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Abstract

The optimal switching problem is attracting plenty of attention. This problem can be considered as a special type of discrete
optimization problem and is NP complete. In this paper, a class of optimal switching problem involving a family of linear
subsystems and a quadratic cost functional is considered in discrete time, where only one subsystem is active at each time
point. By deriving a precise lower bound expression and applying the branch and bound method, a computational method
is developed for solving this discrete optimization problem. Numerical examples have been implemented to demonstrate the
efficiency and effectiveness of the proposed method.
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1 Introduction

Switched system is an important class of hybrid systems.
It is usually composed of multiple governed subsystems
and a switching law among them. There are many real
world applications of this system, such as automotive
systems, electrical circuit systems, aircraft and traffic
control, and so on.

In finding the optimal switching law for a switched sys-
tem, the switching sequence can be sought such that a
given cost functional is minimized. The characteristics
of the optimal law has been studied. For example, Suss-
mann [1] presented a maximum principle for hybrid op-
timal control problems. For a pre-specified sequence of
active subsystems, Shaikh [2] proposed a class of general
hybrid maximum principle. Some stability results can be
found in [3,4].

In the literature, when the sequence of the deployed sys-
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tem is planned in advance, there are many computa-
tional results proposed to optimize on the time when the
system switches. For example, in [5–8], the control prob-
lem was formulated as determining the optimal switch-
ing times so as to minimize a quadratic objective func-
tional. Then the optimal switching times are sought via
the derivatives of the objective functional with respect
to the switching times. Furthermore, to seek both opti-
mal switching times and optimal continuous inputs, Xu
and Antsaklis [9] presented an optimal control frame-
work of the switched system based on a two-stage opti-
mization. In [10], the control parameterization enhanc-
ing transform (CPET)[11–13] is applied to find the op-
timal switching times. In [14], a neighboring extremal
solution is considered for a class of optimal switched im-
pulsive control problems with perturbations, where the
switching sequence is pre-specified. In this way, the prob-
lem of determining the optimal switching times for a
given sequence of active subsystems can be transformed
into a nonlinear programming problem which can be
solved by existing gradient based techniques.

However, different from the switching time optimization
which is essential continuous, the determination of the
optimal switching sequence of the deployed system is
combinatorial in nature. Because it is a discrete opti-
mization problem, the search for all possible switching
sequences could have an exponential complexity. In or-
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der to obtain the optimal switching sequence efficiently,
Bengea and DeCarlo explored the optimal control prob-
lem of a two-switched system in [15], where the switched
system was embedded into a larger family of systems.
In [16], the ineffectiveness of the above method due
to a possible infinite-loop procedure at each step was
shown and the algorithm was improved by using other
optimization techniques. At the same time, Wardi and
Egerstedt proposed an adaptive-precision algorithm
in [17] which is based on simultaneous swapping of
subsystems at uncountable time-sets whose Lebesgue
measures are determined by the Armijio step size to
solve the above problem. The similar problem is also
considered in [18], where an optimal switching sequence
is designed for jump linear systems with given Gaus-
sian initial state uncertainty. Gradient-based methods
can also be found in [19,20] for solving discrete-valued
optimal control problem, where an equivalent penalty
problem was constructed to solve the optimal control
problem with piecewise constant controls and fixed
switching times. Some stochastic methods such as evo-
lutionary algorithms and simulated annealing algorithm
were also developed in [21–23].

Although the continuous system is popular in practice, it
should be discretized into discrete system to find the nu-
merical solution. For example, Murphey et al. [24] con-
sidered the discretized hybrid dynamical systems, and
proposed an optimization method to determine the opti-
mal switching time. A linear-quadratic control problem
for discrete time switched systems with uncertain sub-
systems is considered in [25] and the analytical solution
is derived. However, the optimal switching problem of
discrete switched system is NP-complete, and there is no
literature which can consider the global solution of this
problem now, even in its simple case. For this, we con-
sider the discrete system case, where the switched sub-
systems are linear and the cost functional is quadratic.
We aim to propose an efficient method to find the global
solution of this problem.

