
ar
X

iv
:1

50
2.

06
09

8v
2 

 [m
at

h.
O

C
]  

1 
M

ar
 2

01
6

Contraction and incremental stability of switched Carathéodory
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Abstract

In this paper, incremental exponential asymptotic stability of a class of switched Carathéodory nonlinear systems isstudied based on
the novel concept of measure of switched matrices via multiple norms and the transaction coefficients between these norms. This model
is rather general and includes the case of staircase switching signals as a special case. Sufficient conditions are derived for incremental
stability allowing for the system to be incrementally exponentially asymptotically stable even if some of its modes areunstable in some
time periods. Numerical examples on switched linear systems switching periodically and on the synchronization of switched networks of
nonlinear systems are used to illustrate the theoretical results.
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1 Introduction

Studying incremental stability of nonlinear systems is par-
ticularly important in many application areas, including
observer design and, more recently, consensus and synchro-
nisation problems in network control where convergence
analysis is a fundamental step (Wang & Slotine, 2005;
Russo & di Bernardo, 2009a,b; Russo et al., 2010, 2011,
2013).

Since the early work by Lewis (1949); Demidovich (1967),
contraction theory has been highlighted as a promising ap-
proach to study incremental exponential asymptotic stability
(δEAS) of nonlinear systems (Lohmiller & Slotine, 1998;
Forni & Sepulchre, 2014; Angeli, 2002); also see Jouffroy
(2005) for an historical overview. In particular, as shown by
Lohmiller & Slotine (1998), sufficient conditions forδEAS
of a given nonlinear system over an invariant set of interest
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can be obtained by studying the matrix measure of its Jaco-
bian induced by some vector norm. It is possible to prove,
as done by Lohmiller & Slotine (1998); Russo et al. (2010),
that if such measure is negative definite in that set for all
time then any two trajectories will exponentially converge
towards each other; the rate of convergence being estimated
by the negative upper bound on the Jacobian measure.

Numerous applications of contraction analysis have been
presented in the literature from observer design to the synthe-
sis of network control systems. See e.g. Lohmiller & Slotine
(1998); Forni & Sepulchre (2014); Russo et al. (2011). Re-
markably, the problem of studying incremental stability of
switched and hybrid systems has attracted relatively lit-
tle attention despite the large number of potential appli-
cations, e.g. power electronic networks, variable structure
systems, walking and hopping robots, to name just a few
(di Bernardo et al., 2008; Liberzon, 2003; Cortes, 2008).

It has been suggested by Russo & di Bernardo (2011);
di Bernardo et al. (2014) that extending contraction anal-
ysis to this class of systems can be a viable and ef-
fective approach to obtain conditions for their incre-
mental asymptotic stability. Related approaches include
the work on convergence of piecewise affine continu-
ous systems presented by Pavlov et al. (2005b,a, 2007);
Pavlov & van de Wouw (2008) and the recent conference
papers (di Bernardo & Liuzza, 2013; di Bernardo & Fiore,
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2014).

One limitation of the existing extensions of contraction the-
ory to switched systems, (e.g. di Bernardo et al., 2014), is
that they rely on the use of a unique matrix measure to as-
sess the Jacobian of each system modes. This is a particu-
larly restricting assumption as it would be desirable to use
measures induced by different norms to evaluate the Jaco-
bian of each of the system modes. This would correspond to
studying incremental stability of the switched system with
multiple incremental Lyapunov functions rather than using
a common one (which is much harder to find).

The aim of this paper is to address this problem and present
conditions for contraction and incremental stability of a large
class of switched Carathéodory systems. The key idea is
to define a novel concept of matrix measure via multiple
norms and exploit the transaction coefficients between these
norms. In so doing, sufficient conditions are derived for in-
cremental stability that allow for a system to beδEAS even
if some of its modes are unstable (or not contracting) over
some time intervals. The theoretical results are illustrated
via their applications to some representative examples, in-
cluding synchronisation in blinking networks.

2 Preliminaries

We focus on switched dynamical systems of the form

ẋ = f(x, r(t)) (1)

wherex ∈ R
n and the switching signalr(t) is assumed to be

a real-valued piecewise continuous (PWC for short) function
with respect to time: there exist countable discontinuous
pointst0 < t1 < · · · < ti < · · · such thatr(ti±) exist and
r(ti) = r(ti+) for all ti. A typical example is the staircase
functionr(t) = ξi, for ti ≤ t < ti+1, i = 0, 1, · · · , for the
increasing time sequence{tj}j≥0, which has been widely
used as switching signal in control systems (Liberzon, 2003).

Here we make the following hypothesis:

H1: For someC ⊂ R
n, the vector fieldf(x, r(t)) : C ×

R≥0 → R
n is (i) continuous with respect to(x, r); (ii)

continuously differentiable with respect tox, and (iii)
there exists a Lebesgue measurable functionm(t) such
that |f(x, r(t))| ≤ m(t) for all x ∈ C andt ∈ R≥0.

It can be seen that under hypothesisH1, and with r(t)
defined as above, the vector fieldf(x, r(t)) defines a
Carathéodory switched system (Filippov, 1988). It can be
proved that, given an initial condition inC, a solution of a
Carathédory system exists and is unique (Hale, 1954). We
defineφ(t; t0, x0, rt) as the solution of (1) withx(t0) = x0
and the switching signalr(t), wherert denotes the trajec-
tory of r(t) up to t, i.e.,rt = {r(s)}t0≤s≤t.

