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Abstract

This paper addresses the problem of bearing-based network localization, which aims to localize all the nodes in a static network
given the locations of a subset of nodes termed anchors and inter-node bearings measured in a common reference frame.
The contributions of the paper are twofold. Firstly, we propose necessary and sufficient conditions for network localizability
with both algebraic and rigidity theoretic interpretations. Secondly, we propose and analyze a linear distributed protocol for
bearing-based network localization. One novelty of our work is that the localizability analysis and localization protocol are

applicable to networks in arbitrary dimensional spaces.

Key words: Sensor network, Network localizability, Distributed localization, Bearing rigidity, Bearing Laplacian.

1 Introduction

Distributed localization of sensor networks is a core
problem in many multi-agent coordination tasks. Net-
work localizability and distributed protocols are two fun-
damental problems for any network localization prob-
lems. Network localizability characterizes whether or
not a network can be possibly localized given the anchor
locations and inter-neighbor relative measurements.
According to the types of the relative measurements
used for localization, the existing works can be divided
into three classes: distance-based, bearing-based, and
position-based. Distance-based network localization has
been studied extensively so far (see [1-4] and the ref-
erences therein). The analysis of the localizability in
distance-based network localization relies heavily on
the distance rigidity theory. More recently, bearing-
based network localization has also attracted extensive
research attention [5—11]. The analysis of the localiz-
ability in bearing-based network localization relies on
the analogous bearing rigidity theory [12-15]. Finally,
position-based network localization, where the inter-
neighbor distance and local bearing measurements are
used together for network localization, has been studied
in [16] by using a complex graph Laplacian.

Although bearing-based network localization has been
studied by many researchers, the two fundamental prob-
lems, network localizability and distributed protocols,
have not yet been fully explored. Very recently, a nec-
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essary and sufficient condition for network localizabili-
ty was proposed in [10, Thm 15] based on the notion of
a stiffness matrix. This condition is applicable only to
networks in two-dimensional spaces. The existing pro-
tocols for bearing-based network localization are also
mainly applicable to networks in two-dimensional am-
bient spaces [6-11]. General results of localizability or
distributed protocols for bearing-based network local-
ization in three and higher dimensional spaces are still
lacking. The main contributions of our work are summa-
rized below.

(a) We formulate the problem of bearing-based network
localization in arbitrary dimensions as a linear least-
squares optimization problem. A special matrix
termed the bearing Laplacian, which can be viewed
as a matrix-weighted graph Laplacian, emerges as
a key part in the least-squares formulation.

(b) By solving the least-squares problem, we propose
necessary and sufficient conditions for network lo-
calizability with both algebraic and rigidity theo-
retic interpretations. These conditions not only pro-
vide numerical ways to examine the localizability of
a given network but also provide intuitions on what
a localizable network looks like.

(¢) We then propose a distributed linear localization
protocol. It is proved that the protocol can globally
localize a network if and only if the network is lo-
calizable. The sensitivity of the protocol to constant
measurement errors is also analyzed.

The rest of the paper is organized as follows. Section 2
presents the linear least-squares formulation of the
bearing-based network localization problem. Section 3
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explores the properties of the bearing Laplacian matrix.
Section 4 presents necessary and sufficient conditions for
network localizability. Section 5 proposes and analyzes
a linear distributed localization protocol. Conclusions
are drawn in Section 6.

Notations: Given A; € RP*Y for i = 1,...,n, denote
diag(A;) = blkdiag{A,...,A,} € R"X"4 Let || - || be
the Euclidian norm of a vector or the spectral norm of
a matrix, and ® be the Kronecker product. Denote I; €
R*4 as the identity matrix, and 14 = [1,...,1]T € R%.
Let Null(-) and Range(-) be the null space and range
space of a matrix, respectively.

2 Bearing-Based Network Localization

In this section, the problem of bearing-based network
localization is formally stated and then formulated as
a linear least-squares problem. Central to this problem
is the notion of localizability, which is formally defined
here.

2.1 Problem Statement

Consider a network of n stationary nodes in R? (n > 2
and d > 2). Assume no two nodes are collocated. Let
p; € RY be the location of node i (i = 1,...,n). Define
the edge vector and the bearing between nodes i and j as

N a G
€ij =DPj —Diy, Gij = m

The unit vector g;; represents the relative bearing of p;
with respect to p;. Note e;; = —ej; and ¢;; = —g;;. Sup-
pose the locations of n, anchor nodes are already given
and the locations of the remaining ny follower nodes are
to be estimated (n,+ny = n). Denote V, = {1,...,n,},
Vi ={ng,+1,...,n}, and ¥V = V, U Vy. Denote p, =
i, T € R pp = [py yq,..opp]T € R,
and p = [pE,p}F}T € R,

Suppose each node has the bearing-only sensing capabil-
ities. The sensing topology of the network defines a graph
G = (V,€&) where £ C VxV. Denote (4, j) as the directed
edge with node 7 as the tail and node j as the head. The
directed edge (i,7) € &€ indicates that node i can “see”
node j; that is node ¢ can measure the relative bearings
gi; of node j. Node j is called the neighbor of node 7 if
(i,7) € £, and N; £ {j € V|(i,j) € €} is the neighbour-
hood of node i. We assume a global orientation that can
be sensed by all the nodes, and thus all measured bear-
ings can be expressed with respect to this common ori-
entation. The global orientation means a common north
for the two-dimensional space, and a common north-
east-down reference for the three-dimensional space. Fi-
nally, let G(p) denote the network that is the graph G
with each vertex ¢ € ¥V mapped to the point p;.