The rest of the paper is organized as follows. In Sec-
tion 2, the optimal switching problem of switched sys-
tems in discrete time is formulated, where the subsys-
tems are linear and the cost functional is quadratic. In
Section 3, we analyze the positive semi-definite property
and construct a lower bound dynamic system, which is
used to compute the lower bound. Then, a branch and
bound method is proposed to solve this problem in Sec-
tion 4. For illustration, two numerical examples are im-
plemented in Section 5 to demonstrate the efficiency of
the method.

2 Problem Formulation

For a discrete time switched problem with N subsys-
tems, we consider a dynamic system governed by the

following family of linear difference equations

x(t+ 1) = Ai(t)x(t), t ∈ I, i = 1, 2, . . . , N,

with initial condition

x(0) = x0,

where I = {0, 1, · · · , T − 1}. For each t ∈ I, Ai(t) ∈
R

n×n, i = 1, 2, · · · , N . The state x(t) and initial state
x0 are n-dimensional column vectors.

A switching sequence is denoted by a function u : I →
Λ = {1, 2, ..., N}. In particular, u(t) = i means that the
i-th subsystem is active at time t. Let U be the set of all
such switching sequences.

We formulate a discrete-time optimal switching problem
as follows:

Problem 1. Find a switching sequence u ∈ U such that

J(u) =

T
∑

t=1

xᵀ(t)Q(t)x(t)

is minimized, subject to the linear dynamic constraint:

x(t+ 1) = Au(t)(t)x(t), t ∈ I,

x(0) = x0,

where, for each t ∈ I, Q(t+1) is an n×n positive semi-
definite matrix, Ai(t) ∈ R

n×n, i ∈ Λ. The initial state
x0 is a given n-dimensional column vector.

Remark 1. If the linear dynamic constraint in Problem
1 is given by

x(t+ 1) = Ai(t)x(t) + bi(t), i ∈ Λ, (1)

where for each t ∈ I and i ∈ Λ, Ai(t) ∈ R
n×n, bi(t) ∈

R
n, we can solve the problem similar to Problem 1 through

a suitable transformation. For this, we introduce some
new symbols as follows:

Ãi(t) =

[

Ai(t) bi(t)

01×n 1

]

∈ R
(n+1)×(n+1),

Q̃(t) =

[

Q(t) 0n×1

01×n 0

]

∈ R
(n+1)×(n+1),

y(t) =

[

x(t)

1

]

∈ R
(n+1).

Then, the optimal switching problem with linear dynamic
constraint (1) is equivalent to a new problem which is of
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the form Problem 1, where the cost functional is given by

J(u) =

T
∑

t=1

yᵀ(t)Q̃(t)y(t),

and the dynamic constraint becomes

y(t + 1) = Ãu(t)(t)y(t), t ∈ I,

yᵀ(0) =
[

x0 1
]ᵀ

.

Remark 2. If the cost functional in Problem 1 becomes

J(u) =

T
∑

t=1

(xᵀ(t)Q(t)x(t) + rᵀ(t)x(t) + s(t)), (2)

where for each t ∈ I, Q(t+ 1) ∈ R
n×n is positive semi-

definite, r(t + 1) ∈ R
n×1 is a column vector function,

s(t + 1) ∈ R is a function. This problem can also be
transformed into a new problem which is of the form
Problem 1 by introducing some new symbols as follows:

Q̂(t) =

[

Q(t) 1
2r(t)

1
2r

ᵀ(t) w(t)

]

∈ R
(n+1)×(n+1),

Âi(t) =

[

Ai(t) 0n×1

01×n 1

]

∈ R
(n+1)×(n+1),

y(t) =

[

x(t)

1

]

∈ R
(n+1),

where w(t) is any positive function such that Q̂(t) is
positive semi-definite. Then, the cost functional becomes

J̃(u) =

T
∑

t=1

(xᵀ(t)Q(t)x(t) + rᵀ(t)x(t) + s(t))

=

T
∑

t=1

yᵀ(t)Q̂(t)y(t) +

T
∑

t=1

(s(t)− w(t)) .

