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Abstract

This paper aims to determine the fault tolerant quantum filter and fault detection equation for a class of open quantum systems coupled
to a laser field that is subject to stochastic faults. In orderto analyze this class of open quantum systems, we propose a quantum-classical
Bayesian inference method based on the definition of a so-called quantum-classical conditional expectation. It is shown that the proposed
Bayesian inference approach provides a convenient tool to simultaneously derive the fault tolerant quantum filter and the fault detection
equation for this class of open quantum systems. An example of two-level open quantum systems subject to Poisson-type faults is presented
to illustrate the proposed method. These results have the potential to lead to a new fault tolerant control theory for quantum systems.
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1 Introduction

The theory of filtering, which in a broad sense is a scheme
considering the estimation of the system states from noisy
signals and/or partial observations, plays a significant role
in modern engineering science. A filter propagates our
knowledge about the system states given all observations
up to the current time and provides optimal estimates of the
system states. From the fundamental postulates of quantum
mechanics, one is not allowed to make noncommutative
observations of quantum systems in a single realization or
experiment. Any quantum measurement yields in principle
only partial information about the system. This fact makes
the theory of quantum filtering extremely useful in measure-
ment based feedback control of quantum systems, especially
in the field of quantum optics ([Rouchon & Ralph (2015)],
[Wiseman & Milburn (2010)]). A system-probe interac-
tion setup in quantum optics is used as the typical phys-
ical scenario concerning the extraction of information
about the quantum system from continuous measurements
([Belavkin (1992)], [Gardiner & Zoller (2000)]). The quan-
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tum system under consideration, e.g., a cloud of atoms
trapped inside a vacuum chamber, is interrogated by prob-
ing it with a laser beam. After interaction with the elec-
tromagnetic radiation (laser), the free electrons of the
atoms are accelerated and can absorb energy. This energy
is then emitted into the electromagnetic field as photons
which can be continuously detected through a homodyne
detector ([Wiseman & Milburn (2010)]). Using the contin-
uous integrated photocurrent generated by the homodyne
detector one can conveniently estimate the atomic observ-
ables. To find the optimal estimates is then precisely the
goal of quantum filtering theory. A very early approach to
quantum filtering was presented in a series of papers by
Belavkin dating back to the early 1980s ([Belavkin (1980)],
[Belavkin (1992)]), which was developed in the framework
of continuous nondemolition quantum measurement using
the operational formalism from Davies’s precursor work
([Davies (1969)]). In the physics community, the theory
of quantum filtering was also independently developed in
the early 1990s ([Carmichael (1993)]), named “quantum
trajectory theory” in the context of quantum optics.

Particular emphasis is given to the work by Boutenet al.
(2007) where quantum probability theory was used in a
rigorous way and a quantum filter for a laser-atom inter-
action setup in quantum optics was derived using a quan-
tum reference probability method. A basic idea in quan-
tum probability theory is an isomorphic equivalence be-
tween a commutative subalgebra of quantum operators on
a Hilbert space and a classical (Kolmogorov) probability
space through the spectral theorem, from which any prob-
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abilistic quantum operation within the commutative subal-
gebra can be associated with its classical counterpart. The
complete quantum probability model is treated as the non-
commutative counterpart of Kolmogorov’s axiomatic char-
acterisation of classical probability. Similar to the classical
case ([Bertsekas & Tsitsiklis (2002)]), the optimal estimate
of any observable is given by its quantum expectation con-
ditioned on the history of continuous nondemolition quan-
tum measurements of the electromagnetic field. The quan-
tum filter was derived in terms ofIt ô stochastic differential
equations using a reference probability method.

In practice, classical randomness may be introduced di-
rectly into the system dynamics of quantum systems
([Ruschhauptet al. (2012)]). For example, the system
Hamiltonian of a superconducting quantum system may
contain classical randomness due to the existence of
stochastic fluctuations in magnetic flux or gate volt-
ages ([Donget al. (2015)]). A spin system may be sub-
ject to stochastically fluctuating fields that will intro-
duce classical randomness into the system dynamics
([Dong & Petersen (2012)]). For an atom system sub-
ject to a laser beam, the occurrence of stochastic faults
in the laser device may cause the introduction of clas-
sical randomness into the dynamics of the atom system
([Viola & Knill (2003)], [Khodjasteh & Lidar (2005)]). For
an open quantum system, the system may evolve randomly
and the system dynamics may involve two kinds of random-
nesses, i.e.,quantum randomnessdue to intrinsic quantum
indeterminacy andclassical randomnessarising from the
imprecise behaviour of macroscopic devices. In order to
solve this issue, Boutenet al. (2009) presented an approach
to analyzing quantum observables containing classical ran-
dom information. By using quantum spectral theorem, a
classical random variable was equivalently represented bya
quantum observable in a commutative quantum probability
space on an external Hilbert space. As a result, a random
observable can be interpreted by compositing an operator-
valued function with this quantum observable and can be
well defined on an enlarging quantum probability space.
In order to estimate classical random parameters from
quantum measurements, joint quantum and classical statis-
tics were also considered in literature using the concept
of “hybrid” classical-quantum density operator, see e.g.,
([Dotsenkoet al. (2009)], [Gambetta & Wiseman (2001)],
[Kato & Yamamoto (2013)], [Negretti & Mølmer (2013)],
[Somarajuet al. (2012)], [Tsang (2009a)], [Tsang (2009b)],
[Tsang (2010)]). In this paper, we concentrate on a class of
open quantum systems subject to stochastic faults, aiming
at deriving the fault tolerant quantum filtering equation and
the fault detection equation. In order to achieve this goal,
we consider an approach to uniformly analyzing quantum
observables and classical random variables. First, the iso-
morphic equivalent relationship between a set of random
observables equipped with a quantum-classical expectation
operation and a classical probability space model is deter-
mined. Then a quantum-classical conditional expectation is
considered using the associated classical concept, based on
which a Bayes formula is obtained. This Bayesian infer-

ence method provides a convenient tool to simultaneously
derive the fault tolerant quantum filter and fault detection
equations for this class of systems.

This paper is organized as follows. Section 2 describes the
class of open quantum systems under consideration in this
paper. Section 3 is devoted to statistical interpretation of
quantum observables containing information of classical
random parameters. In Section 4, the fault tolerant quantum
filter and fault detection equations are simultaneously de-
rived for open quantum systems using a Bayesian inference
method. An example of two-level quantum systems with
Poisson-type faults is illustrated. Section 5 concludes this
paper.

