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Transfer function and transient estimation by
Gaussian process regression in the frequency domain

John Lataire a and Tianshi Chen b

aVrije Universiteit Brussel (VUB), Dept. ELEC, Pleinlaan 2, 1050 Brussels, Belgium

bSchool of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

Abstract

Inspired by the recent promising developments of Bayesian learning techniques in the context of system identification, this paper
proposes a Transfer Function estimator, based on Gaussian process regression. Contrary to existing kernel-based impulse response
estimators, a frequency domain approach is adopted. This leads to a formulation and implementation which is seamlessly valid
for both continuous- and discrete-time systems, and which conveniently enables the selection of the frequency band of interest. A
pragmatic approach is proposed in an output error framework, from sampled input and output data. The transient is dealt with by
estimating it simultaneously with the transfer function.
Modelling the transfer function and the transient as Gaussian processes allows for the incorporation of relevant prior knowledge on

the system, in the form of suitably designed kernels. The SS (Stable Spline) and DC (Diagonal Correlated) kernels from the literature
are translated to the frequency domain, and are proven to impose the stability of the estimated transfer function. Specifically, the
estimates are shown to be stable rational functions in the frequency variable. The hyperparameters of the kernel are tuned via
marginal likelihood maximisation.
The comparison between the proposed method and three existing methods from the literature – the regularised finite impulse

response (RFIR) estimator, the Local Polynomial Method (LPM), and the Local Rational Method for Frequency Response Function
estimation – is illustrated on simulations on multiple case studies.

Key words: Transfer function estimation, Gaussian Process Regression, Frequency domain, System identification, Regularised Least
Squares
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1 Introduction

When considering the identification of Linear Time In-
variant (LTI) systems, an important initial step is the non-
parametric estimation of their Transfer Functions (TF)
[6], [16, Chapters 2–7]. It provides the user with insight
into the dynamic behaviour of the system, even before
any attempt is made to determine a parametric model.

The estimation of a transfer function ought to consider
that the available signals are confined to a finite time in-
terval. This is typically handled by including initial condi-
tions (time domain) or an additional transient (frequency
domain) in the estimation process. The transient takes
into account the fact that the input and output signals
are not necessarily periodic, or that their periodicity does
not match the length of the measurement window, as ex-
plained later on.

The Frequency Response Function (FRF) of a system is
defined in [16, Chapter 2] as the evaluation of its TF – a
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continuous function – at a discrete set of frequencies. FRF
estimation has been studied extensively in the past, start-
ing with tools for spectral analysis [1,2,23]. These tools
aim at suppressing the transient by applying carefully de-
signed windows. Alternatively, [26] applies a frequency
dependent smoothing procedure to the Empirical Trans-
fer Function Estimate (ETFE) to suppress the transient.
More recent work makes use of an intrinsic property of
the transient to estimate it simultaneously with the FRF,
yielding much better results. Namely, both the FRF and
the transient are known to be smooth functions of the
frequency [16, Appendix 6.B]. Therefore, their estimation
can be performed via smoothers. By following this point
of view, the references [19,20,24] use a local polynomial
smoother, and will be referred to as the Local Polynomial
Method (LPM), while [8] discusses the Local Rational
Method (LRM), which uses a local rational function as a
smoother. It is worth to note that both the LPM and the
LRM provide a set of local models centred around the bins
of the DFT (Discrete Fourier Transform), for which the
interpolation in-between the DFT bins remains an open
question. Consequently, the stability of the LPM and LRM
estimates is also undefined.

Recently, new results for LTI system identification have
been reported [14,12,4] on the estimation of impulse
responses, which is the time domain equivalent of the
TF. The impulse response estimation is formulated as
a Gaussian process regression problem, which can also
be interpreted as a regularization method. More specifi-
cally, the impulse response is modeled as a real and zero
mean Gaussian process with suitably chosen and tuned
covariance (often called kernel) functions. The impulse
response estimate is then given by the conditional mean
of the Gaussian process conditioned on the given data.
This method will be denoted by RFIR (Regularised least
squares for estimating the Finite Impulse Response). It
has two unique features which were not present in earlier
methods. The first one is that the kernel function is de-
signed to embed the prior knowledge, e.g., stability and
smoothness of the impulse response, into the estimation
problem. The second one is that the model complexity is
tuned in a continuous way and handled by maximizing
the marginal likelihood of the hyper-parameters used to
parameterize the kernel function. This approach is known
to enable an automatic trade-off between the model fit
and the model complexity [7,21], and as pointed out in
[13], is more reliable than existing complexity measures,
such as the Akaike’s criterium (AIC) or cross validation,
especially for small data sets.

In this paper, Gaussian process regression is applied di-
rectly to the TF and the transient estimation. That is, the
estimation is formulated in the frequency domain. The
resulting estimate will be denoted by GPTF. A particular
attention is deserved to the fact that the TF and the tran-
sient are complex valued functions, but that at some fre-
quencies – at 0 Hz and at the Nyquist frequency for dis-
crete time systems – they should be real valued. For that

reason, the method will be developed in the context of
mixed real/complex Gaussian processes. Next, properties
of the associated frequency domain kernels, applicable to
LTI systems, will be derived and a sufficient condition on
the kernel will be formulated to impose the stability of
the GPTF estimate. Then, it will be shown how the time
domain kernels – Stable Spline and Diagonal Correlated
– proposed in [14,12,4] are transformed to the frequency
domain and satisfy the condition of stability.

It will be shown that the RFIR estimate in [14,12,4,13]
and the GPTF in the frequency domain are dual to each
other, under specific conditions. However, from a prac-
tical point of view, the frequency-domain formulation is
shown to give a more appealing implementation than the
RFIR when working with continuous-time systems. This
is because the explicit computation of the convolution
between the input and the impulse response is circum-
vented. A second advantage of the GPTF over the RFIR
is that it allows the estimation to be performed in a lim-
ited frequency band. The main advantages of the GPTF
over the LPM and the LRM are that the estimated trans-
fer function is guaranteed to be stable, and that it is ex-
pressed as a continuous function of the frequency.

The remaining part of this paper is organised as follows.
Gaussian processes for regression of mixed real and com-
plex valued functions are developed in Section 2. The for-
mulation of the TF estimation problem is given in Sec-
tion 3, and is rewritten as a Bayesian regression problem
in Section 4. The choice and construction of kernels in
the frequency domain is discussed in Section 5, and the
duality with regularised impulse response estimation is
given in Section 6. The Gaussian process TF estimator is
compared with the LPM, the LRM and the RFIR in Sec-
tion 7 on case studies. Section 8 concludes this paper. The
appendix provides the proofs of the Lemma and the The-
orems.

2 Real/complex Gaussian distributions

Transfer Functions (TFs) will be modelled as Gaussian
processes. Since a TF takes both real (at 0 Hz and at the
Nyquist frequency for discrete time systems) and complex
values, it cannot be modelled as either a real or a com-
plex random variable. In particular, treating a real Gaus-
sian random variable as a complex one leads to a sin-
gular covariance matrix, see Remark 1. This prompts us
to introduce the so-called real/complex Gaussian (RCG)
distribution to model the TF.

Definition 1 (RCG distribution) A random vector

𝑍 =

[
𝑍𝑇r 𝑍𝑇c

]𝑇
, 𝑍r ∈ ℝ𝑛r , 𝑍c ∈ ℂ𝑛c . (1)

is said to be real/complex Gaussian distributed, if[
𝑍𝑇r <𝑍𝑇c =𝑍𝑇c

]𝑇
is Gaussian distributed, where <, =
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denote the real and imaginary parts respectively, and the
superscript 𝑇 denotes the transpose of a vector.

We introduce below its probability density function and
derive its characteristic parameters. Define

𝑍re =
[
𝑍𝑇r <𝑍𝑇c =𝑍𝑇c

]𝑇
, 𝑧re =

[
𝑧𝑇r <𝑧𝑇c =𝑧𝑇c

]𝑇
,

𝑧r ∈ ℝ𝑛r , 𝑧c ∈ ℂ𝑛c (2)

The probability density function of 𝑍re is described by

𝑝 (𝑧re) =
1

√
det 2𝜋Γre

. . .

× exp
(
−1
2
(𝑧re −𝑚re)𝐻 Γ−1re (𝑧re −𝑚re)

)
(3)

where𝑚re = 𝔼 {𝑍re} and Γre = 𝔼
{
(𝑍re −𝑚re) (𝑍re −𝑚re)𝑇

}
,

and the superscript 𝐻 denotes the Hermitian transpose
of a vector. Define[

𝑚𝑇r 𝑚
𝑇
c

]𝑇
= 𝔼 {𝑍 } (4a)

Γr = 𝔼
{
(𝑍r −𝑚r) (𝑍r −𝑚r)𝑇

}
(4b)

Γrc = 𝔼
{
(𝑍r −𝑚r) (𝑍c −𝑚c)𝐻

}
(4c)

Γc = 𝔼
{
(𝑍c −𝑚c) (𝑍c −𝑚c)𝐻

}
(4d)

𝐶c = 𝔼
{
(𝑍c −𝑚c) (𝑍c −𝑚c)𝑇

}
(4e)

then it is easy to verify that

𝑚re =
[
𝑚𝑇r <𝑚𝑇c =𝑚𝑇c

]𝑇
, (5)

Γre =


Γr <Γrc −=Γrc

<Γ𝐻rc <(Γc +𝐶c)/2 =(𝐶c − Γc)/2

=Γ𝐻rc =(Γc +𝐶c)/2 <(Γc −𝐶c)/2


. (6)

Now, define 𝑧 =
[
𝑧𝑇r 𝑧𝑇c 𝑧𝐻c

]𝑇
. It holds that

𝑧re = 𝑀𝑧, with 𝑀 =


𝐼𝑛r 0 0

0 𝐼𝑛c/2 𝐼𝑛c/2

0 − 𝑗𝐼𝑛c/2 𝑗𝐼𝑛c/2

 (7)

In turn, using (7) in (3) yields

𝑝 (𝑧re) =
1

√
2𝑛r𝜋𝑛r+2𝑛c det Γ

. . .

× exp
(
−1
2
(𝑧 −𝑚)𝐻 Γ−1 (𝑧 −𝑚)

)
(8)

with (an overline denotes a complex conjugate)

𝑚 =


𝑚r

𝑚c

𝑚c

 , Γ =


Γr Γrc Γrc

Γ𝐻rc Γc 𝐶c

Γ𝐻rc 𝐶
𝐻
c Γc


, (9)

which is true by noting Γre = 𝑀Γ𝑀𝐻 and det Γre =
2−2𝑛c det Γ. When 𝑛c = 0 in (1), 𝑍 becomes real Gaus-
sian distributed and (8) (same as (3)) is its probability
density. When 𝑛r = 0 in (1), 𝑍 becomes complex Gaus-
sian distributed and (8) is referred to as its probability
density in the literature, see e.g., [11],[25, Section 2.3].