Note that
T
∑

t=1
(s(t) − w(t)) is a constant. The cost func-

tional is equivalent to

Ĵ(u) =

T
∑

t=1

yᵀ(t)Q̂(t)y(t). (3)

The dynamic constraint becomes

y(t + 1) = Âu(t)(t)y(t), t ∈ I,

yᵀ(0) =
[

x0 1
]ᵀ

.

Since U is a finite set, the existence of optimal solutions
for Problem 1 is obvious. Completing enumeration of all
switching sequences is feasible when the numbers of time
points and subsystems are small. However, the number of
switching sequences will grow exponentially with respect
to the number of switching time points. Thus, efficient
method should be developed to solve this problem.

3 Lower bound analysis

Note that this problem is discrete and NP-complete.
There are very few methods which can solve the discrete
optimization problem efficiently. Branch and bound
method has been a popular technique for discrete op-
timization and is one of the efficient methods. To im-
plement this method, we have to compute a precise
lower bound at first for any current switching sequence
(u(1), u(2), . . . , u(t)).

3.1 Upper bound of positive semi-definite matrix

Before constructing an efficient lower bound expression,
we need to analyze some properties of the positive semi-
definite matrix. First, we have the definition below.

Definition 1. Given two real symmetric matrices P1

and P2 with the same dimension, if P1−P2 is a positive
semi-definite matrix, that is P1 − P2 ≥ 0, then we call
that P1 greater than or equal to P2, which is denoted by
P1 ≥ P2.

For any switching sequence u, denote an n × n matrix
function by

Pu(t) = Aᵀ

u(0)(t) · · ·A
ᵀ

u(t)(t)Q(t+ 1)Au(t)(t) · · ·Au(0)(t).

Then, it follows by Definition 1 that we have

Lemma 1. Consider Problem 1. Suppose that there are
two switching sequences u1 and u2 such that

Pu1
(t) ≤ Pu2

(t), t ∈ I.

Then, we have
J(u1) ≤ J(u2).

Proof. Since Pu1
(t) ≤ Pu2

(t), ∀t ∈ I, we have
Pu1

(t)−Pu2
(t) ≤ 0, that is,Pu2

(t)−Pu1
(t) is a positive

semi-definite matrix function. Then, for any nonzero n -
dimensional vector x, we have xᵀ[Pu2

(t)−Pu1
(t)]x ≥ 0,

that is xᵀPu2
(t)x ≥ xᵀPu1

(t)x, t ∈ I. It is clear

to see that J(u) =
∑T−1

t=0 xᵀ(0)Pu(t)x(0). Therefore,
J(u1) ≤ J(u2).

To compute a lower bound for a switching sequence, it
follows from Lemma 1 that we need to construct a lower
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bound dynamic system Ψ(t) such that for each t ∈ I1,

Ψ(t) ≤ Pu(t), ∀u ∈ U. (4)

Next, the property of the positive definite matrix can be
used to obtain a lower bound Ψ(t). Note that the choice
of Ψ(t) is not unique.

Lemma 2. Suppose that A and B are n-dimensional
positive definite matrices, then A > B is equivalent to
ρ(BA−1) < 1, where ρ(A) is the spectral radius of A.

Proof. SinceA andB are positive definite matrices with
the same dimension, the matrices A and B can be di-
agonalized at the same time. Hence, we can find a non-
singular matrix C, such that

A = CICᵀ, B = CDCᵀ,

where I is the identitymatrix andD = diag(d1, d2, . . . , dn).
Hence, A > B if and only if C(I −D)Cᵀ > 0, that is,
0 < di < 1, i = 1, 2, . . . , n. However, note that

BA−1 = CDCᵀ(Cᵀ)−1IC−1 = CDC−1,

then the eigenvalue of BA−1 happens to be di, i =
1, 2, . . . , n. That is, ρ(BA−1) < 1. Thus,A > B is equiv-
alent to ρ(BA−1) < 1.