The problem of bearing-based network localization is
formally stated below.

@ anchor
O follower

Fig. 1. An illustration of the notion of localizability. Suppose
the network in (a) is the true network. The networks in (a)
and (b) satisfy the nonlinear equations in (1). The networks
in (a), (b), and (c) satisfy the linear equations in (2).

Problem 1 (Bearing-Based Network Localization)
Consider a network G(p) in R%, the bearing-based net-
work localization problem is to determine the locations
of the follower nodes, {p;}icv,, given the inter-neighbor
bearings, {gij} i jyee, and the locations of the anchor
nodes, {p;}icv,. Mathematically, the problem is to re-
trieve the true network location p by solving the system
of nonlinear equations,

Dj — i o

f:giﬁ V(Z,])Eg,

1p; —nill 7Y (1)
ﬁi = Pi, VZ S Va7

where p; is the estimated location of node i.

The true network location is always a solution to the
nonlinear equations in (1), but the nonlinear equations
may admit many other solutions that do not correspond
to the true network location. Thus we need to study
when the true network location is the unique solution to
(1), which motivates the following notion.

Definition 1 (Bearing-Based Network Localizability)
A network G(p) is called bearing-based localizable if the
true network location p is the unique solution to (1).

Localizability is a fundamental property of bearing-
based networks. A network must be localizable in order
to be localized with either distributed or centralized
protocols. The notion of localizability is illustrated by
an example in Figure 1. In this example, the network
in Figure 1(a) is the true network. The network in Fig-
ure 1(b) has the same bearings and anchor locations
as the true network. As a result, both of the networks
in Figure 1(a)-(b) are solutions to (1) and hence the
networks are not localizable by Definition 1.

For the sake of simplicity, we assume that the graph G
is undirected, which means (i, j) € £ < (j,1) € €. If the
graph is directed, suppose (i,5) € € but (j,i) ¢ £. We
can always add the edge (j, i) into £ to convert the direct-
ed graph to an undirected one. The directed edges (i, j)
and (j,4) imply two equations (p; — p;)/||D; — Bill = gi;
and (p; — p;)/|IPi — Djll = 94, respectively. The two e-
quations are equivalent because g;; = —g;;. As a result,
adding the edge (3, 7) does not affect the solutions to (1).



2.2 Reformulation as a Least-Squares Problem

In order solve the nonlinear equations in (1), we derive a
companion system of linear equations. In this direction,
we first introduce a useful orthogonal projection opera-
tor. For any nonzero vector z € R? (d > 2), define the
orthogonal projection operator P : R? — R¥*? ag

l'JZT

P(l‘) £ Id

[Ed(niEdln

For notational simplicity, denote P, = P(z). The matrix
P, geometrically projects any vector onto the orthogonal
compliment of z. It can be easily verified that Pl = P,,
P2 = P,, Null(P,) = span {z}, and the eigenvalues of
P, are {0,1(@=D},

Consider now the projection matrix, Py, = Iy — gi; giTj,
associated with the bearing g;;. By multiplying P, on
both sides of the first equation in (1), the nonlinear al-
gebraic problem (1) is converted to a system of linear

equations,
Pgi] (ﬁj -
Di = Di,

The linear equations in (2) are not equivalent to the
nonlinear equations in (1) in general. But we next show
that the two sets of equations are equivalent when the
true network localization is the unique solution.

ﬁz) = 07 V(l,j) € 57

2
Vi € V,. ®

Lemma 1 Let X; and Xy denote the set of all solutions
satisfying (1) and (2), respectively. Then

(a) {p} C X1 C Xp;
(b) {p} = X1 if and only if {p} = Xa.

Proof. (a) Since the true network location p is always a
solution to (1) and (2), we know X; and X; are nonempty
and {p} C A} and {p} C AXs. Since (2) is obtained by
multiplying (1) by P,,., we know any solution to (1) is
also a solution to (2), showing X; C Xs.

