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Abstract— We solve the problem of stabilizing a general class
of linear first-order hyperbolic systems. Considered systems fea-
ture an arbitrary number of coupled transport PDEs convecting
in either direction. Using the backstepping approach, we derive
a full-state feedback law and a boundary observer enabling
stabilization by output feedback. Unlike previous results, finite-
time convergence to zero is achieved in the theoretical lower
bound for control time.

I. INTRODUCTION

This article solves the problem of boundary stabilization
of a general class of coupled heterodirectional linear first-
order hyperbolic systems of Partial Differential Equations
(PDEs) in minimum time, with arbitrary numbers m and n
of PDEs in each direction and with actuation applied on only
one boundary.

First-order hyperbolic PDEs are predominant in model-
ing of traffic flow [1], heat exchanger [26], open chan-
nel flow [5], [7] or multiphase flow [8], [10], [11]. Re-
search on controllability and stability of hyperbolic systems
have first focused on explicit computation of the solution
along the characteristic curves in the framework of the C1

norm [12], [16], [20]. Later, Control Lyapunov Functions
methods emerged, enabling the design of dissipative bound-
ary conditions for nonlinear hyperbolic systems [3], [4].
In [6] control laws for a system of two coupled nonlinear
PDEs are derived, whereas in [2], [4], [18], [19], [21] suffi-
cient conditions for exponential stability are given for various
classes of quasilinear first-order hyperbolic system. These
conditions typically impose restrictions on the magnitude of
the coupling coefficients.

In [23] a backstepping transformation is used to design
a single boundary output-feedback controller. This control
law yields H2 exponential stability of closed loop 2-state
heterodirectional linear and quasilinear hyperbolic system for
arbitrary large coupling coefficients. A similar approach is
used in [9] to design output feedback laws for a system
of coupled first-order hyperbolic linear PDEs with m =
1 controlled negative velocity and n positive ones. The
generalization of this result to an arbitrary number m of
controlled negative velocities is presented in [14]. There, the
proposed control law yields finite-time convergence to zero,
but the convergence time is larger than the minimum control
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time, derived in [17], [25]. This is due to the presence of non-
local coupling terms in the targeted closed-loop behavior.

The main contribution of this paper is a minimum time
stabilizing controller. More precisely, a proposed bound-
ary feedback law ensures finite-time convergence of all
states to zero in minimum-time. This minimum-time, defined
in [17], [25] is the sum of the two largest time of transport
in each direction.

Our approach is the following. Using a backstepping
approach (with a Volterra transformation) the system is
mapped to a target system with desirable stability properties.
This target system is a copy of the original dynamics with a
modified in-domain coupling structure. More precisely, the
target system is designed as an exponentially stable cascade.
A full-state feedback law guaranteeing exponential stability
of the zero equilibrium in the L2-norm is then designed.
This full-state feedback law requires full distributed mea-
surements. For this reason we derive a boundary observer
relying on measurements of the states at a single boundary
(the anti-collocated one). Similarly to the control design, the
observer error dynamics are mapped to a target system using
a Volterra transformation. Along with the full-state feedback
law, this yields an output feedback controller amenable to
implementation.

The main technical difficulty of this paper is to prove well-
posedness of the Volterra transformation. Interestingly, the
transformation kernels satisfy a system of equations with a
cascade structure akin to the target system one. This structure
enables a recursive proof of existence of the transformation
kernels.

The paper is organized as follows. In Section II we
introduce the model equations and the notations. In Section
III we present the stabilization result: the target system and
its properties are presented in Section III-A. In Section III-
B we derive the backstepping transformation. Section IV
contains the main technical difficulty of this paper which
is the proof of well-posedness of the kernel equations. In
Section IV-A we transform the kernel equations into an
integral equation using the method of characteristics. In Sec-
tion IV-B we solve the integral equations using the method
of successive approximations. In Section V we present the
control feedback law and its properties. In Section VI we
present the uncollocated observer design. In Section VII we
give some simulation results. Finally in Section VIII we give
some concluding remarks
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II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following general linear hyperbolic sys-
tem

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)
vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)

with the following linear boundary conditions

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (3)

where

u = (u1 . . . un)T , v = (v1 . . . vm)T (4)

Λ+ =

λ1 0
. . .

0 λn

 , Λ− =

µ1 0
. . .

0 µm

 (5)

with constant speeds :

−µm < · · · < −µ1 < 0 < λ1 ≤ · · · ≤ λn (6)

and constant coupling matrices as well as the feedback
control input

Σ++ = {σ++
ij }1≤i≤n,1≤j≤n Σ+− = {σ+−

ij }1≤i≤n,1≤j≤m
(7)

Σ−+ = {σ−+ij }1≤i≤m,1≤j≤n Σ−− = {σ−−ij }1≤i≤m,1≤j≤m
(8)

Q0 = {qij}1≤i≤n,1≤j≤m R1 = {ρij}1≤i≤m,1≤j≤n (9)

B. Control problem

The goal is to design feedback control inputs U(t) =
(U1(t), . . . , Um(t))T such that the zero equilibrium is
reached in minimum time t = tF , where

tF =
1

µ1
+

1

λ1
(10)

III. CONTROL DESIGN

The control design is based on the backstepping approach:
using a Volterra transformation, we map the system (1)-(3)
to a target system with desirable properties of stability.