Notation 1 (Augmented vector and covariance) In the
following, Γ in (8) will be called the augmented covariance
matrix of 𝑍 in the sense of Γ = 𝔼

{
(𝑍 −𝑚) (𝑍 −𝑚)𝐻

}
,

where

𝑍𝑇 =

[
𝑍𝑇r 𝑍𝑇c 𝑍𝐻c

]
. (10)

Accordingly, 𝑍 is called the augmented vector associated
with 𝑍 . The matrix 𝐶c is known as the relation matrix of
𝑍𝑐 ; see e.g., [25, Section 2.3.1].

Notation 2 The real/complex normally distributed 𝑍 is de-
noted by

𝑍 ∼ RCN (𝑚, Γ) . (11)

The corresponding Γr, Γrc, Γc,𝐶c in (4) can be identified from
Γ according to (9) when 𝑛r and 𝑛c are given.

Since the definition of the RCG distribution is essentially
based on that of the joint Gaussian distribution of its
real and imaginary parts, many results valid for the real
Gaussian distribution translate straightforwardly to the
real/complex case.

Theorem 1 Consider𝐴 ∼ RCN (𝑚𝐴, Γ𝐴),𝐵 ∼ RCN (𝑚𝐵, Γ𝐵).
The following properties hold:

Property 1 (Independent sum) Assume 𝐴, 𝐵 are indepen-
dent and have the same dimensional real and complex part
(see (1)), then

𝐴 + 𝐵 ∼ RCN (𝑚𝐴 +𝑚𝐵, Γ𝐴 + Γ𝐵) . (12)

Property 2 (Element-wise product) Assume 𝑈 is a given
real/complex vector and has the same dimensional real and
complex part as 𝐴, then the element-wise (or Hadamard)
product of 𝐴,𝑈 (denoted by 𝑈 � 𝐴 below) is

𝑈 � 𝐴 ∼ RCN
(
𝑈 �𝑚𝐴, (𝑈𝑈𝐻 ) � Γ𝐴

)
, (13)

3



where 𝑈 is the augmented vector associated with 𝑈 .

Property 3 (Conditional distribution) Assume 𝐴 and 𝐵
are jointly real/complex Gaussian distributed (it is said so
if 𝐴re and 𝐵re as defined in (2) are jointly Gaussian dis-
tributed). Let

Γ𝐴𝐵 = 𝔼
{
(𝐴 −𝑚𝐴) (𝐵 −𝑚𝐵)𝐻

}
, (14)

where 𝐴 and 𝐵 are the augmented vectors associated
with 𝐴 and 𝐵, respectively. Then the conditional dis-
tribution of 𝐴 given 𝐵 is real/complex distributed as
𝐴|𝐵 ∼ RCN

(
𝑚𝐴 |𝐵, Γ𝐴 |𝐵

)
with

𝑚𝐴 |𝐵 =𝑚𝐴 + Γ𝐴𝐵Γ
−1
𝐵 (𝐵 −𝑚𝐵), (15)

Γ𝐴 |𝐵 = Γ𝐴 − Γ𝐴𝐵Γ
−1
𝐵 Γ𝐵𝐴 (16)

Proof. The proof is similar to the complex Gaussian case,
see [25, Section 2.3] and thus is omitted.

Remark 1 If a real random vector is treated as a complex
one, then the associated augmented covariance matrix will
be singular. For example, let 𝑋 ∈ ℝ be a zero-mean ran-
dom variable. If 𝑋 is treated as a complex random variable,
then its associated augmented covariance matrix is given
by 𝔼

{
[𝑋 𝑋 ]𝑇 [𝑋 𝑋 ]

}
= 𝔼

{
[𝑋 𝑋 ]𝑇 [𝑋 𝑋 ]

}
, and is clearly

singular.

2.1 Real/complex Gaussian processes

Similarly to real Gaussian processes, the RCG distribution
can be generalised to the real/complex Gaussian process
(RCGP). First introduce the following notation.

Definition 2 (Real/complex Gaussian process) A com-
plex random function 𝜁 (𝑘) over the argument domain 𝑘 ∈
ℝ is an RCGP if for every finite set {𝑘1, · · · , 𝑘𝑛} ⊂ ℝ,
𝜁 (𝑘1), · · · , 𝜁 (𝑘𝑛) are jointly RCG distributed. The subset
𝕂< ⊂ ℝ indicates where 𝜁 (𝑘) is real, i.e. 𝑘 ∈ 𝕂< ⇒
𝜁 (𝑘) ∈ ℝ.

The RCGP 𝜁 (𝑘) is completely determined by 𝕂< and its
first and second order moment functions, given by the
mean function 𝑚, the covariance function 𝐾 and the re-
lation function 𝐶, defined as (for 𝑘, 𝑘 ′ ∈ ℝ)

𝑚(𝑘) = 𝔼 {𝜁 (𝑘)} (17a)

𝐾 (𝑘, 𝑘 ′) = 𝔼
{
(𝜁 (𝑘) −𝑚(𝑘)) (𝜁 (𝑘 ′) −𝑚(𝑘 ′))

}
(17b)

𝐶 (𝑘, 𝑘 ′) = 𝔼 {(𝜁 (𝑘) −𝑚(𝑘)) (𝜁 (𝑘 ′) −𝑚(𝑘 ′))} . (17c)

Notation 3 The real/complex Gaussian process 𝜁 (𝑘), with
mean function𝑚, covariance function 𝐾 and relation func-
tion 𝐶 is denoted as:

𝜁 (𝑘) ∼ RCGP(𝑚,𝐾,𝐶) | 𝕂< (18)

and 𝕂< indicates where 𝜁 (𝑘) is real.

Notation 4 (Vectorized scalar function) Let a scalar
function 𝜁 (𝑘) and an ordered set k = {𝑘1, 𝑘2, . . . , 𝑘𝑛} be
defined. Evaluating 𝜁 (k) is defined as

𝜁 (k) =
[
𝜁 (𝑘1) 𝜁 (𝑘2) . . . 𝜁 (𝑘𝑛)

]𝑇
(19)

A similar notation will be used for scalar functions with two
arguments 𝐾 (𝑘, 𝑙):

𝐾 (k, l) =


𝐾 (𝑘1, 𝑙1) . . . 𝐾 (𝑘1, 𝑙𝑛)

...
. . .

...

𝐾 (𝑘𝑛, 𝑙1) . . . 𝐾 (𝑘𝑛, 𝑙𝑛)

 (20)

The stochastic vector 𝜁 (k) with k ⊂ ℝ is RCG distributed,
whose mean is 𝑚(k) and whose augmented covariance
matrix Γ is computed according to (9), by use of (17) and
(4), taking into account 𝕂<. In what follows, RCGPs will
be used to model transfer functions.

3 Context of system identification

3.1 System assumptions

Consider the causal, discrete- or continuous-time LTI sys-
tem, with input/output description given by

𝑦◦(𝑡) = (ℎ ∗ 𝑢) (𝑡) (21a)
𝑦 (𝑡) = 𝑦◦(𝑡) + 𝑣 (𝑡) (21b)

where the convolution (ℎ ∗ 𝑢) (𝑡) is defined as

(ℎ ∗ 𝑢) (𝑡) =
{ ∑∞

𝑛=0𝑢 ((𝑡 − 𝑛)𝑇s)ℎ(𝑛𝑇s) discrete-time∫ ∞
0 𝑢 (𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏 continuous-time

Here, 𝑦 (𝑡), 𝑣 (𝑡) and 𝑦◦(𝑡) are the measured output, mea-
surement noise, and convolution of the impulse response
ℎ(·) and input 𝑢 (·) at time instant 𝑡 , respectively. With-
out loss of generality, assume that 𝑦 (𝑡) is measured at
𝑡 = 0,𝑇s, · · · , (𝑁 − 1)𝑇s where 𝑇s = 1/𝑓s is the sampling
period, and 𝑓s is the sampling frequency. We make the
following assumption on the system.

Assumption 1 (Stability) Assume that the considered sys-
tem is stable, i.e. its impulse response ℎ(𝑡) is absolutely in-
tegrable (continuous time) or absolutely summable (discrete
time).

Denote 𝑈 (𝑘), 𝑌 (𝑘), 𝑌◦(𝑘) and 𝑉 (𝑘) the 𝑁 -point DFTs, at
frequency bin 𝑘, of 𝑢 (𝑡), 𝑦 (𝑡), 𝑦◦(𝑡) and 𝑣 (𝑡), viz.:
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Definition 3 (𝑁 -point DFT) The 𝑁 -point DFT, at fre-
quency bin 𝑘, of a sampled signal 𝑥 (𝑛𝑇s), 𝑛 = 0, · · · , 𝑁 − 1
is given by

𝑋 (𝑘) = 1
√
𝑁

𝑁−1∑︁
𝑛=0

𝑥 (𝑛𝑇s)𝑒
−𝑗2𝜋𝑘𝑛

𝑁 , 𝑘 ∈ ℤ. (22)

Property 4 For the 𝑁 -point DFT 𝑋 (𝑘) it holds that

𝑋 (𝑘) = 𝑋 (−𝑘) (23a)
𝑋 (𝑘 + 𝑝𝑁 ) = 𝑋 (𝑘) for 𝑝 ∈ ℤ (23b)

𝑋 (0) ∈ ℝ (23c)
𝑋 (𝑁 /2) ∈ ℝ for even 𝑁 . (23d)

Notation 5 Denote Ω a generalised frequency variable, i.e.
for continuous timeΩ = 𝑗𝜔 , and for discrete timeΩ = 𝑒 𝑗𝜔𝑇s ,
for 𝜔 ∈ ℝ. Then, Ω𝑘 is defined as

Ω𝑘 = 𝑗𝜔𝑘 =
𝑗2𝜋𝑘 𝑓s
𝑁

for continuous time (24)

Ω𝑘 = 𝑒 𝑗𝜔𝑘𝑇s = 𝑒
𝑗2𝜋𝑘
𝑁 for discrete time. (25)

with 𝑘 ∈ ℝ. Note that, for 𝑘 ∈ ℤ, Ω𝑘 corresponds to the
𝑘th bin of an 𝑁 -point DFT.

Property 5 For a continuous-time, windowed signal 𝑢 (𝑡),
the 𝑁 -point DFT 𝑈 (𝑘) is related with the sampled Fourier
transform 𝑈 [0,𝑁𝑇s ] ( 𝑗𝜔𝑘 ) =

∫ 𝑁𝑇s
0 𝑢 (𝑡)𝑒−𝑗𝜔𝑘𝑡 d𝑡 as follows,

for 𝑘 = 0, 1, · · · , b𝑁 /2c [9, Section 7.4], [3, Chapter 6]:

𝑈 (𝑘) = 𝑓s√
𝑁
𝑈 [0,𝑁𝑇s ] ( 𝑗𝜔𝑘 ) + 𝛿𝑢 (𝑘), (26)

where b𝑁 /2c rounds 𝑁 /2 to the nearest integer towards
minus infinity and 𝛿𝑢 (𝑘) is the alias error. This also applies
to 𝑦◦(𝑡).

