
Onreachable sets for positive linear systemsunder

constrained exogenous inputs ⋆

Baozhu Du a, James Lam b, Zhan Shu c, Yong Chen b

aSchool of Automation, Nanjing University of Science and Technology, Nanjing, P. R. China.

bDepartment of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong.

cElectro mechanical engineering group, Faculty of engineering and the environment, University of Southampton, Highfield
Campus, Southampton SO17 1BJ, United Kingdom.

Abstract

This paper focuses on positive linear time-invariant systems with constant coefficients and specific exogenous disturbance. The
problem of finding a hyper-pyramid to bound the set of the states that are reachable from the origin in the Euclidean space is
addressed, subject to inputs whose (1, 1)-norm or (∞, 1)-norm is bounded by a prescribed constant. The Lyapunov approach
is applied and a bounding hyper-pyramid is obtained by solving a set of inequalities. Iterative procedures (with an adjustable
parameter) for reducing the hyper-volume of the bounding hyper-pyramid for the reachable set are proposed.
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1 Introduction

When an admissible control signal of a linear dynamic
system is constrained in some way, the transfer of the
system state from the origin to an arbitrary terminal
state is generally not possible. Under some input con-
straints, the collection of all possible states to which
the system can be transferred from the origin is referred
to as the reachable set. The bounding of reachable s-
tates was first considered for linear systems in the late
1960s in the context of state estimation and it has lat-
er received a lot of attention in parameter estimation
(see [8] and references therein). For linear systems, an
ellipsoidal bound of the reachable set is often used to
contain all the reachable states under zero initial con-
ditions [5], [11], [12], [17], [18], [21], [23], [27], [28]. The
idea may also be used for solving the peak-to-peak min-
imization problem [1] or control problems with saturat-
ing actuators [15], [22]. A linear matrix inequality (LMI)
solution to the reachable set bounding problem was giv-
en in [2] via the Lyapunov approach. However, to the
best of the authors’ knowledge, no related work has been
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devoted to the reachable set bounding problem for posi-
tive systems. The novelty of the present work is that we
derive, for the first time, a hyper-pyramidal bound on
the reachable set of positive linear system under various
types of norm-bounded disturbances.

On the other hand, a quantitative treatment of the per-
formance and robustness of control systems requires the
introduction of appropriate signal and system norms,
which measure the magnitudes of the involved signals
and system operators. As discussed in [6], some frequent-
ly used performance measures such as the H∞ or L2-
L∞ norms are based on the L2 signal space, which are
not very natural, in some situations, to describe the fea-
tures of practical systems with positivity. On the other
hand, the 1-norm of a vector-valued signal could provide
a useful description for positive systems which measures
the size of the input and/or output signals by summing
the quantities of the non-negative components at a giv-
en time [7], and the L1-norm measures the accumulation
of all the components over time [25], which are more ap-
propriate, for instance, when they represent the amount
of material or the number of animals in a species. Thus,
the performance of positive systems can be well evaluat-
ed based on the L1-gain (that is, the induced norm of L1

input and L1 output). Naturally, the linear Lyapunov
function can be applied as a valid candidate for stability
analysis and controller synthesis of positive systems. By
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using the linear Lyapunov approach, stability analysis,
L1-gain performance analysis and control design have
been discussed for positive continuous-time linear sys-
tems [3], [13], [24] and positive continuous-time switched
systems with delays [14], [19], [20]. In this paper, two
types of admissible input signals are considered based on
1-norm and/or ∞-norm. Under such specific classes of
inputs, reachable set bounding and controller synthesis
in the Euclidean space with hyper-pyramids are devel-
oped for positive linear systems.

The remaining parts of this article are organized as fol-
lows. In Section 2, preliminaries are presented for pos-
itive continuous-time systems. The input sets and the
corresponding reachable sets are defined and their prop-
erties are briefly discussed in Section 3. Based on the
characterizations of two classes of exogenous inputs, suf-
ficient conditions are derived to find a hyper-pyramid
that bounds the set of the states which are reachable
from the origin. The problem can be tackled by finding
an admissible positive vector subject to inequality con-
straints, and thus two iterative schemes are presented
to construct a bounding hyper-pyramid for the system
reachable set. The state-feedback synthesis problem is
considered in Section 4 such that the closed-loop system
is positive and its reachable set can be restrained within
a certain hyper-pyramid.