A. Target system

1) Target system design: We map the system (1)-(3) to
the following system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) + Σ+−β(t, x)

+

∫ x

0

C+(x, ξ)α(t, ξ)dξ +

∫ x

0

C−(x, ξ)β(t, ξ)dξ (11)

βt(t, x)− Λ−βx(t, x) = Ω(x)β(t, x) (12)

with the following boundary conditions

α(t, 0) = Q0β(t, 0) β(t, 1) = 0 (13)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} (14)

while Ω ∈ L∞(0, 1) is an upper triangular matrix with the
following structure

Ω(x) =


ω1,1(x) ω1,2(x) . . . ω1,m(x)

0
. . . . . .

...
...

. . . ωm−1,m−1(x) ωm−1,m(x)
0 . . . 0 ωm,m(x)


(15)

This system is designed as a copy of the original dynamics,
from which the coupling terms of (2) are removed. The
integral coupling appearing in (11) are added for the control
design but don’t have any incidence on the stability of the
target system.

Lemma 1: The zero equilibrium of (11),(12) with bound-
ary conditions (13) and initial conditions (α0, β0) ∈
L2([0, 1]) is exponentially stable in the L2 sense

Proof: Consider the following candidate Lyapunov
functional :

V (t) =

∫ 1

0

(
e−δx

n∑
i=1

αi(t, x)2

λi
+ leδx

n∑
i=1

βi(t, x)2

µi

)
dx

(16)

where l > 0 and δ > 0 are parameters to be determined.
One should notice that

√
V is equivalent to the L2 norm.

After differentiating V with respect to time and integrating



by part we get :

V̇ (t) = [−e−δxα(t, x)Tα(t, x) + leδxβ(t, x)Tβ(t, x)]10

−
∫ 1

0

δe−δxα(t, x)Tα(t, x)dx−
∫ 1

0

lδeδxβ(t, x)Tβ(t, x)dx

+ 2

∫ 1

0

e−δxα(t, x)T (Λ+)−1Σ++α(x, t)dx

+ 2

∫ 1

0

e−δxα(t, x)T (Λ+)−1Σ+−β(t, x)dx

+ 2

∫ 1

0

∫ x

0

e−δxα(t, x)T (Λ+)−1C+(x, ξ)α(t, ξ)dξdx

+ 2

∫ 1

0

∫ x

0

e−δxα(t, x)T (Λ+)−1C−(x, ξ)β(t, ξ)dξdx

+ 2l

∫ 1

0

eδxβ(t, x)T (Λ−)−1Ω(x)β(t, x)dx (17)

Let M > 0, ||q|| and ε > 0 be such that

∀i = 1, . . . , n ∀j = 1, . . . , n ∀k = 1, . . . ,m

∀l = 1, . . . ,m ∀x ∈ [0, 1] Σ++
ij ,Σ+−

ik , C+
ij ,

C−ik,Ωkl(x) < M

∀i = 1, . . . , n λi > ε and µi > ε

||q|| = max
i=1,...,m,j=1,...,m

qij

Using Young’s and Cauchy-Schwarz inequalities and the
boundary conditions yields

V̇ (t) ≤ β(t, 0)T (QT0Q0 − lIm×m)β(t, 0)

−
∫ 1

0

e−δxα(t, x)TPα(t, x)dx

−
∫ 1

0

leδxβ(t, x)TQ(x)β(t, x)dx (18)

with P =

(
(δ − 2mM

ε
− nM

ε
− Mn

δε
)In×n − 2(Λ+)−1Σ++

)
and Q(x) =

(
δ − pnM

lε
e−δx − Mn

lδε
e−δx

)
Im×m −

2(Λ−)−1Ω(x).
Choosing l such that l > m||q|| ensures that
β(t, 0)T (QT0Q0 − lIm×m)β(t, 0) ≤ sβ(t, 0)Tβ(t, 0)
for some s < 0. Taking δ large enough ensures that Q(x)
and P are positive definite for all x ∈ [0, 1]. This concludes
the proof

Besides, the following lemma assesses the finite-time stabil-
ity of the target system.