In this paper,| · |χ stands for a specific vector norm in
Euclidean space and the matrix norm induced by it, which
can be defined in different ways that are all equivalent. The
transaction coefficientsfrom the norm| · |a to | · |b is defined
asβab = sup|x|a=1 |x|b (Bourbaki, 1978).

A continuous functionα : [0, a) → [0,∞) is said to belong
to classK if (I) it is strictly increasing; (II)α(0) = 0. And,
a continuous functionβ(ρ, t) : [0, a) × [0,∞) → [0,∞) is
said to belong toclassKL if (1) for each fixedt, the function
β(ρ, t) belongs to classK; (2) for each fixedρ, the function
β(ρ, t) is decreasing with respect tot andlimt→∞ β(ρ, t) =
0. In addition, if a functionβ(ρ, t) of classKL converges
to 0 exponentially ast → ∞, β(ρ, t) is said to be of class
EKL. Here, we give the following definition of incremental
stability from Angeli (2002) with modifications.

Definition 1 System (1) is said to be incrementally asymp-
totically stable (δAS for short) withr(t) in the regionC ⊂
R
n if there exists a functionβ(s, t) of classKL such that

for any initial datax0, y0 ∈ C and starting timet0, the fol-
lowing property holds

|φ(t+ t0; t0, x0, rt)− φ(t+ t0; t0, y0, rt)| ≤ β(|x0 − y0|, t)

for some norm| · |. If β(s, t) is picked independently of the
initial time t0, then system (1) is said to be incrementally
uniformly asymptotically stable (δUAS for short). Ifβ(s, t)
is of classEKL, then system (1) is said to be incrementally
exponentially asymptotically stable (δEAS for short) and
incrementally uniformly exponentially asymptotically stable
(δUEAS for short) ifβ(s, t) is chosen independently oft0.

Definition 2 A setC ⊂ R
n is said to be aκ-reachable

set if there exists a continuously differentiable curveγ(s) :
[0, 1] → C that linksx0 andy0, i.e.,γ(0) = x0 andγ(1) =
y0, and satisfies|γ′(s)|χ(t0) ≤ κ|x0 − y0|χ(t0), for all s ∈
[0, 1] and some constantκ > 0, independently ofx0 andy0.

3 Switched matrix measures and general contraction
analysis

The matrix measure induced by the vector norm| · |χ, where
χ is the index for the norm being used, is defined as

µχ(A) = lim
h→0+

1

h
[|(In + hA)|χ − 1]

for a square matrixA ∈ R
n,n and was used for the con-

traction analysis of smooth nonlinear systems, see e.g.
Lohmiller & Slotine (1998).

Given a PWC functionχ(t), the left (right) limit of| · |χ(t) at
time t is defined aslimh→0− |x|χ(t+h) (limh→0+ |x|χ(t+h))
if it exists for allx ∈ Rn, and is denoted by| · |χ(t±) respec-
tively. We say that the switched norm| · |χ(t) is continuous
at timet if |x|χ(t−) = |x|χ(t+) = |x|χ(t) for all x ∈ R

n, i.e.
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if | · |χ(t) is left and right continuous. We say that| · |χ(t) is
uniformly equivalentif there exists a constantD > 0 such
that |x|χ(t) ≤ D|x|χ(s) for all x ∈ R

n andt, s ∈ R.

We can now extend the definition of matrix measure to the
case of multiple norms, taking the time-varying nature of
χ(t) into consideration, as follows.

Definition 3 The switched matrix measure with respect to
multiple norms| · |χ(t) is defined as

νχ(t)(A) = lim
h→0+

1

h
sup

|x|χ(t)=1

[

|(In + hA)x|χ(t+h) − 1
]

(2)

if the limit exists, wherelim stands for the limit superior.

It can be seen that ifχ(t) is constant over an interval, say
[t, t+ δ), thenνχ(t)(A) = µχ(t)(A) over that interval.

The existence of the switched matrix measure is related to
thepartial differentialof the switched norm| · |χ(t) defined
as follows

∂t(| · |χ(t)) = lim
h→0+

sup
|x|χ(t)=1

|x|χ(t+h) − 1

h
.

We say that the multiple norm| · |χ(t) is right regularat time
t if ∂t(| · |χ(t)) exists. Thus, we have

Proposition 1 If | · |r(t) is right regular att, then (i).| · |χ(t)
is right continuous att; (ii). νχ(t)(A) exists att.

Proof The first statement is straightforward from the defi-
nitions of∂t(| · |χ(t)) and right continuity of| · |χ(t).

The quotient term of the definition ofνχ(t)(A) gives

1

h
sup

|x|χ(t)=1

[

|(In + hA)x|χ(t+h) − |(In + hA)x|χ(t)

+|(In + hA)x|χ(t) − 1
]

≤ 1

h
sup

|x|χ(t)=1

[

|(In + hA)x|χ(t+h) − |(In + hA)x|χ(t)
]

+
1

h
sup

|x|χ(t)=1

[

|(In + hA)x|χ(t) − 1
]

≤ 1

h

[

h∂t(| · |χ(t))|(In + hA)|χ(t) + µχ(t)(A)h + o(h)
]

whereo(h) is an infinitesimal term withlimh→0 o(h)/h =
0. So,νχ(t)(A) ≤ µχ(t)(A) + ∂t(| · |χ(t)) (statement (ii)).

Using the definition of switched matrix measure, we extend
Coppel inequality (Coppel, 1965) as follows.