Notations:

N+,R set of positive integers, set of real numbers

Rn set of n-dimensional real vectors

Rm×n set of m× n real matrieces

R̄n
+,Rn

+ nonnegative and positive orthants of Rn

ei vector with 1 in ith position and 0 elsewhere

1, I vector [1, 1, . . . , 1]T , identity matrix

λi(A) ith eigenvalue of matrix A

AT transpose of A

||x(t)||1
∑n

i=1 |xi(t)|, x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn

||x(t)||∞ maxni=1 |xi(t)|, x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn

||ω||1,1
∫∞
0

||ω(s)||1ds (called L1 norm in [7])

||ω||∞,1 ess supt≥0 ||ω(t)||1

Moreover, x ≥≥ 0 (x >> 0) denotes every componen-
t of x is nonnegative (positive) (x is called nonnegative
(positive)); A ≥≥ 0 (A >> 0) denotes every entry of
matrix A is nonnegative (positive) (A is called nonnega-
tive (positive)). A set P in a linear vector space is convex
if αx1 + (1− α)x2 ∈ P, for all x1, x2 ∈ P and α ∈ [0, 1].
Furthermore, P is a convex cone if it is convex and in
addition αx ∈ P for all x ∈ P and all α > 0. Vectors
and matrices, if their dimensions are not explicitly stat-

ed, are assumed to have compatible dimensions for alge-
braic operations.

2 Mathematical Preliminaries

Definition 1 [16] Let V is a linear vector space, sk:
V → R. The constraint sk(y) ≥ 0 is said to be regular if
there exists y∗ ∈ V such that sk(y

∗) > 0, k = 1, 2, . . . , N ,
N ∈ N+.

Lemma 1 [16] Let sk: Rm → R, sk(y) = gTk y + hk, for
k = 0, 1, . . . , N , be linear functionals defined in a linear
vector space Rm, where gk ∈ Rm, hk ∈ R, and N ∈ N+.
If sk(y) is regular for k = 1, 2, . . . , N , the following two
conditions are equivalent.

(S1) s0(y) ≥ 0, for all y ∈ Rm such that sk(y) ≥
0, k = 1, 2, . . . , N .
(S2) There exist scalars τk ≥ 0, k = 1, 2, . . . , N such

that s0(y)−
∑N

k=1 τksk(y) ≥ 0, ∀y ∈ Rm.

Lemma 1 is a linear version of the classical quadratic S-
procedure [10], [26]. It is a valid tool for verifying the
non-negativity of a linear function s0(y) under a finite
number of linear constraints sk(y) ≥ 0 (k = 1, 2, . . . , N)
since condition (S2), in general, is much simpler to verify
than condition (S1).

Definition 2 [9] A ∈ Rn×n is Metzler if its off-diagonal
elements are nonnegative, that is, A(i,j) ≥ 0, i, j =
1, 2, . . . , n, i ̸= j.

3 Reachable Sets with Exogenous Inputs

Consider positive linear dynamic systems described by
the vector differential equation:

ẋ(t) = Ax(t) +Bωω(t) (1)

where x(t) ∈ R̄n
+, ω(t) ∈ R̄m

+ are the system state and
an exogenous input signal, respectively, A ∈ Rn×n and
Bω ∈ R̄n×m

+ are constant system matrices, Bω is nonze-
ro.