Lemma 2: The system (11), (12) reaches its zero equilib-

rium in finite-time tF =
1

µ1
+

1

λ1
Proof: The proof of this lemma is straightforward using

the proof of [14, Lemma 3.1]

2) Volterra Transformation: In order to map the original
system (1)-(3) to the target system (11)-(13), we use the

following Volterra transformation

α(t, x) = u(t, x) (19)
β(t, x) = v(t, x)

−
∫ x

0

(K(x, ξ)u(ξ) + L(x, ξ)v(ξ))dξ (20)

where the kernels K and L, defined on T = {(x, ξ) ∈
[0, 1]2|ξ ≤ x} have yet to be defined. Differentiating (20)
with respect to space and using the Leibniz rule yields

βx(t, x) = vx(t, x)−K(x, x)u(t, x)− L(x, x)v(t, x)

−
∫ x

0

Kx(x, ξ)u(t, ξ) + Lx(x, ξ)v(t, ξ)dξ (21)

Differentiating with respect to time, using (1), (2) and
integrating by parts yields

βt(t, x) = Λ−vx(t, x) + Σ−+u(t, x) + Σ−−v(t, x)

−
∫ x

0

[
K(x, ξ)Σ++u(t, ξ) +K(x, ξ)Σ+−v(t, ξ)

+ L(x, ξ)Σ−+u(t, ξ) + L(x, ξ)Σ−−v(t, ξ)

]
dξ

+K(x, x)Λ+u(t, x)−K(x, 0)Λ+u(t, 0)

− L(x, x)Λ−v(t, x) + L(x, 0)Λ−v(t, 0)

−
∫ x

0

[
Kξ(x, ξ)Λ

+u(t, ξ)− Lξ(x, ξ)Λ−v(t, ξ)
]
dξ (22)

Plugging those expressions into the target system (19)-(20),
noticing that β(t, 0) = v(t, 0) and using the corresponding
boundary conditions (3) yields the following system of kernel
equations

0 =Σ−+ +K(x, x)Λ+ + Λ−K(x, x) (23)

0 =Σ−− + Λ−L(x, x)− L(x, x)Λ− − Ω(x) (24)

0 =K(x, 0)Λ+Q0 − L(x, 0)Λ− (25)

0 =Λ−Kx(x, ξ)−Kξ(x, ξ)Λ
+ −K(x, ξ)Σ++

− L(x, ξ)Σ−+ + Ω(x)K(x, ξ) (26)

0 =Λ−Lx(x, ξ) + Lξ(x, ξ)Λ
− − L(x, ξ)Σ−−

−K(x, ξ)Σ+− + Ω(x)L(x, ξ) (27)

We get the following equations for C−(x, ξ) and C+(x, ξ)

C−(x, ξ) = Σ+−L(x, ξ) +

∫ x

ξ

C−(x, s)L(s, ξ)ds (28)

C+(x, ξ) = Σ+−K(x, ξ) +

∫ x

ξ

C−(x, s)K(s, ξ)ds (29)

Remark 1: One can notice that for each x ∈ [0, 1],
equation (28) is a Volterra equation on [0, x] where C−(x, ·)
is the unknown. Assuming that K and L are well defined
and bounded, so is C−. Using (29) yields explicitly C+ as
a function of C− and K.

Developing equation (23)-(27) we get the following set of
kernel PDEs :



for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

σ++
kj Kik(x, ξ)

+

m∑
p=1

σ−+pj Lip(x, ξ)−
∑

i≤p≤m

Kpj(x, ξ)ωip(x) (30)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =

m∑
k=1

σ−−kj Lik(x, ξ)

+

n∑
p=1

σ+−
pj Kip(x, ξ)−

∑
i≤p≤m

Lpj(x, ξ)ωip(x) (31)

with the following set of boundary conditions

∀1 ≤ i ≤ m,∀1 ≤ j ≤ n, Kij(x, x) = −
σ−+ij
µi + λj

= kij

(32)

∀1 ≤ i, j ≤ m, j < i Lij(x, x) =
−σ−−ij
µi − µj

(33)

∀1 ≤ i, j ≤ m, µjLij(x, 0) =

n∑
k=1

λkKik(x, 0)qkj (34)

Besides, (24) imposes

∀i ≤ j ωij(x) = (µi − µj)Lij(x, x) + σ−−ij (35)

This induces a coupling between the kernels through equa-
tions (30) and (31) that could appear as non linear at first
sight. However, as it will appear in the proof of the following
theorem, the coupling has a linear cascade structure. More
precisely, the well-posedness of the target system is assessed
in the following theorem.

Theorem 1: Consider system (30)-(34). There exists a
unique solution K and L in L∞(T ).
The proof of this theorem is described in the following
section and uses the cascade structure of the kernel equations
(which is due to the particular shape of the matrix Ω).

IV. WELL-POSEDNESS OF THE KERNEL EQUATION

To prove the well-posedness of the kernel equations we
classically (see [15] and [24]) transform the kernel equations
into integral equations and use the method of successive
approximations.

By induction, let us consider the following property
P (s) defined for all 1 ≤ s ≤ m :
∀ m + 1 − s ≤ i ≤ m the problem (30)-(34) where Ω is
defined by (35) has a unique solution K,L ∈ L∞(T ).