Lemma 1 Suppose that| · |χ(t) is right-regular in [t1, t2].
Consider the following time-varying Carathéodory dynam-
ical systemẋ(t) = A(t)x(t) with some PWC matrix-valued
functionA(t) ∈ R

n,n andx(t) ∈ R
n. If νχ(t)(A(t)) ≤ α(t)

for some measurable functionα(t) for t ∈ [t1, t2], then

|x(t2)|χ(t2) ≤ exp

(
∫ t2

t1

α(t)dt

)

|x(t1)|χ(t1). (3)

Proof For anyt ∈ (t1, t2) except discontinuous points of
A(t), consider the following quotient

I(h) =
1

h
[|x(t+ h)|χ(t+h) − |x(t)|χ(t)]

=
1

h
[|x(t) +

∫ t+h

t

A(s)x(s)ds|χ(t+h) − |x(t)|χ(t)]

=
1

h

{

|(In + hA(t))x(t) +

∫ t+h

t

[A(s)x(s)

−A(t)x(t)]ds|χ(t+h) − |x(t)|χ(t)
}

≤ 1

h
[|(In + hA(t))x(t)|χ(t+h) − |x(t)|χ(t) + o(h)],

which implies thatlimh→0I(h) ≤ νχ(t)(A(t))|x(t)|χ(t) .
That is,D+|x(t)|χ(t) ≤ νχ(t)(A(t))|x(t)|χ(t) ≤ α(t)|x(t)|χ(t)
holds for almost everyt ∈ [t1, t2], whereD+ stands for the
Dini derivative. Thus, Ineq. (3) holds, noting thatx(t) is
continuous with respect tot.

We make the following hypothesis on the multiple norm.

H2: | · |χ(t) is right-regular everywhere but at the time instants
{t̃j}, it is right-continuous and uniformly equivalent, and
its left-limit exists at each̃tj .

Thus, we denote bỹN(t, s) = #{i : s < t̃i < t}, the num-
ber of time instants̃ti in the time interval(s, t); obviously,
Ñ(t) = Ñ(t, t0). Here,# stands for the cardinality of a set.
In addition, we make the following assumption.

H3: There exists aκ-reachable set (Russo et al., 2010)C ⊂
R
n which is a forward-invariant for (1).

Then, we have a general result onδEAS of switched dynam-
ical system (1) by contraction analysis in multiple norms.

Theorem 1 Suppose that hypothesesH1,2,3 hold and that
r(t) is PWC. If there exist a measurable functionα(t), non-
negative constantsβj , j = 1, 2, · · · , c > 0, and T0 > 0,
such that, for allx ∈ C, the following conditions hold

νχ(t)

(

∂f

∂x
(x, r(t))

)

≤ α(t), ∀ t 6= t̃j , x ∈ C (4)

| · |χ(t̃j) ≤ βj | · |χ(t̃j−), ∀ j (5)

3



and, for allT > T0,

1

T





∫ T+t0

t0

α(t)dt+

Ñ(t0+T )
∑

j=1

log(βj)



 < −c, (6)

then system (1) isδEAS in C with respect tor(t); if (6)
holds for somec > 0 independent oft0, then (1) isδEUAS
with respect tor(t) in C. In addition, the exponential con-
vergence rate can be estimated asO(exp(−c(t− t0))).

Proof For anyx0, y0 ∈ C, C beingκ-reachable for some
κ > 0 implies, from Definition 2, that there exists a con-
tinuously differentiable curveγ(s) : [0, 1] → C such that
γ(0) = x0 and γ(1) = y0, and |γ′(s)|χ(t0) ≤ κ|x0 −
y0|χ(t0), for all s ∈ [0, 1].

Let ψ(t, s) = φ(t; t0, γ(s), rt), s ∈ [0, 1], be the solution
of (1) with initial valueψ(t0, s) = γ(s). Sincef(x, r(t))
is continuous with respect to(x, t) except for the switching
time points{tj} and continuously differentiable with respect
to x, thenφ(t; t0, x0, rt) is continuously differentiable with
respect to the initial valuex0. Let x0 = γ(s). Then,w =
∂ψ
∂s is well defined and continuous. By the same algebraic
manipulations first presented by Russo et al. (2010), except
for {tj}, w(t, s) is the Carathéodory solution of:

{

ẇ = ∂f
∂ψ (ψ(t), r(t))w

w(t0, s) = γ′(s)
(7)

Consider the sequence|w(t̃j , s)|χ(t̃j) of Eq. (7). For alls ∈
[0, 1], by the extended Coppel inequality (3) and condition
(4), we have

|w(t̃j , s)|χ(t̃j−) ≤ exp

[

∫ t̃i

t̃j−1

α(t)dt

]

|w(t̃j−1, s)|χ(t̃j−1).

Using inequality (5) between| · |χ(t̃j−1) and| · |χ(t̃j), gives

|w(t̃j , s)|χ(t̃j) ≤ βj |w(t̃j , s)|χ(t̃j−)

≤ βj exp

[

∫ t̃i

t̃j−1

α(t)dt

]

|w(t̃j−1, s)|χ(t̃j−1)

Then, iterating down toi < j, we have

|w(t̃j , s)|χ(t̃j) ≤
j
∏

k=i+1

βk exp

[

∫ t̃i

t̃i

α(t)dt

]

|w(t̃i, s)|χ(t̃i).