Assumption 2 Assume that, for the continuous-time sig-
nals 𝑢 (𝑡) and 𝑦◦(𝑡), the 𝑁 -point DFTs are alias error free,
viz.: 𝛿𝑢 (𝑘) = 0, 𝛿𝑦◦ (𝑘) = 0.

Remark 2 For the discrete-time, windowed signal 𝑢 (𝑡), the
Fourier transform𝑈 [0,𝑁−1] (𝑒 𝑗𝜔𝑘𝑇s) = 1√

𝑁

∑𝑁−1
𝑡=0 𝑢 (𝑡)𝑒−𝑗𝜔𝑘𝑇s𝑡 ,

𝑘 ∈ ℤ, is equal to its 𝑁 -point DFT. This also applies to
𝑦◦(𝑡).

Now, the time domain description of the system (21) is
transformed to the frequency domain as follows. From
Appendix A, [16, Section 6.3.2] and [18], and under As-
sumption 2 and Remark 2, the DFTs 𝑌◦ and 𝑈 satisfy the
following relation, for 𝑘 = 0, 1, · · · , b𝑁 /2c

𝑌◦(𝑘) = 𝐺 (Ω𝑘 )𝑈 (𝑘) +𝑇 (Ω𝑘 ) (27a)
𝑌 (𝑘) = 𝑌◦(𝑘) +𝑉 (𝑘), (27b)

T

Fig. 1. Output error schematic w.r.t. the 𝑁 -point DFT spectra.
The input spectrum 𝑈 is assumed to be known exactly, the
exact output spectrum 𝑌◦ contains a transient 𝑇 . The measured
output spectrum 𝑌 is disturbed by the noise with spectrum 𝑉 .
Arguments were omitted for convenience.

These expressions are depicted in Fig. 1.

The transfer function 𝐺 (Ω) is computed as the Fourier
transform – denoted by F (either continuous or discrete)
– of the impulse response, viz. 𝐺 (Ω) = F{ℎ(𝑡)}. In (27a),
𝑇 (Ω𝑘 ) is the transient, which depends on the difference
𝑢 (𝑡) −𝑢 (𝑡 +𝑁𝑇s), for 𝑡 < 0, and on the impulse response
of the system, see Lemma 1.

Remark 3 A necessary condition for Assumption 2 to be
valid is that the sampling frequency 𝑓s is greater than or
equal to the Nyquist sampling rate [3, Chapter 5]. However,
for non-periodic windowed signals, a small residual alias
error always remains, see [16, Appendix 6.F]. Nevertheless,
it has been shown in [15] that this error is, to a great ex-
tent, captured by the estimated transient𝑇 ( 𝑗𝜔𝑘 ) and, thus,
has negligible influence on the estimated transfer function.
In addition, this error decreases for an increased distance
between the upper bound of the considered frequency band
and the Nyquist frequency. For these reasons, 𝛿𝑦◦ (𝑘) and
𝛿𝑢 (𝑘) will be neglected in this paper.

Property 6 The Fourier transform 𝐺 (Ω), of the real func-
tionℎ(𝑡), explicitly defined as (continuous- and discrete-time
respectively)

𝐺 ( 𝑗𝜔) =
∫ ∞

0
ℎ(𝑡)𝑒−𝑗𝜔𝑡 d𝑡 (28a)

𝐺 (𝑒 𝑗𝜔𝑇s) =
∞∑︁
𝑛=0

ℎ(𝑛𝑇s)𝑒−𝑗𝜔𝑛𝑇s (28b)

is a complex function satisfying (𝑘 ∈ ℝ)

𝐺 (Ω𝑘 ) = 𝐺 (Ω−𝑘 ) (29a)
𝐺 (Ω0) ∈ ℝ. (29b)

For the discrete time case specifically, it holds that

𝐺 (Ω𝑁 /2) = 𝐺 (𝑒−𝑗𝜋 ) ∈ ℝ (30)
𝐺 (Ω𝑘+𝑝𝑁 ) = 𝐺 (Ω𝑘 ) 𝑝 ∈ ℤ. (31)

This property also applies to 𝑇 (Ω). In that perspective,
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introduce the set 𝕂< where 𝐺 (Ω𝑘 ) and 𝑇 (Ω𝑘 ) are real:

𝕂< =

{
{0} (continuous time)
{0,±𝑁 /2,±2(𝑁 /2), · · · } (discrete time)

(32)

This yields 𝐺 (Ω𝑘 ),𝑇 (Ω𝑘 ) ∈ ℝ for 𝑘 ∈ 𝕂<.

Remark 4 (Continuous frequency dependence) From
Definition 3, the 𝑁 -point DFT spectra are only defined at
𝑘 ∈ ℤ. Nevertheless, 𝐺 (Ω𝑘 ) and 𝑇 (Ω𝑘 ) are defined for
𝑘 ∈ ℝ as well (also for discrete time systems), since they
are continuous functions of the frequency variable Ω.

Assumption 3 Assume that the sampled disturbing noise
𝑣 (𝑛𝑇s) (𝑛 ∈ ℤ), with DFT spectrum 𝑉 (𝑘), is white and
stationary. As a consequence, the 𝑁 -point DFT of the noise
is uncorrelated, has a constant variance, and its relation
matrix is 0 (i.e. the noise is complex circular), viz.

𝔼
{
𝑉 (𝑘)𝑉 (𝑘 ′)

}
= 𝛿𝑘𝑘′𝜎

2
𝑣 , 𝑘, 𝑘 ′ ∈ {0, 1, . . . , b𝑁 /2c}

𝔼 {𝑉 (𝑘)𝑉 (𝑘 ′)} = 0, 𝑘, 𝑘 ′ ∈ {1, . . . , d𝑁 /2e − 1}.

3.2 Problem formulation

The goal of this paper is to obtain an estimate of the trans-
fer function 𝐺 (Ω) and the transient 𝑇 (Ω) as continuous
functions of Ω, under Assumptions 1-3, given the exact in-
put and measured output 𝑁 -point DFT spectra 𝑈 (𝑘) and
𝑌 (𝑘), and taking into account properties 4 and 6.

Remark 5 (Available frequency band) The knowledge
of the 𝑁 -point DFT 𝑈 (𝑘) at 𝑘 ∈ {0, 1, · · · , b𝑁 /2c} allows
to compute 𝑈 (𝑘) for 𝑘 ∈ ℤ. (Recall that 𝑈 (𝑁 −𝑘) = 𝑈 (𝑘),
and that 𝑈 (𝑝𝑁 + 𝑘) = 𝑈 (𝑘) for 𝑝 ∈ ℤ.) However, due to
the periodicity of the 𝑁 -point DFT, and the non-periodicity
of the continuous-time Fourier transform, (27) is invalid for
|𝑘 | > 𝑁 /2 for the continuous-time case. Thus, the available
frequency band is confined to {0, 1, · · · , b𝑁 /2c}.

Remark 6 (Frequency band of interest) Very often, not
the whole available frequency band (i.e. {0, 1, · · · , b𝑁 /2c})
is of interest. For instance, only a single resonance of the
system could be investigated, or the excitation could be re-
stricted to low frequencies to avoid alias errors. Then, the
data set for the estimation of the transfer function may be
confined to those frequencies that are of interest, i.e. a sub-
set of {0, 1, · · · , b𝑁 /2c}.

The following section reaches the goal formulated above
by modelling𝐺 (Ω) and𝑇 (Ω) as RCGPs (thus taking Prop-
erty 6 into account), and by estimating them in a Bayesian
framework in the frequency band of interest.

4 Bayesian TF and transient regression

The aim of regression in a Bayesian framework by use of
Gaussian processes [21, Chapter 2] is formulated as fol-
lows. Given observed data points of joint Gaussian pro-
cesses and a priori mean, covariance and relation func-
tions, determine the a posteriori mean, covariance and
relation functions. This will be applied to the regression
of the TF 𝐺 and the transient 𝑇 . To this end, consider the
following a priori information, consistent with Notation 3.

Assumption 4 (A priori information) Assume that the
TF 𝐺 and the transient 𝑇 are RCGPs over 𝑘 ∈ ℝ:

𝐺 (Ω𝑘 ) ∼ RCGP(0, 𝛼𝐺𝐾, 𝛼𝐺𝐶) | 𝕂< (33a)
𝑇 (Ω𝑘 ) ∼ RCGP(0, 𝛼𝑇𝐾, 𝛼𝑇𝐶) | 𝕂< (33b)

where 𝛼𝐺 ≥ 0, 𝛼𝑇 ≥ 0, and 𝕂< are defined in (32), and
𝐾 and 𝐶 are well-defined covariance function and relation
function, respectively. Moreover, assume that 𝐺 and 𝑇 are
independent.

As can be seen in Assumption 4, 𝐺 and 𝑇 have structural
resemblance, which will be justified in Section 5.3. The
specific choice of 𝐾 and 𝐶 will be discussed in Section 5.

The MAP estimates 𝐺 and 𝑇 will be constructed in the
following three steps:

1) Write the output spectrum as an RCG distribution in
Section 4.1,

2) Compute the joint covariances of 𝐺 and 𝑌 , and 𝑇
and 𝑌 at the DFT-frequencies in the frequency band
of interest in Section 4.2,

3) Compute the expectations of 𝐺 and 𝑇 at the estima-
tion frequencies, conditioned on 𝑌 in Section 4.3.

4.1 The output spectrum as a Gaussian distribution

Consistent with Remark 6, denote k = {𝑘1, 𝑘2, · · · , 𝑘𝑛} ⊂
{0, · · · , b𝑁 /2c} the DFT-frequency indices that lie in the
frequency band of interest. Consistent with Notation 4,
denote 𝐺 (Ωk) = [𝐺 (Ω𝑘1), · · · ,𝐺 (Ω𝑘𝑛 )]𝑇 . Also 𝑇 (Ωk),
𝐾 (Ωk,Ωk) and 𝐶 (Ωk,Ωk) are defined similarly. Accord-
ing to Assumption 4 and Definition 2, the a priori distri-
butions of 𝐺 (Ωk) and 𝑇 (Ωk) are RCG:

𝐺 (Ωk) ∼ RCN (0, 𝛼𝐺Γ) (34)
𝑇 (Ωk) ∼ RCN (0, 𝛼𝑇 Γ) (35)

where Γ is constructed according to (9). Moreover, Γ can
be represented by the use of the covariance and relation
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functions 𝐾 and 𝐶, in the following form:

Γ =


𝐾 (Ωkr ,Ωkr) 𝐾 (Ωkr ,Ωkc) 𝐾 (Ωkr ,Ωkc)
𝐾 (Ωkc ,Ωkr) 𝐾 (Ωkc ,Ωkc) 𝐶 (Ωkc ,Ωkc)

𝐾 (Ωkc ,Ωkr) 𝐶 (Ωkc ,Ωkc)𝐻 𝐾 (Ωkc ,Ωkc)

 (36)

kr = k ∩ 𝕂<, kc = k \ 𝕂<. (37)

In agreement with Definition 1, the cardinalities of kr and
kc will be denoted by 𝑛𝑟 and 𝑛𝑐 respectively. The output
spectrum 𝑌 (k) of the LTI system in (27) is described as
an RCG distribution as follows.