2 Heisenberg Dynamics of Open Quantum Systems

In this work, we concentrate on an open quantum sys-
tem that has been widely investigated in quantum op-
tics ([Wiseman & Milburn (2010)], [Qiet al. (2013)],
[van Handelet al. (2005)]). The quantum system under
consideration is a cloud of atoms in weak interaction with
an external laser probe field which is continuously mon-
itored by a homodyne detector ([Boutenet al. (2007)],
[Mirrahimi & van Handel (2007)]). Such a quantum sys-
tem can be described by quantum stochastic differen-
tial equations driven by quantum noisesB(t) and B†(t)
([Wiseman & Milburn (2010)]). The dynamics of the quan-
tum system are described by the following quantum stochas-
tic differential equation1 :

dU(t) =

{(

−iH (t)− 1
2

L†L

)

dt

+LdB†(t)−L†dB(t)

}

U(t), (1)

with initial conditionU(0) = I andi =
√
−1. HereU(t) de-

scribes the Heisenberg-picture evolution of the system oper-
ators andH(t) is the system Hamiltonian. In terms of the sys-
tem states, ifπ0 is a given system state, we writeρ0 = π0⊗
|υ〉〈υ |, where|υ〉 represents the vacuum state. The system
operatorL, together with the field operatorb(t) = Ḃ(t) mod-
els the interaction between the system and the field. From
quantumIt ô rule, one has ([Gardiner & Zoller (2000)])

dB(t)dB†(t) = dt,

dB†(t)dB(t) = dB(t)dB(t) = dB†(t)dB†(t) = 0.

The atom system and the laser field form a composite sys-
tem and the Hilbert space for the composite system is given
by HS ⊗E = HS ⊗Et]⊗E(t where we have exhibited the
continuous temporal tensor product decomposition of the
Fock spaceE = Et] ⊗E(t into the past and future compo-
nents ([Belavkin (1992)], [Holevo (1991)]). It is assumed

1 We have assumed̄h=1 by using atomic units in this paper.
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that dim(HS ) = n < ∞. The atomic observables are de-
scribed by self-adjoint operators onHS . Any system ob-
servableX at timet is given byX(t) = jt (X) =U†(t)(X⊗
I)U(t). It is noted that (1) is written inIt ô form, as will all
stochastic differential equations in this paper.

In practice, the system Hamiltonian may change ran-
domly because of, e.g., faulty control Hamiltonians
that appear in the system dynamics at random times
([Viola & Knill (2003)], [Khodjasteh & Lidar (2005)])
or random fluctuations of the external electromagnetic
field ([Ruschhauptet al. (2012)], [Donget al. (2015)]).
In this case, the system Hamiltonian can be described
by a Hermitian operatorH(F(t)) that depends on some
classical stochastic processF(t). Using the quantum
It ô rule ([Hudson & Parthasarathy (1984)]), one has
d(U†(t)U(t)) = d(U(t)U†(t)) = 0, which implies thatU(t)
is a random unitary operatorandX(t) = jt (X) is a random
observable, both depending on the stochastic processF(t).
In this paper, for simplicity we still writeU(t) instead of the
functional formU(F, t). One can conclude that the commu-
tativity of observables is preserved, that is,[ jt(A), jt (B)] = 0
if [A,B] = 0 whereA,B are two system observables inHS .
Here the commutator is defined by[A,B] = AB−BA. In ad-
dition, from (1) one can see thatU(t) depends onB(t ′) and
B†(t ′), 0 ≤ t ′ < t, since the incrementsdB(t) and dB†(t)
point to the future evolution. Consequently,

[U(t),dB(t)] = [U(t),dB†(t)] = 0. (2)

Similarly, the time evolution operatorU(t,s) = U(t)U†(s)
from time s to time t depends only on the field operators
dB(s′) anddB†(s′) with s≤ s′ ≤ t. Thus,

[U(t,s),B(τ)] = [U(t,s),B†(τ)] = 0,τ ≤ s. (3)

In quantum experiments, generally measurement is per-
formed on the field. Using homodyne detectors, the
observation process is given byY(t) = jt(Q(t)) =
U†(t)(I ⊗Q(t))U(t) whereQ(t) = B(t)+B†(t) is the real
quadrature of the input field. The operatorQ(t) com-
mutes with itself at different times, i.e.,[Q(t),Q(s)] = 0.
When the field is initialized in the vacuum state,Q(t)
is isomorphically equivalent to a real Wiener pro-
cess ([Gardiner & Zoller (2000)]). Combing (2) and (3)
with the fact that [I ⊗ Q(t),X ⊗ I ] = 0, it is easy to
show that: (i) [Y(t),Y(s)] = 0 at all times s, t and (ii)
[Y(s),X(t)] = 0,∀s≤ t. These two properties guarantee that
(i) Y(t) can be continuously monitored, and (ii) it is pos-
sible to obtain the conditional statistics of an observable
X(t) based on the history ofY(t). In addition, by using the
quantumIt ô rule, one has

dY(t) =U†(t)(L+L†)U(t)dt+dQ(t), (4)

from whichY(t) looks like jt(L+L†) =U†(t)(L+L†)U(t)
with a noiseQ(t).

3 Statistical Interpretation of Random Observables

Like the case we have discussed in Section 2, in many ap-
plications classical random variables may be introduced into
quantum system Hamiltonian and make the system’s evolu-
tion depend on some classical random variables. In such a
case, both quantum and classical randomnesses will be in-
volved in the system dynamics. An approach to analyzing
both quantum and classical random variables using quantum
probability theory was proposed in [Boutenet al. (2009)] to
compute the filter equation in the presence of random feed-
back control signal. In this paper, we consider the fault tol-
erant quantum filtering problem for a class of open quan-
tum systems subject to classical stochastic faults. In or-
der to solve this problem, we consider a way of uniformly
analyzing quantum and classical random variables using
a Bayes inference method for calculating joint quantum-
classical statistics. This method provides a convenient tool
to solve the fault tolerant quantum filtering problem that is
the focus of this paper. In this section, we provide a brief
introduction to quantum probability theory and present a
brief analysis on quantum-classical Bayes inference, which
is used for deriving the fault tolerant filter and fault detec-
tion equation in Section 4.

3.1 Quantum Probability (Finite Dimensional Case)

Let (Ω,F ,P) be a complete classical probability space on
which we have a right continuous and complete filtration
{Ft}t≥0 of sub-σ fields ofF . In the sequel,EP{·} denotes
the mathematical expectation operator with respect to the
given probability measureP.

