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Abstract

This paper deals with the general discounted impulse control problem of a piecewise
deterministic Markov process. We investigate a new family of ǫ-optimal strategies. The
construction of such strategies is explicit and only necessitates the previous knowledge
of the cost of the no-impulse strategy. In particular, it does not require the resolution
of auxiliary optimal stopping problem or the computation of the value function at each
point of the state space. This approach is based on the iteration of a single-jump-or-
intervention operator associated to the piecewise deterministic Markov process.

1 Introduction

The aim of this paper is to propose a new family of ǫ-optimal strategies for the impulse
control problem of piecewise deterministic Markov processes (PDMPs) defined by O.L.V.
Costa and M.H.A. Davis in [4]. We consider the infinite horizon expected discounted
impulse control problem where the controller instantaneously moves the process to a new
point of the state space at some controller specified time.

Piecewise deterministic Markov processes have been introduced by M.H.A. Davis in
[6, 7] as a general class of stochastic hybrid models. These processes have two variables: a
continuous one representing the physical parameters of the system and a discrete one which
characterizes the regime of operation of the physical system and/or the environnement.
The process depends on three local characteristics: the flow, the jump intensity and the
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Markov kernel. The path of a PDMP consists of deterministic trajectories punctuated by
random jumps. Roughly speaking, the behavior of the process is the following. Starting
from a point of the state space, the PDMP follows a deterministic trajectory determined
by the flow, until the first jump time. This time is drawn either in a Poisson like fashion
following the jump intensity or deterministically when the process hits the boundary of the
state space. The new position and regime of the PDMP after the jump are selected by the
Markov kernel. Then the process follows again a deterministic trajectory until the next
jump time and so on. There are many and diverse applications of PDMPs for example in
queuing or inventory systems, insurance, finance, maintenance models [1, 5, 7] or in data
transmission [2] and in biology [12, 16]. The interested reader can also refer to [10] for
some applications in reliability.

Impulse control corresponds to the following situation: the process runs until a con-
troller decides to intervene on the process by instantaneously moving the process to some
new point of the state space. Then, restarting at this new point, the process runs until the
next intervention and so on. Many authors have considered impulse control for PDMPs,
either by variational inequality [15, 13, 11] or by value improvement [4]. The simplest
form of impulse control is optimal stopping, where the decision maker selects only one
intervention time when the process is stopped. Optimal stopping for PDMPs has been
studied in particular in [14, 3, 9].

For a general infinite horizon expected discounted impulse control problem, a strategy
consists in two sequences of controller-specified random variables defining the intervention
times and new starting points of the process. Solving this problem involves finding a
strategy that minimizes the expected sum of discounted running and intervention costs up
to infinity. The minimal cost is called the value function. In general, optimal strategies do
not exist. Instead we consider ǫ-optimal strategies, i.e. strategies which cost differs from
the value function at most of ǫ.

There exists an extensive literature related to the study of the optimality equation
associated to expected discounted control problems but few works are devoted to the
characterization of ǫ-optimal strategies. The objective of the paper is to explicitly con-
struct such strategies. An attempt in this direction has been proposed by O.L.V. Costa
and M.H.A. Davis in [4, section 3.3]. Roughly speaking, one step of their approach con-
sists in solving an optimal stopping problem which makes this technique quite difficult to
implement. Furthermore the knowledge of the optimal value function is required.

We propose a construction of an ǫ-optimal strategy which necessitates only the knowl-
edge of the cost of the non-impulse strategy and without solving technical problems prelim-
inary. This construction is based on the iteration of a single-jump-or-intervention operator
associated to the PDMP. It builds on the explicit construction of ǫ-optimal stopping times
developed by U.S. Gugerli [14] for the optimal stopping problem. However, for the general
impulse control problem, one must also optimally choose the new starting points of the
process, which is a significant source of additional difficulties. It is important to emphasize
that our method has the advantage of being constructive with regard to other works in
the literature on impulse control problem.

This work is also the first step towards a tractable numerical approximation of ǫ-
optimal strategies. A numerical method to compute the value function is proposed in [8].
It is based on the quantization of an underlying discrete-time Markov chain related to the
continuous process and path-adapted time discretization grids. Discretization of ǫ-optimal
strategies will be the object of a future work.

The paper is organized as follow. In Section 2 we recall in section the definition of
a PDMP and state the impulse control problem under study. In section 3, we construct
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a sequence of approximate value functions. In section 4, we build aa auxilliary process
corresponding to an explicit family of strategies and we show in section that the cost of
the controlled trajectories corresponds to the approximate value function built in section
3. Technical details are gathered in the Appendix.

2 Impulse control problem of PDMP

We introduce first some standard notation before giving a precise definition of a piece-
wise deterministic Markov processes (PDMP) and of the impulse control problem we are
interested in.

For a, b ∈ R, a∧b = min(a, b) is the minimum of a and b. By convention, set inf ∅ = ∞.
Let X be a metric space with distance dX . For a subset A of X , ∂A is the boundary of A
and Ā its closure. We denote B(X ) the Borel σ-field of X and B(X ) the set of real-valued,
bounded and measurable functions defined on X . For any function w ∈ B(X ), we write
Cw for its upper bound, that is Cw = supx∈X |w(x)|. For a Markov kernel P on (X ,B(X ))
and functions w and w′ in B(X ), for any x ∈ X , set Pw(x) =

∫

X w(y)P (x, dy).

2.1 Definition of PDMP

Let M be the finite set of the possible regimes or modes of the system. For all modes m
in M , let Em be an open subset of Rd endowed with the usual Euclidean norm | · |. Set
E = {(m, ζ),m ∈ M, ζ ∈ Em}. Define on E the following distance, for x = (m, ζ) and
x′ = (m′, ζ ′) ∈ E,

|x− x′| = |ζ − ζ ′|1{m=m′} +∞1{m6=m′}.

A piecewise deterministic Markov process (PDMP) on the state space E is determined by
three local characteristics:

• the flow Φ(x, t) = (m,Φm(ζ, t)) for all x = (m, ζ) in E and t ≥ 0, where Φm :
R
d×R

+ → R
d is continuous such that Φm(·, t+s) = Φm(Φm(·, t), s), for all t, s ∈ R

+.
It describes the deterministic trajectory between jumps. We set t∗(x) the time the
flow takes to reach the boundary of E when it starts from x = (m, ζ):

t∗(x) = inf{t > 0 : Φm(ζ, t) ∈ ∂Em}.

• the jump intensity λ : Ē → R
+ is a measurable function and has the following

integrability property: for any x = (m, ζ) in E, there exists ǫ > 0 such that

∫ ǫ

0
λ(m,Φm(ζ, t))dt < +∞.

For all x = (m, ζ) in E and t ∈ [0; t∗(x)), we set

Λ(m, ζ, t) =

∫ t

0
λ(m,Φm(ζ, s))ds. (1)

• the Markov kernel Q on (Ē,B(Ē)) represents the transition measure of the process
and allows to select the new location after each jump. It satisfies for all x ∈ Ē,
Q(x, {x} ∪ ∂E) = 0. That means each jump is made in E and changes the location
and/or the mode of the process.
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From these characteristics, it can be shown [7, section 25] that there exists a filtered
probability space (Ω,F , {Ft}, {Px}x∈E) on which a process {Xt} can be defined as a
strong Markov process. The process {Xt} has two components Xt = (mt, ζt) where the
first component mt is usually called the mode or the regime and the second component
ζt is the so-called Euclidean variable. The motion of this process can be then defined
iteratively as follows.

Starting at an initial point X0 = (m0, ζ0) with m0 ∈ M and ζ0 ∈ Em0
, the first jump

time T1 is determined by the following survival equation

P(m0,ζ0)({T1 > t}) = e−Λ(m0,ζ0,t)1{t<t∗(m0,ζ0)}. (2)

On the interval [0, T1), the process {Xt} follows the deterministic trajectory ζt = Φm0
(ζ0, t)

and the regime mt is constant and equal to m0. At the random time T1, a jump occurs.
A jump can produce either a discontinuity in the Euclidean variable ζt and/or change of
mode. The process restarts at a new mode and/or position XT1

= (mT1
, ζT1

), according
to the distribution Q((m0,Φm0

(ζ0, T1)), ·). An inter jump time T2 − T1 is then selected in
a similar way to equation (2), and on the interval [T1, T2), the process follows the path
mt = mT1

and ζt = ΦmT1
(ζZ1

, t−T1). The process {Xt} thus defines a PDMP on the state
space E.