Initialization : For s = 1, system (30)-(34) rewrites as

follow
for 1 ≤ j ≤ n

µm∂xKmj − λj∂ξKmj =

n∑
k=1

σ++
kj Kmk(x, ξ)

+

m∑
p=1

σ−+pj Lmp(x, ξ)−Kmj(x, ξ)σ
−−
mm (36)

for 1 ≤ j ≤ m

µm∂xLmj + µj∂ξLmj =

m∑
k=1

σ−−kj Lmk(x, ξ)

+

n∑
p=1

σ+−
pj Kmp(x, ξ)− Lmj(x, ξ)σ−−mm (37)

with the following set of boundary conditions

∀1 ≤ j ≤ n, Kmj(x, x) = −
σ−+mj

µm + λj
= k1j (38)

∀1 ≤ j < m, Lmj(x, x) = −
σ−−mj

µm − µj
(39)

∀1 ≤ j ≤ m, µjL1j(x, 0) =

n∑
k=1

λkK1k(x, 0)qkj (40)

The well-posedness of such system has been proved in [9].

Induction : Let us assume that the property P (s − 1)
(1 < s ≤ m − 1) is true. We consequently have that
∀ m + 2 − s ≤ p ≤ m, ∀ 1 ≤ j ≤ n, ∀ 1 ≤ l ≤ m
Kpj(·, ·) and Lpl(·, ·) are bounded. In the following we take
i = m + 1 − s. We now show that (30)-(34) is well-posed
and that Kij(·, ·) and Lil(·, ·) ∈ L∞(T )

A. Method of characteristics

1) Characteristics of the K kernels: For each 1 ≤ j ≤ n
and (x, ξ) ∈ T , we define the following characteristic lines
(xij(x, ξ, ·), ξij(x, ξ, ·)) corresponding to equation (30)

{
dxij
ds

(x, ξ, s) = −µi s ∈ [0, sFij(x, ξ)]

xij(x, ξ, 0) = x, xij(x, ξ, s
F
ij(x, ξ)) = xFij(x, ξ)

(41)

{
dξij
ds

(x, ξ, s) = λj s ∈ [0, sFij(x, ξ)]

ξij(x, ξ, 0) = ξ, ξij(x, ξ, s
F
ij(x, ξ)) = xFij(x, ξ)

(42)

These lines originate at the point (x, ξ) and terminate on
the hypothenuse at the point (xFij(x, ξ), x

F
ij(x, ξ)). Integrating



(30) along these characteristics and using the boundary
conditions (32) we get

Kij(x, ξ) = kij

+

∫ sFij(x,ξ)

0

[ n∑
k=1

σ++
kj Kik(xij(x, ξ, s), ξij(x, ξ, s))

+

m∑
k=1

σ−+kj Lik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i≤p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

((µi − µp)Lip(xij(x, ξ, s), xij(x, ξ, s)) + σ−−ip )
]
ds (43)

We can notice that the last sum uses the expression of Kpj

for i ≤ p ≤ m. This term is known and bounded for p > i
(hypothesis of induction). For p = i, µi = µp and the term
(µi − µp)Lip(xij(x, ξ, s), xij(x, ξ, s) cancels.

2) Characterisitcs of the L kernels: For each 1 ≤ j ≤ n
and (x, ξ) ∈ T , we define the following characteristic lines
(χij(x, ξ, ·), ζij(x, ξ, ·)) corresponding to equation (31)

{
dχij
dν

(x, ξ, s) = −µi ν ∈ [0, νFij(x, ξ)]

χij(x, ξ, 0) = x, χij(x, ξ, ν
F
ij(x, ξ)) = χFij(x, ξ)

(44)

{
dζij
dν

(x, ξ, s) = −µj ν ∈ [0, νFij(x, ξ)]

ζij(x, ξ, 0) = ξ, ζij(x, ξ, ν
F
ij(x, ξ)) = ζFij (x, ξ)

(45)

These lines all originates from (x, ξ) and terminate at the
point (χFij(x, ξ), ζ

F
ij (x, ξ)), i.e either at (χFij(x, ξ), χ

F
ij(x, ξ))

or at (χFij(x, ξ), 0). Integrating (31) along these characteristic
and using the boundary conditions (33), (34) yields

Lij(x, ξ) = −δij(x, ξ)
σ−−ij
µi − µj

+ (1− δij)
1

µj

n∑
k=1

λkqkjKik(χFij(x, ξ), 0)

+

∫ νF
ij(x,ξ)

0

[ m∑
p=1

σ−−pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n∑
k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

−
∑

i≤p≤m

Lpj(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µp)Lip(χij(x, ξ, ν), χij(x, ξ, ν)) + σ−−ip )
]
dν (46)

where the coefficient δij(x, ξ) is defined by

δi,j(x, ξ) =

{
1 if j < i and µiξ − µjx ≥ 0
0 else (47)

This coefficient reflects the facts that, as mentioned above,
some characteristics terminate on the hypothenuse and others

on the axis ξ = 0. We can now plug (43) evaluated at
(χFij(x, ξ), 0) into (46) which yields

