analysis can be
used to carry out the hierarchical analysis and design ef net Finally, we consider a network example inspired from one
worked systems. Analogously, consider system (18). Parti- first presented in_di Bernardo et &l. (2014). We assume the

tion z into several sub-vectord vectors:z* € R™, k =

, K, so thatz = [:va, . ,xKT]T with Zszl ng =
n. Eachz® corresponds to thie-th subsystem. Then, system
(18) can be equivalently written in the following form:

ik = szAkk,(t)xMB’f, k=1,--- K, (22)
k'=1
where
Axa(r) Awa(r) Aig(r)
Alr) = Az (r) AQQ.(T) A2I.((r) r—12
Agi(r) Aga(r) - Agg(r)
and[B/,---,BX]T = B.
The norm ofz is defined by (21). Letd;; (t) = |Ai;(t)i;,
where the norm - |;; is defined by
|[Aij (r)]i; = ijs‘lslle | Auj (r)2? ;.
and consider the reducdd x K matrix
A (r) Ap(r) -+ Aig(t)
Ay = | ) A A
AKl(T) AK2(7°) AKK(T)

Let|-|s1 and| - |s2 be two norms ifR¥X and ], and 3},
be their transaction coefficients such thdk 1 < 15| |s.2
and|-|s2 < B85 |s,1. We take the multiple norms iR" as

llar = |A(7’)|57T, r =1,2. Letug,, be the matrix measure

network equation is given by

L= f(z'(t)) — ko(t) iLiijE‘j(t), i=1,---,m. (23)
j=1

Here,z' € R™ stands for the state vector at nodef(-) :
R™ — R"™ the node dynamics; is the coupling strength,
L = [Li]—, is the Laplacian matrix associated with a
graphG = [V, E], whereV = {1,--- ,m} is the node set
andF the link set, by the way that for each j), L;; takes
value—1 if there is a link from nodg to 7 and0 otherwise,
andL;; = — Z -, Lij. o(t) takes value$ or 1, implying
that the dn‘fuswe coupling among the nodes in the graph
is only active wherv(¢) = 1 while it is not present when
o(t) = 0. T € R™" stands for the inner coupling matrix.
We can rewrite (23) in compact form as:

i = F(a(t) — k[o(t)L ® D] x(t) (24)

wherez = [z, .-+ 2™ ]T € R™n,

F(x) = [f (:171), ,fT( ™)]T and® is the Kronecker
product. Assume that is diagonalisable, i.e., there exists
a nonsingularpy € R™™ such thatL = Q~'JQ with a
diagonal matrixJ = diag[);]7-,, where);, j =1,--- ,m,
are the eigenvalues of, Wﬁ|ch are assumed to be real.
Without loss of generality, we can assume that \; >

Ay > --- > \,. Note that\; = 0 is associated with the
synchronization eigenvectér, --- , 1] .

Following similar arguments to those by Carroll & Petora
(1991); [Russo & di Bernartlo (2011); di Bernardo €t al.

(2014);LYi et al. (2013), synchronization of network (24)

can be achieved if the following linear systems (obtained
via linearisation and block diagonalization of (24)):

¢ =[Df(w(t)) -

are contracting, where(t) is a solution of the uncoupled

kXioc(D)]p, i =2,---,m (25)



system
w = f(w), (26)

andDf(-) is the Jacobian of (-). Assume

Hs: System (26) has an asymptotically stable attragt¢see
m, 2018, Assumption 2).

Definition 4 System (23) is said to synchronize if there Fig. 3. The underlying graph topology.
exists § > 0 such that for anyz'(to) € B(A 8), "
limy oo [2"(t) — 2?(t)] = 0 for all 4,5 = 1,---,m.
Here, B(A,d) = {y : infrealy — 2| < 5} denotesé— s
neighbourhood of setl. .