In order to avoid any technical problems due to the possible explosion of the process,
we make the following standard assumptions [7, section 24], [10, section 1.4].

Assumption 2.1 The mean number of jumps before an instant t ∈ R
+ is finite, whatever

the initial position of the process: for all x ∈ E and t ∈ R
+, Ex

[

∑∞
n=1 1{Tn≤t}

]

<∞.

This first assumption implies in particular that Tk → ∞ almost surely, when k → ∞.

Assumption 2.2 The exit time t∗ is Lipschitz-continuous and bounded by Ct∗.

In most practical applications, the physical properties of the system ensure that either t∗

is bounded or the problem has a natural deterministic time horizon T . In the latter case,
there is no loss of generality in considering that t∗ is bounded by this deterministic time
horizon. This leads to replacing Ct∗ by T .

We need also Lipschitz assumptions on the jump rate λ and the Markov kernel Q.

Assumption 2.3 The jump rate λ is in B(E). It is bounded and there exists [λ]1 ∈ R
+

such that for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)),

|λ(Φ(x, u)) − λ(Φ(y, u))| ≤ [λ]1|x− y|.

We define LΦ(E) as the set of functions w ∈ B(E) that are Lipschitz continuous along the
flow i.e. the real-valued, bounded, measurable functions defined on E and satisfying the
following conditions:

1. For all x ∈ E, the map w(Φ(x, ·)) : [0; t∗(x)) → R is continuous, the limit lim
t→t∗(x)

w(Φ(x, t))

exists and is denoted by w(Φ(x, t∗(x))),

2. there exists [w]1 ∈ R
+ such that for any (x, y) ∈ E2, t ∈ [0; t∗(x) ∧ t∗(y)], one has

|w(Φ(x, t)) − w(Φ(y, t))| ≤ [w]1|x− y|,

3. there exists [w]2 ∈ R
+ such that for any x ∈ E, (t, s) ∈ [0; t∗(x)]2, one has

|w(Φ(x, t)) − w(Φ(x, s))| ≤ [w]2|t− s|,
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4. there exists [w]∗ ∈ R
+ such that for any (x, y) ∈ E2, one has

|w(Φ(x, t∗(x))) − w(Φ(y, t∗(y)))| ≤ [w]∗|x− y|.

Assumption 2.4 The Markov kernel Q is Lipschitz in the following sense: there exists
[Q] ∈ R

+ such that for any function w ∈ LΦ(E) the Markov kernel Q satisfies:

1. for any (x, y) ∈ E2, and t ∈ [0, t∗(x) ∧ t∗(y)), we have

|Qw(Φ(x, t)) −Qw(Φ(y, t))| ≤ [Q][w]1|x− y|,

2. for any (x, y) ∈ E2, we have

|Qw(Φ(x, t∗(x))) −Qw(Φ(y, t∗(y)))| ≤ [Q][w]∗|x− y|.

For notational convenience, we set T0 = 0. The sequence (Zn)n∈N, with Zn = XTn
,

describes the post jump locations of the process {Xt}. The sequence (Sn)n∈N, with Sn =
Tn − Tn−1 for n ≥ 1 and S0 = 0, gives the sojourn times between two consecutive jumps.
We can see that the process defined by {Θn}, where Θn = (Zn, Sn) for all n ∈ N, is a
discrete Markov chain and it is the only source of randomness of the process {Xt}.

2.2 Impulse control problem

The formal probabilistic apparatus necessary to precisely define the impulse control prob-
lem is rather cumbersome, and will not be used in the sequel. Therefore, for the sake of
simplicity, we only present a rough description of the problem. The interested reader is
referred to [4] or [7, section 54] for a rigorous definition.

A strategy S = (τn, Rn)n≥1 is a sequence of non-anticipative intervention times (τn)n≥1

and non-anticipative E-valued random variables (Rn)n≥1 on a measurable space (Ω̄, F̄).
Between the intervention times τi and τi+1, the motion of the process is determined by
the characteristics of the PDMP {Xt} starting from Ri. If an intervention takes place at
x ∈ E, the set of admissible points where the decision-maker can send the system to is
denoted by U ⊂ E. We suppose that the control set U is finite and does not depend on x.
The cardinal of the set U is denoted by u: U = {yi : 1 ≤ i ≤ u}. The strategy S induces
a family of probability measures P

S
x , x ∈ E, on (Ω̄, F̄). We consider that the strategy is

admissible if it satisfies the conditions given in [4, section 2.3]. We denote S the class of
admissible strategies.

Associated to the strategy S ∈ S, we define the following discounted cost for a process
starting at x ∈ E

J S(x) = E
S
x

[

∫ ∞

0
e−αsf(X̃s)ds +

∞
∑

i=1

e−ατic(X̃τi−, X̃τi)
]

, (3)

where E
S
x is the expectation with respect to P

S
x , {X̃t} is the process with interventions

(for its construction, see [4, section 2.2]) and α is a positive discount factor. The function
f corresponds to the running cost. It is a non negative function in LΦ(E). The function
c is a continuous function on Ē ×U, where c(x, y) corresponds to the intervention cost of
moving the process from x to y. We add some assumptions on the intervention cost c.

1. There exists [c]1 ∈ R
+ such that for any (x, y) ∈ E2 and u ∈ [0, t∗(x)∧ t∗(y)] we have

max
z∈U

|c(Φ(x, u), z) − c(Φ(y, u), z)| ≤ [c]1|x− y|.
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2. There exists [c]2 ∈ R
+ such that for any x ∈ E and (t, s) ∈ [0, t∗(x)]2 we have

max
z∈U

|c(Φ(x, t), z) − c(Φ(x, s), z)| ≤ [c]2|t− s|.

3. There exists [c]∗ ∈ R
+ such that for any (x, y) ∈ E2 we have

max
z∈U

|c(Φ(x, t∗(x)), z) − c(Φ(y, t∗(y)), z)| ≤ [c]∗|x− y|.

4. For any (x, y) ∈ Ē × U, there exist c0, Cc ∈ R
+
∗ such that

0 < c0 ≤ c(x, y) ≤ Cc.

5. For any (x, y, z) ∈ Ē × U× U, we have

c(x, y) + c(y, z) ≥ c(x, z).

It means that the cost of one single intervention will be less than or equal to the cost
of two simultaneous interventions.

The value function of the discounted infinite horizon impulse control problem is defined
for all x in E by

V(x) = inf
S∈S

J S(x).

Associated to this impulse control problem, we define the following operators [4, 9]. For
x ∈ E, t ≥ 0, (v,w) ∈ LΦ(E)2, set

F (x, t) =

∫ t∧t∗(x)

0
e−αs−Λ(x,s)f(Φ(x, s))ds

=Ex

[

∫ T1∧t

0
e−αsf(Φ(x, s))ds

]

,

(4)

J(v,w)(x, t) =

∫ t∧t∗(x)

0
e−αs−Λ(x,s)

×
[

f(Φ(x, s)) + λQw(Φ(x, s))
]

ds

+ e−α(t∧t∗(x))−Λ(x,t∧t∗(x))v(Φ(x, t ∧ t∗(x)))

=F (x, t) + Ex [ e
−α(t∧t∗(x))

× v(Φ(x, t ∧ t∗(x)))1{S1≥t∧t∗(x)}

+ e−αS1w(Z1)1{S1<t∧t∗(x)} ] ,

(5)

Kw(x) =

∫ t∗(x)

0
e−αs−Λ(x,s)

[

f(Φ(x, s))

+ λQw(Φ(x, s))
]

ds

+ e−αt∗(x)−Λ(x,t∗(x))Qw(Φ(x, t∗(x)))

=F (x, t∗(x)) + Ex

[

e−αS1w(Z1)
]

.