This completes the proof.

Lemma 3. Suppose that A and B are positive definite
matrices with the same dimension, then A > B if and
only if B−1 > A−1.

Proof. It follows by Lemma 2 that A > B if and only
if ρ(BA−1) < 1. Since A−1B and BA−1 have the same
eigenvalues, we have ρ(BA−1) = ρ(A−1B). Then, we
have ρ(A−1B) < 1, and A > B if and only if B−1 >
A−1.

We can compute a lower bound for any current switching
sequence in Problem 1, based on the theorem below.

Theorem 1. Suppose that there is an n× n symmetric
matrix M. If a matrix Ψ is constructed by

Ψ =















n
∑

j=1

|M1j | · · · 0

...
. . .

...

0 · · ·
n
∑

j=1

|Mnj|















, (5)

then, we have M ≤ Ψ.

Proof. We prove that Ψ−M is a positive semi-definite
matrix.

Denote a matrix P by

P =Ψ−M

=















n
∑

j=1

|M1j | −M11 · · · −M1n

...
. . .

...

−Mn1 · · ·
n
∑

j=1

|Mnj | −Mnn















.

Obviously, P is also an n× n symmetry matrix, and

n
∑

j=1

|Pij | =

n
∑

j=1,j 6=i

|Mij |+

∣

∣

∣

∣

∣

∣

n
∑

j=1

|Mij | −Mii

∣

∣

∣

∣

∣

∣

,

∀i = 1, 2, . . . , n.

For this matrix P, we have

n
∑

j=1

|Pij | ≤ 2Pii, ∀i = 1, 2, . . . , n. (6)

This is because for any i, there are two cases Mii ≥ 0
and Mii < 0. If Mii ≥ 0, we have

n
∑

j=1

|Pij | = 2

n
∑

j=1,j 6=i

|Mij | = 2Pii, ∀i = 1, 2, . . . , n.

If Mii < 0, we have

n
∑

j=1

|Pij | = 2

n
∑

j=1

|Mij | < 2Pii, ∀i = 1, 2, . . . , n.

Next, we prove that the symmetric matrix P which sat-
isfies condition (6) is a positive semi-definite matrix by
mathematical induction.

For the case n = 1, it follows from (6) that P = P11 ≥ 0
is a positive number, then P is a positive semi-definite
matrix obviously.

Suppose that any symmetric matrix which satisfies the
condition (6) is a positive semi-definite matrix if its di-
mension is n = k. We point out that the symmetric ma-
trix P which satisfies the condition (6) is also a positive
semi-definite matrix if its dimension is n = k + 1.

According to the condition (6), we have Pii ≥ 0, ∀i =
1, . . . , k+1. If Pii = 0, ∀i = 1, . . . , k+1, then P is a zero
matrix, which is a positive semi-definite. Suppose that
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there exists an i ∈ {1, 2, . . . , k + 1}, such that Pii > 0.
Without loss of generality, let P11 > 0, we have

[

1 0

− S

P11

Ik

][

P11 Sᵀ

S Q

][

1 − S
ᵀ

P11

0 Ik

]

=

[

P11 0

0 Q− SS
ᵀ

P11

]

,

where
S = (P21, P31, . . . , Pk+1,1)

ᵀ,

Q =











P22 . . . P2,k+1

...
. . .

...

Pk+1,2 . . . Pk+1,k+1











.

Then, it follows from the condition (6) that for each
i = 1, 2, . . . , k, we have

(

Q−
SSᵀ

P11

)

ii

=
1

P11
(P11Pi+1,i+1 − P 2

i+1,1)

≥
1

P11
(|Pi+1,1|

2 − P 2
i+1,1) ≥ 0.