When the input ω(t) is taken into account, we try to
provide a fundamental characterization on the reachable
set of system (1). The problem of bounding the reachable
set of a linear system within an ellipsoid ofRn, which has
center at the origin, arises in many fields [2]. However,
since the reachable states of positive system (1) with ω(t)
lie in the first orthant as x(t) ≥ 0, the set containing the
reachable set is a subset of R̄n

+. To pose such a problem
precisely, we need to know how the subset is described
and what bounding criterion should be used (volume,
semi-major or semi-minor axis, for instance).
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3.1 Estimation of Reachable Sets

A hyper-pyramid Cp of the form, for a given p ∈ Rn
+:

Cp = {ξ ∈ R̄n
+ | pT ξ ≤ 1} (2)

will be considered in this paper for bounding the set of
reachable states of system (1) under zero initial condi-
tions. Such a hyper-pyramid is a subset of the positive
orthant and it is convex (that is, the segment connecting
two points of the hyper-pyramid belongs to the hyper-
pyramid itself). It is clear that all the system states x(t)
are contained in Cp if and only if pTx(t) ≤ 1. Next, char-
acterization on the hyper-pyramid Cp will be established
for two possible classes of the exogenous input signal
ω(t) based on the L1-norm and 1-norm.

Case (i): ω ∈ Ω1,1 ,
{
ω ∈ R̄m

+ | ||ω||1,1 ≤ 1
}
.

In this case, the disturbance ω(t) is considered to have
L1-norm no greater than unity.

Theorem 1 The reachable set of positive system
(A,Bω) with zero initial conditions and input ω ∈ Ω1,1 is
bounded by the hyper-pyramid in (2) with vector p ∈ Rn

+
if

AT p ≤≤ 0; BT
ω p ≤≤ 1. (3)

Proof 1 Construct a Lyapunov function V (x(t)) =
pTx(t) with p >> 0, then V (x(0)) = pTx(0) = 0.
The derivative of V (x(t)) along the solution of sys-
tem (1) with respect to t is given by dV (x(t))/dt =
pT (Ax(t) + Bωω(t)) ≤ 1Tω(t), which follows from
x(t) ≥≥ 0, ω(t) ≥≥ 0 and inequalites (3). Integrating
its both sides from 0 to T , we get V (x(T )) − V (x(0)) ≤∫ T

0
1Tω(s)ds ≤ 1 for every T ≥ 0 and every input ω

satisfying
∫∞
0

||ω(s)||1ds ≤ 1. Thus, V (x(T )) ≤ 1, that

is, pTx(T ) ≤ 1 for all T ≥ 0. In other words, the hyper-
pyramid Cp contains the reachable set of system (A,Bω).
The proof is complete.

Remark 1 A natural conclusion derived from Theo-
rem 1 is that, when

∫∞
0

||ω(s)||1ds ≤ γ where γ > 0,
the reachable set of positive system (1) is bounded by the
hyper-pyramid in (2) if there exists a vector p ∈ Rn

+ sat-

isfying AT p ≤≤ 0 and BT
ω p ≤≤ 1

γ1.

It can be seen from Theorem 1 that the Lyapunov sta-
bility of system (1) is a necessary condition for its reach-
able states bounded by a hyper-pyramid, while not nec-
essarily asymptotic stability. If system (1) is known to be
asymptotically stable, a necessary condition for bound-
ing the reachable set can be established in the following
theorem.

Theorem 2 Suppose that positive system (A,Bω) is
asymptotically stable. If the reachable sets under zero

initial conditions and ω ∈ Ω1,1 are bounded by the hyper-
pyramid (2) for some p ∈ Rn

+, then

BT
ω p ≤≤ 1. (4)

and there exists at least an i, i = 1, 2, . . . , n, such that

eTi A
T p ≤ 0. (5)

Proof 2 Take w(t) as eiδ(t− T ) for some T > 0, where
ei ∈ Rn, i = 1, 2, . . . , n, and δ(t−T ) is a Dirac measure.
It is evident that eiδ(t−T ) ∈ Ω1,1 and the system solution

can be calculated as x(t) = eAt
∫ t

0
e−AτBweiδ(τ−T )dτ =

eA(t−T )Bwei. It follows from this and pTx ≤ 1 that
pTx(T ) = pTBwei ≤ 1, for i = 1, 2, . . . , n. Therefore,
(4) holds.

To prove (5), we integrate equation (1) from 0 to ∞,
that is, x (∞)−x (0) = A

∫∞
0

x (τ) dτ+Bw

∫∞
0

w (τ) dτ .
Since the system is asymptotically stable and w (τ) ∈
Ω1,1, one has that x (∞) = 0. From this and x (0) = 0, it
folllows that pTA

∫∞
0

x (τ) dτ = −pTBw

∫∞
0

w (τ) dτ ≤
0. With this and the nonnegativity of x(t), (5) is obvious.