(6)

For (v,w) ∈ LΦ(E)2, ϕ defined on U and x ∈ E, set

Mϕ(x) = inf
y∈U

{c(x, y) + ϕ(y)}, (7)
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L(v,w)(x) = inf
t∈R+

J(v,w)(x, t) ∧Kw(x), (8)

Lw(x) = L(Mw,w)(x). (9)

As explained in [4], operator L applied to w is the value function of the single jump-
or-intervention problem, with cost function w, and the value function V can be computed
by iterating L. More precisely, let h be the cost associated to the no-impulse strategy:

∀x ∈ E, h(x) = Ex

[

∫ ∞

0
e−αsf(Xs)ds

]

. (10)

Then we can recall Proposition 4 of [4].

Proposition 2.5 Define V0 = h and Vn+1 = L(Vn) for all n ≥ 0. Then for all x in E,
one has

V(x) = lim
n→+∞

Vn(x).

Function Vn corresponds to the value function of the impulse control problem where
at most n interventions are allowed, and the process runs uncontrolled after the n-th
jump-or-intervention.

The aim of this paper is to propose an explicit ǫ-optimal strategy for the impulse control
problem described above. Our approach is based on the sequence of value functions (Vn).
The first step, detailed in Section 3, is to iteratively construct an approximation of the value
functions (Vn) based on an approximation of operator L. Roughly speaking, replace the
infimum of J by a point at which the value of operator J is at distance less than ǫ from the
infimum of J . We prove that this sequence of approximate value function still converges to
V. The second step, given in Section 4.1, consists in defining an auxiliary PDMP that can
be interpreted as a controlled version of the original PDMP for a given explicit strategy.
Then we establish in Section 4.2 that the cost of this strategy is exactly the approximate
value function of Section 3. Hence, we obtain an explicit ǫ-optimal strategy.

3 Approximate value fonctions

We now construct an approximation of the sequence (Vn). When iterating operator L, the
controller selects the option generating the lowest cost between waiting for the next jump
time (operator K wins the minimization) and making an intervention (operator J wins the
minimization). In the latter case, the best time to intervene is given by the time achieving
the infimum in inf J . Hence, to construct an approximation of the value functions, one
may use the above rules with an approximation of the infimum in inf J .

Set V0 = h and ǫ > 0. First, we define for any x in E:

r1ǫ (x) =











t∗(x) if KV0(x) < inft∈R+ J(MV0, V0)(x, t),

inf{s ∈ R
+|J(MV0, V0)(x, s)

< inft∈R+ J(MV0, V0)(x, t) + ǫ} otherwise,

(11)

and

V1(x) =

{

KV0(x) if KV0(x) < inft∈R+ J(MV0, V0)(x, t),

J(MV0, V0)(x, r
1
ǫ (x)) otherwise.

(12)
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Then by induction, we define for k ∈ N
∗

rkǫ (x) =











t∗(x) if KVk−1(x) < inft∈R+ J(MVk−1, Vk−1)(x, t),

inf{s ∈ R
+|J(MVk−1, Vk−1)(x, s)

< inft∈R+ J(MVk−1, Vk−1)(x, t) + ǫ} otherwise

(13)

and

Vk(x) =











KVk−1(x) if KVk−1(x)

< inft∈R+ J(MVk−1, Vk−1)(x, t),

J(MVk−1, Vk−1)(x, r
k
ǫ (x)) otherwise.

(14)

Remark 3.1 As operators K and J(M ·, ·) send LΦ(E) onto itself, see lemmas A.3 to A.6
and A.9 in [8], and h ∈ LΦ(E), one can prove that Vk ∈ LΦ(E), for k ∈ N.

Now, we can show that the functions Vk are close to the value function Vk of our
optimal impulse control problem.

Theorem 3.2 Set k ∈ N. Then we have the following inequality

∀x ∈ E, Vk(x) ≤ Vk(x) ≤ Vk(x) + kǫ. (15)

Proof The case k = 1 is straightforward because V0 = V0 = h. For k ≥ 1, we proceed
by induction. We suppose that for some fixed k one has

∀x ∈ E, Vk(x) ≤ Vk(x) ≤ Vk(x) + kǫ.

Applying lemma A.2 in the Appendix to this inequality, we obtain

KVk(x) ≤ KVk(x) ≤ KVk(x) + kǫ (16)

and for all t ∈ R
+,

J(MVk,Vk)(x, t) ≤J(MVk, Vk)(x, t)

≤ J(MVk,Vk)(x, t) + kǫ. (17)

We distinguish two cases.
If KVk(x) < inft∈R+ J(MVk,Vk)(x, t), then by definition of Vk+1, we have

Vk+1(x) = KVk(x) < inf
t∈R+

J(MVk,Vk)(x, t). (18)

The inequality (16) entails

Vk+1(x) ≤ KVk(x) ≤ Vk+1(x) + kǫ. (19)

We have to distinguish the two cases arising in the definition of Vk+1.
• If KVk(x) < inft∈R+ J(MVk, Vk)(x, t), then by definition (14) of Vk+1, we have

Vk+1(x) = KVk(x). Therefore using inequality (19), we obtain the result:

Vk+1(x) ≤ Vk+1(x) ≤ Vk+1(x) + kǫ.

• We turn now to the case where inft∈R+ J(MVk, Vk)(x, t) ≤ KVk(x). By definition (14)
of Vk+1, we have

Vk+1(x) = J(MVk, Vk)(x, r
k+1
ǫ (x)). (20)
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On the one hand, inequality (17) with t = rk+1
ǫ (x) gives us J(MVk,Vk)(x, r

k+1
ǫ (x)) ≤

J(MVk, Vk)(x, r
k+1
ǫ (x)). Thus we have J(MVk,Vk)(x, r

k+1
ǫ (x)) ≤ Vk+1(x), using equation

(20). We obtain
inf
t∈R+

J(MVk,Vk)(x, t) ≤ Vk+1(x)

and the inequality (18) yields

Vk+1(x) ≤ inf
t∈R+

J(MVk,Vk)(x, t) ≤ Vk+1(x). (21)

On the other hand, by definition (13) of rk+1
ǫ (x), and equality (20) we have

Vk+1(x) = J(MVk, Vk)(x, r
k+1
ǫ (x))

≤ inf
t∈R+

J(MVk, Vk)(x, t) + ǫ

≤ KVk(x) + ǫ,

and the second part of inequality (19) implies

Vk+1(x) ≤ Vk+1(x) + (k + 1)ǫ. (22)

Combining inequalities (21) and (22), we have the expected result

Vk+1(x) ≤ Vk+1(x) ≤ Vk+1(x) + (k + 1)ǫ.

If KVk(x) ≥ inft∈R+ J(MVk,Vk)(x, t), then by definition of Vk+1 we have

Vk+1(x) = inf
t∈R+

J(MVk,Vk)(x, t) ≤ KVk(x). (23)

Again, we distinguish two sub-cases.
• If KVk(x) < inft∈R+ J(MVk, Vk)(x, t), then by definition (14) of Vk+1, we have

Vk+1(x) = KVk(x) < inf
t∈R+

J(MVk, Vk)(x, t). (24)

Next we use equations (17) and (23) to obtain

Vk+1(x) < inf
t∈R+

J(MVk,Vk)(x, t) + kǫ = Vk+1(x) + kǫ.

Using equations (23), (16) and (24) then yields the expected result

Vk+1(x) ≤ KVk(x) ≤ KVk(x) = Vk+1(x) ≤ Vk+1(x) + kǫ.

• If KVk(x) ≥ inft∈R+ J(MVk, Vk)(x, t), then equation (20) holds. On the one hand, by
definition (13) of rk+1

ǫ (x), we have Vk+1(x) ≤ inft∈R+ J(MVk, Vk)(x, t) + ǫ. Next we use
equations (17) and (23) to obtain

Vk+1(x) ≤ Vk+1(x) + (k + 1)ǫ. (25)

On the other hand, restarting with equality (23) and using again inequality (17), we obtain

Vk+1(x) ≤ inf
t∈R+

J(MVk, Vk)(x, t)

≤ J(MVk, Vk)(x, r
k+1
ǫ (x)),

and using equation (20) and inequality (25), we have

Vk+1(x) ≤ Vk+1(x) ≤ Vk+1(x) + (k + 1)ǫ.