For anyt, noting that from definitioñtÑ(t)+1 ≥ t > t̃Ñ(t),

we have

|w(t, s)|χ(t) ≤ exp

[

∫ t

t̃Ñ(t)

α(τ)dτ

]

|w(t̃Ñ(t), s)|χ(t̃Ñ(t))

≤ exp

[

∫ t

t̃Ñ(t)

α(τ)dτ

]

· exp





Ñ(t)
∑

i=1

log βi

+

∫ t̃Ñ(t)

t0

α(τ)dτ

)

|w(t0, s)|χ(t0).

Hence, we obtain

|w(t, s)|χ(t) ≤ exp(−c(t− t0))|γ′(s)|χ(t0), (8)

for all t > t0 + T0. Sincec is independent ofs, δEAS
can be derived by following similar arguments as presented
by Russo et al. (2010). In detail, since| · |χ(t) is uniformly
equivalent, there existsD > 0 such that|x|χ(t) ≤ D|x|χ(t′)
for anyx ∈ R

n andt, t′ ≥ t0. Then, by (8), we have

|φ(t;x(0), rt)− φ(t; y(0), rt)|χ(t0) (9)

≤D|φ(t;x(0), rt)− φ(t; y(0), rt)|χ(t)

=D

∣

∣

∣

∣

∫ 1

0

∂ψ(t, s)

∂s
ds

∣

∣

∣

∣

χ(t)

≤ D

∫ 1

0

|w(t, s)|χ(t)ds

≤D

∫ 1

0

exp(−c(t− t0))|γ′(s)|χ(t0)ds

=Dκ exp(−c(t− t0))|x0 − y0|χ(t0) (10)

which converges to zero exponentially. This proves that sys-
tem (1) isδEAS.

If (6) holds for somec > 0 independently oft0, then (8)
holds independently oft0 if t − t0 > T0, which implies
limt→∞ |w(t)|χ(t0) = 0 is uniform with respect tot0. By
the arguments above, system (1) isδUEAS. In addition,
inequality (10) implies that the exponential convergence rate
can be estimated asO(exp(−c(t− t0))).

Note thatc is an estimate of the exponential convergence
rate and also an index of the average contraction rate of (1).

As a simple example to illustrate this result, define a
switched matrix measure based on the following multi-
ple norms: |x|P (t) =

√

x⊤P (t)x. Here, P (t) ∈ R
n,n

is a differentiable matrix-value function where each
P (t) is a symmetric positive definite matrix such that
its largest eigenvalueλmax(P (t)) the smallest eigen-
value λmin(P (t)) is upper bounded and lower-bounded
positive respectively. Then, for anyA ∈ R

n,n, by
simple algebraic manipulations, it can be shown that
the induced switched matrix measure isνP (t)(A) =
1
2λmax[P

−1/2(t)(P (t)A +A⊤P (t) + Ṗ (t))P−1/2(t)].
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Now, consider the linear time-varying (LTV) systeṁx =
A(t)x + I(t) with some PWC matrix functionA(t). Then,
(6) in Theorem 1 can be fulfilled by assuming that it holds
thatP (t)A(t) +A(t)⊤P (t) + Ṗ (t) < 0 for almost everyt.
A similar condition can also be obtained by using the theory
of convergent systems (Pavlov et al., 2007).

Remark 1 Analogous arguments to those presented by
Lohmiller & Slotine (1998) and Russo et al. (2010) can be
followed to prove that the contracting system converges
towards a periodic solution ifr(t) is periodic. Indeed, in
this case the time instants wherer(t) switches, say{tj},
are also periodic with periodT and so is the function
N(t, s) = N(t + T, s + T ) for all t > s. Then, inequality
(6) can be fulfilled by assuming that

1

T





∫ T+t0

t0

α(t)dt+

J
∑

j=1

log(βj)



 < −c. (11)

whereJ is the number of switches in one period. (Note that
this inequality holds independently of the initial timet0, due
to the periodicity.) From Theorem 1, one can conclude that
system (1) isδEAS. The existence of a periodic solution of
(1) follows by using the contraction mapping theorem.

4 Contraction analysis of staircase switching and trans-
action coefficients between norms

As a special case and an important application, in this sec-
tion, we assume that the switching signalr(t) of the switched
system (1) is a staircase function:

H4: r(t) = ξi, ti ≤ t < ti+1, i = 0, 1, · · · , with an
increasing time point sequence{ti} with ti = 0 and
limi→∞ ti = ∞, whereξi ∈ Ξ whereΞ is a countable set.

Let ∆i = ti+1 − ti > 0 be the interval between two points,
andN(t, s) = #{i : s < ti < t}, be the number of time
instants whenr(t) switches that fall in the time interval[s, t],
in particular,N(t) = N(t, t0).

By using multiple norms| · |χ(t) with χ(t) = r(t), we obtain
the following result as a consequence of Theorem 1.

Corollary 1 Suppose that hypothesesH1,2,3,4 hold. If there
exists constantsαi, nonnegative constantsβi, i = 1, 2, · · · ,
c > 0 and T0 > 0 such that, for alli and x ∈ C, the
following conditions hold

µξj

(

∂f

∂x
(x, ξj)

)

≤ αj , | · |ξj+1 ≤ βj | · |ξj , ∀ j (12)

and, for allT > T0,

1

T

{N(t0+T )
∑

i=0

[αi∆i + log(βi)]

+αN(t0+T )+1[t0 + T − tN(t0+T )]

}

< −c, (13)

then (1) isδEAS with respect tor(t) in C; if (13) holds for
somec > 0 independently oft0, then (1) isδUEAS with
respect tor(t) in C. Moreover, the exponential convergence
rate is estimated asO(exp(−c(t− t0))).