00 5 16 1‘5 20
According to Corollary 1, in particular, equation (16), we Time

have the following result: Fig. 4. Synchronisation dynamics of the network system (24)

with random initial values that are picked from-1, 1],
Proposition 4 Consider two vector norms: | and | - |1, i=1,2,--,10. Here, Brr(t) = £ Y27 /323 (af — ;)
which induce two matrix measures(-) and x4 (-) respec- ith ) i
tively. Suppose tha{, holds andu; (—T') < 0. If there exist W' 3 = (1/m) 322, @

To > 0 andc > 0 such that To illustrate this result, we take

7 | po(Df (@) To(nT, (n+ 1)T) ) g{[i—_w;;; 1021]03— g(wy)}
+ur(Df(w) — kXoT)Ti(nT, (n + 1)T) g,

+No1(nT, (n + 1)T') log Bo1
whereg(w;) = mowy +1/2(my —mg)(Jwy +1]—|wy —1
+No1(nT, (n+1)T)log f1o| < —¢ (27) as the Elhu)a’ circuit Wit{m(o = —0.5),(|m1 = |—0|.8, G B
0.7, p = 9 andgq = 7, which was reported to exhibit a
double-scroll chaotic attractor for the node dynamics (26)
holds for all T > Ty andw € A, whereT,(s,t) stands  [Matsumoto et &l[(1985). Moreover, we tdkas the identity
for the duration ofo(t) = w in the time interval(s, ¢] and matrix, and assume the underlining graph@fodes has the
Nuo(s,t) is the number of switches fromt) = utoo(t) = structure shown in Fig. 3, associated with a Lapladiawith
v, forall uw # v, u,v = 0,1, then system (24) synchronises. )\,(L) = 2.7142. To study convergence, we choose weighted
1-norms:|ylo = |y1| + r2|y2| + r3lys|, with ro = 3.4042
andrs = 1.0369, and|y|1 = \/[y1[? + [y2]? + |y3[?, which

Proof Note that for eachh = 2,--- ,m, implies (i) fo1 — 4.3163 and B10 = 1; (i) po(Df(w)) <

3.2829 for all t. We takek = 1, so thatu;(Df(w) —
w1 (D f(w) — kAT kXo(L)T) < —7.4714, for all t. The switching signad ()
< p(Df(w) — EXoD) + k(N — Xo)pa (=T) is taken as follows:

< (Df(w) — kAT). () = {0 t € [T, kT + 1/4T)

Due tou(—T') < 0, then (27) holds forall = 2,--- ,m. It Lt & (kT +1/4T, (k+ 1)T)

can then be proved in a straightforward manner that the vari- . . . L
ational equations (25) are asymptotically stable for ail 2 for someTl” > 0. Condition (27) in Proposition 4 implies that

g o : if 7> 13.08, then system (24) synchronises. To illustrate
g]yt\r/]eerlgyrlggf %?ngﬁté%r:e(nlfg «'imid following tlhe Saml e Stfg)s this result, we takd” = 14. Fig. 4 shows that, as expected,
Thus, following the arguments in the proof of Theorem all nodes synchronise.

17 in[Yietal (201B), there is an invariant open convex
setU € Rmmmn such thatU O S, whereS = {x = 6 Conclusions

w17 am )T iaf = ad € AV ,j}, is invariant for the
coupled system (24). Furthermozﬁ is an asymptotically =~ We have presented an extension of contraction analysis to
stable set for system (24). This proves synchronizatia@n. switched Carathéodory systems. The key step was the def-




inition of switched matrix measures induced by multiple

norms. Using these measures, it was possible to derive dif-

ferent sets of sufficient conditions for asymptotic increme
tal stability of the systems of interest. Most notably, itswa
possible to prove contraction and hence incremental stabil
ity by using different norms, each associated to a different
mode of the switched system under investigation. This com-
plements and extends in a highly nontrivial manner to the

Liberzon, D. (2003). Switching in Systems and Control
Birkhauser (Berlin).

Lohmiller, W., & Slotine, J. J. E. (1998). On contraction
analysis for non-linear systemsutomatica34, 683—696.
Matsumoto, T., Chua, L. O., & Komoru, M. (1985). The

double scrolllIEEE Transactions on Circuits and Systems
32, 798-818.
Pavlov, A., Pogromsky, A., von de Wouw, N., Nijmeijer

case of multiple norms, previous results presented by some H., & Rooda K. (2005a) Convergent piecewise affine

of the authors (see_Russo ef al., 2013; di Bernardolet al.,

[2014), where contraction was studied by using a common

metric. The theoretical results were illustrated on a set of
representative examples and applications showing the-effe
tiveness of the proposed method.
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