Finally, in all cases, we obtain the expected result. �
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4 Construction of ǫ-optimal strategies

We now define an auxiliary PDMP on an enlarged state space. It can be interpreted as a
controlled version of the original PDMP for a family of explicit strategies indexed by some
integer n, where interventions are allowed up to the n-th jump time of the process. Then
we establish that the cost of this strategy is exactly the approximate value function Vn.

4.1 Construction of a controlled process {X̃t}

Starting from the process {Xt}, we build a new PDMP {X̃t} on an enlarged state space.
It has the same flow but a different jump mechanism from {Xt}. The new process has
four variables: X̃t = (mt, ζt, Nt, θt), for t ≥ 0. We consider that m̃t = (mt, Nt) is the mode
variable and ζ̃t = (ζt, θt) is the Euclidean variable of the PDMP {X̃t}. The state space of
this process is defined by

Ẽ = {(m, ζ,N, θ) : (m, ζ) ∈ E,N ∈ N,

θ ∈ [0; rNǫ (m, ζ) ∧ t∗(m, ζ)]} ∪ {∆},

where ∆ is an isolated point, called a cemetery state. We define a distance on Ẽ−{∆} in the
same way as on E. For (m, ζ,N, θ) and (m′, ζ ′, N ′, θ′), setting m̃ = (m,N), m̃′ = (m′, N ′),
ζ̃ = (ζ, θ) and ζ̃ ′ = (ζ ′, θ′), we define

∣

∣(m̃, ζ̃)− (m̃′, ζ̃ ′)
∣

∣ =
∣

∣ζ̃ − ζ̃ ′
∣

∣1{m̃=m̃′} +∞1{m̃6=m̃′}.

Let (m, ζ,N, θ) ∈ Ẽ − {∆}. Setting r0ǫ (m, ζ) = +∞ and recalling that definition of rNǫ is
given by formulas (11) and (13), we set r̃ǫ(∆) = +∞ and

r̃ǫ(m, ζ,N, θ) = rNǫ (m, ζ). (26)

For N ∈ N
∗, define

yNǫ (m, ζ)

= argmin
y∈U

{c(Φ((m, ζ), rNǫ (m, ζ)), y) + VN−1(y)}, (27)

and set ỹǫ(m, ζ, 0, θ) = ∆ and if N ∈ N
∗

ỹǫ(m, ζ,N, θ) = (yNǫ (m, ζ), N − 1, 0). (28)

The local characteristics of the process are as follows. Consider (m, ζ,N, θ) ∈ Ẽ − {∆}.

• The flow Φ̃ of process {X̃t} is Φ̃(∆, t) = 0 and

Φ̃((m, ζ,N, θ), t) = (m,Φm(ζ, t), N, θ + t). (29)

The time the flow takes to reach the boundary of Ẽ is denoted by t̃∗ and it is defined
by

t̃∗(m, ζ,N, θ) = t∗(m, ζ) ∧ rNǫ (m, ζ). (30)

• The jump intensity λ̃ is defined by λ̃(∆) = 0,

λ̃(m, ζ,N, θ) = λ(m, ζ), (31)

and setting

Λ̃(m, ζ,N, θ, t) :=

∫ t

0
λ̃(m,Φm(ζ, s), N, θ + s)ds,

we obtain
Λ̃(m, ζ,N, θ, t) = Λ(m, ζ, t). (32)

10



• Let A ∈ B(Ē), B ∈ B(N) and C ∈ B(R+). The Markov kernel Q̃ is defined by

Q̃((m, ζ,N, θ), A×B × C)

= Q((m, ζ), A)1{0}(C)

×
[

1{N=0}1{0}(B) + 1{N≥1}1{N−1}(B)

×
(

1{θ<rNǫ (m,ζ)} + 1{θ=rNǫ (m,ζ)=t∗(m,ζ)}

)]

+ 1{N≥1}1{θ=rNǫ (m,ζ)6=t∗(m,ζ)}

× 1{ỹǫ(m,ζ,N,θ)}(A×B × C), (33)

and Q̃(∆,∆) = 1.

There exists a filtered probability space (Ω̃, F̃ , (F̃)t≥0, (P̃x̃)x̃∈Ẽ) on which the process {X̃t}
is a strong Markov process [7, sections 24-25].

The additional components of the process {X̃t} can be interpreted as the following
way: θt is the time since the last jump before t and Nt can be seen either as a remaining
time horizon or equivalently as a decreasing counter of jumps. The process {X̃t} can be
interpreted as a controlled version of {Xt} where interventions are possible until the N0-th
jump. After the N0-th jump, no more interventions are allowed and the process follows
the same dynamics as {Xt}. Therefore, the control horizon Nt decreases of one unit at
each jump.

We denote by π the projection of space E×N×R on space E. We denote by (S̃n)n∈N∗

the sojourn times between two consecutive jumps, (Z̃n)n∈N the post jump locations and
(T̃n)n∈N the jump times of the process {X̃t}. We distinguish two kinds of jump as follows,
for k ∈ N

∗ :

• if S̃k < r̃ǫ(Z̃k−1) or if S̃k = r̃ǫ(Z̃k−1) = t∗(π(Z̃k−1)), then Z̃k is determined by the
Markov kernel Q of the non controlled process (equation (33)). We interpret the
k-th jump as a natural jump.

• if S̃k = r̃ǫ(Z̃k−1) 6= t∗(π(Z̃k−1)), then by equation (33), we have Z̃k = ỹǫ(Z̃k−1). We
interpret the k-th jump as an intervention. When an intervention occurs, the new
starting point of {X̃t} is chosen by formulas (33) and (28), where the set U is the
control set.

We now explicit the control strategy corresponding to the process {X̃t}. We introduce
a counting process defined by

p∗(t) :=

∞
∑

i=1

1{T̃i≤t}1{X̃
T̃i−

∈∂Ẽ}1{S̃i 6=t∗(π(Z̃i−1))}
.

This process counts the number of jumps corresponding to interventions. Set

τ̃i = inf{t ∈ R
+ | p∗(t) = i} (34)

the time of the i-th intervention and define the restarting points as

R̃i =

{

Z̃τ̃i if τ̃i <∞

∆ otherwise.
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So the strategy associated to the controlled process {X̃t}, starting at (x,N0, 0) where
x ∈ E and N0 ∈ N, is the sequence

S̃N0

ǫ = (τ̃i, R̃i)i∈N∗ .

Ensuring that stategy S̃N0
ǫ is admissible is a very difficult problem that will not be discussed

here.

4.2 Cost of the controlled trajectories

We now turn to the calculation of the cost of the strategy S̃N0
ǫ and compare it to the value

function VN0
More exactly, we show that the cost of this strategy equals VN0

. To do so,
we first need a technical result ensuring that rkǫ (x) = t∗(x) if and only if KVk−1(x) <
inft∈R+ J(MVk−1, Vk−1)(x, t)

Proposition 4.1 Let k ∈ N
∗ and x ∈ E such that KVk−1(x) ≥ inft∈R+ J(MVk−1, Vk−1)(x, t).

Then we have
rkǫ (x) < t∗(x).

Proof By definition (5) of operator J and definition (13) of rkǫ , we have necessarily
rkǫ (x) ≤ t∗(x). Suppose rkǫ (x) = t∗(x). Then the definition of rkǫ entails

J(MVk−1,Vk−1)(x, t
∗(x))

< inf
t∈R+

J(MVk−1, Vk−1)(x, t) + ǫ, (35)

and for all s ∈ [0; t∗(x)[,

J(MVk−1, Vk−1)(x, s) ≥ inf
t∈R+

J(MVk−1, Vk−1)(x, t) + ǫ. (36)

We define d = inft∈R+ J(MVk−1, Vk−1)(x, t)+ǫ−J(MVk−1, Vk−1)(x, t
∗(x)). The inequation

(35) shows that d > 0. By continuity of J(MVk−1, Vk−1)(x, .) on R
+ (see proposition A.1

in the Appendix), there exists η > 0 such that for all s ∈ [t∗(x)− η; t∗(x)[

|J(MVk−1, Vk−1)(x, s) − J(MVk−1, Vk−1)(x, t
∗(x))| < d. (37)

Consider s ∈ [t∗(x)− η; t∗(x)[. Two cases are possible.
• If J(MVk−1, Vk−1)(x, s) ≤ J(MVk−1, Vk−1)(x, t