Hence, we have

2

(

Q−
SSᵀ

P11

)

ii

−

k
∑

j=1

∣

∣

∣

∣

∣

(

Q−
SSᵀ

P11

)

ij

∣

∣

∣

∣

∣

=2

(

Pi+1,i+1 −
P 2
i+1,1

P11

)

−

k
∑

j=1

∣

∣

∣

∣

Pi+1,j+1 −
Pi+1,1Pj+1,1

P11

∣

∣

∣

∣

=Pi+1,i+1 −
P 2
i+1,1

P11
−

k
∑

j=1,j 6=i

∣

∣

∣

∣

Pi+1,j+1 −
Pi+1,1Pj+1,1

P11

∣

∣

∣

∣

≥Pi+1,i+1 −

k
∑

j=1,j 6=i

|Pi+1,j+1| − |Pi+1,1|

k
∑

j=1

|Pj+1,1|

P11

≥Pi+1,i+1 − |Pi+1,1| −
k+1
∑

j=2,j 6=i+1

|Pi+1,j |

=Pi+1,i+1 −

k
∑

j=1,j 6=i+1

|Pi+1,j | ≥ 0.

That is, for each i = 1, 2, . . . , k,

2

(

Q−
SSᵀ

P11

)

ii

≥

k
∑

j=1

∣

∣

∣

∣

∣

(

Q−
SSᵀ

P11

)

ij

∣

∣

∣

∣

∣

.

So, Q − SS
ᵀ

P11

is a positive semi-definite matrix. There-

fore,

[

P11 0

0 Q− SS
ᵀ

P11

]

is a positive semi-definite matrix.

Then,

[

P11 Sᵀ

S Q

]

is a positive semi-definite matrix with

the dimension k + 1. It follows from mathematical in-
duction that P is a positive semi-definite matrix, that
is, Ψ ≥ M.

This completes the proof.

3.2 Lower bound expression

In this section, we derive the lower bound expression. For
a given switching sequence u, if u(0), u(1), . . . , u(j − 1)
are chosen and u(j), u(1), . . . , u(T − 1) are not deter-
mined, we should compute the lower bound to decide
whether u(j), u(1), . . . , u(T − 1) should be chosen or
eliminated. For this, we will construct a positive definite
matrix Ψ(t), such that ∀i1, i2, . . . , it−j ∈ {1, 2, . . . , N},

Ψ(t) ≤Aᵀ

i1
(j + 1)Aᵀ

i2
(j + 2) · · ·Aᵀ

it−j
(t)Q(t+ 1)·

·Ait−j
(t) · · ·Ai2 (j + 2)Ai1(j + 1), (7)

where t = j + 1, j + 2, . . . , T − 1.

We rewrite the cost functional as

j
∑

t=1

xᵀ(t)Q(t)x(t) +
T
∑

t=j+1

xᵀ(t)Q(t)x(t).

The first term is fixed and the second term is not fixed.
Hence, we need to find the lower bound of the second
term. For this, we first find the lower bound of xᵀ(j +
1)Q(j + 1)x(j + 1). Note that the vector x(j) is fixed,
we have

xᵀ(j + 1)Q(j + 1)x(j + 1)

=xᵀ(j)Aᵀ

u(j)(j)Q(j + 1)Au(j)(j)x(j).

Since u(j) can be any value in {1, 2, . . . , N}, suppose
that we find a matrix Ψ1(j + 1) such that

Ψ1(j + 1) ≤ Aᵀ

k(j)Q(j + 1)Ak(j), ∀k = 1, . . . , N. (8)

Then, a lower bound of the termxᵀ(j+1)Q(j+1)x(j+1)
is given by xᵀ(j)Ψ1(j + 1)x(j).

Next, we consider the lower bound of the term xᵀ(j +
2)Q(j + 2)x(j + 2). Note that

xᵀ(j + 2)Q(j + 2)x(j + 2)

=xᵀ(j)Aᵀ

u(j)(j)A
ᵀ

u(j+1)(j + 1)Q(j + 2)

·Au(j+1)(j + 1)Au(j)(j)x(j).