Proof Let α(t) = αi if t ∈ [ti, ti+1). We have

νr(t)

(

∂f

∂x
(x, ξi)

)

= µr(t)

(

∂f

∂x
(x, ξi)

)

≤ α(t), ∀ t 6= ti.

Note that

1

T

∫ T

t0

α(t)dt=
1

T

[

αN(t0+T )+1(t0 + T − tN(t0+T )) + α0∆0

+

N(t0+T )
∑

i=0

αi∆i

]

.

Under condition (13), one can conclude that there exists
T1 > 0 such that

1

T





∫ t0+T

t0

α(t)dt +

N(t0+T )
∑

i=0

βi



 < −c (14)

for all T > T1. By employing Theorem 1,δEAS of (1)
can be proved. Furthermore, if (13) holds independently of
the initial time t0, and therefore (14) holds independently
of t0, then (1) isδUEAS with respect tor(t) in C. The
exponential convergence rate can be derived as done in the
proof of Theorem 1.

We can exploit Corollary 1 when considering the case where
r(t) (ξi) takes values in a finite setΩ = {1, · · · ,K}. Specif-
ically, define for anyt > s ≥ 0

Tk(s, t) = {τ ∈ [s, t] : r(τ) = k},
Nkl(s, t) =#{i : r(ti−) = k, and r(ti+) = l, s ≤ ti ≤ t},

and constantsαk andβkl > 0, k, l = 1, · · · ,K such that

µk

(

∂f

∂x
(x, k)

)

≤ αk, | · |l ≤ βkl| · |k. (15)

Then lettingα(t) = αi when t ∈ [ti, ti+1), it can be seen
that inequality (13) in Corollary 1 can be derived if the

5



following condition holds for allT > T0:

1

T

K
∑

k=1

[

αkTk (t0, t0 + T ) +
K
∑

l=1

log(βkl)Nkl (t0, t0 + T )

]

≤ −c. (16)

Alternatively, condition (16) can be replaced by the assump-
tion that there exists someT1 > 0 such that for eachT1-
length interval,[nT1, (n+ 1)T1], it holds that

1

T1

K
∑

k=1

[

αkTk (nT1, (n+ 1)T1) +

K
∑

l=1

log(βkl)Nkl (nT1, (n+ 1)T1)

]

≤ −c, ∀ n ≥ 0. (17)

Remark 2 From Ineq. (17), in the case that allαk < 0,
k = 1, · · · ,K, which implies that all subsystems are con-
tracting and hence incrementally stable, the switched system
is incrementally stable if the duration of the mode in which
each subsystem is active is sufficiently long.

More specifically, if all norms|·|k are identical – and simply
denoted by| · | – thenβkl = 1, and inequality (13) can be
fulfilled by simply assuming that(1/T )

∑K
k=1 αkT (t, t +

T ) ≤ −c holds for allt > 0. Thus, one can see that ifαk < 0
holds for allk = 1, · · · ,K (with respect to the same norm),
then (1) is incrementally stable, which coincides with the
results by Russo & di Bernardo (2011).

The conditions of Theorem 1 and Corollary 1 as well as (16)
depend on two quantities: the matrix measuresαk of the
Jacobian of the dynamical system for each constant value
of r(t), and the transaction coefficientsβkl between norms.
As system (1) is defined in a finite dimensional Euclidean
space, these vector norms are equivalent, i.e., there exist
positive constantsβkl such that|x|l ≤ βkl|x|k holds for all
x ∈ R

n. The role of such transaction coefficients will be
further investigated below.

For illustration, consider the LTV system

ẋ(t) = A(r(t))x(t) +B (18)

wherer(t) : [0,∞[ 7→ C ≡ {1, 2} with A = A(1) or A(2)
andB ∈ R

2. We assume that the linear system is switched
between two constant matrices periodically with identical
frequencyϕr. Consider two vector norms|·|1,2, correspond-
ing to matrix measuresµ1,2 respectively, with transaction
coefficientsβ12 andβ21. Corollary 1, specifically condition
(17), yields that the following inequality is a sufficient con-
ditions forδUEAS of system (18):

1

2
[µ1(A(1)) + µ2(A(2)) + ϕr · (log β12 + log β21)]

< −c (19)

for somec > 0.

We now discuss the relationship between different classes
of vector norms in greater detail.

Quadratic norms. The quadratic norm is defined as|x|P =√
x⊤Px for some positive definite matrixP . For another

|x|Q =
√

x⊤Qx with symmetric positive definite matrixQ.
Then, we have

|x|Q ≤
√

λmax(P−1/2QP−1/2)|x|P (20)

for all x ∈ R
n, whereλmax(A) denotes the largest eigen-

value of a symmetric square matrixA. The proof of this
statement is straightforward and omitted here for the sake
of brevity.

A a first example, we takeA(1) =

(

0 −1

2 −3

)

, A(2) =

(

0 −11

2 −33

)

. It is easy to see that, using the matrix mea-

suresµi(·) induced by the quadratic weighted vector norm
|x|Θi := |Θix|2, i = 1, 2 respectively, the matrix measures
µi [A(i)] with

Θ1 =

(

0.707 0.447

0.707 0.894

)−1

, Θ2 =

(

0.998 0.322

0.0618 0.947

)−1

are negative fori = 1 andi = 2. In particular,µ1 [A(1)] ≤
−1 := α1 andµ2 [A(t, 2)] ≤ −0.6807 := α2.

