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Abstract

This paper aims to determine the fault tolerant quantunr fitel fault detection equation for a class of open quanturtesys coupled
to a laser field that is subject to stochastic faults. In otdeanalyze this class of open quantum systems, we proposerduo-classical
Bayesian inference method based on the definition of a dedcquantum-classical conditional expectation. It is shdhat the proposed
Bayesian inference approach provides a convenient todhtalsneously derive the fault tolerant quantum filter ahd fault detection
equation for this class of open quantum systems. An exanijveoslevel open quantum systems subject to Poisson-tyylesfas presented
to illustrate the proposed method. These results have ttenfia to lead to a new fault tolerant control theory for guen systems.
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1 Introduction tum system under consideration, e.g., a cloud of atoms
trapped inside a vacuum chamber, is interrogated by prob-
ing it with a laser beam. After interaction with the elec-
tromagnetic radiation (laser), the free electrons of the
atoms are accelerated and can absorb energy. This energy

The theory of filtering, which in a broad sense is a scheme
considering the estimation of the system states from noisy

signals and/or partial observations, plays a significalg ro ° : . e
9 P pay 9 is then emitted into the electromagnetic field as photons

in modern engineering science. A filter propagates our > . X
knowledge about the system states given all observationsVNich can be continuously detected through a homodyne

up to the current time and provides optimal estimates of the detector ([Wiseman & Milburn (2010)]). Using the contin-

system states. From the fundamental postulates of quanturﬁJOUS integrated photocur_rent gen_erated by the homodyne
mechanics, one is not allowed to make noncommutative detector one can conveniently estimate the atomic observ-

observations of quantum systems in a single realization Orables. To find the_ op_tlmal estimates is then precisely the
experiment. Any quantum measurement yields in principle goal of quantum filtering theory. A very early approach to

- : : tum filtering was presented in a series of papers by
only partial information about the system. This fact makes quantul . )
the theory of quantum filtering extremely useful in measure- Belavkin dating back to the early 1980s ([Belavkin (1980)],

ment based feedback control of quantum systems, especiallyB€lavkin (1992)]), which was developed in the framework
in the field of quantum optics ([Rouchon & Ralph (2015)], of continuous nondemolition quantum measurement using

: - ; the operational formalism from Davies's precursor work
[Wiseman & Milburn (2010)]). A system-probe interac- ) : :
tion setup in quantum optics is used as the typical phys- ([Davies (1969)]). In the physics community, the theory

ical scenario concerning the extraction of information ©f uantum filtering was also independently developed in
about the quantum system from continuous measurement he early 1990s ([Carmichael (1993)]), named “quantum

([Belavkin (1992)], [Gardiner & Zoller (2000)]). The quan- U@jectory theory” in the context of quantum optics.

Particular emphasis is given to the work by Boutnal.
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abilistic quantum operation within the commutative subal- ence method provides a convenient tool to simultaneously
gebra can be associated with its classical counterpart. Thederive the fault tolerant quantum filter and fault detection
complete quantum probability model is treated as the non- equations for this class of systems.
commutative counterpart of Kolmogorov’s axiomatic char-
acterisation of classical probability. Similar to the clasl This paper is organized as follows. Section 2 describes the
case ([Bertsekas & Tsitsiklis (2002)]), the optimal estiena  class of open quantum systems under consideration in this
of any observable is given by its quantum expectation con- paper. Section 3 is devoted to statistical interpretatibn o
ditioned on the history of continuous nondemolition quan- quantum observables containing information of classical
tum measurements of the electromagnetic field. The quan-random parameters. In Section 4, the fault tolerant quantum
tum filter was derived in terms dt6 stochastic differential  filter and fault detection equations are simultaneously de-
equations using a reference probability method. rived for open quantum systems using a Bayesian inference
method. An example of two-level quantum systems with
In practice, classical randomness may be introduced di- Poisson-type faults is illustrated. Section 5 concludés th
rectly into the system dynamics of quantum systems paper.
([Ruschhaupet al. (2012)]). For example, the system
Hamiltonian of a superconducting quantum system may
contain classical randomness due to the existence o
stochastic fluctuations in magnetic flux or gate volt-
ages ([Donget al. (2015)]). A spin system may be sub- In this work, we concentrate on an open guantum sys-
ject to stochastically fluctuating fields that will intro- tem that has been widely investigated in quantum op-
duce classical randomness into the system dynamicstics ([Wiseman & Milburn (2010)], [Qet al. (2013)],
([Dong & Petersen (2012)]). For an atom system sub- [van Handelet al. (2005)]). The quantum system under
ject to a laser beam, the occurrence of stochastic faultsconsideration is a cloud of atoms in weak interaction with
in the laser device may cause the introduction of clas- an external laser probe field which is continuously mon-
sical randomness into the dynamics of the atom systemitored by a homodyne detector ([Boutehal.(2007)],
([Viola & Knill (2003)], [Khodjasteh & Lidar (2005)]). For  [Mirrahimi & van Handel (2007)]). Such a quantum sys-
an open quantum system, the system may evolve randomlytem can be described by quantum stochastic differen-
and the system dynamics may involve two kinds of random- tial equations driven by quantum nois&st) and BT(t)
nesses, i.equantum randomnessue to intrinsic quantum  ([Wiseman & Milburn (2010)]). The dynamics of the quan-
indeterminacy andtlassical randomnesarising from the tum system are described by the following quantum stochas-
imprecise behaviour of macroscopic devices. In order to tic differential equatioldl:
solve this issue, Bouteet al. (2009) presented an approach
to analyzing quantum observables containing classical ran : +
dom information. By using quantum spectral theorem, a du(t) = _'H(t)_EL L )dt
classical random variable was equivalently representeal by
guantum observable in a commutative quantum probability +Ld BT(t) _ L' B(t)}U (), (1)