For an asymptotically stable positive system, if inequal-
ity (4) or (5) in Theorem 2 does not hold, we can con-
clude that the reachable set under zero initial condition-
s and ω ∈ Ω1,1 cannot be bounded by the prescribed
hyper-pyramid Cp. This theorem can be used for select-
ing an appropriate vector p and related joint design of a
state-feedback controller gain and p.

Case (ii): ω ∈ Ω∞,1 ,
{
ω ∈ R̄m

+ | ||ω||∞,1 ≤ 1
}
.

In this case, the disturbance ω(t) is considered to have
1-norm no greater than unity.

Theorem 3 The reachable set of positive system
(A,Bω) with zero initial conditions and input ω ∈ Ω∞,1

is bounded by the hyper-pyramid in (2) with vector
p ∈ Rn

+ if there exists a scalar α > 0 satisfying

AT p+ αp ≤≤ 0; BT
ω p ≤≤ α1. (6)

Proof 3 Suppose that there exists a Lyapunov function
V (ξ) = pT ξ with p >> 0. The hyper-pyramid given by (2)
contains the reachable set of the positive system (A,Bω)
if dV (x(t))/dt ≤ 0 for any x(t), ω(t) satisfying (1),
||ω(t)||1 ≤ 1 and V (x) ≥ 1, which is equivalent to

pT (Ax(t) +Bωω(t)) ≤ 0 (7)

for any x(t) andω(t) satisfying 1Tω(t) ≤ 1 and pTx(t) ≥
1. Based on Lemma 1, condition (7) holds if and
only if there exist α ≥ 0 and β ≥ 0 such that,
for all x(t) ≥≥ 0 and ω(t) ≥≥ 0, pT [Ax(t) +
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Bωω(t)] + α[pTx(t) − 1] + β[1 − 1Tω(t)] ≤ 0, that is,
(pTA + αpT )x(t) + (pTBω − β1T )ω(t) − α + β ≤ 0, or
equivalently, for all x(t) ≥≥ 0 and ω(t) ≥≥ 0,

pTA+ αpT ≤≤ 0, pTBω − β1T ≤≤ 0, β − α ≤ 0. (8)

Clearly, α ≥ β. Next, if (8) holds for some (β0, α0), it
also holds for all β ∈ [β0, α0] as p

TBω−β1T ≤≤ pTBω−
β01

T ≤≤ 0. Therefore, it can be assumed, without loss
of generality, that α = β, and (8) can be rewritten as
pTA + αpT ≤≤ 0, pTBω ≤≤ α1T , which is guaranteed
by (6). The proof is complete.

Based on the result proposed in Theorem 1, an alter-
native technique called exponential time-weighting pro-
cedure [2] can also be used to derive Theorem 3. For a
given scalar α > 0 and every T > 0, positive system (1)
can be rewritten as

ẋT (t) = (A+ αI)xT (t) +Bων(t), xT (0) = 0 (9)

where xT (t) = eα(t−T )x(t) and ν(t) = eα(t−T )ω(t) are
new exponentially time-weighted variables. System (9)
is a positive linear system since A + αI is Metzler.

It follows from ||ω(t)||1 ≤ 1 that
∫ T

0
||ν(τ)||1dτ =∫ T

0
eα(τ−T )||ω(τ)||1dτ ≤

∫ T

0
eα(τ−T )dτ ≤ 1/α. Accord-

ing to Theorem 1 and Remark 1, when the input ν(t)
satisfying

∫∞
0

||ν(τ)||1dτ ≤ 1
α , the hyper-pyramid Cp

contains the reachable set of the states xT (t) of sys-
tem (9) if

(A+ αI)T p ≤≤ 0, BT
ω p ≤≤ α1, (10)

which is (6). The fact that xT (T ) satisfies p
TxT (T ) ≤ 1

implies pTx(T ) ≤ 1. Since inequality (10) is independent
of T , the hyper-pyramid Cp thus contains the reachable
set of system (1) when ω ∈ Ω∞,1.