(b) (Sufficiency) Suppose {p} = Xa. It then follows from
{p} C X1 C A, that {p} = A1. (Necessity) Suppose
{p} = X1. We next prove {p} = X by contradiction.
Assume p’ € Xy and p’ # p. Let 6p = p’ — p and define

/1A

p' Ep+kép, keR. (3)
We next show that p” € X7 when |k| is sufficiently small,
leading to a contradiction. Since p,p’ € X, we know
p"’ € X, for all k € R by (3). As a result, for any k € R
and (i, j) € £, we have Py, (pj — p}) = 0 which implies
either (pff —pi')/[lpj —pi'll = gi; or (0 —pi)/lIpj —pi || =
—gij- Since pf — p; = (pj — pi) + k(dp; — dp;) according
to (3), it is obvious that when |k| is sufficiently small,

the entries of p/ — pi’ have the same signs as those of
pj — pi, and consequently (p] — pf')/|Ip] — p{|l = (p; —
p:)/llp; — pill = ¢i;. Note that when any entry of p; — p;
is zero, the corresponding entry of dp; — dp; is also zero
because dp; — dp; is parallel to p; — p;. To conclude, p”
is another solution other than p satisfying (1), which is
a contradiction. O

Lemma 1(b) indicates that the true network location p
is the unique solution to (1) if and only if p is the unique
solution to (2). Thus we can study the localizability by
analyzing the linear system (2). The linear system of
equations in (2) can be rewritten as the following linear
least-squares problem,

C e R 1 L
minimize  J(p) = 5> Y [Py, (5 =5 (4)
pERI™ 2 £
i€V jeN;
subject to Di =pi, 1€V,

Since any minimizer with the objective function as zero
is the solution to (2), we now successfully formulate the
localizability problem as the above least-squares prob-
lem. The rest of the paper is dedicated to studying two
properties of the least-squares problem. The first is to
determine when the true location p is the unique global
minimizer of (4) (i.e., when the network is localizable),
and the second is how to obtain p in a distributed man-
ner (i.e., what the distributed localization protocol is).

3 The Bearing Laplacian Matrix

In this section, we show that a new important matrix,
termed bearing Laplacian, emerges in the least-squares
formulation. The useful properties of the bearing Lapla-
cian that will be used throughout the paper are explored.

Since the underlying graph G is undirected, the objective
function in (4) can be expressed in a quadratic form,

J(p) = 9" B(G(p))p:

where B(G(p)) € R*49" and its ijth subblock matrix is

0d><d7 2#37 (27]) %ga
[B(g(p))]” - 7P97?J" Z # j7 (Z,j) S 57
ZkENi P‘h’k? 1=7,1€V.

For notational simplicity, we write B(G(p)) as B in the
sequel. The matrix B has a structure reminiscent of the
weighted graph Laplacian matrix. Since B indicates not
only the topology of the network but also the inter-
neighbor bearings, it is referred to as bearing Laplacian
in this paper.

The bearing Laplacian has an intimate connection to the
bearing rigidity properties of the network. Preliminaries
to the bearing rigidity theory, originally proposed in [15],



are given in Appendix A. Here we would like to high-
light two important notions from this theory. The first
is the notion of infinitesimal bearing motions. Loosely
speaking, infinitesimal bearing motions are motions of
the nodes that preserve inter-neighbor bearings. For ex-
ample, for the network in Figure 1(a), the bearings can
be preserved when the nodes 3 and 4 move in the hori-
zontal direction to the right. A network always has two
kinds of trivial infinitesimal bearing motions - they are
the translational and scaling motions of the entire net-
work. A network is infinitesimally bearing rigid if all its
infinitesimal bearing motions are trivial. One importan-
t property of an infinitesimally bearing rigid network is
that its shape can be uniquely determined by the inter-
neighbor bearings.

We next give the basic properties of the bearing Lapla-
cian matrix. We also show that the bearing Laplacian
matrix is a powerful tool for characterizing the bearing
rigidity of a network.

Lemma 2 For a network G(p) with undirected graph G,

the bearing Laplacian B satisfies the following:

(a) B is symmetric positive semi-definite;

(b) Rank(B) < dn—d—1 andNull(B) D span {1 ® I, p};

(¢) Rank(B) = dn—d—1 andNull(B) = span {1 ® I, p}
if and only if G(p) is infinitesimally bearing rigid.

Proof. Assign an arbitrary orientation to each undi-
rected edge and label the edge vectors and bearings for
the directed edges as {ex}7, and {gx}}",, respective-
ly. Then the bearing Laplacian B can be expressed as
B = H"diag(P,, )H where H = H ® I, and H is the
incidence matrix of the graph.® It further follows from
P, = P P, that

B = H"diag(P),) diag(P,,)H = R"R.

RT R

Note R = diag (|lex||l4) Rg where Rp is the bearing
rigidity matrix (see Lemma 7 in Appendix A). As a re-
sult, the matrix R, and hence B, have exactly the same
rank and null space as Rp. Then the results in (b) and
(c) follows immediately from Lemma 7 and Theorem 7
as given in Appendix A. O

Since the nodes in the network are partitioned into an-
chors and followers, it will be useful to partition the cor-
responding bearing Laplacian as

Baa Baf
Bya By

3

where By, € Rinexdne, B,; — Bl € Rimxdn, and
Bff c Rdnysxdny

! The incidence matrix H € R™*" of an oriented graph is
the {0, £1}-matrix with [H]x; = 1 if vertex ¢ is the head of
edge k, [H|r; = —1 if it is the tail, and 0 otherwise.