Theorem 2 For 𝐺 and 𝑇 Gaussian processes as given in
(33), the output spectrum𝑌 (k) is an RCG distributed vector,
viz.

𝑌 (k) ∼ RCN (0, Γ𝑌 ) (38a)

with Γ𝑌 = 𝛼𝐺 (�𝑈 (k)�𝑈 (k)
𝐻
) � Γ + 𝛼𝑇 Γ + 𝜎2

𝑣 𝐼 . (38b)

Proof. Follows from the model equations (27), Properties
1 and 2 of RCG distributions, and Assumptions 3 and 4.
�

Remark 7 It should be noted that the transient𝑇 (Ω𝑘 ) may
not always be present in (27). As can be seen from Lemma 1
and Appendix A, if the input signal 𝑢 (𝑡) is periodic with
period length 𝑁𝑇s, then the transient 𝑇 will vanish from
(27), i.e., 𝑇 (Ω𝑘 ) = 0 in (27). In this case, the estimation
problem is simplified and we only need to estimate 𝐺 .

The noise standard deviation 𝜎𝑣 is not known a priori. Just
like 𝛼𝐺 and 𝛼𝑇 , it will be handled as a hyperparameter in
Section 5.4.

4.2 The joint covariances

Consider that the transfer function 𝐺 and the transient 𝑇
should be estimated at the generalised frequency Ω. From
(33),𝐺 (Ω) and𝑇 (Ω) are also RCG distributed. Moreover,
from (27) and (33), 𝐺 (Ω) and 𝑌 (k), and 𝑇 (Ω) and 𝑌 (k)
are jointly RCG distributed, respectively. The joint covari-
ances with 𝑌 (k) are given by

Γ𝐺∗𝑌 ≡ 𝔼
{�𝐺 (Ω) �𝑌 (k)𝐻 } = Γ𝐺∗𝐺 diag

(�𝑈 (k)
𝐻
)

(39a)

Γ𝑇 ∗𝑌 ≡ 𝔼
{�𝑇 (Ω) �𝑌 (k)𝐻 } = Γ𝑇 ∗𝑇 (39b)

where Γ𝐺∗𝐺 = 𝔼
{�𝐺 (Ω) �𝐺 (Ωk)

𝐻
}
is computed via (33a),

Γ𝑇 ∗𝑇 = 𝔼
{�𝑇 (Ω) �𝑇 (Ωk)

𝐻
}

is computed via (33b), and

diag
(�𝑈 (k)

𝐻
)
is a diagonal matrix with �𝑈 (k)

𝐻
being its

main diagonal vector.

4.3 Regression and prediction of the TF and the transient

Theorem 3 The MAP estimates of the TF and the transient
are the a posteriori means

𝐺 (Ω) ≡𝑚𝐺∗ |𝑌 𝑇 (Ω) ≡𝑚𝑇 ∗ |𝑌 (40)

of the following posterior distribution

𝐺 (Ω) |𝑌 (k) ∼ RCN
(
𝑚𝐺∗ |𝑌 , Γ𝐺∗ |𝑌

)
(41a)

𝑇 (Ω) |𝑌 (k) ∼ RCN
(
𝑚𝑇 ∗ |𝑌 , Γ𝑇 ∗ |𝑌

)
(41b)

with 𝑚𝐺∗ |𝑌 = Γ𝐺∗𝑌 Γ
−1
𝑌

�𝑌 (k), (41c)

𝑚𝑇 ∗ |𝑌 = Γ𝑇 ∗𝑌 Γ
−1
𝑌

�𝑌 (k) (41d)
Γ𝐺∗ |𝑌 = Γ𝐺∗𝐺∗ − Γ𝐺∗𝑌 Γ−1𝑌 Γ𝐻𝐺∗𝑌 (41e)
Γ𝑇 ∗ |𝑌 = Γ𝑇 ∗𝑇 ∗ − Γ𝑇 ∗𝑌 Γ−1𝑌 Γ𝐻𝑇 ∗𝑌 (41f)

with
Γ𝐺∗𝐺∗ = 𝔼

{�𝐺 (Ω) �𝐺 (Ω)
𝐻
}
, Γ𝑇 ∗𝑇 ∗ = 𝔼

{�𝑇 (Ω) �𝑇 (Ω)𝐻 }.
Proof. The a posteriori distribution follows from (38),
(39), and Property 3. �

The estimator given by (40) will be referred to as the
GPTF (Gaussian Process Transfer Function) estimator.

Remark 8 Consistent with Remark 4, k is restricted to the
DFT frequencies. Nonetheless, Ω is allowed to be a non-DFT
frequency, thus allowing for evaluations of 𝐺 (Ω) and 𝑇 (Ω)
in-between DFT frequencies.

5 Kernel construction and model tuning

The design of covariance and relation functions 𝐾 and 𝐶
is a central issue for TF estimation with Gaussian process
regression. A natural way is to use the duality between the
TF and the impulse response function in Property 6, and
derive the corresponding covariance and relation func-
tions based on the ones for regularised impulse response
estimation in the literature, e.g. [14,12,4].

Specifically, assume thatℎ(𝑡) is a zero mean Gaussian pro-
cess with covariance function cov(ℎ(𝑡), ℎ(𝑠)) = 𝛼𝐺𝑃 (𝑡, 𝑠),
where 𝑡, 𝑠 ∈ [0, +∞) for continuous-time systems and
𝑡, 𝑠 = 0,𝑇𝑠 , 2𝑇𝑠 , · · · , for discrete-time systems, and 𝑃 (𝑡, 𝑠)
is a kernel suitable for impulse response estimation intro-
duced in the literature, e.g., [14,12,4]. Since the Fourier
transform is a linear transform of ℎ(·) and preserves the
Gaussianity of ℎ(·), 𝐺 (Ω) is a Gaussian process as well
[10, p. 309], [22], [7, Section 5.4.1]. In particular, and con-
sistent with (17), 𝐺 (Ω) is an RCGP with mean function

𝔼 {𝐺 (Ω)} = F{𝔼 {ℎ(𝑡)}} = 0 (42)
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and covariance and relation functions (𝑘, 𝑙 ∈ ℝ):

𝛼𝐺𝐾 (Ω𝑘 ,Ω𝑙 ) = 𝔼
{
𝐺 (Ω𝑘 )𝐺 (Ω𝑙 )

}
(43)

𝛼𝐺𝐶 (Ω𝑘 ,Ω𝑙 ) = 𝔼 {𝐺 (Ω𝑘 )𝐺 (Ω𝑙 )} = 𝛼𝐺𝐾 (Ω𝑘 ,Ω−𝑙 ) . (44)

Property 7 (Stability) A sufficient condition on the kernel
𝐾 (Ω𝑘 ,Ω𝑙 ) to guarantee the stability of the estimated TF in
(40) is that the transfer function

𝐺gen(Ω) = 𝐾 (Ω,Ω𝑘r)𝑟 + 𝐾 (Ω,Ω𝑘c)𝑐 + 𝐾 (Ω,Ω−𝑘c)𝑐 (45)

is stable for any 𝑐 ∈ ℂ, 𝑟, 𝑘c ∈ ℝ, 𝑘r ∈ 𝕂<.

Proof. Noticing (43) and (44), (40) can be rewritten as

𝐺 (Ω) =
[
𝐾 (Ω,Ωkr) 𝐾 (Ω,Ωkc) 𝐾 (Ω,Ω−kc)

]
𝛾 (46a)

with 𝛾 = 𝛼𝐺 diag
(�𝑈 (k)

𝐻
)
Γ−1𝑌

�𝑌 (k) (46b)

From the particular structure of (46b) it follows that 𝛾

can be written as 𝛾 =

[
𝛾𝑇r 𝛾𝑇c 𝛾𝐻c

]𝑇
, where 𝛾r ∈ ℝ𝑛𝑟 ,

𝛾c ∈ ℂ𝑛𝑐 . Consequently, 𝛾 has the same real/complex
dimensionality as �𝑌 (k). Expanding (46a) gives

𝐺 (Ω) =
𝑛𝑟∑︁
𝑖=1

𝐾 (Ω,Ωkr𝑖 )𝛾r𝑖 . . .

+
𝑛c∑︁
𝑖=1

(
𝐾 (Ω,Ωkc𝑖 )𝛾c𝑖 + 𝐾 (Ω,Ω−kc𝑖 )𝛾 c𝑖

)
(47)

with 𝛾r𝑖 , 𝛾c𝑖 , kr𝑖 and kc𝑖 the 𝑖th elements of 𝛾r, 𝛾c, kr and
kc respectively. A generic term of this sum is given by
𝐺gen(Ω) in (45). Therefore, if 𝐺gen(Ω) is a stable transfer
function, then 𝐺 (Ω) is stable as well. �

5.1 Kernels for continuous-time systems

For this case, Ω = 𝑗𝜔 and 𝐺 ( 𝑗𝜔) is given in (28a). The
covariance and relation functions in (43) and (44) take
the following form:

𝐾 ( 𝑗𝜔𝑘 , 𝑗𝜔𝑙 ) =
∫ ∞

0

∫ ∞

0
𝑃 (𝑡, 𝑠)𝑒−𝑗𝜔𝑘𝑡𝑒 𝑗𝜔𝑙𝑠 d𝑡 d𝑠 (48)

𝐶 ( 𝑗𝜔𝑘 , 𝑗𝜔𝑙 ) = 𝐾 ( 𝑗𝜔𝑘 ,− 𝑗𝜔𝑙 ) (49)

Due to (49) – consistent with (44) – we will only pro-
vide explicit expressions of the covariance function
𝐾 ( 𝑗𝜔𝑘 , 𝑗𝜔𝑙 ). The Stable Spline (SS) and Diagonal Corre-
lated (DC) kernels in [14,12,4] are given by:

𝑃SS(𝑡, 𝑠) =
{
𝑒−2𝛽𝑡

2 (𝑒−𝛽𝑠 − 𝑒−𝛽𝑡

3 ) 𝑡 ≥ 𝑠 ≥ 0
𝑒−2𝛽𝑠

2 (𝑒−𝛽𝑡 − 𝑒−𝛽𝑠

3 ) 0 ≤ 𝑡 < 𝑠
(50)

𝑃DC(𝑡, 𝑠) = 𝑒−𝛼 |𝑡−𝑠 |𝑒−𝛽 (𝑡+𝑠)/2, 𝑡, 𝑠 ≥ 0 (51)

where 𝛼, 𝛽 > 0 are the so-called hyperparameters. The
corresponding frequency domain covariance functions are
given in the following.