Suppose that we can find a matrix Ψ2(j + 2) such that

Ψ2(j + 2) ≤ Aᵀ

k(j)A
ᵀ

l (j + 1)Q(j + 2)Ak(j + 1)Ak(j),

∀k, l = 1, 2, . . . , N. (9)
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Then, a lower bound of the term xᵀ(j+2)Q(j+2)x(j+2)
is given by xᵀ(j)Ψ2(j + 2)x(j).

Similarly, for the term xᵀ(j+i)Q(j+i)x(j+i), its lower
bound is given by xᵀ(j)Ψi(j + i)x(j), where the matrix
Ψi(j + i) satisfies

Ψi(j + i) ≤Aᵀ

k1
(j)Aᵀ

k2
(j + 1) · · ·Aᵀ

ki
(j + i− 1)Q(j + i)

·Aki
(j + i− 1) · · ·Ak2

(j + 1)Ak1
(j),

∀k1, . . . , ki = 1, 2, . . . , N. (10)

Combining (8), (9) and (10), the lower bound of the term
T
∑

t=j+1

xᵀ(t)Q(t)x(t) is given by

xᵀ(j)





T
∑

t=j+1

Ψt−j(t)



x(j).

Then, we need to find the expression of Ψi(j+ i), where
the conditions (8), (9) and (10) should be satisfied. For
this, we first find the expression of Ψ1(t). Note that (8)
is equivalent to

Ψ−1
1 (t) ≥ (Aᵀ

k(t− 1)Q(t)Ak(t− 1))
−1

, ∀k = 1, . . . , N.

However, the matrixAᵀ

k(t−1)Q(t)Ak(t−1) can be pos-
itive semi-definite and is not invertible. Then, the equa-
tion above does not hold. For this, we add a sufficiently
small matrix such that this matrix is positive definite
and rewrite (8) as

Ψ1(t) + εI ≤ Aᵀ

k(t− 1)Q(t)Ak(t− 1) + εI,

where ε > 0 is a small number. Then, we have

(Ψ1(t) + εI)−1 ≥ (Aᵀ

k(t− 1)Q(t)Ak(t− 1) + εI)
−1

,

Let ε > 0 approaches to zero, it follows from Lemma 3
that for any k = 1, 2, . . . , N , we have

Ψ1(t) = lim
ε→0+

Ψ1(t) + εI = lim
ε→0+

((Ψ1(t) + εI)−1)−1

≤ lim
ε→0+

(

(Aᵀ

k(t− 1)Q(t)Ak(t− 1) + εI)
−1
)−1

.

Hence, it follows from Theorem 1 that the matrix Ψ1(t)
can be chosen as a diagonal matrix by

Ψ1(t) =











max
k

φk1 · · · 0

...
. . .

...

0 · · · max
k

φkn











−1

,

where φkl =
n
∑

j=1

|Φlj |, and for each k, Φk is given by

Φk = (Aᵀ

k(t− 1)Q(t)Ak(t− 1) + εI)
−1

,

where ε > 0 is a sufficiently small number.

Next, we consider the choice of Ψ2(t). It will be compli-
cated if we derive it directly from (9). To simplify the
computation of Ψ2(t), the equation (9) can be derived
by the equation below.

Ψ2(t) ≤ Aᵀ

k(t− 2)Ψ1(t)Ak(t− 2), ∀k = 1, 2, . . . , N.

Similarly, the general case (10) can be derived from the
equation below.

Ψi(t) ≤ Aᵀ

k(t− i)Ψi−1(t)Ak(t− i), ∀k = 1, 2, . . . , N.

Hence, we can choose the matrices Ψi(t) by Algorithm
1.

Algorithm 1 (Calculating the matrix Ψi(t))

(1) Choose a sufficiently small number ε > 0.
(2) For each k, calculate Φk by

{

(Aᵀ

k(t− 1)Q(t)Ak(t− 1) + εI)
−1

, if i = 1,

(Aᵀ

k(t− i)Ψi−1(t)Ak(t− i) + εI)
−1

, if i > 1.

(3) Let φkl =
n
∑

j=1

|Φlj |.