2 Heisenberg Dynamics of Open Quantum Systems

space on an external Hilbert space. As a result, a random
observable can be interpreted by compositing an operator-

valued function with this quantum observable and can be | i initial conditionU (0) = I andi = v/—1. HereU (t) de-

\I/vell ((jjefm;ed ont_ antenlellrglr!g ?uantéjm probabllltty sp?ce. scribes the Heisenberg-picture evolution of the systent-ope
h order lo eslimate classical random parameters Iom 4i4rq a0 (t) is the system Hamiltonian. In terms of the sys-
quantum measurements, joint quantum and classical statiSyo, states it is a given system state, we writg — 15 ®

tics were also considered in literature using the concept u) (u], where|u) represents the vacuum state. The system

of “hybrid” classical-quantum density operator, see e.g., ; : _
X peratolL, together with the field operatb(t) = B(t) mod-
([Dotsenkoet al. (2009)], [Gambetta & Wiseman (2001)], o5 the interaction between the system and the field. From

[Kato & Yamamoto (2013)], [Negretti & Mglmer (2013)], A :
[Somarajet al. (2012)], [Tsang (2009a)], [Tsang (2009b)]. guantumlté rule, one has ([Gardiner & Zoller (2000)])

[Tsang (2010))). In this paper, we concentrate on a class of +
open quantum systems subject to stochastic faults, aiming dB(t)dB'(t) = dt,

at deriving the fault tolerant quantum filtering equatioman  dB'(t)dB(t) = dB(t)dB(t) = dB'(t)dB'(t) = 0.

the fault detection equation. In order to achieve this goal,

we consider an approach to uniformly analyzing quantum The atom system and the laser field form a composite sys-
observables and classical random variables. First, the iso tem and the Hilbert space for the composite system is given
morphic equivalent relationship between a set of random by 75 @ & = 7y ® &) ® & where we have exhibited the
observables equipped with a quantum-classical expestatio continuous temporal tensor product decomposition of the
operation and a classical probability space model is deter-Fock spacef’ = &;; ® & into the past and future compo-
mined. Then a quantum-classical conditional expectaton i nents ([Belavkin 81992)], [Holevo (1991)]). It is assumed
considered using the associated classical concept, based o

which a Bayes formula is obtained. This Bayesian infer- 1 We have assumeli=1 by using atomic units in this paper.



that dim.7#») = n < . The atomic observables are de- 3 Statistical Interpretation of Random Observables
scribed by self-adjoint operators o#’,. Any system ob-
servableX at timet is given byX(t) = ji(X) =UT(t)(X®
U (t). It is noted that (1) is written it6 form, as will all
stochastic differential equations in this paper.

Like the case we have discussed in Section 2, in many ap-
plications classical random variables may be introductd in
guantum system Hamiltonian and make the system’s evolu-
) o tion depend on some classical random variables. In such a
In practice, the system Hamiltonian may change ran- case, both quantum and classical randomnesses will be in-
domly because of, e.g., faulty control Hamiltonians yolved in the system dynamics. An approach to analyzing
that appear in the system dynamics at random times photh quantum and classical random variables using quantum
([Viola & Knill (2003)],  [Khodjasteh & Lidar (2005)])  probability theory was proposed in [Boutenal. (2009)] to

or random fluctuations of the external electromagnetic compute the filter equation in the presence of random feed-
field ([Ruschhaupet al.(2012)], [Donget al.(2015)]).  back control signal. In this paper, we consider the fault tol
In this Cas_e_, the system Hamiltonian can be described erant quantum fi|tering pr0b|em for a class of open quan-
by a Hermitian operatoH (F(t)) that depends on some tym systems subject to classical stochastic faults. In or-
classical stochastic process(t). Using the quantum  der to solve this problem, we consider a way of uniformly
It6 rule ([Hudson & Parthasarathy (1984)]), one has apalyzing quantum and classical random variables using
dUT(t)U (1)) = d(U (t)U(t)) = 0, which implies that) (t) a Bayes inference method for calculating joint quantum-
is arandom unitary operatoandX(t) = ji(X) is arandom  cjassical statistics. This method provides a conveniesit to
observableboth depending on the stochastic prodess. to solve the fault tolerant quantum filtering problem that is
In this paper, for simplicity we still writéJ (t) instead of the  the focus of this paper. In this section, we provide a brief
functional formU (F,t). One can conclude that the commu- introduction to quantum probability theory and present a

tativity of observables is preserved, thatfis(A), j:(B)] =0 brief analysis on quantum-classical Bayes inference, whic
if [A,B] =0 whereA, B are two system observables.i; . is used for deriving the fault tolerant filter and fault detec
Here the commutator is defined b4, B] = AB— BA. In ad- tion equation in Section 4.

dition, from (1) one can see thilt(t) depends omB(t’) and
B'(t'), 0<t’ <t, since the incrementdB(t) and dB'(t) o .
point to the future evolution. Consequently, 3.1 Quantum Probability (Finite Dimensional Case)
[U(t),dB(t)] = [U(t),dB'(t)] = 0. ) Let (Q,.7, ) be a complete classical probability space on
which we have a right continuous and complete filtration
{ % }t>0 Of subo fields of Z. In the sequelE »{-} denotes
the mathematical expectation operator with respect to the
given probability measure”.