Theorem 4 The SS and DC kernels for estimating impulse
responses in [14,12,4] correspond to the following covariance
functions for estimating transfer functions:

𝐾SS( 𝑗𝜔𝑘 , 𝑗𝜔𝑙 ) =
1
2
· 1
3𝛽 + 𝑗 (𝜔𝑘 − 𝜔𝑙 )

· · ·

×
(

1
2𝛽 − 𝑗𝜔𝑙

+ 1
2𝛽 + 𝑗𝜔𝑘

− 1
3(3𝛽 − 𝑗𝜔𝑙 )

− 1
3(3𝛽 + 𝑗𝜔𝑘 )

)
(52)

𝐾DC( 𝑗𝜔𝑘 , 𝑗𝜔𝑙 ) =
1

𝛽 + 𝑗 (𝜔𝑘 − 𝜔𝑙 )
· · ·

×
(

1
𝛼 + 𝛽/2 + 𝑗𝜔𝑘

+ 1
𝛼 + 𝛽/2 − 𝑗𝜔𝑙

)
(53)

In addition, when using these SS and DC kernels, the MAP
estimate of the TF in (40) is a stable rational function in 𝑗𝜔 .

5.2 Kernels for discrete-time systems

For this case, Ω = 𝑒 𝑗𝜔𝑇s and 𝐺 (𝑒 𝑗𝜔𝑇s) is given in (28b).
The covariance function in (43) takes the following form:

𝐾 (𝑒 𝑗𝜔𝑘𝑇s , 𝑒 𝑗𝜔𝑙𝑇s)

=

∞∑︁
𝑛=0

∞∑︁
𝑛′=0

𝑃 (𝑛𝑇s, 𝑛′𝑇s)𝑒−𝑗𝜔𝑘𝑛𝑇s𝑒 𝑗𝜔𝑙𝑛
′𝑇s (54)

Similar to the continuous-time case, we also derive the
covariance functions of the SS and DC kernels for esti-
mating transfer functions of discrete-time systems.

Theorem 5 The SS and DC kernels for estimating impulse
responses in [14,12,4] correspond to the following covariance
functions for estimating transfer functions:

𝐾SS (𝑒 𝑗𝜔𝑘𝑇s , 𝑒 𝑗𝜔𝑙𝑇s ) =
{
1
2

1 − 𝑒−4𝛽−𝑗 (𝜔𝑘−𝜔𝑙 )𝑇s

(1 − 𝑒−2𝛽−𝑗𝜔𝑘𝑇s ) (1 − 𝑒−2𝛽+𝑗𝜔𝑙𝑇s )
· · ·

− 1
6

1 − 𝑒−6𝛽−𝑗 (𝜔𝑘−𝜔𝑙 )𝑇s

(1 − 𝑒−3𝛽−𝑗𝜔𝑘𝑇s ) (1 − 𝑒−3𝛽+𝑗𝜔𝑙𝑇s )

}
1

1 − 𝑒−3𝛽−𝑗 (𝜔𝑘−𝜔𝑙 )𝑇s
(55)

𝐾DC (𝑒 𝑗𝜔𝑘𝑇s , 𝑒 𝑗𝜔𝑙𝑇s ) = 1

1 − 𝑒−𝛽−𝑗 (𝜔𝑘−𝜔𝑙 )𝑇s
· · ·

× 1 − 𝑒−2𝛼−𝛽−𝑗 (𝜔𝑘−𝜔𝑙 )𝑇s

(1 − 𝑒−𝛼−𝛽/2−𝑗𝜔𝑘𝑇s ) (1 − 𝑒−𝛼−𝛽/2+𝑗𝜔𝑙𝑇s )
(56)

In addition, when using the SS and DC kernels, the MAP
estimate of the TF in (40) is a stable rational function in
𝑒−𝑗𝜔𝑇s .

5.3 Kernels for the transient 𝑇 (Ω)

As has been discussed in e.g., [1,23] and [16, Section
6.3.2], there exists a structural resemblance between

8



𝐺 (Ω) and 𝑇 (Ω). In particular, we have the following
lemma useful for the design of kernels for 𝑇 (Ω).

Lemma 1 Consider the system (21). Let ℎ∗(𝑡) denote the
response associated with the transient 𝑇 (Ω), i.e, 𝑇 (Ω) =
F{ℎ∗(𝑡)}. Then

ℎ∗(𝑡) =
{
𝑐𝑇 (ℎ ∗ 𝑢𝑑 ) (𝑡) for 𝑡 > 0
0 for 𝑡 < 0

(57)

where 𝑐𝑇 = 𝑓s/
√
𝑁 for the continuous-time case, 𝑐𝑇 = 1 for

the discrete-time case, and

𝑢𝑑 (𝑡) =
{
𝑢 (𝑡) − 𝑢 (𝑡 + 𝑁𝑇s) for 𝑡 < 0
0 for 𝑡 > 0.

(58)

Remark 9 Lemma 1 reveals the dependence of the transient
𝑇 (Ω𝑘 ) on the input signal 𝑢 (𝑡) and on the system’s im-
pulse response ℎ(𝑡). However, this dependence involves an
unmeasured (and thus unknown) part of the input signal,
namely 𝑢 (𝑡) for 𝑡 < 0. For that reason, and for compu-
tational convenience, this dependence is not included as a
priori knowledge in Assumption 4.

The next result follows immediately from Lemma 1.

Theorem 6 Consider the system (21). Assume that ℎ(𝑡) is
a zero mean Gaussian process which is independent of𝑢𝑑 (𝑡)
and with covariance function cov(ℎ(𝑡), ℎ(𝑠)) = 𝛼𝐺𝑃 (𝑡, 𝑠)
where for continuous time systems 𝑡, 𝑠 ∈ [0, +∞) and for
discrete time systems 𝑡, 𝑠 = 0,𝑇𝑠 , 2𝑇𝑠 , · · · . Then ℎ∗(𝑡) is a
zero mean Gaussian process with covariance function

cov(ℎ∗(𝑡), ℎ∗(𝑠)) = 𝑐2𝑇𝛼𝐺× (59a)∫ ∞

0

∫ ∞

0
𝔼 {𝑢𝑑 (−𝜏)𝑢𝑑 (−𝜏 ′)} 𝑃 (𝑡 + 𝜏, 𝑠 + 𝜏 ′) d𝜏 ′ d𝜏

for continuous-time case and

cov(ℎ∗(𝑡), ℎ∗(𝑠)) = 𝑐2𝑇𝛼𝐺× (59b)
∞∑︁
𝑛=1

∞∑︁
𝑛′=1

𝔼 {𝑢𝑑 (−𝑛𝑇s)𝑢𝑑 (−𝑛′𝑇s)} 𝑃 (𝑛𝑇s + 𝑡, 𝑛′𝑇s + 𝑠)

for discrete-time case.

Remark 10 Equation (59) shows that the covariance func-
tion of ℎ∗(𝑡) depends on that of ℎ(𝑡) and on the properties
of the input 𝑢 (𝑡). This finding immediately translates to the
frequency domain and is valid for the covariance functions
of 𝑇 (Ω) and 𝐺 (Ω), and the property of 𝑈 (𝑘). In (59), the
covariance of ℎ∗(𝑡) (equivalently the covariance of 𝑇 (Ω))
may be hard to compute. From a computational point of
view, it is convenient to notice the following case. If 𝑢𝑑 (𝑡)
is white noise with mean zero and variance 𝜎2

𝑢 , and 𝑃 (𝑡, 𝑠)
is the SS or the DC kernel, then it is easy to verify that the

covariance function of ℎ∗(𝑡) is the same as that of ℎ(𝑡) (up
to a scaling factor), i.e.,

cov(ℎ∗(𝑡), ℎ∗(𝑠)) = 𝑐2𝑇𝛼𝐺

{
𝜎2
𝑢𝑃DC(𝑡, 𝑠)/𝑐DC(𝛽) (DC)
𝜎2
𝑢𝑃SS(𝑡, 𝑠)/𝑐SS(𝛽) (SS)

(60)

where for continuous time system, 𝑐DC(𝛽) = 𝛽, 𝑐SS(𝛽) = 3𝛽,
and for discrete-time system 𝑐DC(𝛽) = 𝑒−𝛽

1−𝑒−𝛽 , 𝑐SS(𝛽) =

𝑒−3𝛽

1−𝑒−3𝛽 . Due to this observation, we assume for computa-
tional convenience in the paper that 𝑇 (Ω) and 𝐺 (Ω) have
the same kind of covariance function but with independent
scaling hyperparameters 𝛼𝐺 and 𝛼𝑇 in (33). The simulation
in Section 7 shows that this assumption leads to satisfying
results for tested examples.

5.4 Hyperparameter tuning

The kernels used in Sections 5.1 and 5.2 (and any other
commonly used kernels) depend on some tuneable pa-
rameters, also called hyperparameters. In the DC kernel
(51), the hyperparameters are 𝛼 and 𝛽. In addition, the
weights 𝛼𝐺 and 𝛼𝑇 of the kernels, and the noise variance
𝜎2 in the output covariance Γ𝑌 in (38) must be deter-
mined. The quality of 𝐺 (Ω) and 𝑇 (Ω) depends on these
hyperparameters, such that an appropriate criterion must
be devised to tune them.

Denote by 𝜃 the vector of hyperparameters (e.g. for the
DC kernel: 𝜃𝑇 = [𝛼 𝛽 𝛼𝐺 𝛼𝑇 𝜎2]). In this paper, tuning 𝜃 is
done via the maximisation of the log marginal likelihood
log 𝑝 (�𝑌 (k) |𝜃 ) [21, Section 5.4.1] of the output spectrum,
which is computed as:

log𝑝
(�𝑌 (k)���𝜃 ) = −1

2
�𝑌 (k)𝐻 Γ−1𝑌 (𝜃 )�𝑌 (k) · · ·

− 1
2
log |Γ𝑌 (𝜃 ) | −

𝑛r

2
log 2𝜋 − 𝑛c log𝜋. (61)

Equation (61) expresses the likelihood that the observed
output spectrum has been generated by the Gaussian pro-
cess determined by the covariance function with the given
hyperparameters 𝜃 . The term marginal stems from the
fact that the estimates 𝐺 (Ω) and 𝑇 (Ω) are not appearing
in the expression because they have been marginalised
out of it. Maximising the marginal likelihood has been
shown to automatically provide a trade-off between the
uncertainty of the estimates and their complexity. Alter-
natively to marginal likelihood (which is often used in a
Bayesian framework), (61) may be called the evidence or
the empirical Bayes, depending on the context. Other cri-
teria for hyperparameter tuning exist, e.g. leave-one-out
cross-validation [21, Section 5.4.2].