From the results reported in Sec. 2, we get from Ineq. (20)
that: |x|Θ1 ≤ 1.796|x|Θ2 and |x|Θ2 ≤ 1.05|x|Θ1 ; there-
fore condition (5) remains satisfied withβ12 := 1.796 and
β21 := 1.05. Assuming a switching frequency ofϕr = 1 Hz
between the two modes, we have∆i = 1 s for all i. There-
fore (19) is satisfied and (18) is incrementally stable inR

2.

The evolution of the norm of the error for two trajectories
starting at initial conditions[0.5, 0.1] and [0.4, 0.1] respec-
tively is shown in Fig. 1 whenB = [0 0] andB = [1 1] re-
spectively. In both cases we observe incremental stabilityas
expected. Note that the use of two different weighted norms
makes proving incremental stability much simpler than if
one common metric had to be used for both modes as re-
quired by previous results (e.g. Russo & di Bernardo, 2011;
di Bernardo et al., 2014).

Next, we takeA(1) =

(

−1.3481 −2.9306

−2.4538 −1.2755

)

, A(2) =

(

−11.2237 7.0628

−1.7413 1.5119

)

. It can be seen thatA(1) is Huwitz
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Fig. 1. Evolution of the Euclidean norm of the error‖x(t)−y(t)‖

whenB = [0 0]⊤ (top panel) andB = [1 1]⊤ (bottom panel).
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Fig. 2. Dynamics of the average errorErr(t) over M = 10
independent realizations of random initial values that are
picked from [−10, 10]2 following the uniform distribu-
tion. Err(t) = 1

M

∑M

q=1

√

(xq
1
− x̄1)2 + (xq

2
− x̄2)2 with

x̄u = (1/M)
∑M

q=1
xq
u with u = 1, 2, wherexq

1,2 stands for the
state components of them-th realization.

stable i.e., with all eigenvalues having negative real parts,
butA(2) is unstable, i.e., with some eigenvalues possessing
positive real parts. ChoosingΘ1,2 as follows:

Θ1 =

(

0.3797 0.0061

0.0061 0.4534

)

, Θ2 =

(

0.0644 −0.1475

−0.1475 0.8267

)

.

we find that the matrix measures,µ1(A(1)) andµ2(A(2)),
induced by the2-norms| · |Θ1 and | · |Θ2 are:µ1(A(1)) =
−2.6178, µ2(A(2)) = 0.9188. The transaction coefficients
between the two norms| · |Θ1,2 can be calculated by (20) as
| · |Θ1 ≤ β12| · |Θ2 and| · |Θ2 ≤ β21| · |Θ1 with β12 = 1.9079
andβ21 = 10.4207. The LTV system switches between these
two modes with an identical frequencyϕr (ϕr = 0.25 Hz in
this example). Then (19) holds forc = 1.1010. Therefore,
the LTV system (18) isδUEAS, as shown in Fig. 2, despite
one of its modes being unstable.

NoteAm = A(1)+A(2)
2 =

(

−6.2859 2.0661

0.3562 0.1182

)

, which is un-

stable as it has eigenvalues of−6.3988 and0.2311. Hence,

the results presented by Porfiri et al. (2008) cannot be ap-
plied for this specific situation. Nevertheless our extension
of contraction analysis to switched systems gives a simple
and viable set of conditions that can be used to prove that
indeed the system is incrementally stable.

More specifically, from the properties of matrix measures,

1/2(µ(A(1)) + µ(A(2))) ≥ µ(Am)

≥ max{R⌉(λ) : λ ∈ σ((Am))} > 0

it is not possible to find a uniform norm such that the average
of the matrix measures of the switched matrices induced by
this matrix norm is negative as required by condition (19).
Therefore, in this case, multiple norms must be utilised for
proving contraction andδEAS of the system.

Weighted Lp-norms. The weightedLp-type norms with
1 ≤ p ≤ ∞ are defined as follows.

• WeightedLp-norm: |x|ξ,p = (
∑n

i=1 ξi|xi|p)
1/p

for some
p ≥ 1 and ξ = [ξ1, · · · , ξn]⊤ with ξi > 0 for all i =
1, · · · , n;

• WeightedL∞-norm: |x|ξ,∞ = maxi ξi|xi| for someξ =
[ξ1, · · · , ξn]⊤ with ξi > 0 for all i = 1, · · · , n.

Their transaction coefficients are summarised by the follow-
ing proposition.

Proposition 2 For p > q ≥ 1 with p possibly equal to
∞ and two component-wise vectorsξ = [ξ1, · · · , ξn]⊤ and
η = [η1, · · · , ηn]⊤ with ξi, ηi > 0 for all i = 1, · · · , n, the

following hold: (1) |x|p,ξ ≤ maxi
ξ
1/p

i

η
1/q
i

|x|q,η; (2) |x|q,η ≤

maxi
η
1/q
i

ξ
1/p
i

(n1/q − n1/p)|x|p,ξ; (3) |x|2,ξ = |x|Ξ with Ξ =

diag[ξ1, · · · , ξn].

This result can be directly derived from Bourbaki (1978).
Combining 20 and Proposition 2, we can derive all trans-
action coefficients between all quadratic norms,| · |Q with
positive definite matrixQ, and all| · |ξ,p for +∞ ≥ p ≥ 1.
The same transaction coefficients hold for the equivalence
between the matrix norms induced by these vector norms.