Similarly, the time evolution operatds (t,s) = U (t)UT(s)
from time s to timet depends only on the field operators
dB(s) anddB'(s) with s< § <t. Thus,

+ We begin by introducing the quantum probability the-
U(t,s),B(1)] =[U(t,s),B'(1)] =0,1<s. 3) ory. Let # be a complex Hilbert space and(.7)
be the set of all bounded operators of. We first
In quantum experiments, generally measurement is per-discuss the case that dip#’) = n < «. It is known
formed on the field. Using homodyne detectors, the that the foundations of quantum mechanics can be also

observation process is given by¥(t) = j(Q(t)) = formulated in a similar language to the classical Kol-
UT(t)(1 ® Q(t))U (t) whereQ(t) = B(t) + B(t) is the real mogorov’s probability theory ([Gardiner & Zoller (2000)])
quadrature of the input field. The operat@(t) com- The basic ideas are as follows. Based on the spec-
mutes with itself at different times, i.e[Q(t),Q(s)] = 0. tral theorem ([Akhiezer & Glazman (1981)]), any self-
When the field is initialized in the vacuum stat®(t) adjoint operatorA on .7 admits a spectral decomposition

is isomorphically equivalent to a real Wiener pro- A= z?:]_ajPAj, where {a;} C R are the eigenvalues of
cess ([Gardiner & Zoller (2000)]). Combing (2) and (3) A and {P} are the corresponding orthogonal projection
with the fact that[l ® Q(t),X ® 1] = 0, it is easy to operators which form a resolution of the identity, i.e.,
show that: (i) [Y(t),Y(s)] = 0 at all timess;t and (ii) Pa,Pa, = 8jPa, andy ", Pa, = 1. For any continuous func-
[Y(s),X(t)] = 0,vs<t. These two properties guarantee that tjon f : R — C, one hasf (A) = 57, f(aj)Pa;. Thus the

(i) Y(t) can be continuously monitored, and (i) it is pos- sete/ = {X:X = f(A),f:R— (C}ﬁ‘orms a éommutative
sible to obtain the conditional statistics of an observable «—algebra génerated 7b§{ That is, arbitrary linear combi-

X(t) basedAon the history of(t). In addition, by using the nations, products and adjoints of operatorscihare still
quantumid rule, one has in <7, | € o/ and all elements of commute. A mapping
P: o/ — C is called a normal state aw if it is positive
dY(t) =UT®)(L+LNU B)dt+dQ(), (4)  and normalized, i.eP(X) > 0 if X >0 andP(l) = 1. From
Theorem 7.1.12 in ([Kadison & Ringrose (1983)]), there
from which Y (t) looks like ji(L+L") =UT(t)(L+LT)U (1) is always a density operatgr such thatP(X) = Tr(pX),
with a noiseQ(t). wherep = p', Tr(p) = 1 andp > 0. Note thatPa; € o/ are



exactly the events one can distinguish by measufireqnd function of R representing the random unitary evolution,
their probabilities are given bf(A) if the system has a e, U;(w)UR(@ =1,Yw € Q; V(R) is a scalar function of
density operatop. We have the following lemma. R representing a classical random variable of interest. Let
N C B(H) be ax—algebra as defined in Section 3.1. It
Lemma 3.1([Boutenet al. (2007)]) Let</ be a commuta-  foliows from Section 7.2 in [Boutest al. (2009)] thatAg

tive x—algebra of operators on a finite-dimensional Hilbert 4 he naturally considered to be an operator-valued random
space’”’, and letP be a normal state ow'. Thereis aclassi-  \griable on a linear spad®(Q,.7, 2) @ N :

cal probability spacéQ’,.#’, ') and ax—isomorphisiif]

1 from & to the set of measurable functions @4, and ne

moreoverP(X) = E g (1(X)),VX € &. AR= z V(R)1R=R, Q@U,lkAURk (6)
K=1

Thus a commutative-—algebra structure is equivalent to ) o i i
a classical probability space. The paiPa },P) acts the wherelr_g, is the indicator function of the classical event
. i}

same ag.7’, 2'). An important conclusion from this iso- R=R". Itis then clear that in each single measurement of

morphic equivalence is that we are allowed to do fundamen- Fhe random observablgz, we have to go through two real-

tal mathematical manipulations on quantum observables andzations: (i) the choice of a sample pointc Q, and (i) the
classical random variables in a similar way, i.e.Xifand  duantum measurement performed on a quantum observable
X, are commuting self-adjoint operators that correspond to AR(w)- AS @ result,. given a systNem state the Na\./erag.e ob-
two classical random variablas andx,, respectively, then ~ Served value ofr is denoted by?(Ag), whereP is defined
X1 + Xo must correspond ta + X, and X;X; must corre-  t0 be the linear mapping:

spond tox;x.What makes quantum probability model dif- . .

ferent from classical probability model is the existence of P(X®X) =Ex{xTr{pX}}:(*(Q,7,2)@ 4 =R, (7)
non-commutative observables. In classical probabilitey- -

ery realization any event is either true or false, regasdiés ~ We refer toP” as a quantum-classical expectation operator.
how many events we choose to observe and the order of ob-

servations. However, in quantum probability, given a prior It is noted that random observables in the formAgfin-
observation of an ever®, any subsequent events that do clude any quantum observable of the folr_tﬁAUR and any
not commute wittP become physically meaningless within  classical random variable of the fom{R) as special cases.
the same realization. Consequently, joint statistics atg o Here, we treat any random variabl¢R) as a random ob-

defined among commuting observables. servablev(R)I underP becausek , (e!V(R) = ﬁn(eit\/(R)l)
for any density operatqu. In other wordsy(R) andv(R)I
The quantum probability space is defined as follows. are equivalent since they share the same characteristie fun

tion. It is clear thav(R)l commutes with all quantum oper-
Definition 3.1 ([Boutenet al. (2007)]) A pair (/4 ,P) is ators onZ (this is exactly a property of classical random
called a quantum probability space, whefeis ax—algebra variables).
on 7. . .