Lemma 3 For any network G(p) with undirected graph
G, the subblock matriz By is symmetric positive semi-
definite and satisfies By ypy + Bfapa = 0.

Proof. For any nonzero z € R9/, denote z =
0,2T)T € R, Since B > 0, we have 2TBjpr =
z'Bx > 0. As a result By is positive semi-definite.
Since p € Null(B) as suggested by Lemma 2, we have
Bp = 0 which further implies Byop, + Byspy =0. O

4 Analysis of Network Localizability

In this section, we analyze the localizability of networks
in arbitrary dimensions. We first prove two necessary
and sufficient conditions for network localizability from
algebraic and rigidity perspectives, respectively. We
then present more necessary and/or sufficient condi-
tions which can give more intuition on what localizable
networks look like. First of all, we derive the optimality
condition for the least-squares problem (4).

Lemma 4 For the least-squares problem (4), any mini-
mizer py is also a global minimizer and satisfies

Bffﬁ} + Brapa = 0.

Proof. By substituting p, = p, into the objective func-
tion J(p) = pTBp, the constrained optimization prob-
lem (4) can be converted to the unconstrained problem

min J(by) = P} By by + 2pg Baghs + g BaaPa- (5)
Pr€

Any minimizer must satisfy Vj, J(pr) = Byspy +
Bfapa = 0. Now suppose p} Is a minimizer and
satisfies Byrp} + Bfapa = 0. By comparing with
Birps + Bfape = 0 as shown in Lemma 3, we know
Py =ps+a wherex € Null(Byy). Let p* = [pZ, (ﬁ})T}T
and z = [0,2T]T € R9". Since P} =ps+zand Bp =0,
we have J(5*) = (5*)"Bp* = (p+ 2)B(p + %) =
#TBz = 2T Bz = 0. As aresult, the objective function
equals zero at every minimizer. O

The linear equations in (2) hold if and only if the ob-
jective function in the least-squares problem (4) is min-
imized to zero; this is a direct consequence of the first-
order optimality conditions associated with (4). Thus
the equivalence between (2) and (4) is formally estab-
lished. We are now ready to present the necessary and
sufficient condition for localizability.

Theorem 1 (Algebraic Condition for Localizability)
A network G(p) is localizable if and only if the matriz
By is nonsingular. When the network is localizable,
the true locations of the followers can be calculated by
-1

by = _Bffoapa-

Proof. By Lemma 4, a network is localizable if and only
if the true network location p is the unique minimizer
of the least-squares problem (4). Since any minimizer
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Fig. 2. Examples of non-localizable networks. The networks are not localizable because they have infinitesimal bearing motions
that only correspond to the followers (see, for example, the red arrows). The networks in (e) and (f) are three-dimensional.
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Fig. 3. Examples of localizable networks. The networks in (e) and (f) are three-dimensional.

must satisfy Bffﬁ; + Bfapa = 0, it is obvious that the
minimizer is unique if and only if By is nonsingular.
When By is nonsingular, we have Py = —B;lefapa,
whose value equals the true location p; according to
Lemma 3. O

Theorem 1 establishes the equivalence between the lo-
calizability and the nonsingularity of By;. A question
that immediately follows Theorem 1 is what kind of net-
works have nonsingular By¢. We next propose a neces-
sary and sufficient condition from the bearing rigidity
point of view. This rigidity condition is mathematically
equivalent to the algebraic condition, but it gives more
intuition on what localizable networks look like.

Theorem 2 (Rigidity Condition for Localizability)
A network G(p) is localizable if and only if every in-
finitesimal bearing motion involves at least one anchor;
that is, for any monzero infinitesimal bearing motion
Sp = [0p}, 6p?]T € Null(B), the motion ép, correspond-
ing to the anchors must be nonzero.

Proof. We only need to show that By is singular if and
only if there exists nonzero dp € Null(B) with dp, = 0.
(Necessity) Suppose By is singular. Then there exist-
s nonzero z € RI"s such that Byrx = 0. Let dp =
[0,2T]T € R, Then §pTBép = xTBsrz = 0. Hence
dp € Null(B) and ép, = 0. (Sufficiency) Suppose there
exists dp € Null(B) satisfying dp, = 0 and dpy # 0.
Then (5p?8ff§pf = dp"Bdp = 0, which implies that By
is singular. O

The intuition behind Theorem 2 is as follows. Any in-
finitesimal bearing motion (i.e., bearing-preserved mo-
tion) would imply multiple false networks that have ex-
actly the same bearings as the true network. Only if the
infinitesimal bearing motion involves at least one an-
chor, the false networks can be ruled out as solutions to

(1) since they do not satisfy the anchor constraints; oth-
erwise, the false networks cannot be distinguished from
the true network.