∗(x)), then by inequation (35) we have

J(MVk−1, Vk−1)(x, s) < inf
t∈R+

J(MVk−1, Vk−1)(x, t) + ǫ

contradicting the inequation (36).
• If J(MVk−1, Vk−1)(x, s) > J(MVk−1, Vk−1)(x, t

∗(x)), then by (37) and definition of d,
we obtain

J(MVk−1, Vk−1)(x, s) < inf
t∈R+

J(MVk−1, Vk−1)(x, t) + ǫ

contradicting again the inequation (36). We conclude that rkǫ (x) 6= t∗(x) in both cases. �
We define the following cost functions of strategies S̃N0

ǫ , N0 ∈ N. If N0 = 0,

J0(x) = Ẽ(x,0,0)

[

∫ ∞

0
e−αsf̃(X̃s)ds

]

, (38)
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and for N0 ≥ 1,

JN0
(x) = Ẽ(x,N0,0)

[

∫ ∞

0
e−αsf̃(X̃s)ds

+

∞
∑

i=1

1{τ̃i<∞}e
−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)

]

, (39)

where functions f̃ and c̃ are defined by

∀t ∈ R
+,

{

c̃(X̃t−, X̃t) = c(π(X̃t−), π(X̃t))

f̃(X̃t) = f(π(X̃t)),
(40)

recalling that π is the projection of space Ẽ on space E. Note that the sum in the
expectation is always finite.

We now prove by induction that Jn = Vn for all n ≥ 0. The proof is split in the three
following theorems. We first prove that J0 = h = V0 and then that the sequence (Jn)
satisfies the same recursion as the sequence (Vn).

Theorem 4.2 Set x ∈ E. We have the following equality:

J0(x) = h(x) = Ex

[

∫ ∞

0
e−αsf(Xs)ds

]

. (41)

Proof Set x = (m, ζ) ∈ E. By definition of J0 and f̃ , we have

J0(x) = Ẽ(x,0,0)

[

∫ ∞

0
e−αsf(π(X̃s))ds

]

.

We show that {π(X̃t)} starting at x̃ = (x, 0, 0) is a PDMP which has the same character-
istics as the process {Xt} starting at x.
The process {π(X̃t)} starts at the point π(X̃0) = (m, ζ) = x. It then follows the flow (see
(29))

π(Φ̃((m, ζ, 0, θ), t)) = (m,Φm(ζ, t)) = Φ(x, t)

until the first jump time, which is determined by the survival equation:

P̃x̃(T̃1 > t) = exp(−Λ̃(x̃))1{t<t̃∗(x̃)}.

By definition (30) of t̃∗ and (26) of r̃ǫ, we have t̃∗(x̃) = t∗(x). Furthermore, expression
(32) of Λ̃ gives us

P̃x̃(T̃1 > t) = exp(−Λ(x))1{t<t∗(x)} = Px(T1 > t).

At this random time, a jump occurs and the process {π(X̃t)} restarts at a new point
π(X̃T̃1

) = (mT̃1
, ζT̃1

) according to the distribution (see (33))

Q̃(Φ̃(x̃, T̃1), (·, 0, 0)) =Q̃((Φ(x, T̃1), 0, θT̃1
), (·, 0, 0))

=Q(Φ(x, T̃1), ·)

=Q(Φ(x, T1), ·).

Then we can continue the construction of the process {π(X̃t)} in a similar way. We
conclude that {π(X̃t)} is a PDMP with the same characteristics as the PDMP {Xt}. The
consequence is that J0 is equal to h (see definition (10)). �
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Theorem 4.3 Set x ∈ E. We have the following equality:

J1(x) =

{

KJ0(x) if KJ0(x) < inft∈R+ J(MJ0,J0)(x, t),

J(MJ0,J0)(x, r
1
ǫ (x)) otherwise.

implying J1 = V1 because J0 = h.

Proof Set x ∈ E and x̃ := (x, 1, 0) and recall that h = Kh by [4, Proposition 1].
There are again two cases.

If KJ0(x) < inft∈R+ J(MJ0,J0)(x, t), then by theorem 4.2 we have h(x) = Kh(x) <
inft∈R+ J(Mh,h)(x, t). Thus formula (11) gives r1ǫ (x) = t∗(x), so that the next jump is a
natural jump. We are going to prove that {π(X̃t)} starting at x̃ = (x, 1, 0) has the same
distribution as {Xt} starting at x.
Formula (39) for the cost, formulas (33) of Q̃, (40) of f̃ and (29) of Φ̃ give

J1(x) =Ẽ(x,1,0)

[

∫ S̃1

0
e−αsf(Φ(x, s))ds

+ e−αS̃1 Ẽ(x,1,0)

[

∫ ∞

0
e−αtf̃(X̃t+S̃1

)dt
∣

∣

∣
F̃S̃1

]]

.

The Markov property for {X̃t} entails

J1(x) =Ẽ(x,1,0)

[

∫ S̃1

0
e−αsf(Φ(x, s))ds

]

+ Ẽ(x,1,0)

[

e−αS̃1ẼZ̃1

[

∫ ∞

0
e−αtf̃(X̃t)dt

]]

.

As N0 = 1 and t∗(x) = r1ǫ (x), we have either S1 < t∗(x) ∧ r1ǫ (x) or S1 = t∗(x) = r1ǫ (x).
Then by Lemma C.1 in the Appendix, we obtain

J1(x) =Ex

[

∫ S1

0
e−αsf(Φ(x, s))ds

]

+ Ex

[

e−αS1Ẽ(Z1,0,0)

[

∫ ∞

0
e−αtf̃(X̃t)dt

]]

.

Definition (38) of J0 and definition (4) of F imply

J1(x) =F (x, t
∗(x)) + Ex

[

e−αS1J0(Z1)
]

.

Finally definition (6) of operator K and theorem 4.2 give us J1(x) = KJ0(x) = Kh(x).
IfKJ0(x) ≥ inft∈R+ J(MJ0,J0)(x, t), then by theorem 4.2, we haveKh(x) ≥ inft∈R+ J(Mh,h)(x, t).

Thus proposition 4.1 entails that r1ǫ (x) < t∗(x). Particularly, we have r1ǫ (x) 6= t∗(x). The
expression (33) of Q̃ shows that an intervention is possible.
First, we can notice that S̃1 = r1ǫ (x) is equivalent to S̃1 ≥ r1ǫ (x) because we have always
S̃1 ≤ t̃∗(x̃) = r1ǫ (x) by definition (30) of t̃∗(x̃). Then, starting from the definition (39) of
JN0

for N0 = 1 and using definitions (40) of c̃ and (29) of Φ̃, we have

J1(x) = φ1(x) + φ2(x) + φ3(x). (42)
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where

φ1(x) :=Ẽ(x,1,0)

[

∫ S̃1∧r1ǫ (x)

0
e−αsf̃(X̃s)ds

]

φ2(x) :=Ẽ(x,1,0)

[

1{S̃1<r1ǫ (x)}

∫ +∞

S̃1

e−αsf̃(X̃s)ds
]

φ3(x) :=Ẽ(x,1,0)

[

1{S̃1≥r1ǫ (x)}

{

∫ +∞

r1ǫ (x)
e−αsf̃(X̃s)ds

+ e−αr1ǫ (x)c(Φ(x, r1ǫ (x)), y
1
ǫ (x))

}]

.

For the first part of (42), we have

φ1(x) =Ẽ(x,1,0)

[

∫ S̃1∧r1ǫ (x)

0
e−αsf(Φ(x, s))ds

]

.

Recalling that N0 = 1 and r1ǫ (x) 6= t∗(x), we apply lemma C.1 and we obtain

φ1(x) =Ex

[

∫ S1∧r1ǫ (x)

0
e−αsf(Φ(x, s))ds

]

.

Finally, definition (4) of F entails

φ1(x) = F (x, r1ǫ (x)). (43)

For the second part of (42), we have

φ2(x) =Ẽ(x,1,0)

[

1{S̃1<r1ǫ (x)}
e−αS̃1

Ẽ(x,1,0)

[

∫ +∞

0
e−αtf̃(X̃t+S̃1

)dt
∣

∣

∣
F̃S̃1

]]

.