We begin by introducing the quantum probability the-
ory. Let H be a complex Hilbert space andB(H )
be the set of all bounded operators onH . We first
discuss the case that dim(H ) = n < ∞. It is known
that the foundations of quantum mechanics can be also
formulated in a similar language to the classical Kol-
mogorov’s probability theory ([Gardiner & Zoller (2000)]).
The basic ideas are as follows. Based on the spec-
tral theorem ([Akhiezer & Glazman (1981)]), any self-
adjoint operatorA on H admits a spectral decomposition
A = ∑n

j=1a jPA j , where {a j} ⊂ R are the eigenvalues of
A and {PA j} are the corresponding orthogonal projection
operators which form a resolution of the identity, i.e.,
PA j PAk = δ jkPAk and∑n

j=1PA j = I . For any continuous func-
tion f : R → C, one hasf (A) = ∑n

j=1 f (a j)PA j . Thus the
setA = {X : X = f (A), f : R → C} forms a commutative
∗−algebra generated byA. That is, arbitrary linear combi-
nations, products and adjoints of operators inA are still
in A , I ∈ A and all elements ofA commute. A mapping
P : A → C is called a normal state onA if it is positive
and normalized, i.e.,P(X)≥ 0 if X ≥ 0 andP(I) = 1. From
Theorem 7.1.12 in ([Kadison & Ringrose (1983)]), there
is always a density operatorρ such thatP(X) = Tr(ρX),
whereρ = ρ†,Tr(ρ) = 1 andρ ≥ 0. Note thatPA j ∈ A are
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exactly the events one can distinguish by measuringA and
their probabilities are given byP(A j) if the system has a
density operatorρ . We have the following lemma.

Lemma 3.1([Boutenet al. (2007)]) LetA be a commuta-
tive ∗−algebra of operators on a finite-dimensional Hilbert
spaceH , and letP be a normal state onA . There is a classi-
cal probability space(Ω′,F ′,P ′) and a∗−isomorphism2

ι from A to the set of measurable functions onΩ′, and
moreoverP(X) = EP ′(ι(X)),∀X ∈ A .

Thus a commutative∗−algebra structure is equivalent to
a classical probability space. The pair({PA j},P) acts the
same as(F ′,P ′). An important conclusion from this iso-
morphic equivalence is that we are allowed to do fundamen-
tal mathematical manipulations on quantum observables and
classical random variables in a similar way, i.e., ifX1 and
X2 are commuting self-adjoint operators that correspond to
two classical random variablesx1 andx2, respectively, then
X1+X2 must correspond tox1 + x2 and X1X2 must corre-
spond tox1x2.What makes quantum probability model dif-
ferent from classical probability model is the existence of
non-commutative observables. In classical probability, in ev-
ery realization any event is either true or false, regardless of
how many events we choose to observe and the order of ob-
servations. However, in quantum probability, given a prior
observation of an eventP, any subsequent events that do
not commute withP become physically meaningless within
the same realization. Consequently, joint statistics are only
defined among commuting observables.

The quantum probability space is defined as follows.

Definition 3.1 ([Boutenet al. (2007)]) A pair (N ,P) is
called a quantum probability space, whereN is a∗−algebra
on H .

3.2 Joint Quantum-Classical Statistics

In many physical situations quantum and classical random-
nesses may coexist in system dynamics, which makes it de-
sirable to define the joint quantum and classical statistics.
Motivated by the systems described in Section 2, in the se-
quel we call observables in the following form “random ob-
servables”:

AR = ν(R)U†
RAUR. (5)

Here A is a self-adjoint operator onH representing any
quantum observable;R is a given classical random vec-
tor defined on a classical probability space(Ω,F ,P) and
represents the classical random information in the quan-
tum system dynamics. We supposeR takes values in a fi-
nite set{R1, ...,Rnr}; UR is a givenunitary operator-valued

2 A ∗−isomorphismι is a linear bijection withι(XY) = ι(X)ι(Y)
and ι(X†) = ι(X)†. Here ι depends only on a unitary operator
U by which all elements of the algebraA can be diagonalized.
One can always find such an operatorU since all elements ofA
commute.

function of R representing the random unitary evolution,
i.e., U†

R(ω)UR(ω) ≡ I ,∀ω ∈ Ω; ν(R) is a scalar function of
R representing a classical random variable of interest. Let
N ⊂ B(H ) be a∗−algebra as defined in Section 3.1. It
follows from Section 7.2 in [Boutenet al. (2009)] thatAR
can be naturally considered to be an operator-valued random
variable on a linear spaceℓ∞(Ω,F ,P)⊗N :

AR=
nr

∑
k=1

ν(Rk)1R=Rk ⊗U†
Rk

AURk (6)

where1R=Rk is the indicator function of the classical event
“R=Rk”. It is then clear that in each single measurement of
the random observableAR, we have to go through two real-
izations: (i) the choice of a sample pointω ∈ Ω, and (ii) the
quantum measurement performed on a quantum observable
AR(ω). As a result, given a system stateρ , the average ob-
served value ofAR is denoted bỹP(AR), whereP̃ is defined
to be the linear mapping:

P̃(x⊗X) = EP{xTr{ρX}} : ℓ∞(Ω,F ,P)⊗N → R, (7)

We refer toP̃ as a quantum-classical expectation operator.

It is noted that random observables in the form ofAR in-
clude any quantum observable of the formU†

RAUR and any
classical random variable of the formν(R) as special cases.
Here, we treat any random variableν(R) as a random ob-
servableν(R)I under P̃ becauseEP (eitν(R)) = P̃(eitν(R)I )
for any density operatorρ . In other words,ν(R) andν(R)I
are equivalent since they share the same characteristic func-
tion. It is clear thatν(R)I commutes with all quantum oper-
ators onH (this is exactly a property of classical random
variables).

Define ˜A to be a set of random observables̃A = {X|X =

ν(R) f (U†
RAUR), f : R→C,ν : Rnr →C}. It can be verified

that for any functionsf1, f2 : R→ C andν1,ν2 : Rnr → C,
we have[ν1(R) f1(U

†
RAUR),ν2(R) f2(U

†
RAUR)] = 0. That is,

all elements in ˜A commute.

Let H0 be a Hilbert space with dim{H0} = nr . Denote
H̄ = H0⊗H . The following result can be obtained with
the proof presented in the Appendix.

Theorem 3.1.The set of random observables̃A equipped
with the quantum-classical expectation operatorP̃ defined
in (7) is isomorphically equivalent to a quantum probability
space(R̄, P̄), whereR̄ is a commutative∗−algebra onH̄ ,
P̄(X) = Tr{ρ̄ ⊗ρX} for any operatorX on H̄ , andρ̄ is a
density operator onH0.

Remark 3.1. From Theorem 3.1, any random observable
can be equivalently represented by a quantum observable on
a larger Hilbert spaceH0 ⊗H , which coincides with the
way of describing a random observable in Definition 7.2 in
[Boutenet al. (2009)].
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The following corollary can be directly concluded from
Lemma 3.1 and Theorem 3.1.

Corollary 3.1. (General equivalence theorem, finite-
dimensional case). There exist a probability space(Ω′,F ′,P ′)
and a∗−isomorphismι from ˜A to the set of measurable
functions onΩ′, such that̃P(X) = EP ′(ι(X)),∀X ∈ ˜A .