Define.« to be a set of random observables= {X|X =

3.2 Joint Quantum-Classical Statistics v(R)f(U;AUR),f :R— C,v:R™ — C}. It can be verified
that for any functions, f, : R — C and vy, vo : R™ — C,

In many physical situations quantum and classical random-we have[vi (R)fi(UZAUR), v2(R) f2(URAUR)] = 0. That is,
nesses may coexist in system dynamics, which makes it de-all elements inez commute.
sirable to define the joint quantum and classical statistics
Motivated by the systems described in Section 2, in the se-Let % be a Hilbert space with difw#} = n,. Denote
quel we call observables in the following form “random ob- .# = ;4 ® s#. The following result can be obtained with
servables” the proof presented in the Appendix.

Ar = V(R)ULAUR. (5) )
Here A is a self-adjoint operator o representing any ~ 1heorem 3.1.The set of random observables equipped
quantum observableR is a given classical random vec-  With the quantum-classical expectation operatodefined
tor defined on a classical probability spae .#,2?) and in (7) isisomorphically equivalent to a quantum probapilit
represents the classical random information in the quan-SPace(#,P), whereZ is a commutative:—algebra on’,
tum system dynamics. We suppdReakes values in a fi-  P(X) = Tr{p® pX} for any operatoiX on /¢, andp is a
nite set{Ry,...,Ry }; Ur is agivenunitary operator-valued  density operator orzg.

2 A x—isomorphism is a linear bijection with (XY) = 1 (X)(Y) Remark 3.1. From Theorem 3.1, any random observable
and 1 (X) = ((X)". Here ! depends only on a unitary operator &N be equivalently represented by a quantum observable on
U by which all elements of the algebra can be diagonalized. @ larger Hilbert space# @ 7#°, which coincides with the
One can always find such an operatbisince all elements afy way of describing a random observable in Definition 7.2 in
commute. [Boutenet al. (2009)].



Now consider the cas& = I, in which <7 is equivalent to
the o—field generated by the classical random varidRle
Let X = x| with x being a random variable off2,.7, 2).
Then (9) reduces to

The following corollary can be directly concluded from
Lemma 3.1 and Theorem 3.1.

Corollary 3.1. (General equivalence theorem, finite-
dimensional case). There exist a probability sp&Ze.#’, ')
and ax—isomorphismi from 7 to the set of measurable
functions onQ’, such thatP(X) = E» (1(X)),VX € «.

E(xIr-r,)

P(X|l/)= Y o Ellrn)

]E(lR:Rk

Iz g, = EX|o{R}), (11)

Thus the set¥ equipped with the quantum-classical ex-
pectation operatdP is equivalent to a classical probability
space. In other words, when the discussion is restricted to
a set of commutative random observables, any probabilistic
operation or joint statistics can be defined directly from th

which is the expression for classical conditional expémtat
([Bertsekas & Tsitsiklis (2002)]).

Thus the defined conditional expectation is isomorphi-

associated classical probability space. In particularcore

sider the quantum-classical conditional expectation tvhic

will be used in subsequent analysis.

LetYse "Qi: be a random observable,Nwhen% = {X|XY=
YXY € &/} is the commutant ofe/. ThenYs and &

cally equivalent to a particular quantum conditional
expectation and contains classical conditional expecta-
tion as a special case. This coincides with the com-
monly accepted perspective thaflassical probability

theory is a special case of quantum probability theory
[Mirrahimi & van Handel (2007)]. Note that Definition 3.1

also allows us to conveniently define the expectation of clas

can generate a larger commutative set of random observ-sical random variables conditioned on random observables,
ables, which is isomorphic to a classical probability space znd vice versa.

through a linear mapping from Corollary 3.1. Follow-

ing the same idea in classical probability theory, the map The apove analysis can be extended to the case when ei-

P(-|«/) : &' — o is called (a version of) the conditional

expectation frome/’ onto o/ if P(P(X|</)Y) = B(XY)
forall X € &’,Y € &/, and a direct definition is given by
P(Ysl./) = 17 (E o (1 (Ys) |0 {1 ()})).

From the spectral decomposition Af one has

Ar= Y Zr ajkPik, (8)

j=1k=1

whereaj, = ajv(R¢) andPjy = 1r_g, ®U£kPAjURk. An ex-
plicit expression of the quantum-classical conditionglen¢
tation is given by
L P(PiX) « .
B(X| o) = PP s wxed. (9
B(Py)#0 (Pi)
Here we investigate this expression further. SiAe¢|</) e
</, by applying thes—isomorphismi = ip® | in Theorem
3.1 to both sides of (9) we have

1(P(X|)) = (10)

]ﬁ(,‘(%)ﬁéo P(_( Jk))

where 1(Pj) = Pr, @ Ug PajUr, from (50). It follows
from Theorem 3.1 that{i(Py)} forms a set of basis
projection operators for the commutative-algebraZ.

ther Q or 2 has infinite dimension. We will not give the
details here. The key idea is that from Theorem 3.3 in
([Boutenet al. (2007)]) we can always construct on an ad-
ditional Hilbert space a commutative von Neumann alge-
bra which is isomorphic to the classical probability space
(Q,.7,2). The overall linear space is thus isomorphic to
the composition of two quantum probability spaces. %et
be a commutative von Neumann algebra.#fi. Given a
R™ valued classical random variabifeon (Q, 7, &) and

a corresponding unitary operatdg, defineé = {X|X =
v(R)UgY Ur,Y € ¢,v:R™ — C} to be a set of commutative
random observables equipped with the quantum-classical ex
pectation operatiof. HereP is the same as that defined in
(7). From Theorem 3.3 in ([Bouteet al. (2007)]), one can
prove that there exists a probability spd€¥,.7', ') and

a =s—isomorphismi from ¥ onto the algebra of bounded
measurable complex functions &, such thatP(X) =

E (1'(X)),X € €. From classical probability theory, we
have the following definition of quantum-classical condi-
tional expectation.