The maximization of (61) can be done via a gradient
based approach, where the partial derivative w.r.t. the 𝑖th
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hyperparameter is given by

𝜕

𝜕𝜃𝑖
log𝑝

(�𝑌 (k) |𝜃 ) = 1
2
tr
((
𝛼𝛼𝐻 − Γ−1𝑌

) 𝜕Γ𝑌
𝜕𝜃𝑖

)
(62a)

with 𝛼 = Γ−1𝑌
�𝑌 (k) (62b)

Remark 11 The hyperparameters determine to a great ex-
tent the model complexity of the estimate. Their optimisa-
tion is highly related to model order selection in the con-
text of the parametric identification of a system model. The
most important conceptual difference is that hyperparam-
eter tuning is a continuous optimisation, whereas model
order selection is discrete, and prone to be cursed by di-
mensionality.

6 Equivalence with impulse response estimation by
Gaussian process regression

To investigate the equivalence, consider causal LTI sys-
tems described by (21). The impulse response estimation
problem based on a collection ofmeasured output samples
𝑦 (𝑡), 𝑡 = 0, · · · , (𝑁−1)𝑇s and input samples𝑢 (𝑡) was stud-
ied in [14,12,4]. The applied method can be interpreted
as Gaussian process regression. Assume that 𝑣 (𝑡) in (21)
is zero mean white Gaussian distributed with variance 𝜎2

and ℎ(𝑡) is a zero mean Gaussian process, independent of
𝑣 (𝑡), with covariance function cov(ℎ(𝑡), ℎ(𝑠)) = 𝛼𝐺𝑃 (𝑡, 𝑠)
where 𝑡, 𝑠 ∈ [0,∞) and 𝑡, 𝑠 = 0,𝑇𝑠 , 2𝑇𝑠 , · · · , for continuous
and discrete time systems, respectively, and 𝑃 (𝑡, 𝑠) can be
the SS or DC kernel.

Since (ℎ ∗ 𝑢) (𝑡) is a linear transformation of ℎ(·) and
preserves Gaussianity of ℎ(·) for given 𝑢 (·), 𝑦◦(𝑡) is a zero
mean Gaussian process with covariance function

Γ𝑦◦ (𝑡, 𝑠) = cov(𝑦◦(𝑡), 𝑦◦(𝑠)) = (Γℎ𝑦◦ (·, 𝑠) ∗ 𝑢) (𝑡),
Γℎ𝑦◦ (𝑡, 𝑠) = cov(ℎ(𝑡), 𝑦◦(𝑠)) = 𝛼𝐺 (𝑃 (𝑡, ·) ∗ 𝑢) (𝑠).

(63)

Since 𝑦◦(𝑡) and 𝑣 (𝑡) are Gaussian and independent of
each other, 𝑦 (𝑡) and ℎ(𝑡) are jointly Gaussian distributed
and the conditional distribution ℎ(𝑡) |𝑦 (0) · · · , 𝑦 ((𝑁 −
1)𝑇s) is thus Gaussian. In [14,12,4], the estimate of
the impulse response ℎ̂(𝑡) is the conditional mean
𝔼 {ℎ(𝑡) |𝑦 (0) · · · , 𝑦 ((𝑁 − 1)𝑇s)}:

ℎ̂(𝑡) = Γℎ𝑦◦ (𝑡, t)
(
Γ𝑦◦ (t, t) + 𝜎2𝐼𝑁

)−1
𝑦 (t) (64)

where t = {0,𝑇s, · · · , (𝑁−1)𝑇s}. Then, the following result
holds.

Theorem 7 Consider the system (21). The impulse response
estimate (64) is equivalent to the transfer function estimate
in (40), i.e., F{ℎ̂(𝑡)} = 𝐺 (Ω), if

(A1) for the continuous-time system (21), 𝑢 (𝑡) is band-
limited and periodic with fundamental period

𝑇0 = 𝑁𝑇s, and the sampling period 𝑇s is chosen such
that the Shannon-Nyquist condition is satisfied, and
the frequency band of interest consists of the DFT
frequencies k = {0, 1, . . . , b𝑁 /2c};

(A2) for discrete-time system (21), 𝑢 (𝑡) is periodic with
fundamental period 𝑇0 = 𝑁𝑇s, and the frequency
band of interest consists of the DFT frequencies
k = {0, 1, . . . , b𝑁 /2c}.

7 Comparison with other TF estimators

This section further compares the GPTF with the Reg-
ularised Finite Impulse Response (RFIR) estimation
[14,12,4], the Local Polynomial Method (LPM) [19,20,24],
and the Local Rational Method (LRM) [5,8] on simula-
tion results. The following preliminary observations are
made.

• In contrast to the RFIR, the implementation of the GPTF
estimator is straightforwardly compatible for both dis-
crete time and continuous time systems, as was high-
lighted in Section 5.1, whereas the RFIR is restricted to
discrete time systems in practice.

• The LPM and the LRM estimate the TF and the transient
in (27a) by modelling them as polynomials and ratio-
nal functions respectively in local frequency windows
(i.e. the polynomial/rational estimation is performed
in a sliding frequency band). An important distinction
between the kernel based methods (GPTF and RFIR)
and the local methods (LPM and LRM) is that the lat-
ter provide estimates at the DFT bins Ω𝑘 , 𝑘 ∈ ℤ only,
whereas the GPTF and RFIR provide estimates which
are continuous in Ω. As a consequence, the stability of
the estimates from the LRM and the LPM cannot be
determined.

• The computational load of the LPM and the LRM is
O(𝑁 ), whereas that of GPTF and RFIR is O(𝑁 3) (a
square matrix of size 𝑁 × 𝑁 must be inverted via
Cholesky factorization), if no approximation is made.
See [21, Chapter 8] for approximations.

7.1 Simulation setup

Simulations on continuous-time systems are considered.
The sampling period is 𝑇s = 1 s. The input signal is pe-
riodic random noise, and is generated as a sum of sines
with random amplitudes and phases, and such that the
highest frequency of the sines is smaller than the Nyquist
frequency. This ensures that the input and output signals
satisfy the Shannon-Nyquist theorem. The period length
of the input signal is made longer than 𝑁𝑇s, such that a
transient is present. For Sections 7.2 and 7.3, the systems
were simulated with the Matlab command ode45, while
for Section 7.4 a frequency domain steady-state simula-
tion is performed, which is then truncated in the time
such that a transient is present.
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The considered estimators are listed in Table 1 (not all es-
timators are considered in each case study). Monte Carlo
simulations (100 runs) are performed. Each Monte Carlo
run consists of randomising the excitation signal 𝑢 (𝑡) and
the disturbing noise 𝑣 (𝑡). The figures will show the mag-
nitude of the estimated TF from a single Monte Carlo run,
and the Mean Squared Error (MSE) at each frequency,
viz.:

MSE(Ω) = 1
100

100∑︁
𝑚=1

|𝐺𝑚 (Ω) −𝐺 (Ω) |2, (65)

with𝐺𝑚 (Ω) the estimated TF at the frequency Ω from the
𝑚th Monte Carlo run. The frequency axes of the figures
are labeled 𝜔 , with 𝜔 and Ω related as in Notation 5. For
the LPM and the LRM, 𝜔 is evaluated at the DFT bins,
giving estimates which are discrete in the frequency. It is
evaluated at a denser grid for the GPTF estimates.

For each Monte Carlo run, the hyperparameters of the
GPTF and RFIR are optimised, as explained in Section 5.4.
For the LPM and LRM estimators, two structural parame-
ters must be chosen: the orders of the local models (poly-
nomials for LPM and rational functions for LRM), and the
local bandwidth. For LPM, the two parameters were cho-
sen as the minimisers of the true MSE via a grid based
optimisation. Since the true MSE of an estimate is not
known in practice, this yields optimistic results for the
LPM estimator. For LRM, the two parameters suggested
in [8] were used. A complete discussion on the parame-
ter selection for LPM and LRM estimators is outside the
scope of this paper. The implementation of the LPM has
been obtained from the authors of [16], and that of the
LRM from the authors of [8] and [5].

Remark 12 The simulation results in the subsections below
compare the TF estimates based on their MSEs. Other cri-
teria for comparison may be important depending on the
application at hand, as for instance the correlation length
of the resulting estimate, and the quality of the estimated
noise model [17]. Note that the LPM is the only discussed
estimator to produce a non-parametric noise model, concur-
rently with the TF estimate [19] (not shown in this paper).

7.2 Limited frequency band

In Fig. 2, estimates are shown of the TF of a resonating sec-
ond order continuous time system. The resonating pole,
located at −5×10−3±0.31 𝑗 had a damping coefficient of
1.6%. White Gaussian disturbing noise was added to the
output, s.t. the Signal to Noise Ratio (SNR) was 20 dB. Es-
timates of the GPTF with DC kernel ( ), the LPM ( ),
and the LRM ( ) are shown, and the black line is the
true TF. The RFIR is not included because an implemen-
tation that allows the estimation in a limited frequency
band is not available. The training samples for the GPTF
were lying between the two grey vertical lines, that is, in

Table 1
Marker conventions for the estimates in the figures

RFIR estimate with DC kernel (discrete time)

GPTF estimate with DC kernel (continuous time)

GPTF estimate with SS kernel (continuous time)

LPM estimate, tuned based on the true MSE

LRM estimate, orders based on [8]

true TF (continuous time)

a limited frequency band. This way, 65 frequency domain
samples were used. For the LPM, a 6th order polynomial
was used, and the local bandwidth was 15 bins. For the
LRM, as suggested in [8], rational functions of order 2/2
were used, and the local bandwidth was 17 bins.

One observes that GPTF captures the resonance peak bet-
ter than LPM but worse than LRM. In this case, LRM gives
the lowest MSE, which is not surprising since the true
model is, in fact, a rational function of order 2.

0.15 0.2 0.25 0.3 0.35 0.4 0.45
! (rad/s)
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Fig. 2. Comparing GPTF with LPM and LRM in a limited fre-
quency band on a resonating system. Thick lines and mark-
ers: estimates. Thin lines and markers: mean squared errors.
Marker conventions are given in Table 1. The gray vertical lines
are the upper and lower bounds of the considered frequency
band for the GPTF estimator.

7.3 Low-pass excitation

In Fig. 3, the results are presented on a 4th order continu-
ous time system, with poles located at −0.0513±0.3142 𝑗
and −0.0101±2.5133 𝑗 . The excited frequency band is up-
per bounded to 0.94 rad/s. Only one of the two complex
poles lies inside the excited frequency band. No disturb-
ing noise was added (i.e.𝑉 (𝑘) = 0). 78 frequency domain
samples were present in the excited frequency band, 178
in the not excited band. For the LPM, a 10th order poly-
nomial was used, and the local bandwidth was 23 bins.
For the LRM, rational functions of order 2/2 were used,
and the local bandwidth was 17 bins, as suggested in [8].

Inside the excited frequency band, one observes that:
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Fig. 3. Non-persistent excitation. Thick lines and markers: es-
timates. Thin lines and markers: MSE. Marker conventions in
Table 1. The gray vertical line is the upper bound of the con-
sidered frequency band for the GPTF estimators.