Remark 2 For positive linear system (1), a sufficient
condition for determining whether a point, denoted by
xa ∈ Rn, lies outside the reachable set or not is that
there exists a hyper-pyramid bounding the reachable set
which does not contain xa. In other words, the fact that
xa does not belong to the reachable set can be checked by
verifying an inequality pTxa > 1 (p >> 0) together with
(3) or (6) for different exogenous input signal ω ∈ Ω1,1

or ω ∈ Ω∞,1, respectively.

3.2 Optimization of Hyper-Pyramids

A geometric interpretation on a hyper-pyramid Cp =

{ξ ∈ R̄n
+ | pT ξ ≤ 1}, with p = [p1, p2, . . . , pn]

T ∈ Rn
+,

is a structure formed by connecting the hyper-plane
{ξ ∈ R̄n

+ | pT ξ = 1} and n coordinate planes in the
first orthant (its n + 1 vertices are, respectively, the
origin and 1/pi units along the ith axis, i = 1, 2, . . . , n).

Its hyper-volume depends on the product of 1/pi,
i = 1, 2, . . . , n, since the n-dimensional hyper-volume
of any hyper-pyramid is 1/n of the (n− 1)-dimensional
base hyper-area multiplying its perpendicular height [4].
Therefore, the hyper-volume of hyper-pyramid{

x(t) ∈ R̄n
+ | pTx(t) ≤ 1, x(t) satisfies (1), ω ∈ Ω1,1

}
,

or{
x(t) ∈ R̄n

+ | pTx(t) ≤ 1, x(t) satisfies (1), ω ∈ Ω∞,1

}
is equal to 1

n!

∏n
i=1

1
pi
. To find a feasible hyper-pyramid

that contains the reachable set of the positive system
with hyper-volume as small as possible, we can minimize
the hyper-volume over hyper-pyramids by minimizing
−
∑n

i=1 log pi over the positive vector variable p >> 0
subject to (3), or (6).

Taking Case (i) as an example, based on Theorem 1,
the optimization turns out to be a convex minimiza-
tion problem with respect to the positive vector p =

[p1, p2, . . . , pn]
T
as follows.

Optimization Problem MHVP (Minimal Hyper-
Volume Problem):

minimize −
∑n

i=1 log pi

subject to AT p ≤≤ 0, BT p ≤≤ 1,
(11)

Remark 3 As for ω ∈ Ω∞,1 in Case (ii), it should be
emphasized that the selection of α in (6) may affect the
optimum value of the converged value −

∑n
i=1 log pi. In-

deed, the first inequality in (6) indicates that A is a Hur-
witz matrix and A + αI is a semistable matrix. There-
fore, α has an upper bound given by the spectral abscissa,
minni=1 |λi(A)|, denoted as ᾱ, that is, α ∈ (0, ᾱ]. Vari-
ous search routines, such as fminsearch.m provided in
MATLAB Optimization Toolbox, can be applied to find
an optimal α in that interval.

Optimization Problem MHVP finds a hyper-pyramid
with the smallest hyper-volume by minimizing the prod-
uct of 1/pi, which is the length of the edge along the ith
axis, i = 1, 2, . . . , n. Denote the optimal hyper-pyramid
derived from (11) as C0

p . In general, 1/pi does not al-
ways achieve its minimum simultaneously in Optimiza-
tion Problem MHVP. From a different perspective, if we
only minimize 1/p1 in the objective function, an admis-
sible hyper-pyramid (denoted by C1

p) is found via (11).
In the same way, minimizing 1/p2, another admissible
hyper-pyramid (denoted by C2

p) is then obtained, and

the nth hyper-pyramid Cn
p will be obtained by minimiz-

ing 1/pn. The optimization problem can be described as
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OptimizationProblemSMAP(SequentiallyMin-
imal Axis Problem):

minimize 1/pi

subject to AT p ≤≤ 0, BT p ≤≤ 1,
(12)

where i = 1, 2, . . . , n, p = [p1, p2, . . . , pn]
T
.