Examples are given in Figure 2 and Figure 3 to illustrate
Theorem 2. Figure 2 shows examples of non-localizable
networks. These networks are not localizable because
each of them has infinitesimal bearing motions that only
involve the followers (see those marked by red arrows).
Figure 3 shows examples of localizable networks. The
networks in Figure 3(a)-(f) are obtained by modifying
the networks in Figure 2, which suggests that a non-
localizable network can be made localizable by adding
extra edges or selecting different anchors. It is worth
noting that the networks in Figure 3(c)-(g) are not in-
finitesimally bearing rigid yet they are localizable. As a
result, infinitesimal bearing rigidity is not necessary to
guarantee localizability.

Up to this point, we have presented two necessary and
sufficient localizability conditions. We next utilize the
two conditions to examine some specific problems more
closely. The first is to examine how many anchors are
required to ensure the localizability of a network.

Corollary 1 If a network G(p) is localizable, then

S dim (Null(B))

. > 1
fla = d

Proof. Let k = dim (Null(B)) and N € R%™** he a ba-
sis matrix of Null(B) which means Range(N) = Null(B).
Then any nonzero ép € Null(B) can be expressed as
dp = Nz, where z € R, x # 0. Partition N and express

N,z
Nfa:
cording to Theorem 2, the network is localizable if and

Nz as 0p = Nz = , where N, € Rmaxk Ac-




only if N,z # 0,V € RF,z # 0. As a result, the ma-
trix N, must have full column rank, which requires N,
to be a tall matrix with dn, > k = dim(Null(5)). Since
dim(Null(B)) > d + 1 according to Lemma 2, we have
ng > dim(Null(B))/d > (d+1)/d>1. O

A simple but important fact suggested by Corollary 1 is
that any localizable network must have at least two an-
chors. Similar conclusions have already been obtained in
the existing studies for networks in the two-dimensional
space [7-10]. Another important fact, which is suggested
by Corollary 1 but has not been reported in the litera-
ture, is that more anchors are required to ensure the lo-
calizability when dim(Null(5)) increases. The quantity
dim(Null(B)) can be viewed as a measure of the “degree
of bearing rigidity” as dim(Null(B)) reaches the smallest
value d + 1 when the network is infinitesimally bearing
rigid as shown in Lemma 2. As a result, the intuition be-
hind the second fact is that more anchors are required
to ensure the localizability when the network is “less”
bearing rigid (i.e., dim(Null(B)) is large).

We next present another three localizability conditions,
two of which are sufficient and the other is both neces-
sary and sufficient. These conditions are important be-
cause they indicate the explicit connection between the
localizability and infinitesimal bearing rigidity. Before
presenting the conditions, we need to first define the no-
tion of augmented network.

Definition 2 (Augmented Network) Given a net-
work G(p) withG = (V, ), denote by G(p) an augmented
network withG = (V, &) whereE = EU{(4,J) : 4,5 € V,}.

The augmented network G(p) is obtained from G(p) by
connecting every pair of anchors. If the anchors are al-
ready connected in G(p), then G(p) is the same as G(p).
It should be noted that adding or deleting the edge be-
tween any pair of anchors only changes B,, but not By.
As a result, G(p) and G(p) have exactly the same Bys
and hence they are localizable or nonlocalizable simulta-
neously. The next two sufficient conditions connect the
notions of localizability and infinitesimal bearing rigidi-

ty.

Corollary 2 When n, > 2, if G(p) is infinitesimally
bearing rigid, then G(p) is localizable.

Proof. We will first use Theorem 2 to prove the local-
izability of G(p). Then the localizability of G(p) immedi-
ately follows because G(p) and G(p) have the same local-
izability. Let B be the bearing Laplacian for G(p). Since
G(p) is infinitesimally bearing rigid, we have Null(B) =
span {1 ® I4,p} by Lemma 2. As a result, any infinites-
imal bearing motion dp € Null(B8) can be expressed as a
linear combination of 1 ® I; and p. Since no two anchors
collocate, there does not exist a linear combination of
1 ® I and p leading to dp, = 0 if ng > 2. Then G(p) is
localizable according to Theorem 2. O

Corollary 3 When n, > 2, if G(p) is infinitesimally
bearing rigid, then G(p) is localizable.

Proof. Similar to Corollary 2. O

The intuition behind Corollary 3 is as follows. If a net-
work is infinitesimally bearing rigid, then it can be u-
niquely determined up to a translation and a scaling fac-
tor by the bearings. Since the translational and scaling
ambiguity can be further eliminated by the anchor con-
straints, the entire network can be fully determined and
hence localizable. It is notable that Corollary 3 is more
restrictive than Corollary 2 because it requires G(p) to be
infinitesimally bearing rigid whereas Corollary 2 merely
requires G(p) to be. To illustrate, the networks as shown
in Figure 3(c)-(f) are localizable. For each of them, the
augmented network G(p) is infinitesimally bearing rigid
but G(p) is not. Finally, Corollary 2 can be viewed as a
generalization of the result [10, Cor 10] which is appli-
cable only to two-dimensional cases.