The Markov property implies

φ2(x) =Ẽ(x,1,0)

[

1{S̃1<r1ǫ (x)}
e−αS̃1

× ẼZ̃1

[

∫ +∞

0
e−αtf̃(X̃t)dt

]]

.

Recalling that N0 = 1 and r1ǫ (x) 6= t∗(x), we apply again lemma C.1

φ2(x) =Ex

[

1{S1<r1ǫ (x)}
e−αS1

× Ẽ(Z1,0,0)

[

∫ +∞

0
e−αtf̃(X̃t)dt

]]

.

Definition (38) of J0 and after theorem 4.2 entail

φ2(x) = Ex

[

1{S1<r1ǫ (x)}
e−αS1h(Z1)

]

. (44)

For the third part of (42), we have

φ3(x) =Ẽ(x,1,0)

[

1{S̃1≥r1ǫ (x)}
e−αr1ǫ (x)

{

Ẽ(x,1,0)

[

∫ +∞

0
e−αtf̃(X̃t+r1ǫ (x)

)dt
∣

∣

∣
F̃r1ǫ (x)

]

+ c(Φ(x, r1ǫ (x)), y
1
ǫ (x))

}]

.
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By the Markov property, we obtain

φ3(x) =Ẽ(x,1,0)

[

1{S̃1≥r1ǫ (x)}
e−αr1ǫ (x)

{

Ẽ(y1ǫ (x),0,0)

[

∫ +∞

0
e−αtf̃(X̃t)dt

]

+ c(Φ(x, r1ǫ (x)), y
1
ǫ (x))

}]

.

First using definition (38) of J0 and theorem 4.2, and after using definition (7) of operator
M and definition (28) of y1ǫ , we have

φ3(x) =Ẽ(x,1,0)

[

1{S̃1≥r1ǫ (x)}
e−αr1ǫ (x)

{

h(y1ǫ (x))

+ c(Φ(x, r1ǫ (x)), y
1
ǫ (x))

}]

=Ẽ(x,1,0)

[

1{S̃1≥r1ǫ (x)}
e−αr1ǫ (x)Mh(Φ(x, r1ǫ (x)))

]

.

Recalling that N0 = 1 and r1ǫ (x) 6= t∗(x), we apply again lemma C.1 and we obtain

φ3(x) = Ex

[

e−αr1ǫ (x)Mh(Φ(x, r1ǫ (x)))1{S1≥r1ǫ (x)}

]

. (45)

Finally, the equations (42), (43), (44) and (45) yield

J1(x) =F (x, r
1
ǫ (x)) + Ex

[

e−αr1ǫ (x)Mh(Φ(x, r1ǫ (x)))

1{S1≥r1ǫ (x)}
+ e−αS1h(Z1)1{S1<r1ǫ (x)}

]

and definition (5) of operator J gives us the result J1(x) = J(Mh,h)(x, r1ǫ (x)). �

Theorem 4.4 Let N0 be an integer such that N0 ≥ 1. Let x ∈ E. We have the formula

JN0
(x) =











KJN0−1(x) if KJN0−1(x) <

inft∈R+ J(MJN0−1,JN0−1)(x, t),

J(MJN0−1,JN0−1)(x, r
N0
ǫ (x)) otherwise.

Furthermore, we have JN0
= VN0

.

Proof Some details are similar to the previous proof and are therefore omitted. We
proceed by induction. The case N0 = 1 was showed before in theorem 4.3. Let N0 ≥ 1
and x ∈ E. Suppose that

JN0
(x) =











KJN0−1(x) if KJN0−1(x)

< inft∈R+ J(MJN0−1,JN0−1)(x, t),

J(MJN0−1,JN0−1)(x, r
N0
ǫ (x)) otherwise.

and JN0
= VN0

. We again distinguish two cases.
If KJN0

(x) < inft∈R+ J(MJN0
,JN0

)(x, t), then by the induction hypothesis, we obtain
KVN0

(x) < inft∈R+ J(MVN0
, VN0

)(x, t). Whence by definition (13) of rN0+1
ǫ , we have

rN0+1
ǫ (x) = t∗(x). Thus definition (33) of Q̃ show that the first jump is not an intervention.
Consequently, we have

JN0+1(x) =ψ1(x) + ψ2(x),
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where

ψ1(x) :=Ẽ(x,N0+1,0)

[

∫ S̃1

0
e−αsf̃(Φ̃((x,N0 + 1, 0), s))ds

]

ψ2(x) :=Ẽ(x,N0+1,0)

[

∫ ∞

S̃1

e−αsf̃(X̃s)ds

+

∞
∑

i=1

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
]

.

For the first part of JN0+1, using lemma C.1 with N0 ≥ 1 and rN0+1
ǫ (x) = t∗(x), we

have
ψ1(x) = F (x, t∗(x)). (46)

For the second part of JN0+1, we have

ψ2(x) =Ẽ(x,N0+1,0)

[

e−αS̃1 Ẽ(x,N0+1,0)

[

∫ ∞

0
e−αtf̃(X̃t+S̃1

)dt

+
∞
∑

i=1

e−α(τ̃i−S̃1)c̃(X̃τ̃i−, X̃τ̃i)
∣

∣

∣
F̃S̃1

]]

.

Recalling that N0 ≥ 1 and rN0+1
ǫ (x) = t∗(x), by proposition B.1, Markov property for

process {X̃t} and lemma C.1, we obtain

ψ2(x) =Ex

[

e−αS1Ẽ(Z1,N0,0)

[

∫ ∞

0
e−αtf̃(X̃t)dt

+

∞
∑

i=1

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
]]

.

By definition (39) of JN0
, we finally have

ψ2(x) = Ex

[

e−αS1JN0
(Z1)

]

. (47)

Thus equations (46) and (47) and definition (6) of operator K give us JN0+1(x) =
KJN0

(x).
If KJN0

(x) ≥ inft∈R+ J(MJN0
,JN0

)(x, t), then by the induction hypothesis, we have
KVN0

(x) ≥ inft∈R+ J(MVN0
, VN0

)(x, t). Consequently, proposition 4.1 entails rN0+1
ǫ (x) <

t∗(x) and we have rN0+1
ǫ (x) 6= t∗(x).

To calculate the cost of strategy SN0+1
ǫ in this case, we start from formula (39). Definition

(33) of Q̃ shows that the first jump of the controlled process {X̃t} can be an intervention.
It gives us

JN0+1(x) = Ψ1(x) + Ψ2(x) + Ψ3(x) + Ψ4(x) (48)
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where

Ψ1(x) :=Ẽ(x,N0+1,0)

[

∫ S̃1∧r
N0+1
ǫ (x)

0
e−αsf̃(X̃s)ds

]

Ψ2(x) :=Ẽ(x,N0+1,0)

[

1
{S̃1<r

N0+1
ǫ (x)}

{

∫ ∞

S̃1

e−αsf̃(X̃s)ds

+

+∞
∑

i=1

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
}]

Ψ3(x) :=Ẽ(x,N0+1,0)

[

1
{S̃1=r

N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)

c̃(Φ̃(x̃, rN0+1
ǫ (x)), (yN0+1

ǫ (x), N0, 0))
]

Ψ4(x) :=Ẽ(x,N0+1,0)

[

1
{S̃1=r

N0+1
ǫ (x)}

{

∫ ∞

r
N0+1
ǫ (x)

e−αs

f̃(X̃s)ds +

+∞
∑

i=2

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
}]

.

For the first part of JN0+1, using lemma C.1 with N0 ≥ 1 and rN0+1
ǫ (x) < t∗(x), we

obtain
Ψ1(x) = F (x, rN0+1

ǫ (x)). (49)

For the second part of JN0+1, we have:

Ψ2(x) =Ẽ(x,N0+1,0)

[

1
{S̃1<r

N0+1
ǫ (x)}

e−αS̃1

Ẽ(x,N0+1,0)

[

∫ ∞

0
e−αtf̃(X̃t+S̃1

)dt

+

+∞
∑

i=1

e−α(τ̃i−S̃1)c̃(X̃τ̃i−, X̃τ̃i)
∣

∣

∣
F̃S̃1

]]

.