Lij(x, ξ) = −δij(x, ξ)
σ−−ij
µi − µj

+(1−δij)
1

µj

n∑
k=1

λkqkjkik+(1−δij)
1

µj

n∑
r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0[ n∑
k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

+

m∑
k=1

σ−+kr Lik(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

−
∑

i≤p≤m

Kpr(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

((µi−µp)Lip(xij((χFij(x, ξ), 0, s), xij((χFij(x, ξ), 0, s))+σ−−ip )
]
ds

+

∫ νF
ij(x,ξ)

0

[ m∑
p=1

σ−−pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n∑
k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

−
∑

i≤p≤m

Lpj(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µp)Lip(χij(x, ξ, ν), χij(x, ξ, ν)) + σ−−ip )
]
dν (48)

B. Method of successive approximations

In order to solve the integral equations (43), (48) we use
the method of successive approximations. We define

∀1 ≤ j ≤ n φ1j (x, ξ) = kij

−
∫ sFij(x,ξ)

0

∑
i<p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))σ
−−
ip (49)

∀1 ≤ j ≤ m φ2j (x, ξ) = −δij(x, ξ)
σ−−ij
µi − µj

+ (1− δij)
1

µj

n∑
k=1

λkqkjkik

− (1− δij)
1

µj

n∑
r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0∑
i<p≤m

Kpr(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))σ

−−
ip

−
∫ sFij(x,ξ)

0

∑
i<p≤m

Lpj(χij(x, ξ, ν), ζij(x, ξ, ν))σ−−ip (50)

Besides we denote H as the vector containing the kernels

H =
(
Ki1 . . . Kin Li1 · · · Lim

)>
(51)

Ψ =
(
φ11 . . . φ1n φ21 . . . φ2m

)>
(52)



We now consider the following operators : ∀1 ≤ j ≤ n

Φ1
j (H)(x, ξ) =∫ sFij(x,ξ)

0

[ n∑
k=1

σ++
kj Kik(xij(x, ξ, s), ξij(x, ξ, s))

+

m∑
k=1

σ−+kj Lik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i<p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

((µi − µj)Lip(xij(x, ξ, s), xij(x, ξ, s)))
+ σ−−ii Kij(xij(x, ξ, s), ξij(x, ξ, s))

]
ds (53)

∀1 ≤ j ≤ m

Φ2
j (H)(x, ξ) =

(1− δij)
1

µj

n∑
r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0[ n∑
k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

+

m∑
k=1

σ−+kr Lik(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

−
∑

i<p≤m

Kpr(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

((µi − µp)Lip(xij((χFij(x, ξ), 0, s), xij((χFij(x, ξ), 0, s)))
−Kir(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))σ

−−
ii

]
ds

+

∫ νF
ij(x,ξ)

0

[ m∑
p=1

σ−−pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n∑
k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

−
∑

i<p≤m

Lpj(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µp)Lip(χij(x, ξ, ν), χij(x, ξ, ν)))

− Lij(χij(x, ξ, ν), ζij(x, ξ, ν))σ−−ii
]
dν (54)

We set Φ[H](x, ξ) = [Φ1[H](x, ξ)T ,Φ2[H](x, ξ)>]> We
define the following sequence

H0(x, ξ) = 0 (55)

Hq(x, ξ) = Ψ(x, ξ) + Φ(Hq−1)(x, ξ) (56)

Consequently, if the sequence Hq has a limit, then this limit
is a solution of the integral equation and therefore of the
original system.
We define the increment ∆Hq = Hq−Hq−1 (with ∆H0 =
Ψ). Provided the limit exists one has

H(x, ξ) = lim
q→+∞

Hq(x, ξ) =

+∞∑
q=0

∆Hq(x, ξ) (57)

We now prove the convergence of the series.
Remark 2: The proof of the convergence of the success

approximations dries is similar to the one given in [9], since

all the characteristic lines have the same direction along the
x−axis.

C. Convergence of the successive approximation series

Similarly to [9], [14] we want to find a recursive upper
bound in order to prove the convergence of the series. We
first define

Φ̄ = max
j

max
(x,ξ)∈T

{|φ1i,j(x, ξ)|, |φ2ij(x, ξ)|} (58)

σ̄ = max
k,j
{σ++

kj , σ
+−
kj , σ

−+
kj , σ

−−
kj }, q̄ = max

k,j
{qkj}

µ̄ = max
p
{|µi − µp|}, λ̄ = max{λn, µn}

λ̃ = max{ 1

λ1
,

1

µ1
},

Mλ = max
j=1,...,m

{ 1

µj
}

We then define S̄ = max
p>i,1≤j≤n

{||Kpj ||, ||Lpj} which is well

defined according to the hypothesis P (s− 1). Moreover we
set

M = (nλ̄λ̃q̄ + 1)[(n+m+ 1)σ̄ +mµ̄S̄]Mλ (59)