As suggested by Corollary 2, the condition of the in-
finitesimal bearing rigidity of G(p) is sufficient to ensure
the localizability of G(p). An important yet unexplored
problem is whether or not the condition is also neces-
sary. In the case of n, > 3, the condition is sufficient but
not necessary. A counterexample is given in Figure 3(g),
where G(p) is localizable but G(p) is not infinitesimally
bearing rigid since the three anchors are collinear. How-
ever, in the case of n, = 2, we can prove that the condi-
tion is both necessary and sufficient.

Theorem 3 Whenn, = 2, a network G(p) is localizable
if and only if the augmented network G (p) is infinitesimal
bearing rigid.

Proof. The sufficiency has already been proved in
Corollary 2. We next prove the necessity by contradic-
tion. Assume G(p) is localizable but G(p) is not infinites-
imal bearing rigid. Then G(p) has a nontrivial infinites-
imal bearing motion dp which is not in span {1 ® I4, p}.
Write 6p = [0pT,dpa, ()T, where &p;1,dp2 € R? cor-
responds to the two anchors. Because the infinitesimal
motion dp preserves all the bearings including the bear-
ing between p; and ps, we know that the vector dp; —dpo
is parallel to p; — po. As a result, there exists a nonzero
scalar k such that dp; — dpa = k(p1 — p2). Construct

p £ 0p+ 1, @ (kpy — 6pa) — kp
op1 kpa — dp2 kp1 0
= |06p2 |+ | kp2—dp2 | — |kp2 | = | O
(%) (%) (%) (%)
Since the first two entries of dp’ are zero, we know 0p’ is
an infinitesimal motion that only involves the followers.

Thus, the network is not localizable by Theorem 2, which
is a contradiction. O
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Fig. 4. The geometric interpretation of protocol (7).
5 Distributed Network Localization Protocols
In this section, we propose and analyze a linear distribut-

ed protocol for bearing-based network localization in ar-
bitrary dimensions.

The global minimizer of the unconstrained optimization
problem (5) can be obtained by the gradient decent pro-
tocol

pr(t) = =V, J(Bs) = —Byshs(t) = Brapas  (6)
whose elementwise expression is
=D Py, (i) = ;(1). i€Vy (D)

JEN;

where Py, = I; — gij gZ Note the neighbor of the fol-
lower i can be either a follower or an anchor. Several
remarks for protocol (7) are given below. First, the pro-
tocol is distributed because the localization of p; on-
ly requires {g;;}jen; and {p;};en;. In practical imple-
mentation, the bearings {g;;}jea;, can be measured by
a bearing-only sensor such as a camera and the esti-
mates {p;};cn; can be transmitted from the neighbors
via wireless communication. All the bearings must be
measured in a global reference frame. Second, the pro-
tocol has a clear geometric interpretation as shown in
Figure 4. The term —P,, . (pi(t) —p;(t)) is the orthogonal
projection of (p;(t) — p; (t onto the orthogonal compli-
ment of g;;, and hence it acts to steer the estimate p, (t)
to align with the bearing measurement g;;. Third, pro-
tocol (7) can be viewed as an extension of the protocol
proposed in [10], which is applicable to networks in the
two-dimensional space. Finally, those who are familiar
with consensus problems might have noticed that proto-
col (6) has a similar expression as the well-known con-
sensus protocol [17]. The difference is that in the con-
sensus protocol, the weight for each edge is a positive s-
calar whereas in the localization protocol the weight for
each edge is a positive semi-definite orthogonal projec-
tion matrix.

The convergence of the protocol is characterized as be-
low.

Theorem 4 The distributed protocol (7) can globally lo-
calize the network G(p) if and only if the network is lo-
calizable.

Proof. When By, is nonsingular (i.e., the network is
localizable), the matrix —Byy is Hurwitz. As a result,

the linear time-invariant system (6) is stable and the
state converges to the steady state value —B;J}Bfapa
which equals to the real follower location p; according
to Lemma 3. When By is singular (i.e., the network is
not localizable), the final estimate would depend on the
initial estimate of the network location. O

5.1 Sensitivity Analysis

Since the bearing measurements may be corrupted by
errors in practice, it is meaningful to study the impact
of constant measurement errors on the localization pro-
tocol (7). Denote the unit vector §;; € R? as the mea-
surement of g;;. In the presence of bearing measurement
errors, the localization protocol (6) becomes

pr(t) = =Bysps(t) = Bfapas (8)
where By and By, are obtained from By and By, by
replacing g;; with g;;, respectively. The matrix B¢y may
not be symmetric since g;; # —g;; in general.