• the advantage of the fact that the LPM is a local method
is visible: the fairly high MSE at the resonance fre-
quency does not prevent it to reach a very low MSE
at other frequencies. Moreover, GPTF ( and )
and RFIR ( ) perform better than the LPM ( ) but
worse than the LRM ( ). In this case, the LRM gives
the lowest MSE, which is not surprising since the true
model can locally be approximated very well by a ra-
tional function of order 2.

• GPTF with DC kernel ( ) performs better than RFIR
with DC kernel ( ), because the estimation of the
first was confined to the excited frequency band, while
the RFIR took the full frequency band into account. In
addition, GPTF with SS kernel ( ) performs worse
than GPTF with DC kernel.

Inside the non-excited frequency band, none of the esti-
mates is able to capture the second resonance. Besides,
one observes that the local methods (LPM and LRM) and
Gaussian process regression methods (GPTF and RFIR)
behave very differently, due to the following.

• For Gaussian process regression methods, the extrap-
olation in the non-excited frequency band depends on
both the data in the excited frequency band and the
smoothness and stability assumption embedded in the
kernel used. For this case, the resulting estimate in the
non-excited band has the correct order of magnitude.

• In the non-excited band, the local methods do not have
access to the excited band. Therefore, their estimates
in the non-excited band are based on data from a non-
persistent excitation, yielding very poor results.

7.4 High order system, large and small SNR

The GPTF with DC kernel and the LRM are applied to
a 30th order system, for multiple values of the SNR:

0 dB, 20 dB and 50 dB. The poles and zeroes are plot-
ted in Fig. 4, right. The least damped pole, given by
−0.075 ± 0.64 𝑗 , had a damping coefficient of 11.6%. For
the LRM, rational functions of order 2/2 were used, and
the local bandwidth was 17 bins, as suggested in [8]. The
considered frequency band for the GPTF (0-2.44 rad/s)
contains 200 frequency domain samples.

The results are plotted in Fig. 4, left. One observes that:

• for the cases with the SNR equal to 0 and 20 dB, the
GPTF ( ) gives the best results overall. This is thanks
to the optimized tuning of the bias-variance trade-off,
see Section 5.4. Note that an increased error of the
GPTF is observed in the vicinity of the resonance peak
of the least damped pole, around 0.64 rad/s. This is
not the case for the LRM ( ).

• for the case with 50 dB SNR, the LRM ( ) and the
GPTF ( ) have virtually equal MSEs inside the con-
sidered band.

7.5 Averaged MSE for estimates over all frequencies

The averaged MSE for the estimates over all the frequen-
cies in the considered frequency bands (delimited by grey
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Fig. 4. Left: Results of the GPTF with DC kernel and the LRM
on a 30th order system, for multiple SNR cases. The thick lines
and markers are estimates for the 0 dB SNR case, the thin lines
and markers are the MSEs averaged over 100 realizations, for
the SNR cases as tagged. Marker conventions in Table 1. The
gray vertical line is the upper bound of the considered frequency
band for the GPTF estimator.
Right: Poles (x) and zeroes (o) of the considered system.
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vertical lines in the plots), is summarised in Table 2.

Table 2
Averaged MSE of all estimates (in dB). For Fig. 4, the SNR is
given between brackets.

Fig nr 2 3 4 (0 dB) 4 (20 dB) 4 (50 dB)

GPTF (DC) 9.919 -72.33 -9.202 -24.76 -39.65

GPTF (TC) 10.05 -71.1 -10.14 -25.13 -37.23

GPTF (SS) 37.94 -60.03 -12.38 -24.41 -39.93

RFIR (DC) - -65.78 -10.1 -22.45 -32.93

LPM 23.76 -32.18 -5.529 -20.03 -33

LRM 0.794 -98.21 -3.644 -22.33 -30.59

This table also includes results of the GPTF with the pop-
ular TC (Tuned-Correlated) kernel [4] (obtained by let-
ting 𝛼 = 𝛽/2 in the DC kernel in (51)). These results were
very close to that of the GPTF with DC kernel and thus
were not included in the previous figures.

One observes quite similar results as before: LPM does not
work as well as LRM and GPTF; LRM gives the smallest
averaged MSE for Fig. 2 and Fig. 3; GPTF gives the small-
est averaged MSE for different choices of SNR for Fig. 4.

Finally, we stress that there is room to improve for both
LRM and the GPTF. For LRM, the current MSE could be
further lowered if more suitable orders of the rational
model and local bandwidths are selected. For GPTF, in-
stead of DC and SS kernels, which can better capture the
exponentially decaying behavior, kernels that can better
capture the resonant behavior could be used.

8 Conclusions

The estimation of the Transfer Function (TF) of a causal
LTI system from known input and measured output DFT
spectra has been formulated as a Gaussian process regres-
sion problem. To that end, the multivariate real/complex
Gaussian (RCG) distribution was introduced, where the
stochastic variables were predefined to be either real or
complex. Properties of the RCG distribution, which are
required for this Bayesian regression, have been derived,
including the conditional expectation.

The construction of kernels, required for Gaussian process
regression, has been formulated in the frequency domain.
Time domain kernels from the literature, that have been
used for kernel-based impulse response estimation, were
translated to the frequency domain for continuous- and
discrete-time systems, and the resulting estimates were
proven to be stable rational functions in the appropriate
frequency variables. Whereas the current formulation of
the method can only handle stable systems, the extension
to unstable systems is foreseen for future work.

The equivalence was shown between the TF estimation
via Gaussian processes (GPTF) and the time domain Reg-
ularised Finite Impulse Response (RFIR) estimation under
suitable conditions. Compared with the RFIR, the GPTF
has the additional advantage that the estimation can be
restricted to a limited frequency band, and that its imple-
mentation for continuous-time systems is more appeal-
ing. Compared with the Local Polynomial Method (LPM),
it was observed that the prior knowledge – introduced
via the DC kernel – of the kernel based methods (GPTF
and the RFIR), led to a more accurate estimate of stable
LTI transfer functions. Also, these kernel based methods
take advantage of a Bayesian tuning algorithm for bias-
variance trade-off. From a comparison with the Local Ra-
tional Method (LRM), it is clear that there is room for
improvement for the design of kernels for the estimation
of systems which exhibit lowly damped resonances.

In the perspective of future work, formulating the estima-
tion of TFs with Gaussian processes in the frequency do-
main opens up the possibility of introducing prior knowl-
edge which is more easily formulated in the frequency
domain (like phase margin, resonance frequencies and
damping, etc.).

Appendix

A Proof of (27a)

Equation (27a), and a closed form expression for 𝑇 (Ω)
will be derived for the continuous-time case, starting from
(21a). Denote 𝑌◦[0,𝑁𝑇s ] ( 𝑗𝜔) the continuous-time Fourier
transform of𝑦◦(𝑡) in the rectangular window 𝑡 ∈ [0, 𝑁𝑇s]:

𝑌◦[0,𝑁𝑇s ] ( 𝑗𝜔) =
∫ 𝑁𝑇s

0

∫ ∞

0
ℎ(𝜏)𝑢 (𝑡 − 𝜏) d𝜏𝑒−𝑗𝜔𝑡 d𝑡

=

∫ ∞

0
ℎ(𝜏)𝑒−𝑗𝜔𝜏

∫ 𝑁𝑇s

0
𝑢 (𝑡)𝑒−𝑗𝜔𝑡 d𝑡 d𝜏 +𝑇 ′( 𝑗𝜔)

= 𝐺 ( 𝑗𝜔)𝑈 [0,𝑁𝑇s ] ( 𝑗𝜔) +𝑇 ′( 𝑗𝜔) (A.1)

𝑇 ′( 𝑗𝜔) =
∫ ∞

0
ℎ(𝜏)𝑒−𝑗𝜔𝜏 · · · (A.2)

×
[∫ 0

−𝜏
𝑢 (𝑡)𝑒−𝑗𝜔𝑡 −

∫ 𝑁𝑇s

𝑁𝑇s−𝜏
𝑢 (𝑡)𝑒−𝑗𝜔𝑡

]
d𝑡 d𝜏

By Property 5 and under Assumption 2, (A.1) is equivalent
to (27a) when evaluated at the DFT frequencies 𝜔𝑘 , 𝑘 =
0, 1, . . . , b𝑁 /2c, with

𝑇 ( 𝑗𝜔𝑘 ) = 𝑇 ′( 𝑗𝜔𝑘 ) 𝑓s/
√
𝑁 . (A.3)
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B Proof of Lemma 1

First, recall the definition of 𝑢𝑑 (𝑡) in (58). Then note that
𝑒−𝑗𝜔𝑘𝑁𝑇s = 1, and compute 𝑇 ( 𝑗𝜔𝑘 ) via (A.3) and (A.2):

𝑇 ( 𝑗𝜔𝑘 ) =𝑐𝑇
∫ ∞

0
ℎ(𝜏)𝑒−𝑗𝜔𝑘𝜏

∫ 0

−𝜏
𝑢𝑑 (𝑡)𝑒−𝑗𝜔𝑘𝑡 d𝑡 d𝜏

=𝑐𝑇

∫ ∞

0

∫ 𝜏

0
ℎ(𝜏)𝑢𝑑 (𝑡 − 𝜏)𝑒−𝑗𝜔𝑘𝑡 d𝑡 d𝜏

=𝑐𝑇

∫ ∞

0

∫ ∞

𝑡

ℎ(𝜏)𝑢𝑑 (𝑡 − 𝜏) d𝜏𝑒−𝑗𝜔𝑘𝑡 d𝑡 (B.1)

=

∫ ∞

0
ℎ∗(𝑡)𝑒−𝑗𝜔𝑘𝑡 d𝑡 (B.2)

This proves the structural resemblance between 𝐺 ( 𝑗𝜔𝑘 )
and 𝑇 ( 𝑗𝜔𝑘 ). The proof for the discrete-time is analogous,
and yields

𝑇 (𝑒 𝑗𝜔𝑘𝑇s) =
√
𝑁

−1 ∑∞
𝑡=0 ℎ

∗(𝑡)𝑒
−𝑗2𝜋𝑘𝑡

𝑁

ℎ∗(𝑡) =
∑∞
𝑛=𝑡+1 ℎ(𝑛𝑇s)𝑢𝑑 ((𝑡 − 𝑛)𝑇s) .

(B.3)

C Proof of Theorems 4 and 5

Since it is straightforward to get the representation of the
SS and DC kernels in the frequency domain for estimating
the transfer function, we only give the proof regarding
the stability issue below.

C.1 DC kernel

For the continuous time we have that Ω = 𝑗𝜔 and Ω𝑘c =
𝑗𝜈 . Applying (45) to (53) yields

𝐺gen( 𝑗𝜔) = · · ·
1

𝛽 + 𝑗 (𝜔 − 𝜈) ·
(

1
𝛼 + 𝛽/2 + 𝑗𝜔 + 1

𝛼 + 𝛽/2 − 𝑗𝜈

)
𝑐 . . .