We recall the following result from [9, Lemma 5.5]

Lemma 3: For any integer q, (x, ξ) ∈ T and
sFij(x, ξ), ν

F
ij(x, ξ), xij(x, ξ, ·), ξij(x, ξ, ·), χij(x, ξ, ·), ζij(x, ξ, ·)

defined as in (41), (42), (44), (45) respectively, the following
inequalities holds

∀1 ≤ k ≤ m, ∀1 ≤ j ≤ n∫ sFkj(x,ξ)

0

(xkj(x, ξ, s))
qds ≤Mλ

xq+1

q
(60)

∀1 ≤ k ≤ m, ∀1 ≤ j ≤ n∫ νF
kj(x,ξ)

0

(χij(x, ξ, s))
qds ≤Mλ

xq+1

q
(61)

Lemma 4: Assume that for some 1 ≤ q, one has, for all
(x, ξ) ∈ T

∀j = 1, ...m+ n |∆Hq
j (x, ξ)| ≤ Φ̄

Mqxq

q!
(62)

where ∆Hq
j (x, ξ) is the j-th component of ∆Hq(x, ξ).

Then, one has

∀j = 1, ...m+ n |∆Hq+1
j (x, ξ)| ≤ Φ̄

Mq+1xq+1

(q + 1)!
(63)

Proof: Assume that (62) holds for some fixed 1 ≤ q.
Let us consider 1 ≤ j ≤ (m+ n).



Case j ≤ n

|∆Hq+1
j | =

|
∫ sFij(x,ξ)

0

[ n∑
k=1

σ++
kj ∆Kq

ik(xij(x, ξ, s), ξij(x, ξ, s))

+

m∑
k=1

σ−+kj ∆Lqik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i<p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

· (µi − µp)∆Lqip(xij(x, ξ, s), xij(x, ξ, s))
−∆Kq

ij(xij(x, ξ, s), ξij(x, ξ, s))σ
−−
ii

]
ds| (64)

Consequently, using (62) and (60)

|∆Hq+1
j | ≤

∫ sFij(x,ξ)

0

((n+m+ 1)σ̄ +mS̄µ̄) (65)

· Φ̄M
q(xij(x, ξ, s))

q

q!
ds

≤ ((n+m+ 1)σ̄ +mS̄µ̄)
Φ̄Mq

q!
Mλ

xq+1

q + 1

≤ Φ̄
Mq+1xq+1

(q + 1)!
(66)

Case n < j ≤ n+m Using (62) we get

|∆Hq+1
j | ≤ λ̄λ̃q̄((n+m+ 1)σ̄ +mS̄µ̄)

n∑
r=1

·
∫ sFir(χ

F
ij(x,ξ),0)

0

φ̄
Mq(xir(χ

F
ij(x, ξ), 0, s))

q

q!

+ ((n+m+ 1)σ̄ +mS̄µ̄)

∫ νF
ij(x,ξ)

0

Φ̄
Mq(χij)

q

q!
dν

≤ (nλ̃λ̄q̄ + 1)((n+m+ 1)σ̄ +mS̄µ̄)Φ̄Mλ
Mqxq+1

(q + 1)!

≤ Φ̄
Mq+1xq+1

(q + 1)!
(67)

This concludes the proof
Consequently, using similar procedures that the ones pre-
sented in [9], [22], we get that (57) converges and thus the
property P (s) is true. This concludes the proof by induction
of Theorem 1.

V. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows.
Theorem 2: System (1)-(2) with boundary conditions (3)

and the following feedback control law

U(t) = −R1u(t, 1)

+

∫ 1

0

[K(1, ξ)u(t, ξ) + L(1, ξ)v(t, ξ)]dξ (68)

reaches its zero equilibrium in finite time tF = where tF is
given by (10). The zero equilibrium is exponentially stable
in the L2-sense.

Proof: Notice first that evaluating (20) at x = 1 yields
(68). Besides, rewriting (20) as follows(

α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
−
∫ x

0

(
0 0

K(x, ξ) L(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ (69)

It is a classical Volterra equation of the second kind. One
can check from [13] that there exists a unique function S
such that(

u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
−
∫ x

0

S(x, ξ)

(
α(t, ξ)
β(t, ξ)

)
(70)

Applying Lemma 2 implies that (α, β) go to zero in finite
time tF , therefore (u, v) converge to zero in finite time

Remark 3: The time of convergence tF is smaller than
the one given in [14]. Nevertheless we have lost here some
degrees of freedom in the kernel equations and thus in the
controller gains.

VI. UNCOLLOCATED OBSERVER DESIGN AND OUTPUT
FEEDBACK CONTROLLER

In this section we design an observer that relies on the
measurements of v at the left boundary, i.e we measure

y(t) = v(t, 0) (71)

Then, using the estimates given by our observer and the
control law (68), we derive an output feedback controller.