Thus the set ˜A equipped with the quantum-classical ex-
pectation operator̃P is equivalent to a classical probability
space. In other words, when the discussion is restricted to
a set of commutative random observables, any probabilistic
operation or joint statistics can be defined directly from the
associated classical probability space. In particular, wecon-
sider the quantum-classical conditional expectation which
will be used in subsequent analysis.

Let Ys∈ ˜A ′ be a random observable, wherẽA ′ = {X|XY=
YX,Y ∈ ˜A } is the commutant of ˜A . Then Ys and ˜A

can generate a larger commutative set of random observ-
ables, which is isomorphic to a classical probability space
through a linear mappingι from Corollary 3.1. Follow-
ing the same idea in classical probability theory, the map
P̃(·| ˜A ) : ˜A ′ → ˜A is called (a version of) the conditional
expectation from ˜A ′ onto ˜A if P̃(P̃(X| ˜A )Y) = P̃(XY)
for all X ∈ ˜A ′,Y ∈ ˜A , and a direct definition is given by
P̃(Ys| ˜A ) = ι−1(EP ′(ι(Ys)|σ{ι( ˜A )})).

From the spectral decomposition ofA, one has

AR =
n

∑
j=1

nr

∑
k=1

a jkP̃jk, (8)

wherea jk = a jν(Rk) andP̃jk = 1R=Rk ⊗U†
Rk

PA jURk. An ex-
plicit expression of the quantum-classical conditional expec-
tation is given by

P̃(X| ˜A ) = ∑
P̃(P̃jk) 6=0

P̃(P̃jkX)

P̃(P̃jk)
P̃jk,∀X ∈ ˜A

′. (9)

Here we investigate this expression further. SinceP̃(X| ˜A )∈
˜A , by applying the∗−isomorphismῑ = ι0⊗ I in Theorem

3.1 to both sides of (9) we have

ῑ
(

P̃(X| ˜A )
)

= ∑
P̄(ῑ(P̃jk))) 6=0

P̄(ῑ(P̃jk)ῑ(X))

P̄(ῑ(P̃jk))
ῑ(P̃jk), (10)

where ῑ(P̃jk) = PRk ⊗ U†
Rk

PA jURk from (50). It follows

from Theorem 3.1 that
{

ῑ(P̃jk)
}

forms a set of basis
projection operators for the commutative∗−algebraR̄.
Thus the expression (9) is the same expression for quan-
tum conditional expectation onR̄, as given in Equa-
tion (2.10) of ([Boutenet al. (2007)]). In fact, we have
ῑ
(

P̃(X| ˜A )
)

= P̄(ῑ(X)|R̄).

Now consider the caseA≡ I , in which ˜A is equivalent to
the σ−field generated by the classical random variableR.
Let X = xI with x being a random variable on(Ω,F ,P).
Then (9) reduces to

P̃(X| ˜A ) = ∑
E(1R=Rk

) 6=0

E(x1R=Rk)

E(1R=Rk)
1R=Rk = E(x|σ{R}), (11)

which is the expression for classical conditional expectation
([Bertsekas & Tsitsiklis (2002)]).

Thus the defined conditional expectation is isomorphi-
cally equivalent to a particular quantum conditional
expectation and contains classical conditional expecta-
tion as a special case. This coincides with the com-
monly accepted perspective thatclassical probability
theory is a special case of quantum probability theory
[Mirrahimi & van Handel (2007)]. Note that Definition 3.1
also allows us to conveniently define the expectation of clas-
sical random variables conditioned on random observables,
and vice versa.

The above analysis can be extended to the case when ei-
ther Ω or H has infinite dimension. We will not give the
details here. The key idea is that from Theorem 3.3 in
([Boutenet al. (2007)]) we can always construct on an ad-
ditional Hilbert space a commutative von Neumann alge-
bra which is isomorphic to the classical probability space
(Ω,F ,P). The overall linear space is thus isomorphic to
the composition of two quantum probability spaces. LetC

be a commutative von Neumann algebra onH . Given a
Rnr valued classical random variableR on (Ω,F ,P) and
a corresponding unitary operatorUR, defineC̃ = {X|X =

ν(R)U†
RYUR,Y ∈C ,ν :Rnr →C} to be a set of commutative

random observables equipped with the quantum-classical ex-
pectation operatioñP. HereP̃ is the same as that defined in
(7). From Theorem 3.3 in ([Boutenet al. (2007)]), one can
prove that there exists a probability space(Ω′,F ′,P ′) and
a ∗−isomorphismι from C̃ onto the algebra of bounded
measurable complex functions onΩ′, such thatP̃(X) =
EP ′(ι ′(X)),X ∈ C̃ . From classical probability theory, we
have the following definition of quantum-classical condi-
tional expectation.

Definition 3.1. (Quantum-classical conditional expectation)
The map P̃(·|C̃ ) is called (a version of) the quantum-
classical conditional expectation fromC̃ ′ onto C̃ , if
P̃(P̃(X|C̃ )Y) = P̃(XY) for all X ∈ C̃ ′ andY ∈ C̃ .

It follows from Theorem 3.16 in ([Boutenet al. (2007)])
that the conditional expectation of Definition 3.1 exists
and is unique with probability one (any two versions
P = P̃(X|C̃ ) and Q = P̃(X|C̃ ) satisfy ‖P − Q‖P̃ = 0,
where ‖Y‖P̃ = P̃(Y†Y)). Moreover, P̃(X|C̃ ) is the least
mean square estimate ofX given C̃ in the sense that
‖X − P̃(X|C̃ )‖ ≤ ‖X −Y‖ for all Y ∈ C . One can ver-
ify that the elementary properties of classical condi-
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tional expectation, for example, linearity, positivity,
the tower property and “taking out what is known”
([Bertsekas & Tsitsiklis (2002)]), still hold for the above
defined conditional expectation in Definition 3.1.

In the subsequent application of fault tolerant quantum filter-
ing we need to relate conditional expectations with respect
to different states to each other. The following quantum-
classical Bayes formula allows us to apply change of mea-
sure in both quantum and classical senses and is very useful
in this problem.