We next analyze two problems regarding (8). The first is
when B 77 is positive stable (i.e., all its eigenvalues have
positive real parts) such that (8) is globally stable. If
B +7 is positive stable, the final estimate given by (8) is

ﬁ} = _B;fléfapa' (9)

The second problem is how large the localization error
5% — pyll is. To solve the two problems, define

AByp & By —Byy,  ABfa = By — By,

as the perturbations of By; and By, caused by the bear-
ing measurement errors. Let 0;; € [0, 7] be the angle be-
tween g;; and g;;; that is g};‘(}ij = cos 0;;. The angle 0,
represents the inconsistency between g;; and g;;. This
representation is valid for arbitrary dimensions. Note
0;; # 0;; in general. Define the total bearing measure-
ment error for the followers as

€ £ 2 Z Z sinﬁij.

i€V jEN;

We next give lemmas to characterize the relationship
between € and ABjy, ABjy,.

Lemma 5 Denote by § € [0, 7] the angle between any
two nonzero vectorsx,y € R? (i.e., 2Ty = ||z||||y|| cos 0).

Then | Py — Py|| = sin6.

Proof. See Appendix B. O



Lemma 6 For a network G(p) with arbitrary bear-
ing measurements {gij} jyee, it always holds that
[AByfll < € and | ABya| < €/2.

Proof. Denote AP, £ P;. — P, V(i,j) € £. It then
follows from Lemma 5 that ||AP,, || = sinf;;. Note
[ABff]ii = Eje,/\/i AP!]U fori € Vg; fABff]ij = _AP‘]ij
fori € Vy and j € N; NVy; and [AByy];; = 0 otherwise.
Then we have [|AByy| < Zievf Eje/\fmvf AP, || +

Siv, [Siens AR € Siew, Sien 18P, +
Ziev,f Ejef\fi APgij < 2 Eievf Zjex\a APgu
2 Zievf > jen; sinfi; = e. Similarly, we have | ABy, || <
ZiEVf ZjENi,ﬂVa ||AP91J < ZiEVf Z]EN7 HAPQIJ
ZiEVf ZjENi smf)ij = 6/2 Od

We now give a upper bound for the total bearing error
€ to ensure the positive stability of By.

Theorem 5 Given a localizable network with Byy non-

singular, the matriz B 15 positive stable if the total bear-
ing error € satisfies

e < /\min(Bff), (10)

where Amin (Byy) is the minimum eigenvalue of Byy.

Proof. Since ||ABfs|| < € by Lemma 6, if (10) holds,
we have [|[ABs¢| < Amin(Bfy) = 1/||B;f1\|, which fur-
ther implies [|B;;ABss| < |B5;[[[ABss|| < 1. Thus
the spectral radius p(B;flAB 7r) < 1 and hence the ma-
trix (I + B;flABff) is nonsingular. As a result, By =
Bfy+ AByr = Byy(I + B;;ABff) is nonsingular. Since
B¢y is obtained by perturbing By; and By is positive

stable, the nonsingularity of B ¢ ¢ implies the positive sta-
bility. O

Theorem 5 suggests that a large Amin (Bys) would give
the network a large tolerance to bearing measurement
€ITOTS.

We now study the localization error [|p} — py[|. An in-
tuitive conclusion that can be immediately drawn from
(9) and matrix perturbation theory is that the localiza-
tion error would be sufficiently small when the bearing
measurement errors are sufficiently small. We next give
a specific upper bound on the localization error.

Theorem 6 The estimate ﬁ} = flg’;fllg'fapa given in
(9) satisfies |15 — sl < sz (lpall + los])-

Proof. See Appendix C. O

In the last, we briefly discuss the impact of mea-
surement errors in the anchors’ locations. Suppose
the bearing measurements are accurate in this case.
Then the final estimate given by protocol (7) becomes
Py = —B;J}Bfa(pa + Ap,), where Ap, € R4 denotes
the anchor location error. Then the localization error is
given by Apy £ py — py = —B;}BraApa, which indi-
cates that the anchor location errors prorogate to the
final localization error via a linear transformation. It
is straightforward to show that a translational or scal-
ing error in the anchor measurements would cause the
same translational or scaling error in the localization of
followers.

5.2 Simulation Examples

Two simulation examples are shown in Figure 5 to
demonstrate the localization protocol (7). The network
to be localized is a three-dimensional cubic network,
which contains eight nodes and two of them are anchors
and the other six are followers. The initial estimate,
which is randomly generated, is given in Figure 5(a).
For the first example in Figure 5(b)-(c), the bearing
measurements are accurate and it can be seen that the
estimate of the network location converges to the true
value. For the second example in Figure 5(d)-(e), the
bearing measurements are inaccurate. Specifically, the
total bearing error is € = 2.77 and the final localization
error equals 7.25 m. By comparing the two examples,
it can be seen that when the bearings have measure-
ment errors, the finally localized network would have
localization errors. However, the final localized network
can still be sufficiently close to the true network if the
bearing errors are sufficiently small. In addition, for the
second example, we have Ay, = 0.59 < e. Although ‘Ehe
condition in Theorem 5 is not satisfied, the matrix By
is still positive stable which indicates that the condition
in Theorem 5 may be conservative.