Structured vector norm. We define a structured vector
norm, following the approach presented in Russo et al.
(2013). Specifically, assumex = [x1, · · · , xn]⊤ ∈ Rn can
be partitioned intoK vectorsxk ∈ Rnk , k = 1, · · · ,K,

such thatx = [xk
⊤
, · · · , xK⊤

]⊤ with
∑K

k=1 nk = n. Let
|xk|sk be the norm inRnk . Then, thestructured normof x
is denoted by| · |G and defined as:

|x|G =
∣

∣[|x1|s1 , · · · , |xK |sk ]⊤
∣

∣

S
(21)

where the norm| · |S is defined inRK .
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Given the same partition ofxk, k = 1, · · · ,K, consider
another structured norm| · |G′ based on using the vector
norms| · |s′

k
in R

nk , k = 1, · · · ,K, and| · |S′ in R
K such

that |x|G′ =
∣

∣

∣[|x1|s′
1
, · · · , |xK |s′

k
]⊤
∣

∣

∣

S′

.

Proposition 3 Let | · |G and | · |G′ be two structured norms
defined as mentioned above. LetτS be the transaction coef-
ficient from the norm| · |S′ to | · |S andτk be the the trans-
action coefficient from the norm| · |s′

k
to | · |sk . Then, we

have|x|G′ ≤ τS |U |S |x|G with U = diag[τk]
K
k=1.

This result can be derived as a consequence of those pre-
sented by Russo et al. (2013).

Russo et al. (2013) showed that contraction analysis can be
used to carry out the hierarchical analysis and design of net-
worked systems. Analogously, consider system (18). Parti-
tion x into several sub-vectors,K vectors:xk ∈ Rnk , k =

1, · · · ,K, so thatx = [xk
⊤
, · · · , xK⊤

]⊤ with
∑K

k=1 nk =

n. Eachxk corresponds to thek-th subsystem. Then, system
(18) can be equivalently written in the following form:

ẋk =

K
∑

k′=1

Akk′ (t)x
k +Bk, k = 1, · · · ,K, (22)

where

A(r) =















A11(r) A12(r) · · · A1K(r)

A21(r) A22(r) · · · A2K(r)
...

... · · ·
...

AK1(r) AK2(r) · · · AKK(r)















, r = 1, 2,

and[B⊤
1 , · · · , BK ]⊤ = B.

The norm ofx is defined by (21). Let̃Aij(t) = |Aij(t)|ij ,
where the norm| · |ij is defined by

|Aij(r)|ij = sup
|xj |sj=1

|Aij(r)xj |si .

and consider the reducedK ×K matrix

Ã(r) =















Ã11(r) Ã12(r) · · · Ã1K(t)

Ã21(r) Ã22(r) · · · Ã2K(r)
...

... · · ·
...

ÃK1(r) ÃK2(r) · · · ÃKK(r)















, r = 1, 2.

Let | · |S,1 and| · |S,2 be two norms inRK andβ′
12 andβ′

21
be their transaction coefficients such that| · |S,1 ≤ β′

12| · |S,2
and| · |S,2 ≤ β′

21| · |S,1. We take the multiple norms inRn as
|·|G,r = | ˜A(r)|S,r, r = 1, 2. LetµG,r be the matrix measure

induced by the vector norm| · |G,r in R
n andµS,r be that

of | · |S,r in R
K . Then, it can be derived thatµG,r(A(r)) ≤

µS,r(Ã(r)) (Russo et al., 2013). Proposition 3 implies that
β′
12 and β′

21 can be the transactions coefficients between
| · |G,1 and| · |G,2 as well.

Therefore, suppose that switched system (18) is in the
block-wise form (22). Then, Corollary 1, specifically in-
equality (19), can be fulfilled assuming that it holds that

(1/2)
[

µS,1(Ã(1)) + µS,2(Ã(2)) + fr · (log β′
12 + log β′

21)
]

<

−c.

5 Synchronization in switched networks

Finally, we consider a network example inspired from one
first presented in di Bernardo et al. (2014). We assume the
network equation is given by

ẋi = f(xi(t)) − kσ(t)

m
∑

j=1

LijΓx
j(t), i = 1, · · · ,m. (23)

Here,xi ∈ R
n stands for the state vector at nodei, f(·) :

R
n → R

n the node dynamics,k is the coupling strength,
L = [Lij ]

m
i,j=1 is the Laplacian matrix associated with a

graphG = [V,E], whereV = {1, · · · ,m} is the node set
andE the link set, by the way that for each(i, j), Lij takes
value−1 if there is a link from nodej to i and0 otherwise,
andLii = −∑m

j=1 Lij . σ(t) takes values0 or 1, implying
that the diffusive coupling among the nodes in the graphG
is only active whenσ(t) = 1 while it is not present when
σ(t) = 0. Γ ∈ R

n,n stands for the inner coupling matrix.
We can rewrite (23) in compact form as:

ẋ = F (x(t)) − k [σ(t)L ⊗ Γ]x(t) (24)

wherex = [x1
⊤
, · · · , xm⊤]⊤ ∈ R

mn,
F (x) = [f⊤(x1), · · · , f⊤(xm)]⊤ and⊗ is the Kronecker
product. Assume thatL is diagonalisable, i.e., there exists
a nonsingularQ ∈ R

m,m such thatL = Q−1JQ with a
diagonal matrixJ = diag[λj ]

m
j=1, whereλj , j = 1, · · · ,m,

are the eigenvalues ofJ , which are assumed to be real.
Without loss of generality, we can assume that0 = λ1 ≥
λ2 ≥ · · · ≥ λm. Note thatλ1 = 0 is associated with the
synchronization eigenvector[1, · · · , 1]⊤.