+ 1
𝛽 + 𝑗 (𝜔 + 𝜈) ·

(
1

𝛼 + 𝛽/2 + 𝑗𝜔 + 1
𝛼 + 𝛽/2 + 𝑗𝜈

)
𝑐

Exchanging 𝑗𝜔 for the Laplace variable 𝑠 and working out
yields:

𝐺gen(𝑠) =2
(𝛽 + 𝑠)<𝑐 − 𝜈=𝑐

(𝛼 + 𝛽/2 + 𝑠)𝐷 (𝑠, 𝜈) . . .

+ 1
(𝛼 + 𝛽/2)2 + 𝜈2

𝐵DC(𝑠, 𝜈)
𝐷 (𝑠, 𝜈) (C.1)

which is a rational function in 𝑠, with

𝐷 (𝑠, 𝜈) =𝑠2 + 2𝛽𝑠 + (𝛽2 + 𝜈2) (C.2)
𝐵DC(𝑠, 𝜈) =2(𝛽 + 𝑠)<[𝑐 (𝛼 + 𝛽/2 + 𝑗𝜈)] . . .

− 2𝜈=[𝑐 (𝛼 + 𝛽/2 + 𝑗𝜈)] (C.3)

For 𝛼, 𝛽 > 0, all the poles of 𝐺gen(𝑠) lie in the left half
plane, such that 𝐺gen(𝑠) is stable. The term 𝐾 (Ω,Ω𝑘r)𝑟 in
(45) was not included, but is a special case of the above
and, thus, is a stable rational function as well.

For the discrete time we have that Ω = 𝑒 𝑗𝜔𝑇s . Denote
𝑧 = 𝑒 𝑗𝜔𝑇s , 𝜈 = 𝑒 𝑗𝜔𝑘c𝑇s , 𝐵 = 𝑒−𝛽 and 𝐴 = 𝑒−𝛼−𝛽/2. Applying
(45) to (56) yields

𝐺gen(𝑧−1) =
1

(1 −𝐴𝑧−1) (1 −𝐴𝜈) (1 −𝐴𝜈−1) . . .

× 𝐶 (𝑧−1, 𝜈)
(1 − 𝐵𝑧−1(𝜈 + 𝜈−1) + 𝐵2𝑧−2) (C.4)

which is a rational function in 𝑧−1. (𝐶 (𝑧−1, 𝜈) is a polyno-
mial in 𝑧−1). The roots of 𝐺gen(𝑧−1) are 𝐴 and 𝐵𝑒±𝑗𝜔𝑘c .
Since 0 < 𝐴, 𝐵 < 1, these roots lie inside the unit circle,
yielding a stable estimate.

C.2 SS kernel

Similarly as for the DC kernel, equation (45) in Property 7
is computed for the continuous time SS kernel (52), giving
the following rational function in the Laplace variable 𝑠:

𝐺gen(𝑠) =
1
2𝐷

(
[(6𝛽 + 2𝑠)<𝑐 − 2𝜈=𝑐] (7𝛽 + 2𝑠)

3(2𝛽 + 𝑠) (3𝛽 + 𝑠) . . .

+ (6𝛽 + 2𝑠)<𝐴 − 2𝜈=𝐴
)

(C.5)

with

𝐷 = 𝑠2 + 6𝛽𝑠 + 9𝛽2 + 𝜈2 = (𝑠 + 3𝛽 + 𝑗𝜈) (𝑠 + 3𝛽 − 𝑗𝜈)

𝐴 = 𝑐
7𝛽 − 2 𝑗𝜈

3(2𝛽 − 𝑗𝜈) (3𝛽 − 𝑗𝜈) (C.6)

For 𝛽 > 0, all the poles of𝐺gen(𝑠) lie in the left half plane,
such that 𝐺gen(𝑠) is stable.

For the discrete time SS kernel, again the same reasoning
can be applied (plug (55) into (45)), showing that the
poles of the rational function𝐺gen(𝑧−1) are 𝑒−2𝛽 , 𝑒−3𝛽 and
𝑒−3𝛽±𝑗𝜔𝑘c𝑇s , all of which are inside the unit circle, yielding
stable estimates.

D Proof of Theorem 7

Before proceeding to the proof, some facts of real-valued
continuous-time or discrete-time signal 𝑢 (𝑡) are sum-
marised. For convenience, we specify the 𝑁 -point DFT
of {𝑢 (𝑛𝑇s)}𝑁−1

𝑛=0 as {𝑈 (𝑘) = ∑𝑁−1
𝑛=0 𝑢 (𝑛𝑇s)𝑒

−𝑗2𝜋𝑛𝑘
𝑁 /

√
𝑁 }𝑁−1

𝑘=0
and the N-point unitary DFT matrix 𝐹 (𝑛 + 1, 𝑘 + 1) =

𝑒
−𝑗2𝜋𝑛𝑘

𝑁 /
√
𝑁 , 𝑛, 𝑘 = 0, · · · , 𝑁 − 1.
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Lemma 2 Consider a real-valued continuous-time or
discrete-time signal 𝑢 (𝑡). Denote the 𝑁 -point DFT of
{𝑢 (𝑛𝑇s)}𝑁−1

𝑛=0 by {𝑈 (𝑘)}𝑁−1
𝑘=0 . Then the next results hold:

(1) There exists an 𝑁 -dimensional sorting matrix 𝑆 such
that 𝑆 is orthogonal and 𝑈 = 𝑆𝐹𝑢 (t), where 𝑈 is the

augmented vector of 𝑈 =

[
𝑈 (0) · · · 𝑈 (b𝑁 /2c)

]𝑇
.

(2) for continuous-time 𝑢 (𝑡), if assumption (A1) of Theo-
rem 7 is satisfied, the 𝑁 -point DFT of {𝑢 (𝑛𝑇s −𝜏)}𝑁−1

𝑛=0
with 𝜏 ∈ ℝ and 𝜏 ≥ 0 is{
𝑒
−𝑗 2𝜋𝑘

𝑁𝑇s 𝜏𝑈 (𝑘), 𝑘 = 0, · · · , b𝑁 /2c
𝑒
𝑗
2𝜋 (𝑁−𝑘 )

𝑁𝑇s 𝜏
𝑈 (𝑘), 𝑘 = b𝑁 /2c + 1, · · · , 𝑁 − 1

(3) for discrete-time 𝑢 (𝑡), if assumption (A2) of Theorem
7 is satisfied, the 𝑁 -point DFT of {𝑢 ((𝑛 − 𝜏)𝑇s)}𝑁−1

𝑛=0
with 𝜏 ∈ ℤ and 𝜏 ≥ 0 is {𝑒−𝑗 2𝜋𝑘𝑁

𝜏𝑈 (𝑘)}𝑁−1
𝑘=0 .

Proof. Part (1) follows by the definition of 𝑈 and 𝑈 (𝑘) =
𝑈 (𝑁 − 𝑘), 𝑘 = b𝑁 /2c + 1, · · · , 𝑁 − 1. Part (2) follows
by the shift property of continuous-time Fourier series,
and the definition and properties of DFT of 𝑢 (𝑛𝑇s) and
𝑢 (𝑛𝑇s − 𝜏) under assumption (A1) of Theorem 7. Part (3)
follows from the shift property of DFT. �

Now we prove Theorem 7. First, due to the assumptions
(A1) and (A2), the transient 𝑇 (Ω𝑘 ) will vanish from (27),
i.e., 𝑇 (Ω𝑘 ) = 0 in (27). In this case, 𝛼𝑇 should be set to 0
when computing 𝐺 (Ω) in (40).

Noting (64) and using Part (1) of Lemma 2, we have

F{ℎ̂(𝑡)} = F{Γℎ𝑦◦ (𝑡, t)}𝐹−1 · · ·
× 𝑆𝑇 (𝑆𝐹Γ𝑦◦ (t, t)𝐹−1𝑆𝑇 + 𝜎2𝐼𝑁 )−1𝑆𝐹𝑦 (t)

where F{Γℎ𝑦◦ (𝑡, t)} shall be understood componentwise.
Noting 𝑆𝐹𝑦 (t) = 𝑌 and comparing with (40), it is enough
to prove

Γ𝐺∗𝑌 = F{Γℎ𝑦◦ (𝑡, t)}𝐹−1𝑆𝑇 (D.1)
Γ𝑌 = 𝑆𝐹Γ𝑦◦ (t, t)𝐹−1𝑆𝑇 + 𝜎2𝐼𝑁 (D.2)

First consider (D.1) for the continuous-time case. Noting
Part (2) of Lemma 2 and 𝑈 (−𝑘) = 𝑈 (𝑘) yields

Γℎ𝑦◦ (𝑡, t)𝐹−1

=

∫ ∞

0
𝛼𝐺𝑃 (𝑡, 𝜏) [𝑢 (−𝜏) · · · 𝑢 ((𝑁 − 1)𝑇s − 𝜏)]𝐹−1 d𝜏

=

∫ ∞

0
𝛼𝐺𝑃 (𝑡, 𝜏) [1 ·𝑈 (0) · · · 𝑒 𝑗

2𝜋 b𝑁 /2c
𝑁𝑇s 𝜏

𝑈 (b𝑁 /2c)

𝑒
−𝑗 2𝜋 ( d𝑁 /2e−1𝑡 )

𝑁𝑇s 𝜏
𝑈 (b𝑁 /2c + 1) · · · 𝑒−𝑗

2𝜋
𝑁𝑇s 𝜏𝑈 (𝑁 − 1)] d𝜏

Noting this equation and 𝑈 (𝑁 − 𝑘) = 𝑈 (𝑘) yields

F{Γℎ𝑦◦ (𝑡, t)}𝐹−1𝑆𝑇

= 𝛼𝐺 [𝐾 (Ω, 0)𝑈 (0) · · · 𝐾 (Ω, 𝑗 2𝜋 b𝑁 /2c
𝑁𝑇s

)𝑈 (b𝑁 /2c) · · ·

𝐾 (Ω,− 𝑗 2𝜋 (d𝑁 /2e − 1)
𝑁𝑇s

)𝑈 (d𝑁 /2e − 1) · · ·

· · · 𝐾 (Ω,− 𝑗 2𝜋
𝑁𝑇s

)𝑈 (1)]𝑆𝑇

Then (D.1) follows from𝛼𝐺𝐾 (Ω, 𝑗 2𝜋𝑘𝑁𝑇s
) = 𝔼

{
𝐺 (Ω)𝐺 ( 𝑗 2𝜋𝑘

𝑁𝑇s
)
}
,

𝑘 = −b𝑁 /2c +1, · · · , b𝑁 /2c, and the property of the sort-
ing matrix 𝑆 . It is apparent that the discrete-time case
for (D.1) can be derived in a similar way by replacing
integrals with series in the computation of convolutions
and noting Part (3) of Lemma 2.

As for (D.2), it can be proved in a similar but more tedious
way as (D.1). The details are omitted.
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