Recalling that N0 ≥ 1 and rN0+1
ǫ 6= t∗(x), by proposition B.1 (with rN0+1

ǫ (x) < t∗(x)),
Markov property for process {X̃t} and lemma C.1, we obtain

Ψ2(x) =Ex

[

1
{S1<r

N0+1
ǫ (x)}

e−αS1

Ẽ(Z1,N0,0)

[

∫ ∞

0
e−αtf̃(X̃t)dt

+
+∞
∑

i=1

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
]]

.

Finally, definition (39) of JN0
gives us

Ψ2(x) = Ex

[

1
{S1<r

N0+1
ǫ (x)}

e−αS1JN0
(Z1)

]

. (50)

For the third part of JN0+1, we can remark {S̃1 = rN0+1
ǫ (x)} is the same event as

{S̃1 ≥ rN0+1
ǫ (x)} because we have always S̃1 ≤ t̃∗(x̃) = rN0+1

ǫ (x). Using lemma C.1 with
N0 ≥ 1 and rN0+1

ǫ 6= t∗(x), we can conclude

Ψ3(x) = Ex

[

1
{S1≥r

N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)

c(Φ(x, rN0+1
ǫ (x)), yN0+1

ǫ (x))
]

. (51)
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For the fourth part of JN0+1, we have

Ψ4(x) =Ẽ(x,N0+1,0)

[

1
{S̃1=r

N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)

Ẽ(x,N0+1,0)

[

∫ ∞

0
e−αtf̃(X̃

t+r
N0+1
ǫ (x)

)dt

+
+∞
∑

i=2

e−α(τ̃i−r
N0+1
ǫ (x))c̃(X̃τ̃i−, X̃τ̃i)

∣

∣

∣
F̃
r
N0+1
ǫ (x)

]]

.

Recalling N0 ≥ 1 and rN0+1
ǫ 6= t∗(x), by proposition B.1 (with rN0+1

ǫ (x) < t∗(x)), Markov
property for process {X̃t} and lemma C.1, we have

Ψ4(x) =Ex

[

1
{S1=r

N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)

Ẽ(Z1,N0,0)

[

∫ ∞

0
e−αtf̃(X̃t)dt+

+∞
∑

i=1

e−ατ̃i c̃(X̃τ̃i−, X̃τ̃i)
]]

.

Using definition (39) of JN0
and by the same argument as the third part of JN0+1, we

finally obtain

Ψ4(x) = Ex

[

1
{S1≥r

N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)JN0

(yN0+1
ǫ (x))

]

. (52)

Now, if we combine equations (48) (49), (50), (51) and (52), the expression of the cost
JN0+1 becomes

JN0+1(x) = F (x, rN0+1
ǫ (x)) + Ex

[

1
{S1<r

N0+1
ǫ (x)}

e−αS1

JN0
(Z1) + 1

{S1≥r
N0+1
ǫ (x)}

e−αr
N0+1
ǫ (x)

{

c(Φ(x, rN0+1
ǫ (x)), yN0+1

ǫ (x)) + JN0
(yN0+1

ǫ (x))
}]

.

Definition (7) of operator M and definition (5) of operator J entail

JN0+1(x) = J(MJN0
,JN0

)(x, rN0+1
ǫ (x)).

By induction hypothesis, we have: JN0
= VN0

. Then JN0+1 can be written by

JN0+1(x) =











KVN0
(x) if KVN0

(x) <

inft∈R+ J(MVN0
, VN0

)(x, t),

J(MVN0
, VN0

)(x, rN0+1
ǫ (x)) otherwise.

corresponding exactly to the definition (14) of VN0+1. Consequently we have JN0+1 =
VN0+1. �

From theorems 3.2 and 4.4, we thus infer that the family of strategies S̃N0
ǫ have cost

functions that are arbitrarily close to the value function when the parameter ǫ goes to
0. Hence, we have explicitly constructed a family of ǫ-optimal strategies for the impulse
control problem under study. In a further work, we intend to propose a computable
numerical approximation of such strategies, based on the ideas of [8].
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A Technical results about functions Vk

We first prove a result concerning the continuity of function J(MVk, Vk)(x, ·) on R
+.

Proposition A.1 For all k ∈ N and for all x ∈ E, the function J(MVk, Vk)(x, ·) is
continuous on R

+.

Proof We fix k ∈ N and x ∈ E. By definition (5) of J , we have, for all t ∈ R
+,

J(MVk, Vk)(x, t) = F (x, t) + Ex [ e
−α(t∧t∗(x))

MVk(Φ(x, t ∧ t
∗(x)))1{S1≥t∧t∗(x)}

+ e−αS1Vk(Z1)1{S1<t∧t∗(x)} ] .

To show the continuity of J(MVk, Vk)(x, ·) on R
+, we proceed by the study of the three

parts of J . The first part of J is the function F (x, .) defined by (4), which is clearly
continuous on R+. The second part of J is

Ex

[

e−α(t∧t∗(x))MVk(Φ(x, t ∧ t
∗(x)))1{S1≥t∧t∗(x)}

]

= e−α(t∧t∗(x))MVk(Φ(x, t ∧ t
∗(x)))Px(1{S1≥t∧t∗(x)})

= e−α(t∧t∗(x))MVk(Φ(x, t ∧ t
∗(x)))e−Λ(x,t∧t∗(x))

by formula (2). In the one hand, the function t 7→ e−α(t∧t∗(x))e−Λ(x,t∧t∗(x)) is continuous on
R
+ by definition (1) of Λ. In the other hand, using definition (7) of operator M , as Φ(x, ·)

is continuous on R
+ and c is continuous on E ×U, the function t 7→MVk(Φ(x, t ∧ t

∗(x)))
is continuous on R

+. Thus the second part of J is continuous on R
+.

The last part of J is continuous on R
+ by the theorem of continuity for a parameter

integral. Finally, the function t 7→ J(MVk, Vk)(x, ·) is continuous on R
+. �

The second result is related to the monotonicity of operators K and J and is useful
for the proof of theorem 3.2.

Lemma A.2 Consider β > 0 and suppose that

∀x ∈ E, Vk(x) ≤ Vk(x) ≤ Vk(x) + β. (53)

Then for any x ∈ E and for any t ∈ R
+, we have

KVk(x) ≤ KVk(x) ≤ KVk(x) + β (54)

and
J(MVk,Vk)(x, t) ≤ J(MVk, Vk)(x, t) ≤ J(MVk,Vk)(x, t) + β. (55)

Remark A.3 We have seen that for all k ∈ N, functions Vk and value functions Vk are
in LΦ(E). Then functions KVk, KVk, J(MVk,Vk) and J(MVk, Vk) exist.

Proof Those inequalities are showed using the monotonicity of the expectation. �
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B Markov property of intervention times

We now prove an important result regarding the Markov property for the intervention
times of our strategies.

Proposition B.1 Set f ∈ B(R+) and x̃ ∈ Ẽ such that x̃ = (x,N, 0), where x ∈ E and
N ∈ N. Then for all i ∈ N

∗, we have

Ẽx̃[f(τ̃i)|F̃S̃1
] =(1{S̃1<rNǫ (x)∧t∗(x)} + 1{S̃1=rNǫ (x)=t∗(x)}

+ 1{S̃1=t∗(x)6=rNǫ (x)})ẼZ̃1
[f(τ̃i + S̃1)]

+ 1{S̃1=rNǫ (x)6=t∗(x)}ẼZ̃1
[f(τ̃i−1 + rNǫ (x)].

Proof

Ẽx̃[f(τ̃i)|F̃S̃1
]

=(1{S̃1<rNǫ (x)∧t∗(x)} + 1{S̃1=rNǫ (x)=t∗(x)}

+ 1{S̃1=t∗(x)6=rNǫ (x)} + 1{S̃1=rNǫ (x)6=t∗(x)})

× Ẽx̃

[

f
(

inf
{

t ∈ R
+;

∞
∑

k=1

1{T̃k≤t}1{X̃
T̃k

∈∂Ẽ}

1{S̃k 6=t∗(π(Z̃k−1))}
= i

})∣

∣

∣
F̃S̃1

]

.