Definition 3.1. (Quantum-classical conditional expectation)
The mapP(-|¢) is called (a version of) the quantum-
classical conditional expectation frors” onto ¢, if
P(P(X|€)Y) =P(XY) for all X € ¢’ andY € €.

It follows from Theorem 3.16 in ([Bouteat al. (2007)])
that the conditional expectation of Definition 3.1 exists
and is unique with probability one (any two versions
P =P(X|%) and Q = P(X|%) satisfy ||P— Qs = 0,

Thus the expression (9) is the same expression for quan-where |[Y||z = P(Y'Y)). Moreover, P(X|%) is the least

tum conditional expectation owZ, as given in Equa-
tion (2.10) of_([Bouteret al. (2007)]). In fact, we have
[(P(X|«)) =P(1{X)|Z).

mean_square estimate of given ¥ in the sense that
(IX =P(X|%)| < |[X=Y]| for all Y € ¥. One can ver-
ify that the elementary properties of classical condi-



tional expectation, for example, linearity, positivity, behaviour. Thus this is a phenomenon that needs to be seri-
the tower property and “taking out what is known” ously considered. Recall the quantum systems described in
([Bertsekas & Tsitsiklis (2002)]), still hold for the above Section 2. In the laser-atom interaction realization, tdset
defined conditional expectation in Definition 3.1. field is often treated in a classical way and it generates an
electromagnetic field at the position of the atom. Then the
In the subsequent application of fault tolerant quanturrfilt  laser-atom interaction can be described by a dipole inter-
ing we need to relate conditional expectations with respect action Hamiltonian which depends on the intensity of the
to different states to each other. The following quantum- classical electromagnetic field ([Ruschhaapal. (2012)]).
classical Bayes formula allows us to apply change of mea- Therefore, if the macroscopic laser device suffers from a

sure in both quantum and classical senses and is very usefufault, e.g., it produces a faulty electromagnetic field, an u
in this problem. expected additional Hamiltonian will be introduced inte th

guantum system. In this case, the system Hamiltonian in (1)

Theorem 3.2.(Quantum-classical Bayes formula) Consider Will be given byH (F(t)) whereF (t) is the fault process.
the classical probability space mod, .7, #?), the set
of random observableg’ and the quantum-classical expec- In practice, the system may transit between a finite num-
tation operatorP defined as above. Suppose a new prob- per of different faulty modes at random times. This
ability measure2 is defined byd2 = AdZ?, where the  makes it desirable to model the fault process on a prob-
# —measurable random variabfeis the classical Radon-  ability space (Q,.#,Z?) by a continuous-time Markov
Nikon derivative. Choos&/ < %' such thatv’Vv > 0 and chain {F(t)}>0 adapted to {Z}t=0 ([Davis (1975)],
P(AV'V) = 1. Then we can define od’ a new quantum-  [Hibey & Charalambous (1999)],  [Elliott al. (1995)]).
classical expectation operat@roy Q(X) = P(AVTXV) and The state space &f(t) is often chosen to be the finite et
{e1,e,...,en} (for some positive integet) of canonical unit
~ . DPNTXV/E ~ vectors inRN. Let p; = (ptl, p?,...,pN)T be the probability
QX[e) = W vXe@'.  (12)  gistribution ofF(t), i.e., pk = 2(F(t) = &),k =1,2,....N
and suppose the Markov procds@) has a so- called Q ma-
trix or transition rate matrix1 = (aj) € RN*N. Thenp sat-

Proof. Let Y be any element of. Then we have -
isfies the forward Kolmogorov equatlc%% =Tp. Because

- . . JoroveHhet R
Hj( ( VTXV%) )= (AVTXVY) '[phlzs FQ(tr;] éiltS”);, \(,:v(()erlr:)?vs;:)cesszé[#lzklﬁlcj)lft;a?g(lj.a(%_ggi];fhlf’;.\t

= Ef(/\VTXYV) ) satisfies the following stochastic differential equation:

=Q(XY) = Q(Q(XY[?))

=PAVIQX|E)YV) = B(AVIVQ(X|Z)Y) dF(t) = MF(t)dt+dM(t), (14)

=PEAVIVIE)QX|E)Y). (13)

whereM(t) = F(t) — F(0) — [sMF(t7)dt is an{.%; } mar-
LetY = (B(AVTXV|€) - P(AVIV|£)Q(X|£))", then from  tingale ([Elliottet al. (1995)]) and satisfies
(13) we have|Y||z = 0. In other words/?( VTXV|<5)
P(AVIV|E)Q (X|<5) P almost surely. O sup E(|M(t)[2) < oo.
0<t<T
Remark 3.2. Theorem 3.2 is equivalent to the quantum

Bayes formula ([Bouteet al. (2007)]) and contains clas-  QOne goal of this paper is to derive the equations of the fault
sical Bayes formula ([Bertsekas & Tsitsiklis (2002)]) as a tolerant quantum filter and fault detection for this class of
special case. open quantum systems. To be specific, we use a reference
probability approach to find the least-mean-square estisnat

of a system observabk € #(7¢) at timet and the fault
processF(t) for the quantum system under consideration,
given the observation proce¥§s),0 < s<t. This can be
accomplished if we can obtain the following estimates:

4  Fault Tolerant Quantum Filtering and Fault Detec-
tion

4.1 Fault tolerant quantum filter and fault detection equa-
tion ~

o (X) =PB((F(t),e)UT(t)XUM®)|%),  (15)

In classical (non-quantum) engineering, apparatuses may

suffer from malfunctions or degradation events (faults), e where? is the commutative von Neumann algebra gener-
pecially after a long running time or when working in diffi- ~ ated by¥(s) up to timet, and(-,-) is the inner product ifR".

cult environments. The occurrence of faults can often make From the previous analysis, one i{#t),ej) UT(t)XU(t) €

the system evolve far from its desired or normal operating %', which guarantees that the conditional expectation (15)
conditions and can lead to a drastic change in the systemis well defined.