Theorem 3.2.(Quantum-classical Bayes formula) Consider
the classical probability space model(Ω,F ,P), the set
of random observablesC and the quantum-classical expec-
tation operatorP̃ defined as above. Suppose a new prob-
ability measureQ is defined bydQ = ΛdP, where the
F−measurable random variableΛ is the classical Radon-
Nikon derivative. ChooseV ∈ C̃ ′ such thatV†V > 0 and
P̃(ΛV†V) = 1. Then we can define oñC ′ a new quantum-
classical expectation operatorQ̃ by Q̃(X) = P̃(ΛV†XV) and

Q̃(X|C̃ ) =
P̃(ΛV†XV/C̃ )

P̃(ΛV†V/C̃ )
, ∀X ∈ C̃

′. (12)

Proof. Let Y be any element ofC̃ . Then we have

P̃(P̃(ΛV†XV|C̃ )Y) = P̃(ΛV†XVY)

= P̃(ΛV†XYV)

= Q̃(XY) = Q̃(Q̃(XY|C̃ ))

= P̃(ΛV†Q̃(X|C̃ )YV) = P̃(ΛV†VQ̃(X|C̃ )Y)

= P̃(P̃(ΛV†V|C̃ )Q̃(X|C̃ )Y). (13)

LetY = (P̃(ΛV†XV|C̃ )− P̃(ΛV†V|C̃ )Q̃(X|C̃ ))†, then from
(13) we have‖Y‖P̃ = 0. In other words,P̃(ΛV†XV|C̃ ) =

P̃(ΛV†V|C̃ )Q̃(X|C̃ ) P̃ almost surely. ✷

Remark 3.2. Theorem 3.2 is equivalent to the quantum
Bayes formula ([Boutenet al. (2007)]) and contains clas-
sical Bayes formula ([Bertsekas & Tsitsiklis (2002)]) as a
special case.

4 Fault Tolerant Quantum Filtering and Fault Detec-
tion

4.1 Fault tolerant quantum filter and fault detection equa-
tion

In classical (non-quantum) engineering, apparatuses may
suffer from malfunctions or degradation events (faults), es-
pecially after a long running time or when working in diffi-
cult environments. The occurrence of faults can often make
the system evolve far from its desired or normal operating
conditions and can lead to a drastic change in the system

behaviour. Thus this is a phenomenon that needs to be seri-
ously considered. Recall the quantum systems described in
Section 2. In the laser-atom interaction realization, the laser
field is often treated in a classical way and it generates an
electromagnetic field at the position of the atom. Then the
laser-atom interaction can be described by a dipole inter-
action Hamiltonian which depends on the intensity of the
classical electromagnetic field ([Ruschhauptet al. (2012)]).
Therefore, if the macroscopic laser device suffers from a
fault, e.g., it produces a faulty electromagnetic field, an un-
expected additional Hamiltonian will be introduced into the
quantum system. In this case, the system Hamiltonian in (1)
will be given byH(F(t)) whereF(t) is the fault process.

In practice, the system may transit between a finite num-
ber of different faulty modes at random times. This
makes it desirable to model the fault process on a prob-
ability space (Ω,F ,P) by a continuous-time Markov
chain {F(t)}t≥0 adapted to {Ft}t≥0 ([Davis (1975)],
[Hibey & Charalambous (1999)], [Elliottet al. (1995)]).
The state space ofF(t) is often chosen to be the finite setS=
{e1,e2, ...,eN} (for some positive integerN) of canonical unit
vectors inRN. Let pt = (p1

t , p
2
t , ..., p

N
t )

T be the probability
distribution ofF(t), i.e., pk

t = P(F(t) = ek),k = 1,2, ...,N
and suppose the Markov processF(t) has a so-called Q ma-
trix or transition rate matrixΠ = (a jk)∈RN×N. Thenpt sat-

isfies the forward Kolmogorov equationdpt
dt =Πpt . Because

Π is a Q matrix, we havea j j =−∑ j 6=k a jk, anda jk ≥ 0, j 6= k.
Then F(t) is a corlol process ([Elliottet al. (1995)]) that
satisfies the following stochastic differential equation:

dF(t) = ΠF(t)dt+dM(t), (14)

whereM(t) = F(t)−F(0)− ∫ t
0 ΠF(τ−)dτ is an{Ft} mar-

tingale ([Elliott et al. (1995)]) and satisfies

sup
0≤t≤T

E(|M(t)|2)< ∞.

One goal of this paper is to derive the equations of the fault
tolerant quantum filter and fault detection for this class of
open quantum systems. To be specific, we use a reference
probability approach to find the least-mean-square estimates
of a system observableX ∈ B(H ) at time t and the fault
processF(t) for the quantum system under consideration,
given the observation processY(s),0 ≤ s≤ t. This can be
accomplished if we can obtain the following estimates:

σ j
t (X) = P̃(

〈

F(t),ej
〉

U†(t)XU(t)|Yt), (15)

whereYt is the commutative von Neumann algebra gener-
ated byY(s) up to timet, and〈·, ·〉 is the inner product inRN.
From the previous analysis, one has

〈

F(t),ej
〉

U†(t)XU(t)∈
Y ′

t , which guarantees that the conditional expectation (15)
is well defined.
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It follows from (3) that for∀s≤ t,

U†(t)Q(s)U(t) =U†(s)U†(t,s)Q(s)U(t,s)U(s)

=U†(s)Q(s)U(s) =Y(s), (16)

which implies thatYt can be rewritten asYt =U†(t)QtU(t)
whereQt is the commutative von Neumann algebra gener-
ated byQ(s) up to timet. From quantum probability theory,
we know thatQ(t) under the vacuum state is equivalent to a
classical Wiener process ([Gardiner & Zoller (2000)]). This
fact makes it simpler to design a quantum filter in terms of
Q(t) because it is convenient to manipulateQ(t) using the
quantum It ô formula ([Hudson & Parthasarathy (1984)]).
Next, we will use a quantum analog of the classical change-
of-measure technique to obtain an explicit expression for
σ j

t (X).

Define an operatorV(t) that satisfies the quantum stochastic
differential equation

dV(t) =

{(

−iH (F(t))− 1
2

L†L

)

dt+LdQ(t)

}

V(t), (17)

with V(0) = I . ThenV(t) ∈ Q′
t and we have the following

lemma.

Lemma 4.1. For any system observableX ∈ B(H ), the
conditional expectation in (15) can be rewritten as

σ j
t (X) =U†(t)

P̃(
〈

F(t),ej
〉

V†(t)XV(t)|Qt )

P̃(V†(t)V(t))|Qt )
U(t). (18)

Proof.See the Appendix. ✷

Write

π j
t (X) =U†(t)P̃(

〈

F(t),ej
〉

V†(t)XV(t)|Qt)U(t), (19)

which is the unnormalized conditional expectation. Since
∑N

j=1

〈

F(t),ej
〉

= 1, we have

σ j
t (X) =

π j
t (X)

∑N
k=1 πk

t (I)
. (20)

An explicit expression forπ j
t (X) can now be obtained.

Theorem 4.1. (Unnormalized fault tolerant quantum fil-
tering equation) The unnormalized conditional expectation
π j

t (X) satisfies the following quantum stochastic differential
equation:

dπ j
t (X) =

(

N

∑
k=1

a jkπk
t (X)+π j

t (LL,H(ej )(X))

)

dt

+π j
t (XL+L†X)dY(t), (21)

where the so-called Lindblad generator is given by

LL,H(X) = i[H,X]+L†XL− 1
2
(L†LX+XL†L).