A. Observer design

The observer equations read as follows

ût(t, x) + Λ+ûx(t, x) =Σ++û(t, x) + Σ+−v̂(t, x)

− P+(x)(v̂(t, 0)− v(t, 0)) (72)

v̂t(t, x) + Λ−v̂x(t, x) =Σ−+û(t, x) + Σ−−v̂(t, x)

− P−(x)(v̂(t, 0)− v(t, 0)) (73)

with the boundary conditions

û(t, 0) = Q0v(t, 0), v̂(t, 1) = R1û(t, 1) + U (74)

where P+(·) and P−(·) have yet to be designed. This yield
the following error system

ũt(t, x) + Λ+ũx(t, x) =Σ++ũ(t, x) + Σ+−ṽ(t, x)

− P+(x)ṽ(t, 0) (75)
ṽt(t, x) + Λ−ṽx(t, x) =Σ−+ũ(t, x) + Σ−−ṽ(t, x)

− P−(x)ṽ(t, 0) (76)

with the boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = R1ũ(t, 1) (77)



B. Target system
We map the system (75)-(77) to the following system

α̃t(t, x) + Λ+α̃x(t, x) = Σ++α̃(t, x)

+

∫ x

0

D+(x, ξ)α̃(t, ξ)dξ (78)

β̃t(t, x)− Λ−β̃x(t, x) = Σ−+α̃(t, x) + Ω(x)β(t, x)

+

∫ x

0

D−(x, ξ)α̃(t, ξ)dξ (79)

with the following boundary conditions

α̃(t, 0) = 0, β̃(t, 1) = R1α̃(t, 1) (80)

where D+, and D− are L∞ matrix functions of the domain
T and Ω ∈ L∞(0, 1) is an upper triangular matrix with the
following structure

Ω(x) =


ω1,1(x) ω1,2(x) . . . ω1,m(x)

0
. . . . . .

...
...

. . . ωm−1,m−1(x) ωm−1,m(x)
0 . . . 0 ωm,m(x)


(81)

Lemma 5: The system (78), (79) reaches its zero equilib-
rium in a finite time tF where tF is defined by (10)

Proof: The system is a cascade of α̃-system (that has
zero input at the led boundary) into the β-system (that has
zero input at the right boundary once α̃ becomes null). The
rigorous proof of the lemma follows the same step of the
proof of Lemma 2 and is omitted here.

C. Volterra Transformation
In order to map the original system (75)-(77) to the target

system (78)-(80), we use the following Volterra transforma-
tion

ũ(t, x) = α̃(t, x) +

∫ x

0

M(x, ξ)β̃(t, ξ)dξ (82)

ṽ(t, x) = β̃(t, x) +

∫ x

0

N(x, ξ)β̃(t, ξ)dξ (83)

where the kernels M and N defined on T = {(x, ξ) ∈
[0, 1]2|ξ ≤ x} have yet to defined. Differentiating (82), (83)
with respect to space and time yields the following kernel
equations
for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xMij(x, ξ)− µj∂ξMij(x, ξ) =

n∑
k=1

σ++
ik Mkj(x, ξ)

+

m∑
p=1

σ−+ip Npj(x, ξ)−
m∑
p=1

Mip(x, ξ)ωpj(x) (84)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xNij(x, ξ) + µj∂ξNij(x, ξ) = −
n∑
k=1

σ−−ik Nkj(x, ξ)

−
n∑
p=1

σ+−
ip Mpj(x, ξ) +

m∑
p=1

Nip(x, ξ)ωpj(x) (85)

with the following set of boundary conditions :

∀1 ≤ i ≤ m,∀1 ≤ j ≤ n, Mij(x, x) = −
σ+−
ij

µj + λi
= kij

(86)

∀1 ≤ i, j ≤ m, j < i Nij(x, x) =
−σ−−ij
µj − µi

(87)

∀i ≤ j ωij(x) = (µj − µi)Nij(x, x) + σ−−ij (88)

Evaluating (82), (83) at x = 1 yields

∀1 ≤ i, j ≤ m, Nij(1, ξ) =

n∑
k=1

ρikMkj(1, ξ) (89)

while d+ij , d
−
ij are given by

d+ij(x, , ξ) =−
m∑
k=1

Mik(x, ξ)σ−+kj

+

∫ x

ξ

m∑
k=1

Mik(x, s)d−kj(s, ξ)ds (90)

d−ij(x, , ξ) =−
m∑
k=1

Nik(x, ξ)σ−+kj

+

∫ x

ξ

m∑
k=1

Nik(x, s)d−kj(s, ξ)ds (91)

provided the M and N kernels are well-defined. Finally the
observer gains are given by

p+ij(x) = µjMij(x, 0) (92)

p−ij(x) = µjNij(x, 0) (93)