It follows from (3) that forvs <t, where the so-called Lindblad generator is given by

1

UT(t)Q(S)U (t) = UT(S)U T(t7S)Q(S)U (taS)U (S) E(LTLX + XLTL)

~UT(9QU(S) = Y(S), (16)

which implies that% can be rewritten ag = UT(t)2,U (t) Proof. Using theltd product rule, and from (14) and (17),
where.2; is the commutative von Neumann algebra gener- W€ obtain

ated byQ(s) up to timet. From quantum probability theory,

we know thaiQ(t) under the vacuum state is equivalenttoa  (F(t),e)VT(t)XV(t)

classical Wiener process ([Gardiner & Zoller (2000)]). g hi t N

fact makes it simpler to design a quantum filter in terms of =~ (F(0).¢ X+/ (MF(s),e))VI(9XV(s)ds

Q(t) because it is convenient to manipul&¢) using the

AnX) =i[H,X]+LXL-

quantumIté formula ([Hudson & Parthasarathy (1984)]). </ VT(9)XV(s)dM(s),e >

Next, we will use a quantum analog of the classical change-

of-measure technique to obtain an explicit expression for +/ ( YXV(9)) (22)
J :

o (X).

Define an operatd (t) that satisfies the quantum stochastic Taking conditional expectation with respect on both
differential equation sides of (22) while using the mutual independence of

{Q(t),M(t),F(0)}, we obtain
dv(t) = { (—iH (F(t)) - %LTL> dt+ LdQ(t)}V(t), (17)

IED«F(t)aej>VT(t)xv(t)|Qt)
. _ =P((F(0),¢)X)
with V(0) = I. ThenV(t) € 2/ and we have the following R
lemma. +P (/0 <ﬂF(s),ej>VT(s)XV(s)dq=02t)
L 4.1.F tem observabk € #(), th 5 [ |
Coneane vpemon o 08y oo itan g " +F ([ 0.0V @i V121
t
_ +P F(s),e)VT(s)(XL+ LX)V (s)dQ(s)| -2
oo FEBE VO, PRCCESIGCITRARSERSEIEY
PVItV(L))]21) =P((F(0),&)X)
Proof.See the Appendix. O +/(;t}f”(<I'IF(s),ej>VT(s)XV(s)|£s)ds
Write . /(;tﬁ»(ms) &)V (8) L ey XV (9) 25)
(X) = UTOB((F (). &) VI OXV(D)2)U (1),  (19) +/0t1§> ((F(9).)VH (9 (XL+LIX)V(9)|26) dQ(9).(23)
WhICh is the unnormalized conditional expectation. Since N
21 1(F(t),g) =1, we have In addition,
i J(X N
ol (X) = % (20) (MF(s),g)) = (F(s),N"ej) < z a,kQ<>
N
An explicit expression forg (X) can now be obtained. = k;al'k (F(s),&) - (24)

Theorem 4.1. (Unnormalized fault tolerant quantum fil- ~ +
tering equation) The unnormalized conditional expectatio L€t h{(X ) P((F(t),e)VI(t)XV(t)|2). Then we have

1 (X) satisfies the following quantum stochastic differential 7 (X) = UT(t)h (X)U (t). From (23) and (24)} (X) satis-

equation: fies the following stochastic differential equation:
(Z i (X) + 18 (ZLHe) (X ))) dt dh(X <z ah(X) +h! (D%L,H(ej)(x))> dt
+18 (XL+LTX)dY(1), (21) +h (XL+LTX)dQ(). (25)



From Definition 3.1, we knovh[j (X) € Z;. Using thelto
formula, we have

(U () +dU(e)Tdh (X)(U (1) + du(t))
<z ajkn[k +TE fLH(eJ ( ))) dt

+7 (XL+LTX)dQ(t)
+r(XL+LTX)ut )L+ Lhu )
zlajkn[k +TE fLH(eJ)( ))) dt
+78 (XL+LTX)dY(1),

drg(X) =

/‘\
z

(26)
whichis exactly (21). |

Theorem 4.2.(Normalized fault tolerant quantum filtering

equation) The normalized conditional expectatigh(X)
satisfies the following quantum stochastic differentialaq
tion:

doy (X z ajk ot (X X)+ o} (LLn(ey) (X)))dt+
N

< (XL+L™X) - z

(L+LT ) dW(t), (27)

whereW(t) =Y (t) — Jo Tk, 0&(L+L")dsis called innova-
tion process and is a Wiener process uritler

Proof. From Theorem 4.1, we have

drg (1) = %ajkntkmdw (L+Lhdy(t), (28)
k=1

sinceZ pe)(l) = 0.

In addition, it follows from the properties of the Q matrix
that

N N N
d z (1) > Y am(dt+ Y m(L+LNdY()
=1K=1 K=1
= N L+ LHdY(t). (29)
K=1
Equation (20) can be rewritten as
N _ ,
Y (ot (X) = (X). (30)
K=1

Differentiating both sides of (30) based on the quanttdn

rule yields

=drg (X).