Following similar arguments to those by Carroll & Pecora
(1991); Russo & di Bernardo (2011); di Bernardo et al.
(2014); Yi et al. (2013), synchronization of network (24)
can be achieved if the following linear systems (obtained
via linearisation and block diagonalization of (24)):

φ̇ = [Df(w(t)) − kλiσ(t)]φ, i = 2, · · · ,m, (25)

are contracting, wherew(t) is a solution of the uncoupled
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system

ẇ = f(w), (26)

andDf(·) is the Jacobian off(·). Assume

H5: System (26) has an asymptotically stable attractorA (see
Yi et al., 2013, Assumption 2).

Definition 4 System (23) is said to synchronize if there
exists δ > 0 such that for anyxi(t0) ∈ B(A, δ),
limt→∞ |xi(t) − xj(t)| = 0 for all i, j = 1, · · · ,m.
Here, B(A, δ) = {y : infz∈A |y − z| ≤ δ} denotesδ-
neighbourhood of setA.

According to Corollary 1, in particular, equation (16), we
have the following result:

Proposition 4 Consider two vector norms| · |0 and | · |1,
which induce two matrix measuresµ0(·) andµ1(·) respec-
tively. Suppose thatH4 holds andµ1(−Γ) ≤ 0. If there exist
T0 > 0 andc > 0 such that

1

T

[

µ0(Df(w))T0(nT, (n+ 1)T )

+µ1(Df(w)− kλ2Γ)T1(nT, (n+ 1)T )

+N01(nT, (n+ 1)T ) logβ01

+N01(nT, (n+ 1)T ) logβ10

]

< −c (27)

holds for all T > T0 and w ∈ A, whereTu(s, t) stands
for the duration ofσ(t) = u in the time interval(s, t] and
Nuv(s, t) is the number of switches fromσ(t) = u toσ(t) =
v, for all u 6= v, u, v = 0, 1, then system (24) synchronises.

Proof Note that for eachi = 2, · · · ,m,

µ1(Df(w) − kλiΓ)

≤ µ1(Df(w)− kλ2Γ) + k(λi − λ2)µ1(−Γ)

≤ µ1(Df(w)− kλ2Γ).

Due toµ1(−Γ) ≤ 0, then (27) holds for alli = 2, · · · ,m. It
can then be proved in a straightforward manner that the vari-
ational equations (25) are asymptotically stable for alli ≥ 2
by verifying condition (16) and following the same steps
of the proof of Theorem 5.1 in di Bernardo et al. (2014).
Thus, following the arguments in the proof of Theorem
17 in Yi et al. (2013), there is an invariant open convex
set U ∈ R

mn,mn such thatU ⊃ S, whereS = {x =

[x1
⊤
, · · · , xm⊤]⊤ : xi = xj ∈ A, ∀ i, j}, is invariant for the

coupled system (24). Furthermore,S is an asymptotically
stable set for system (24). This proves synchronization.
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Fig. 4. Synchronisation dynamics of the network system (24)
with random initial values that are picked from[−1, 1]2,

i = 1, 2, · · · , 10. Here,Err(t) = 1

m

∑m

i=1

√

∑

3

j=1
(xi

j − x̄j)2

with x̄j = (1/m)
∑m

i=1
xi
j .

To illustrate this result, we take

f(w) =







p{G[−w1 + w2]− g(w1)}
G[w1 − w2] + w3

−qw2,

whereg(w1) = m0w1+1/2(m1−m0)(|w1+1|−|w1−1|)
as the Chua’ circuit withm0 = −0.5, m1 = −0.8, G =
0.7, p = 9 and q = 7, which was reported to exhibit a
double-scroll chaotic attractor for the node dynamics (26)
Matsumoto et al. (1985). Moreover, we takeΓ as the identity
matrix, and assume the underlining graph of10 nodes has the
structure shown in Fig. 3, associated with a LaplacianLwith
λ2(L) = 2.7142. To study convergence,we choose weighted
1-norms:|y|0 = |y1| + r2|y2| + r3|y3|, with r2 = 3.4042

andr3 = 1.0369, and|y|1 =
√

|y1|2 + |y2|2 + |y3|2, which
implies (i) β01 = 4.3163 andβ10 = 1; (ii) µ0(Df(w)) ≤
3.2829 for all t. We takek = 1, so thatµ1(Df(w) −
kλ2(L)Γ) ≤ −7.4714, for all t. The switching signalσ(t)
is taken as follows:

σ(t) =

{

0 t ∈ [kT, kT + 1/4T )

1 t ∈ (kT + 1/4T, (k + 1)T )

for someT > 0. Condition (27) in Proposition 4 implies that
if T > 13.08, then system (24) synchronises. To illustrate
this result, we takeT = 14. Fig. 4 shows that, as expected,
all nodes synchronise.

6 Conclusions

We have presented an extension of contraction analysis to
switched Carathéodory systems. The key step was the def-
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inition of switched matrix measures induced by multiple
norms. Using these measures, it was possible to derive dif-
ferent sets of sufficient conditions for asymptotic incremen-
tal stability of the systems of interest. Most notably, it was
possible to prove contraction and hence incremental stabil-
ity by using different norms, each associated to a different
mode of the switched system under investigation. This com-
plements and extends in a highly nontrivial manner to the
case of multiple norms, previous results presented by some
of the authors (see Russo et al., 2013; di Bernardo et al.,
2014), where contraction was studied by using a common
metric. The theoretical results were illustrated on a set of
representative examples and applications showing the effec-
tiveness of the proposed method.
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