6 Conclusions

This paper addressed the localizability conditions and
localization protocols for bearing-based network local-
ization in arbitrary dimensions. The results presented in
this paper not only can be applied to solve the problem of
sensor network localization but also provide a theoretical
foundation for bearing-based formation control [18-21].
In this paper, we assumed that the underlying graph is
undirected. As we have explained, the localizability anal-
ysis is independent to whether or not the sensing graph
is undirected because any directed graph can be con-
verted to an undirected one without affecting the local-
izability analysis. However, the convergence analysis of
the proposed localization protocol relies on the assump-
tion of undirected graphs. For directed graphs, a new
notion termed bearing persistence emerges and makes
the problem more complicated to analyze as observed in
[21]. Distributed localization with directed interaction
topologies is therefore a direction for future work.
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Fig. 5. Simulation examples for the localization protocol (7). The bearing measurements are accurate for the example in (b)-(c),
and inaccurate for the one in (d)-(e). The blue squares represent the anchors. The blue hollow dots and the green solid dots
represent the true and estimated locations of the followers, respectively.

A Preliminaries to Bearing Rigidity Theory

For a network G(p), consider an oriented graph and express
the edge vector and the bearing for the kth directed edge in
the oriented graph, respectively, as ex and gx = ex/||ex|| for
ke {1,...,m}. Define the bearing function Fp : R¥™ — R™
as Fg(p) £ [g7,...,95]". The bearing rigidity matriz is
defined as the Jacobian of the bearing function, Rp(p) =
dFp(p)/dp € RY™ 4" Two important properties of the
bearing rigidity matrix are given as below.

Lemma 7 ([15]) For any network G(p), the bearing rigidity
matriz satisfies Rp = diag (Py, /|lex|) H, Rank(Rp) < dn—
d—1 and span{1 ® I4,p} C Null(Rg).

Let dp be a variation of p. If Rg(p)dp = 0, then p is called an
infinitesimal bearing motion of G(p). A network always has
two kinds of trivial infinitesimal bearing motions: translation
and scaling of the entire network.

Definition 3 (Infinitesimal Bearing Rigidity) A net-
work is infinitesimally bearing rigid if all the infinitesimal
bearing motions are trivial.

The necessary and sufficient conditions for infinitesimal bear-
ing rigidity are summarized as below.

Theorem 7 ([15]) For any network G(p), the following s-
tatements are equivalent:

(a) G(p) is infinitesimally bearing rigid;

(b) G(p) can be uniquely determined up to a translation and
a scaling factor by the inter-neighbor bearings;

(¢) Rank(Rp) =dn—d—1;

(d) Null(Rg) = span{1 ® I4,p}.

B Proof of Lemma 5

Proof. Here we only prove the case of d = 3. Without loss
of generality, assume z and y are two unit vectors satisfying
llz|l = llyll = 1. Then, we have P, = I;—xz™, P, = I,—yy",
and hence ||P; — P,|| = ||zzT — yyT||. There always exists an
orthogonal matrix U € R3*3 such that the two vectors  and
y can be orthogonally transformed to Uz = [1,0,,0]T and

Uy = [cos,sin®,0]T. Since the spectral norm is invariant
to orthogonal matrices, we have

1P: = Pyl = ||U (zz" — yy" U
10 cos?f cosfsind
- 00 - sinf@cosf sin® 6
=sind||Q]],
where QQ = sinf = cosf . Tt is easy to see QTQ = I,

—cosf —sinf

and hence @ is an orthogonal matrix. Then, ||P, — Py| =
sin0||Q|| = sin@||I]] =sinf. O

C Proof of Theorem 6

Proof. Recall py = 78;;Bfapa and note p} = —(Bss +
AByg)~' (Bya + ABraJpa. By (22, Eq. (25)], we have
(Bgs + AByy) :Bff _BffABff([+BffABff) Bff:
substituting into p} gives py = —Bf_lefapa — B;fl ABfapa +
B} ABri(I + By} AByy) "B} ABrapa + By ABgs(I +
B i ABsy) "By Brapa = ps—(I1+B;; ABss) ' By ABfapat
Bf_-flABff(I+ B;flABff)*lpf. It follows that

157 — psll < 11+ By; AByp) ™ By ABgapal
+ 1B ABs s (I + By ; ABsy) ™ py|
< T+ By ABsp) " HI1B5 7 11 ABsallllpall
+ B IIABs #1111+ By g ABsg) ™ l[lps
= I(T + B5; ABs ) 1B57 1| (1ABya | [|pall
+HIABsslllpell) -

Substituting ||[ABss|| < € and ||ABys.|| < €/2 as shown in
Lemma 6, and [|(I+B7; ABys) ™| < 1/(1 — ||B5; [[|AByl])
by [23, Lemma 2.3.3] into the above inequality gives
155 — psll < 1B 715 lIpall+llps e
Py =Pl = 18, e

1/Amin(Byss) completes the proof. O

. Substituting HB;le =
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