Considering the following alternate variables

M̄ij(χ, y) = Mij(1− y, 1− χ) = Mij(x, ξ) (94)
N̄ij(χ, y) = Nij(1− y, 1− χ) = Nij(x, ξ) (95)
ω̄ij(χ) = ωij(x) (96)

yields
for 1 ≤ i ≤ n, 1 ≤ j ≤ m

−λi∂χM̄ij(χ, y)+µj∂yM̄ij(χ, y) = −
n∑
k=1

σ++
ik M̄kj(χ, y)

−
m∑
p=1

σ−+ip N̄pj(χ, y) +

m∑
p=1

M̄ip(χ, y)ω̄pj(χ) (97)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂χN̄ij(χ, y) + µj∂yN̄ij(χ, y) =

n∑
k=1

σ−−ik N̄kj(χ, y)

n∑
p=1

σ+−
ip M̄pj(χ, y)−

m∑
p=1

N̄ip(χ, y)ω̄pj(χ) (98)



with the following set of boundary conditions

∀1 ≤ i ≤ m,∀1 ≤ j ≤ n, M̄ij(χ, χ) = −
σ+−
ij

µj + λi
= kij

(99)

∀1 ≤ i, j ≤ m, j < i N̄ij(χ, χ) =
−σ−−ij
µj − µi

(100)

∀i ≤ j ω̄ij(χ) = (µj − µi)N̄ij(χ, χ) + σ−−ij (101)

Evaluating (82), (83) at x = 1 yields

∀1 ≤ i, j ≤ m, N̄ij(χ, 0) =

n∑
k=1

ρikMkj(χ, 0) (102)

This system has the same cascade structure as the controller
kernel system. Using a similar proof we can asses its well-
posedness.

D. Output feedback controller

The estimates can be used in a observer-controller to
derive an output feedback law yielding finite-time stability
of the zero equilibrium

Lemma 6: Consider the system composed of (1)-(3) and
target system (72)-(74) with the following control law

U(t) =

∫ 1

0

[K(1, ξ)û(t, ξ) + L(1, ξ)v̂(t, ξ)]dξ −R1û(t, 1)

(103)

where K and L are defined by (30)-(35). Its solutions
(u, v, û, v̂) converge in finite time to zero

Proof: The convergence of the observer error states
ũ, ṽ to zero for tF ≤ t is ensured by Lemma 5, along
with the existence of the backstepping transformation. Thus,
once tF ≤ t, v(t, 0) = v̂(t, 0) and one can use Theorem2.
Therefore for 2tF ≤ t, one has (ũ, ṽ, û, v̂) ≡ 0 which yields
(u, v) ≡ 0. The convergence of the observer error states
ũ, ṽ to zero for tF ≤ t is ensured by Lemma 5, along
with the existence of the backstepping transformation. Thus,
once tF ≤ t, v(t, 0) = v̂(t, 0) and one can use Theorem2.
Therefore for 2tF ≤ t, one has (ũ, ṽ, û, v̂) ≡ 0 which yields
(u, v) ≡ 0.

VII. SIMULATION RESULTS

In this section we illusttrate our results with simulations
on a toy problem. The numerical values of the parameters
are as follow.

n = m = 2, µ1 = λ1 = 1, µ2 = λ2 = 2 (104)

Σ++ = Σ+− =

(
1 0
0 1

)
Σ−+ =

(
1 1
1 0

)
(105)

Σ−− =

(
0 1
1 0

)
Q0 =

(
1 0
0 0

)
R1 = 0 (106)

Figure 1 pictures the L2−norm of the state (u, v) in open
loop, using the control law presented in [14] and then using

the control law (68) presented in this paper. While the
system in open loop is unstable (the L2 − norm diverges)

it converges in minimum time tF =
1

λ1
+

1

µ1
= 2 when

controller (68) is applied as expected from Theorem 2. The
controller presented in [14] converges in a larger time which

is equal (as mentioned in [14]) to
1

λ1
+

1

µ1
+

1

µ2
= 2.5.

Time [s]
0 0.5 1 1.5 2 2.5 3

L
2
n
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m

0

1

2

3

4

5

6

7

8

9

10

Open loop
Minimum-time control
Non-minimum time control

Fig. 1. Time evolution of the L2-norm in open loop and using two different
controlers

VIII. CONCLUDING REMARKS

Using the backstepping approach we have presented a
stabilizating boundary feedback law for a general class of
linear first-order system. Moreover, contrary to [14], the zero-
equilibrium of the system is reached in minimum time tF .

The presented design raises several important questions
that will be the topic of future investigation. In [14], the pro-
posed control law does not yield minimum time convergence,
but features several degrees of freedom that may be useable
to handle transients. A comparison of the transient responses
of both designs, as well as their comparative robustness,
should be performed.

Besides, the presented result narrows the gap with the
theoretical controllability results of [17]. These results, al-
though they do not provide explicit control law, ensure
exact minimum-time controllability with less control inputs
than what is currently achievable using backstepping. More
generally, this raises the question of the links between
stabilizability and stabilizability by backstepping.
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