(31)
0 becauseyt (X) € %. From

dZntk X)+dgy (X

+Zﬂek )day (X

Itis noted thafoy (X),dY(t)] =
(28)-(31), one has

<§ (1) + % L+ LT)dY(t)> day (X)
Z (L + LMol (

—drg (X X)dY(t). (32)

From (21) and (30), one has

N B
(Z "rk(|)> dr¢(X)
(Z a0 (X) + G (Line) (X))> dt

+0y (XL+LTX)dY(1). (33)

Then dividing both sides of (32) by}, 7(1) yields

<| + % oX(L+LT )dY(t)) day (X)
(Z 2k (X) + 0 (A hey) (X))> dt

+ (qj (XL+LTX) — % af(L+LMg{ (X)) dy(t). (34)
k=1

By multiplying both sides of (34) with — zE:1 o (L +
LHdY(t), (27) can be obtained using the fat¥(t)dY(t) =
dt.

Next, notey ; of(L + L") = P(UT(t)(L+LTU(t)|%) €

#;. Thus one can prove th#{(t) is a commutative process
which is equivalent to a classical stochastic process uhder
according to Corollary 3.1.

In addition, letK € %, s<t, then

PBW ()I%) ) =PW
_}fD<Y()K

©K)
UL+ LU <r>|%>Kdr>



=P <Y(t)K - /(;S]TD(UT(T)(L+ LHU (1)|24))Kdt ables. In fact, we have
N

—/tUT(T)(L—l- LT)U(r)dTK> PUTOXUW®|%) = § of(X). (37)
s k=1

BW()K) +B((Q(t) - Q(8)K) = B(W(5)K). (35)

Let p be the random density matrix that satisfies

~ oyt _
Therefore, P(W(t)|%s) = W(s),s < t, which meansW/(t) PUTOXUM)|%) =Tr(aX). We have

is a % —martingale. FinallydW(t)dW(t) = dY(t)dY(t) = \
dt. ThenW(t) is a Wiener process using Levy's Theorem B K oo B -

([Karatsas & Shreve (1991)]). O Pe= k;pt , with Tr(pr) =1 andpo =1o.  (38)
Remark 4.1.Since our discussion is under the Heisenberg From Corollary 4.1p; satisfies

picture P is fixed. Based on Corollary 3.1, (27) is a classical

recursive stochastic differential equation driven by tlasc N 1 1
sical Wiener proces#/(t), andY(t) can be replaced by its  dp, = | — z i[H(e), o+ LoLl"— ZLTLp — ZpiL 'L | dt
classical observation process counterpart. As a resulj, (2 K=1 2 2

can be directly implemented on a classical signal processor +(Lpy Ll - P Tr((L+ LT)p[)dW(t). (39)

Remark 4.2. The coupled system of stochastic differential Equation (39) is théault tolerant quantum stochastic master
equations (27) is the normalized conditional expectation equation

of (F(t),e;)UT(t)XU(t), given%. When 1y = 0,Vj #k,

this system is decoupled and reduces to the well known | addition, the conditional probability densities of tizaift
guantum filtering equation ofUT(t)XU(t) given % process are given by

([Belavkin (1992)], [Bouteret al. (2007)]).

B = 2(F(t) = ej|%) = P((F(t),&))|%) = ol (1), (40
Normally, the open quantum system is defined on a fi- A (F(t) = &12%) =P((F(t).&)|%) = o (1), (40)
nite dimensional Hilbert spacezs. Noting thatoy is a  which satisfy the following coupled equations using Theo-
linear, identity preserving and positive mapping . rem 4.2

From another point of view, it works as the expectation

of (F(t),ej)X with respect to some finite dimensional goN
state on.z. Thus there exists a density operapgrsuch dp; = Z ajprdt
that o (X) = E{Tr{p{((F(t),e;)X)}} = Tr{p/X} with k=t

ol = E((F(t),e)p{). The following is a corollary of +{ o L+Lh—pl
Theorem 4.2. K

z

of(L+ LT)> dw(t).  (41)
1

Corollary 4.1. Let o/ be the random operator that satisfies Let B = [Bt, ..., ). Then (41) can be rewritten in a vector

a¢ (X) = Tr(p!X) for all system observables € (7). form as i i

Thenp/ satisfies the following stochastic differential equa- dpy = Mpdt+G(t)dW(t), (42)

tion where G(t) = YR eof(L + L") — pyR, of(L +LT).
Equation (42) is the correspondifalt detection equatian

N
do! = ( > apf + XJH(ej) (o )) dt The system of coupled equations (41) or the vector form (42)
k=1 represents the conditional probability distribution tiiag
i it N K + system is under any faulty mode. It can be used to determine
+{ Lo +plLT—p Y Tr(p’(L+LY)) | dW(t), (36)  whether a particular type of fault has happened within the
k=1 system at time. A possible criteria for fault detection is

with pJ = E((F(0),¢}))7o. Here ! H(ey 1 the adjoint The jth fault happens, ip"> po, (43)
Lindblad generator:
where 1> po > 0 is a threshold value chosen by the users.

1
t o 4ot t
LX) =—i[H,X]+LXL 2(L LX+XLIL). 4.2 Application to Two-level Quantum Systems

Note ptj is not a density matrix because it is not defined in  Two-level quantum systems (qubits) play a significant nole i
terms of the conditional expectation of real system observ- quantum information processing. For a two-level system, th



da(t) = —Aa(t)di+ 2 (xa(t) - a(t)(xat) +xe(t)))dW(t)
dx(t) = —((A + z37)xa(t) + waya (1))t + 2= (a(t) +21(t) —xa(t) (Xa(t) +%2(1)) )dW()