We deal with the first term of the sum in the above expectation. First, we can remark
that in all cases, as we take i 6= 0, we have always τ̃i ≥ S̃1. Then we obtain 1{T̃1≤t} = 1.
Now, we distinguish the three cases:

• If we have S̃1 < rNǫ (x)∧ t∗(x), then S̃1 6= t̃∗(x̃), thus X̃T̃1
/∈ ∂Ẽ and we can conclude

that the first term in the sum is zero.

• If we have S̃1 = rNǫ (x) = t∗(x) or S̃1 = t∗(x) 6= rNǫ (x), then S̃1 = t∗(π(Z̃0)), thus the
first term in the sum is zero.

• If we have S̃1 = rNǫ (x) 6= t∗(x), then S̃1 6= t∗(π(Z̃0)). Furthermore, we have S̃1 =
t̃∗(x̃) because we have always rNǫ (x) ≤ t∗(x). Thus X̃T̃1

∈ ∂Ẽ and we can conclude
that the first term in the sum is equal to 1.

So we have

Ẽx̃[f(τ̃i)|F̃S̃1
] = (1{S̃1<rNǫ (x)∧t∗(x)} + 1{S̃1=rNǫ (x)=t∗(x)}

+ 1{S̃1=t∗(x)6=rNǫ (x)})Ẽx̃

[

f
(

inf
{

t ∈ R
+
∣

∣

∣

∞
∑

k=2

1{T̃k≤t}

1{X̃
T̃k

∈∂Ẽ}1{S̃k 6=t∗(π(Z̃k−1))}
= i

})
∣

∣

∣
F̃S̃1

]

+ 1{S̃1=rNǫ (x)6=t∗(x)}Ẽx̃

[

f
(

inf
{

t ∈ R
+
∣

∣

∣

∞
∑

k=2

1{T̃k≤t}

1{X̃
T̃k

∈∂Ẽ}1{S̃k 6=t∗(π(Z̃k−1))}
= i− 1

})
∣

∣

∣
F̃rNǫ (x)

]

.
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Because the process {(Z̃n, S̃n)n} is a Markov chain, the Markov property gives us

Ẽx̃[f(τ̃i)|F̃S̃1
] = (1{S̃1<rNǫ (x)∧t∗(x)} + 1{S̃1=rNǫ (x)=t∗(x)}

+ 1{S̃1=t∗(x)6=rNǫ (x)})Ẽx̃

[

f
(

inf
{

t ∈ R
+
∣

∣

∣

∞
∑

k=2

1{T̃k−1≤t}

1{X̃
T̃k−1

∈∂Ẽ}1{S̃k−1 6=t∗(π(Z̃k−2))}
= i

}

+ S̃1

)]

+ 1{S̃1=rNǫ (x)6=t∗(x)}Ẽx̃

[

f
(

inf
{

t ∈ R
+
∣

∣

∣

∞
∑

k=2

1{T̃k−1≤t}

1{X̃
T̃k−1

∈∂Ẽ}1{S̃k−1 6=t∗(π(Z̃k−2))}
= i− 1

}

+ rNǫ (x)
)]

.

Changing the index in the sums and using definition (34) of intervention times, we obtain
the result. �

C Distributions of (Z̃1, S̃1) and (Z1, S1)

Finally, we compare the distributions of the first post jump location and sojourn-time for
the original PDMP and the auxiliary one.

Lemma C.1 Consider x̃ ∈ Ẽ such that x̃ = (x,N0, 0), where x ∈ E and N0 ∈ N. Let
ṽ ∈ B(Ẽ × R

+). We note:

∀x ∈ E,∀N ∈ N,∀t ∈ R
+, ṽ(x,N, 0, t) = v(x,N, t).

Then we have

Ẽx̃[ṽ(Z̃1, S̃1)]

=Ex

[

1{N0=0}v(Z1, 0, S1) + (1
{S1<t∗(x)∧r

N0
ǫ (x)}

× 1{N0 6=0} + 1
{S1=t∗(x)=r

N0
ǫ (x)}

)v(Z1, N0 − 1, S1)

+ 1
{S1≥r

N0
ǫ (x)6=t∗(x)}

v(yN0

ǫ (x), N0 − 1, rN0

ǫ (x))
]

.

Proof The distribution of variables Z̃1 and S̃1 entails

Ẽx̃[ṽ(Z̃1, S̃1)]

=

∫

Ẽ

∫ t̃∗(x̃)

0
ṽ(z̃, s̃)λ̃(Φ̃(x̃, s̃))e−Λ̃(x̃,s̃)Q̃(Φ̃(x̃, s̃), dz̃)ds̃

+

∫

Ẽ

ṽ(z̃, t̃∗(x̃))e−Λ̃(x̃,t̃∗(x̃))Q̃(Φ̃(x̃, t̃∗(x̃)), dz̃).

By construction of the process {X̃}, the random variable Z̃1 can be written almost surely
by: Z̃1 = (Z, (N0 − 1)∧ 0, 0), where Z is a random variable on E. Using definition (30) of
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t̃∗, (29) of Φ̃, (31) of λ̃, (32) of Λ̃ and (33) of Q̃, we obtain

Ẽx̃[ṽ(Z̃1, S̃1)] =

∫

E

∫ t∗(x)∧r
N0
ǫ (x)

0
v(z, (N0 − 1) ∧ 0, s)

λ(Φ(x, s))e−Λ(x,s)Q(Φ(x, s), dz)ds

+ 1
{r

N0
ǫ (x)≥t∗(x)}

e−Λ(x,t∗(x))

∫

E

v(z, (N0 − 1) ∧ 0, t∗(x))Q(Φ(x, t∗(x)), dz)

+ 1
{r

N0
ǫ (x)<t∗(x)}

e−Λ(x,r
N0
ǫ (x))

v(yN0

ǫ (x), N0 − 1, rN0

ǫ (x)).

Formula (2) for t = rN0
ǫ and the continuity of the law of S1 on [0; t∗(x)) give us

e−Λ(x,r
N0
ǫ (x))

1
{r

N0
ǫ (x)<t∗(x)}

= Px(S1 ≥ rN0

ǫ (x) 6= t∗(x)).

Furthermore, the law of S1 is such that e−Λ(x,t∗(x)) = Px(S1 = t∗(x)). Hence

Ẽx̃[ṽ(Z̃1, S̃1)]

=Ex

[

1
{S1<t∗(x)∧r

N0
ǫ (x)}

v(Z1, (N0 − 1) ∧ 0, S1)

+ 1
{r

N0
ǫ (x)≥t∗(x)}

1{S1=t∗(x)}v(Z1, (N0 − 1) ∧ 0, S1)

+ 1
{S1≥r

N0
ǫ (x)6=t∗(x)}

v(yN0

ǫ (x), N0 − 1, rN0

ǫ (x))
]

.

By definition (13) of rN0
ǫ , we always have rN0

ǫ (x) ≤ t∗(x) for N0 ≥ 1 and for N0 = 0,
we decided that rN0

ǫ (x) = +∞ in section 4.1 . Furthermore, t∗(x) < +∞ because we
supposed that t∗ is bounded (assumption 2.2).Thus we have the equality 1

{r
N0
ǫ (x)≥t∗(x)}

=

1
{r

N0
ǫ (x)=t∗(x)}

+ 1{N0=0}. The consequence in the expectation is

Ẽx̃[ṽ(Z̃1, S̃1)]

=Ex

[

1
{S1<t∗(x)∧r

N0
ǫ (x)}

v(Z1, (N0 − 1) ∧ 0, S1)

+ 1
{S1=t∗(x)=r

N0
ǫ (x)}

v(Z1, N0 − 1, S1)

+ 1{N0=0}1{S1=t∗(x)}v(Z1, 0, S1)

+ 1
{S1≥r

N0
ǫ (x)6=t∗(x)}

v(yN0

ǫ (x), N0 − 1, rN0

ǫ (x))
]

=Ex

[

1{N0=0}v(Z1, 0, S1)

+ 1
{S1<t∗(x)∧r

N0
ǫ (x)}

1{N0 6=0}v(Z1, N0 − 1, S1)

+ 1
{S1=t∗(x)=r

N0
ǫ (x)}

v(Z1, N0 − 1, S1)

+ 1
{S1≥r

N0
ǫ (x)6=t∗(x)}

v(yN0

ǫ (x), N0 − 1, rN0

ǫ (x))
]

,

which corresponds to the result. �
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