As the intersection of these n hyper-pyramids Ci
p (i =

1, 2, . . . , n), that is
∩n

i=1 Ci
p, must enclose the system

reachable set. Therefore, the hyper-volume of
∩n

i=0 Ci
p

is certainly not larger than the hyper-volume of C0
p , so

that Optimization Problem SMAP can further reduce
the bounding reachable set.

3.3 Estimation Example

In this section, we present an illustrative example to
demonstrate the applicability of the proposed results.
The most popular model for describing river pollution
is, still now, the Streeter and Phelps model proposed in
1925. Our aim is to evaluate the water pollution situation
in a certain area. The model is written as

ẋ1(t) = −k1x1(t) + ω(t),

ẋ2(t) = k1x1(t)− k2x2(t),

where k1 > 0 is deoxygenation constant, k2 > 0 is
reoxygenation constant; x1(t) is the concentration of
biodegradable matter contained in the water which is,
for simplicity and by convention, expressed in terms of
biochemical oxygen demand (BOD); x2(t) is the dis-
solved oxygen deficit (DOD) (measured in [mg/l]) which
is the difference between the highest concentration of
dissolved oxygen in water and the actual one; ω(t) ≥ 0
is the BOD discharge rate into the river from the en-
vironment. Since a unit of BOD is the concentration of
biodegradable matter requiring one unit of oxygen to be
degraded by bacteria, the same term k1x1(t) appears in
both state equations with an opposite sign. The term
−k2x2(t) in the second equation represents the diffusion
of oxygen from the air into water at a rate proportion-
al to the oxygen deficit [9]. The flow time t is the time
needed for each drop of water to reach the generic sec-
tion starting from t = 0. Thus, the Streeter and Phelps
model is a typical positive linear system.

The model can be rewritten in the form of system (1)
with

A =

[
−k1 0

k1 −k2

]
, Bω =

[
1

0

]
,

where A is a Metzler matrix. The reachable set repre-
sents the set composed of all the pairs (x1, x2) generated
at all t ∈ [0,+∞), that is, all the possible amounts of
BOD and DOD in water under the external disturbance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.3

0.4
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0.9
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x
1
 (BOD)

x 2 (D
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)

 

 

Bounding C

State trajectories

ω(t)=100e−100t

ω(t)=10e−10t

ω(t)=e−t

Fig. 1. ω(t) = ce−ct, c = 1, 10, 100, (in Ω1,1).
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0
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15

x
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)
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State trajectories

0 0.2 0.4
0

0.05

0.1

0.15

0.2
ω(t)=e−t|cos(2t)|

ω(t)=1

ω(t)=|sin(t)|

Fig. 2. ω(t) = e−t|cos(2t)|, |sin(t)|, or 1 (in Ω∞,1).

ω(t). To illustrate the estimation, fix k1 = 0.3, k2 = 0.4.
The unique optimal triangular region Cp obtained by
Optimization Problem MHVP is given by p = [1, 1]T

which encloses all possible system states when ω ∈ Ω1,1.
Assuming the external disturbance ω(t), respectively, as
e−t, 10e−10t, 100e−100t (these are also admissible dis-

turbances belong to Ω1,1 since
∫ +∞
0

ce−c·tdt = 1, when
c equals to 1, 10, or 100), the trajectories of changes of
BOD and DOD in the water body are shown in Figure 1,
which reflect the changes of the oxygen uptake by bac-
teria and the amount of gaseous oxygen dissolved in a
water sample. When ω(t) = 100e−100t, it can be approx-
imately taken as a lumped discharge present in section
t = 0 (if ω(t) equals a Dirac delta at t = 0, then the
point (1, 0) is reachable).

When ω ∈ Ω∞,1, according to Remark 3, α appear-
ing in Theorem 3 should be chosen within the inter-
val (0, 0.3]. By solving Optimization Problem MHVP,
an optimal triangular region Cp is associated with p =
[1/5, 1/15]T and α = 0.2. Taking ω(t) as e−t|cos(2t)|,
ω(t) = |sin(t)|, or even ω(t) ≡ 1, changes of the amounts
of BOD and DOD in the water body are shown in Fig-
ure 2. The area of Cp versus α in this case can be derived
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1
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Fig. 3. System trajectory for ω(t) = 100e−100t and bounding
hyper-pyramid.

as 0.15/[α2(0.3 − α)]. Its unique minimum is given by
α = 0.2.