Proof. Using theIt ô product rule, and from (14) and (17),
we obtain

〈

F(t),ej
〉

V†(t)XV(t)

=
〈

F(0),ej
〉

X+

∫ t

0

〈

ΠF(s),ej
〉

V†(s)XV(s)ds

+

〈

∫ t

0
V†(s)XV(s)dM(s),ej

〉

+

∫ t

0

〈

F(s),ej
〉

d(V†(s)XV(s)). (22)

Taking conditional expectation with respect toQt on both
sides of (22) while using the mutual independence of
{Q(t),M(t),F(0)}, we obtain

P̃(
〈

F(t),ej
〉

V†(t)XV(t)|Qt )

= P̃(
〈

F(0),ej
〉

X)

+P̃

(

∫ t

0

〈

ΠF(s),ej
〉

V†(s)XV(s)ds|Qt

)

+P̃

(

∫ t

0

〈

F(s),ej
〉

V†(s)LL,H(F(s))(X)V(s)ds|Qt

)

+P̃

(

∫ t

0

〈

F(s),ej
〉

V†(s)(XL+L†X)V(s)dQ(s)|Qt

)

= P̃(
〈

F(0),ej
〉

X)

+
∫ t

0
P̃(
〈

ΠF(s),ej
〉

V†(s)XV(s)|Qs)ds

+

∫ t

0
P̃

(

〈

F(s),ej
〉

V†(s)LL,H(ej )(X)V(s)|Qs

)

ds

+
∫ t

0
P̃
(〈

F(s),ej
〉

V†(s)(XL+L†X)V(s)|Qs
)

dQ(s).(23)

In addition,

〈

ΠF(s),ej
〉

=
〈

F(s),ΠTej
〉

=

〈

F(s),
N

∑
k=1

a jkek

〉

=
N

∑
k=1

a jk 〈F(s),ek〉 . (24)

Let h j
t (X) = P̃(

〈

F(t),ej
〉

V†(t)XV(t)|Qt). Then we have

π j
t (X) =U†(t)h j

t (X)U(t). From (23) and (24),h j
t (X) satis-

fies the following stochastic differential equation:

dhj
t (X) =

(

N

∑
k=1

a jkhk
t (X)+h j

t

(

LL,H(ej )(X)
)

)

dt

+h j
t (XL+L†X)dQ(t). (25)
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From Definition 3.1, we knowh j
t (X) ∈ Qt . Using theIt ô

formula, we have

dπ j
t (X) = (U(t)+dU(t))†dhj

t (X)(U(t)+dU(t))

=

(

N

∑
k=1

a jkπk
t (X)+π j

t (LL,H(ej )(X))

)

dt

+π j
t (XL+L†X)dQ(t)

+π j
t (XL+L†X)U†(t)(L+L†)U(t)

=

(

N

∑
k=1

a jkπk
t (X)+π j

t (LL,H(ej )(X))

)

dt

+π j
t (XL+L†X)dY(t), (26)

which is exactly (21). ✷

Theorem 4.2.(Normalized fault tolerant quantum filtering
equation) The normalized conditional expectationσ j

t (X)
satisfies the following quantum stochastic differential equa-
tion:

dσ j
t (X) = (

N

∑
k=1

a jkσk
t (X)+σ j

t (LL,H(ej )(X)))dt+

(

σ j
t (XL+L†X)−σ j

t (X)
N

∑
k=1

σk
t (L+L†)

)

dW(t), (27)

whereW(t) =Y(t)−∫ t
0 ∑N

k=1 σk
s (L+L†)ds is called innova-

tion process and is a Wiener process underP̃.

Proof. From Theorem 4.1, we have

dπ j
t (I) =

N

∑
k=1

a jkπk
t (I)dt+π j

t (L+L†)dY(t), (28)

sinceLL,H(ej )(I) = 0.

In addition, it follows from the properties of the Q matrix
that

d
N

∑
k=1

πk
t (I) =

N

∑
j=1

N

∑
k=1

a jkπk
t (I)dt+

N

∑
k=1

πk
t (L+L†)dY(t)

=
N

∑
k=1

πk
t (L+L†)dY(t). (29)

Equation (20) can be rewritten as

N

∑
k=1

πk
t (I)σ

j
t (X) = π j

t (X). (30)

Differentiating both sides of (30) based on the quantumIt ô

rule yields

d
N

∑
k=1

πk
t (I)(σ

j
t (X)+dσ j

t (X))+
N

∑
k=1

πk
t (I)dσ j

t (X) = dπ j
t (X).

(31)
It is noted that[σ j

t (X),dY(t)] = 0 becauseσ j
t (X)∈Yt . From

(28)-(31), one has

(

N

∑
k=1

πk
t (I)+

N

∑
k=1

πk
t (L+L†)dY(t)

)

dσ j
t (X)

= dπ j
t (X)−

N

∑
k=1

πk
t (L+L†)σ j

t (X)dY(t). (32)

From (21) and (30), one has

(

N

∑
k=1

πk
t (I)

)−1

dπ j
t (X)

=

(

N

∑
k=1

a jkσk
t (X)+σ j

t (LL,H(ej )(X))

)

dt

+σ j
t (XL+L†X)dY(t). (33)

Then dividing both sides of (32) by∑N
k=1 πk

t (I) yields

(

I +
N

∑
k=1

σk
t (L+L†)dY(t)

)

dσ j
t (X)

=

(

N

∑
k=1

a jkσk
t (X)+σ j

t (LL,H(ej )(X))

)

dt

+

(

σ j
t (XL+L†X)−

N

∑
k=1

σk
t (L+L†)σ j

t (X)

)

dY(t). (34)

By multiplying both sides of (34) withI − ∑N
k=1 σk

t (L +

L†)dY(t), (27) can be obtained using the factdY(t)dY(t) =
dt.

Next, note∑N
k=1 σk

t (L+ L†) = P̃(U†(t)(L+ L†)U(t)|Yt) ∈
Yt . Thus one can prove thatW(t) is a commutative process
which is equivalent to a classical stochastic process underP̃

according to Corollary 3.1.

In addition, letK ∈ Ys,s≤ t, then

P̃(P̃(W(t)|Ys)K) = P̃(W(t)K)

= P̃

(

Y(t)K−
∫ t

0
P̃(U†(τ)(L+L†)U(τ)|Yτ))Kdτ

)
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= P̃

(

Y(t)K −
∫ s

0
P̃(U†(τ)(L+L†)U(τ)|Yτ ))Kdτ

−
∫ t

s
U†(τ)(L+L†)U(τ)dτK

)

= P̃(W(s)K)+ P̃((Q(t)−Q(s))K) = P̃(W(s)K). (35)

Therefore,P̃(W(t)|Ys) = W(s),s ≤ t, which meansW(t)
is a Yt−martingale. Finally,dW(t)dW(t) = dY(t)dY(t) =
dt. ThenW(t) is a Wiener process using Levy’s Theorem
([Karatsas & Shreve (1991)]). ✷

Remark 4.1.Since our discussion is under the Heisenberg
picture,P̃ is fixed. Based on Corollary 3.1, (27) is a classical
recursive stochastic differential equation driven by the clas-
sical Wiener processW(t), andY(t) can be replaced by its
classical observation process counterpart. As a result, (27)
can be directly implemented on a classical signal processor.