( ( )+
dyi(t) = (wXa(t) — (A + 2T1)Y1( ))dt— = (xa(t) +xe(t) )ya (t)dW(t)
( ) )+

)
)
dz(t) = —(fa(t) + (A + £)z(t))dt — = (xa(t) + (xa(t) +xe(t))z2 (1) AW(t) (48)
dxp(t) = (Axa(t) - ZTXz() wry2(t) + ayz2(t))dt+ (1= a(t) = xe(t) (xa(t) +%e(t)) + 22(t) )AW(1)
dya(t) = (Aya(t) + e (t) — FrYa(t))dt — S (xa(t) +X2(t))y2(t)dW(t)
dz(t) = (Az(t) — wpxe(t) — 1 (1 - a(t) +z2(t)))dt — = (xa(t) + (xa(t) +xe(t))z2(t) AW(t)

filter equations reduce to a finite set of stochastic diffeaén  Write
equations. In this case#z = C2. Denote the Pauli matrices

oo [°) o (07 andoe (F 0 ) we {p&— 3O +xa(t) 0+ Ya(t) 0y +21(t)02),
“\10)77 \io “\o-1) p? = 3((1—a(t)l +x(t) ox+ya(t) oy + 22(t) o).
select the coupling strength oper V1/To and the Then we obtain seven coupled equations for the seven coef-

free Ha_m|lton|anH0 - 10_2&02’ v_vhereTl 1S Fhe life time of ficients related to the fault tolerant quantum stochastis-ma

the excited stateg = 5(0x—i0y) anday, is the two-level  ter equation in (48) at the top on this page.

pulsation.

) o The fault detection equation is given by

Assume that a fault occurs at tinfe at which time a new

HamiltonianHs = %ay is introduced into the system, where ~ ~ 1

wy, is an additional pulsation. Following ([Davis (1975)]), dp = Npdt+ \/—TG(t)dW(t)- (49)

we assume thdt(t) is a Poisson process with ratestopped !

at its first jump timeT. That is, Xt )
1

where G(t) =
o Joirt<T a4 Xa(t)
= 1,ift>T (44) tion procesdN(t) is given byW(t) = y(t) — ﬁjgxl(s) +
X2(s)ds

) — Pr(xe(t) + %2(t)). The innova-

and T is an exponential random variable with probability
distribution ;

PT <t)=1—e. (45) 5 Conclusions
From ([Elliott et al. (1995)]), the procesM(t) = f(t) —

Amin(t, T) is a martingale and the proces&) satisfies In this paper, an approach to solving the problem of fault

tolerant quantum filtering and fault detection for a class
of laser-atom open quantum systems has been developed.
A quantum-classical Bayesian inference method is consid-
ered to enable us to derive the fault tolerant quantum filter
and fault detection equation in a convenient way. By de-
scribing the stochastic fault process as a finite-state jump
Markov chain and using a reference probability approach, a
set of coupled stochastic differential equations satidfigd
dM(t) (47) the_conditional system states and fault process estimate ar

: derived. An application to two-level quantum systems un-
der Poisson type faults is also presented. In the example,
we have assumed that the measurement efficiency is 1. It is
also straightforward to extend our result to the case wigh th
measurement efficienay < 1.

df(t) =A(1—f(t))dt+dM(t). (46)
Also, we considerf (0) = 0 only (becausé (t) stops at its

firstjump). LetF(t) = [1— f(t), f(t)]". ThenF(t) takes val-
ues in{e;, e} and satisfies

dF(t) = [‘/\A 8] F(t)+ [_11

Hence, the coupled quantum filtering equations are given by

dpi = (—Aptl+-ff Ho (ptl)) dt
+(Lpt+pLT = Pty Tr(pf

dpf = (/\Pt + L g vy (P ))

+(Lp?+pLT — PP S, Tr(pf

K(L+LT))) dw(t), Acknowledgement
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useful references. grore g |u)). Using the fact thadB(t)|u) = 0, one obtains (see

Equation (6.13) in ([Holevo (1991)]))

Appendix . 1
i d k(D)) = {(=1H (F (1)) = SLTL)dt+ LdQ)} (1))
- - - 53)
Proof of Theorem 3.1Since the inverse mapping of a (
+—isomorphism is also a—isomorphism, from Lemma 3.1 " gth_er Wé)r(is,u (t)fg|ak> ®v)) = ;]/(t)(|Qk> I® ) 5'|”C?
one can always constructia-isomorphismo mapping the ~ Y(0) =V (0) = 1. After some mathematical manipulation,

set of measurable functions @@ = {1,...,n;} to a com-  One obtains TipoU T(1)XU (1)) = Tr(poV T (t)XV(t)) which
mutative x—algebra on.Jz. Applying a s—isomorphism leads to

I =1p®]| to both sides of (6) yields . .
’ B((F(1),e))UT(OXU(1)) = B((F (1), &)V OXV(1).

_ nr (54)
1(AR) = z V(Rk)PRk®U£kAURk, (50) Applying Theorem 3.2 by replacing with 1, X with
k=1 (F(t),ej)X € 2{,V with V(t) and% with 2; respectively

. yields
where Pr, = 10(1r=r,). Then i(Ar) is an operator on
. It can be verified thatPg Pr, = l0(1r=Rr;1r=R,) = - ]f”((F(t),ej>VT(t)XV(t)|Qt)
10(8jk1r-R,) = OjkPR,, and 3, Pr, = 1o(3} 1 Ir-R,) = I. QF().&)X|2) = PVT(t)V(t)|2) - 3)
Thus{Pg } form a complete set of projection operators on
Jp. In addition, from Lemma 3.1, one can find a density
operatorp on % such that TfpPr,) = E»(1r-r,). Thus
we have P(Ag) = S, V(ROE» (1r—r )P(U} AUr,) =

S i1 V(RO Tr(pRR) Tr(PUR AUR,) = P(1(AR)).

Lemma 4.1 can be concluded by combining (52) and (55).
O
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