It should be noted that, in this example, the optimal
positive vectors p obtained respectively by Optimization
Problems MHVP and SMAP are the same. Supposing

nowBω = [1, 1.5]
T
, there are three optimal solutions for

p, and they are [1, 0+]
T
, [2/5, 2/5]

T
, and [1/2, 1/3]

T
ob-

tained by minimizing 1/p1, 1/p2, and the hyper-volume
of Cp, respectively. Three different bounding regions will
hence be constructed (see Figure 3). Apparently, the in-
tersection of these three regions, whose boundary is de-
picted with bold lines, is certainly bounding the system
reachable set and has smaller area. In this example, the
set consisting of all the feasible solutions for p satisfying
AT p ≤≤ 0 and BT p ≤≤ 1 can be shown as the shaded
triangular area in Figure 4. In this feasible region, the
largest p1 = 1 (that is, the smallest 1/p1) is achieved
in the corner point (1, 0+), that is also the optimal p1
obtained in Optimization Problems SMAP by minimiz-
ing 1/p1 (the point (1, 0) is reachable with ω(t) equals a
Dirac delta of unit strength acting at some t > 0). In oth-
er words, point (1, 0+) generates the vertical dotted line
in Figure 3. The corner point (2/5, 2/5) with the largest
p2 = 2/5 in the feasible region corresponds to the dash-
dotted line in Figure 3. Notice that the optimization
problem to find a smallest feasible hyper-pyramid is e-
quivalent to solving maximization of a variable c , p1p2.
The graph of p1p2 = c, c ∈ R+ represents a family of
hyperbolas in the first orthant, and the optimal c (de-
noted as copt) is achieved when the hyperbola tangents
to the boundary to the right of the shaded triangular re-
gion. More precisely, in Figure 4, the point of tangency
is (1/2, 1/3) and thus copt = 1/6, which corresponds to
the solid line in Figure 3. There is an interesting fact that
these three points fall on a line, p1 +1.5p2 = 1, which is
the boundary of the region determined by BT p ≤≤ 1.
This is the reason why three boundary line segments in
Figure 3 pass through the same point at (1, 1.5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

p
1

p 2

p
1
p

2
=1/6

(2/5, 2/5)

(1/2, 1/3)

(1,0+)

Fig. 4. Feasible solutions p = [p1, p2]
T when Bω = [1, 1.5]T .

4 State-feedback Synthesis

In this section, the state-feedback synthesis problem,
that is, the problem of finding a state-feedback controller
gain will be considered so that the closed-loop system
satisfies positivity and its reachable set can be restrained
within a prescribed hyper-pyramid.

4.1 Controller Design

Consider a positive linear systemwith a zero initial state:

ẋ(t) = Ax(t) +Buu(t) +Bωω(t) (13)

where x(t) ∈ R̄n
+, u(t) ∈ Rp, ω(t) ∈ R̄m

+ are the system
state, the control input and an exogenous input signal,
respectively, A ∈ Rn×n is Metzler, Bu ∈ R̄n×p

+ and Bω ∈
R̄n×m

+ are constant system matrices. LetK ∈ Rp×n, and
suppose that u(t) = Kx(t), which yields the closed-loop
system

ẋ(t) = (A+BuK)x(t) +Bωω(t). (14)

Based on the analysis results described in Section 3,
the following proposition gives conditions under which a
state-feedback gainK exists to guarantee a given hyper-
pyramid Cp containing all the states of system (14) for
different classes of exogenous inputs.

Proposition 1 For a prescribed hyper-pyramid Cp, if
there exist a vector p ∈ Rn

+, a scalar α > 0, and a state-
feedback gainK ∈ Rp×n satisfying that A+BuK is Met-
zler, and

if ω ∈ Ω1,1,

{
pT (A+BuK) ≤≤ 0;

BT
ω p ≤≤ 1;

(15)

or, if ω ∈ Ω∞,1,

{
pT (A+BuK) + αpT ≤≤ 0;

BT
ω p ≤≤ α1.