Remark 4.2. The coupled system of stochastic differential
equations (27) is the normalized conditional expectation
of
〈

F(t),ej
〉

U†(t)XU(t), givenYt . Whenπ jk = 0,∀ j 6= k,
this system is decoupled and reduces to the well known
quantum filtering equation ofU†(t)XU(t) given Yt
([Belavkin (1992)], [Boutenet al. (2007)]).

Normally, the open quantum system is defined on a fi-
nite dimensional Hilbert spaceHs. Noting that σ j

t is a
linear, identity preserving and positive mapping onY ′

t .
From another point of view, it works as the expectation
of
〈

F(t),ej
〉

X with respect to some finite dimensional
state onHs. Thus there exists a density operatorρ ′

t such
that σ j

t (X) = E{Tr{ρ ′
t (
〈

F(t),ej
〉

X)}} = Tr{ρ j
t X} with

ρ j
t = E

(〈

F(t),ej
〉

ρ ′
t

)

. The following is a corollary of
Theorem 4.2.

Corollary 4.1. Let ρ j
t be the random operator that satisfies

σ j
t (X) = Tr(ρ j

t X) for all system observablesX ∈ B(H ).
Thenρ j

t satisfies the following stochastic differential equa-
tion

dρ j
t =

(

N

∑
k=1

a jkρk
t +L

†
L,H(ej )

(ρ j
t )

)

dt

+

(

Lρ j
t +ρ j

t L†−ρ j
t

N

∑
k=1

Tr(ρk
t (L+L†))

)

dW(t), (36)

with ρ j
0 = E(

〈

F(0),ej
〉

)π0. Here L
†
L,H(ej )

is the adjoint

Lindblad generator:

L
†
L,H(X) =−i[H,X]+LXL†− 1

2
(L†LX+XL†L).

Note ρ j
t is not a density matrix because it is not defined in

terms of the conditional expectation of real system observ-

ables. In fact, we have

P̃(U†(t)XU(t)|Yt) =
N

∑
k=1

σk
t (X). (37)

Let ρt be the random density matrix that satisfies
P̃(U†(t)XU(t)|Yt) = Tr(ρtX). We have

ρt =
N

∑
k=1

ρk
t , with Tr(ρt) = 1 andρ0 = π0. (38)

From Corollary 4.1,ρt satisfies

dρt =

(

−
N

∑
k=1

i[H(ek),ρk
t ]+LρtL

†− 1
2

L†Lρt −
1
2

ρtL
†L

)

dt

+(Lρt +ρtL
†−ρt Tr((L+L†)ρt)dW(t). (39)

Equation (39) is thefault tolerant quantum stochastic master
equation.

In addition, the conditional probability densities of the fault
process are given by

p̂ j
t = P(F(t) = ej |Yt) = P̃(

〈

F(t),ej
〉

|Yt) = σ j
t (I), (40)

which satisfy the following coupled equations using Theo-
rem 4.2:

dp̂ j
t =

N

∑
k=1

a jk p̂k
t dt

+

(

σ j
t (L+L†)− p̂ j

t

N

∑
k=1

σk
t (L+L†)

)

dW(t). (41)

Let p̂t = [p̂1
t , ..., p̂

N
t ]

′. Then (41) can be rewritten in a vector
form as

dp̂t = Πp̂tdt+G(t)dW(t), (42)

where G(t) = ∑N
k=1ekσk

t (L + L†) − p̂t ∑N
k=1 σk

t (L + L†).
Equation (42) is the correspondingfault detection equation.

The system of coupled equations (41) or the vector form (42)
represents the conditional probability distribution thatthe
system is under any faulty mode. It can be used to determine
whether a particular type of fault has happened within the
system at timet. A possible criteria for fault detection is

The jth fault happens, if ˆp j
t ≥ p0, (43)

where 1≥ p0 > 0 is a threshold value chosen by the users.

4.2 Application to Two-level Quantum Systems

Two-level quantum systems (qubits) play a significant role in
quantum information processing. For a two-level system, the
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















dα(t) =−λ α(t)dt+ 1√
T1
(x1(t)−α(t)(x1(t)+ x2(t)))dW(t)

dx1(t) =−((λ + 1
2T1

)x1(t)+ωzy1(t))dt+ 1√
T1
(α(t)+ z1(t)− x1(t)(x1(t)+ x2(t)))dW(t)

dy1(t) = (ωzx1(t)− (λ + 1
2T1

)y1(t))dt− 1√
T1
(x1(t)+ x2(t))y1(t)dW(t)

dz1(t) =−( 1
T1

α(t)+ (λ + 1
T1
)z1(t))dt− 1√

T1
(x1(t)+ (x1(t)+ x2(t))z1(t))dW(t)

dx2(t) = (λx1(t)− 1
2T1

x2(t)−ωzy2(t)+ωyz2(t))dt+ 1√
T1
(1−α(t)− x2(t)(x1(t)+ x2(t))+ z2(t))dW(t)

dy2(t) = (λy1(t)+ωzx2(t)− 1
2T1

y2(t))dt− 1√
T1
(x1(t)+ x2(t))y2(t)dW(t)

dz2(t) = (λz1(t)−ωyx2(t)− 1
T1
(1−α(t)+ z2(t)))dt− 1√

T1
(x2(t)+ (x1(t)+ x2(t))z2(t))dW(t)

(48)

filter equations reduce to a finite set of stochastic differential
equations. In this case,Hs =C2. Denote the Pauli matrices

by σx =

(

0 1

1 0

)

,σy =

(

0 −i

i 0

)

andσz =

(

1 0

0 −1

)

. We

select the coupling strength operatorL =
√

1/T1σ− and the
free HamiltonianH0 = ωz

2 σz, whereT1 is the life time of
the excited state,σ− = 1

2(σx− iσy) andωz is the two-level
pulsation.