(16)
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then Cp contains the reachable set of the closed-loop sys-
tem (14).

Since the hyper-pyramid Cp is prescribed, and hence the
vector p is known, (15) and (16) are linear with respect
to variables K and α, their feasibility can be verified
easily by linear programming.

On the other hand, if the existence of a state-feedback
controller gain K, can be characterized according to
Proposition 1 such that the states of the closed-loop sys-
tem are enclosed by a known hyper-pyramid Cp = {ξ ∈
R̄n

+ | pT ξ ≤ 1, p ∈ R̄n
+}, one may attempt to further re-

duce the given hyper-pyramid. A natural way is to fix the
feasible solution K, and solve (15) or (16) with the help
of linear programming and convex optimization, which is
easy to achieve by the following algorithm. Take Case (i)
as an example, with Theorem 1, for fixedK, solve the fol-

lowing optimization problem for p = [p1, p2, . . . , pn]
T
.

minimize γ , −
n∑

i=1

log pi

subject to (A+BuK)T p ≤≤ 0, BT
u p ≤≤ 1.

(17)

Denote γ(∗) as the minimum value of γ, and the corre-
sponding solution p to γ(∗) is denoted by p(∗). SinceK is
the feasible solution of (17), we conclude that the hyper-

volume of hyper-pyramid C(∗)
p corresponding to γ(∗) and

p(∗) is not larger than that of Cp. The sequence of γ(∗)

is thus non-increasing and bounded from below by zero.
Hence, the parameter γ can be optimized iteratively.

4.2 Design Example

In this example, we demonstrate the applicability of the
proposed results on the controller design problem for
system (13) with two classes of disturbance inputs. To
this end, consider the positive linear system in (13) with
system parameters given as follows [7]:

A =


−2 1.3 1

0.5 −3 0.7

2 1.5 −2

 , Bu =


1 0

0 1

1 0.5

 , Bω =


0.1

0.2

0.8

 ,

For a prescribed pyramid Cp with p = [1.5, 1.5, 0.9]
T

shown in Figure 5, part of state trajectory of the open-
loop system with ω(t) = 10e−10t (ω ∈ Ω1,1) is outside
pyramid Cp. Through Proposition 1, a state-feedback
controller is designed with gain

K =

[
−0.64 −0.5 −0.1

−0.0013 −0.78 −0.51

]
,

Fig. 5. System trajectory for ω(t) = 10e−10t and hyper-pyra-
mid Cp.

Fig. 6. System trajectory for ω(t) = |sin(t)| and hyper-pyra-
mid Cp.

and then the closed-loop system matrix is given by

A+BuK =


−2.64 0.8 0.9

0.4987 −3.78 0.19

1.3594 0.61 −2.355


which is Metzler. It is apparent from Figure 5 that the
state response of the closed-loop system is restrained
within Cp.

For another pyramid Cp with p = [0.2, 0.2, 0.3]
T
, the

state trajectory of the open-loop system with ω(t) =
|sin(t)| (ω ∈ Ω∞,1) goes out of the hyper-pyramid. By
applying Proposition 1, the closed-loop system trajec-
tories are restrained within Cp via the same controller
designed above, see Figure 6.

5 Conclusions

This paper has investigated the analysis and synthe-
sis of the reachable set bounding problem for positive
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linear systems with the zero initial state and a specific
disturbance. In the analysis aspect, the Lyapunov ap-
proach has been applied to find a hyper-pyramid that
bounds the set of the reachable system states, subjec-
t to disturbances whose (1, 1)-norm or (∞, 1)-norm
is bounded by a prescribed constant. Two convex op-
timization problems (with an adjustable parameter)
have been proposed to minimize the hyper-volume of
the bounding hyper-pyramid. In the synthesis aspect,
a state feedback controller has been designed which
guarantees the reachable set of the closed-loop system
bounded by a given hyper-pyramid. The desired con-
trollers can be constructed through an iterative linear
programming method.
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