Assume that a fault occurs at timeT, at which time a new
HamiltonianH f =

ωy
2 σy is introduced into the system, where

ωy is an additional pulsation. Following ([Davis (1975)]),
we assume thatf (t) is a Poisson process with rateλ , stopped
at its first jump timeT. That is,

f (t) =

{

0, if t < T

1, if t ≥ T
(44)

and T is an exponential random variable with probability
distribution

P(T ≤ t) = 1−e−λ t. (45)
From ([Elliott et al. (1995)]), the processM(t) = f (t)−
λ min(t,T) is a martingale and the processf (t) satisfies

d f(t) = λ (1− f (t))dt+dM(t). (46)

Also, we considerf (0) = 0 only (becausef (t) stops at its
first jump). LetF(t) = [1− f (t), f (t)]′. ThenF(t) takes val-
ues in{e1,e2} and satisfies

dF(t) =

[

−λ 0

λ 0

]

F(t)+

[

−1

1

]

dM(t). (47)

Hence, the coupled quantum filtering equations are given by



























dρ1
t =

(

−λ ρ1
t +L

†
L,H0

(ρ1
t )
)

dt

+
(

Lρ1
t +ρ1

t L†−ρ1
t ∑2

k=1Tr(ρk
t (L+L†))

)

dW(t),

dρ2
t =

(

λ ρ1
t +L

†
L,H0+H f

(ρ2
t )
)

dt

+
(

Lρ2
t +ρ2

t L†−ρ2
t ∑2

k=1Tr(ρk
t (L+L†))

)

dW(t).

Write
{

ρ1
t = 1

2(α(t)I + x1(t)σx+ y1(t)σy+ z1(t)σz),

ρ2
t = 1

2((1−α(t))I + x2(t)σx+ y2(t)σy+ z2(t)σz).

Then we obtain seven coupled equations for the seven coef-
ficients related to the fault tolerant quantum stochastic mas-
ter equation in (48) at the top on this page.

The fault detection equation is given by

dp̂t = Πp̂tdt+
1√
T1

G(t)dW(t). (49)

where G(t) =

(

x1(t)

x2(t)

)

− p̂t(x1(t) + x2(t)). The innova-

tion processW(t) is given byW(t) = y(t)− 1√
T1

∫ t
0 x1(s)+

x2(s)ds.

5 Conclusions

In this paper, an approach to solving the problem of fault
tolerant quantum filtering and fault detection for a class
of laser-atom open quantum systems has been developed.
A quantum-classical Bayesian inference method is consid-
ered to enable us to derive the fault tolerant quantum filter
and fault detection equation in a convenient way. By de-
scribing the stochastic fault process as a finite-state jump
Markov chain and using a reference probability approach, a
set of coupled stochastic differential equations satisfiedby
the conditional system states and fault process estimate are
derived. An application to two-level quantum systems un-
der Poisson type faults is also presented. In the example,
we have assumed that the measurement efficiency is 1. It is
also straightforward to extend our result to the case with the
measurement efficiencyη < 1.
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Appendix

Proof of Theorem 3.1.Since the inverse mapping of a
∗−isomorphism is also a∗−isomorphism, from Lemma 3.1
one can always construct a∗−isomorphismι0 mapping the
set of measurable functions onΩ = {1, ...,nr} to a com-
mutative ∗−algebra onH0. Applying a ∗−isomorphism
ῑ = ι0⊗ I to both sides of (6) yields

ῑ(AR) =
nr

∑
k=1

ν(Rk)PRk ⊗U†
Rk

AURk, (50)

where PRk = ι0(1R=Rk). Then ῑ(AR) is an operator on
H̄ . It can be verified thatPRj PRk = ι0(1R=Rj 1R=Rk) =

ι0(δ jk1R=Rk) = δ jkPRk, and∑nr
k=1PRk = ι0(∑nr

k=11R=Rk) = I .
Thus{PRk} form a complete set of projection operators on
H0. In addition, from Lemma 3.1, one can find a density
operatorρ̄ on H0 such that Tr(ρ̄PRk) = EP (1R=Rk). Thus
we have P̃(AR) = ∑nr

k=1 ν(Rk)EP (1R=Rk)P(U
†
Rk

AURk) =

∑nr
k=1 ν(Rk)Tr(ρ̄PRk)Tr(ρU†

Rk
AURk) = P̄(ῑ(AR)).

Let R̄ = {X|X = f (ῑ(AR)), f : R → C} be a commutative
∗−algebra onH̄ . Then from the above analysis we know the
∗−isomorphism̄ι maps ˜A ontoR̄. The proof is thus com-
pleted. ✷

Proof of Lemma 4.1.Let Q̃t be a normal state as̃Qt(X) =
P̃(U†(t)XU(t)). Let K(t) be any element ofYt , thenK(t) =
U†(t)Ko(t)U(t) for someKo(t)∈Qt . Note the scalar valued
function

〈

F(t),ej
〉

∈ Q′
t andX ∈ Q′

t . We have

P̃(P̃(
〈

F(t),ej
〉

U†(t)XU(t)|Yt)K)

= P̃(
〈

F(t),ej
〉

U†(t)XU(t)K(t))

= P̃(
〈

F(t),ej
〉

U†(t)XKo(t)U(t))

= Q̃t(
〈

F(t),ej
〉

XKo(t)) = Q̃t(Q̃t(
〈

F(t),ej
〉

XKo(t)|Qt ))

= Q̃t(Q̃t(
〈

F(t),ej
〉

X|Qt)Ko(t))

= P̃(U†(t)Q̃t(
〈

F(t),ej
〉

X|Qt)Ko(t)U(t))

= P̃(U†(t)Q̃t(
〈

F(t),ej
〉

X|Qt)U(t)K(t)). (51)

Letting K(t) = (P̃(
〈

F(t),ej
〉

U†(t)XU(t)|Yt)

−U†(t)Q̃t(
〈

F(t),ej
〉

X|Qt)U(t))† yields

P̃(
〈

F(t),ej
〉

U†(t)XU(t)|Yt)

=U†(t)Q̃t(
〈

F(t),ej
〉

X|Qt)U(t) (52)

almost surely under̃P

In addition, suppose the system is initialized atπ0 =
∑
k

pk |αk〉 〈αk| and we define a curve|ψk(t)〉=U(t)(|αk〉⊗
|υ〉). Using the fact thatdB(t) |υ〉 = 0, one obtains (see
Equation (6.13) in ([Holevo (1991)]))

d |ψk(t)〉= {(−iH (F(t))− 1
2

L†L)dt+LdQ(t)}|ψk(t)〉 .
(53)

In other words,U(t)(|αk〉⊗ |υ〉) = V(t)(|αk〉⊗ |υ〉) since
U(0) = V(0) = I . After some mathematical manipulation,
one obtains Tr(ρ0U†(t)XU(t)) = Tr(ρ0V†(t)XV(t)) which
leads to

P̃(
〈

F(t),ej
〉

U†(t)XU(t)) = P̃(
〈

F(t),ej
〉

V†(t)XV(t)).
(54)

Applying Theorem 3.2 by replacingΛ with 1, X with
〈

F(t),ej
〉

X ∈ Q′
t , V with V(t) andC̃ with Qt respectively

yields

Q̃t(
〈

F(t),ej
〉

X|Qt) =
P̃(
〈

F(t),ej
〉

V†(t)XV(t)|Qt)

P̃(V†(t)V(t)|Qt)
. (55)

Lemma 4.1 can be concluded by combining (52) and (55).
✷
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