(4) Choose the matrix as

Ψi(t) =











max
k

φk1 · · · 0

...
. . .

...

0 · · · max
k

φkn











−1

.

For a given current switching sequence u(0), . . . , u(j −
1), we need to compute all the values Ψi(t), t = j +
1, . . . , T, i = 1, . . . , t − j. For this, the procedure above
start from i = 1 to T . Then, a lower bound can be
computed as

L(u(0), u(1), . . . , u(j − 1))

=

j
∑

t=1

xᵀ(t)Q(t)x(t) +

T
∑

t=j+1

xᵀ(j)Ψt−j(t)x(j). (11)

Let

Θj(t) =

{

Ψt−j(t), if t = j + 1,

Ψt−j(t)(Ψt−1−j(t− 1))−1, if t > j + 1.
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Obviously, Θj(t), ∀t > j are diagonal matrices. Then,
for a given switching sequence u(0), u(1), . . . , u(j− 1), a
lower bound dynamic system is given by

y(t+ 1) =

{

Au(t)(t)y(t), if t ≤ j − 1,

(Θj(t))
1/2y(t), if t ≥ j,

with initial condition

y(0) = x0.

For this system, it can be seen that if t ≤ j, we have

y(t) = x(t), t ≤ j.

If t = j + 1, we have

yᵀ(t)y(t)

=yᵀ(t− 1)(Θj(t− 1))1/2(Θj(t− 1))1/2y(t − 1)

=yᵀ(t− 1)(Ψt−2−j(t− 2))−1Ψt−1−j(t− 1)y(t − 1)

=yᵀ(j)Ψ1(j + 1) · (Ψ1(j + 1))−1Ψ2(j + 2) · · ·

· · · (Ψt−1−j(t− 1))−1Ψt−j(t)y(j).

If t > j + 1, we have

yᵀ(t)y(t)

=yᵀ(t− 1)(Θj(t− 1))1/2(Θj(t− 1))1/2y(t − 1)

=yᵀ(t− 1)(Ψt−2−j(t− 2))−1Ψt−1−j(t− 1)y(t − 1)

=yᵀ(j)Ψ1(j + 1) · (Ψ1(j + 1))−1Ψ2(j + 2) · · ·

· · · (Ψt−1−j(t− 1))−1Ψt−j(t)y(j).

The lower bound (11) is rewritten as

L(u(0), u(1), . . . , u(j − 1))

=

j
∑

t=1

yᵀ(t)Q(t)y(t)+

T
∑

t=j+1

yᵀ(j)Ψ1(j + 1) · (Ψ1(j + 1))−1Ψ2(j + 2) · · ·

· · · (Ψt−1−j(t− 1))−1Ψt−j(t)y(j)

=

j
∑

t=1

yᵀ(t)Q(t)y(t) +

T
∑

t=j+1

yᵀ(t)y(t). (12)

4 Branch and bound method

A switching sequence of a switched system is denoted by

u = {u(0), u(1), . . . , u(T − 1)},

where u(t) ∈ {1, 2, . . . , N}, ∀t ∈ I. In general, enumera-
tion of all switching sequences is very expensive. Suppose
that the number of the switching time points is T , we
have to search for all possible switching sequences whose
number is NT . To obtain the global optimal solution, it
is necessary to reduce the search region to improve the
computational complexity.

With the lower bound computed by the lower bound dy-
namic system, we propose a branch and bound algorithm
to solve Problem 1.

First, we introduce the current switching sequence as

u = (u(0), u(1), . . . , u(t)), t < T − 1.

That is, a current switching sequence is that part of the
switching sequence {u(0), u(1), . . . , u(t)} have been cho-
sen, and others {u(t + 1), . . . , u(T − 1)} are not deter-
mined.

To search all the switching sequences, we choose the
depth first tree search. The subsystem u(t) is chosen
from t = 0 to T − 1. If u(t) is chosen at the current time
t = j, j ≤ T − 1, then the current switching sequence is
{u(0), u(1), . . . , u(j − 1)}. Next, we compute the lower
bounds L(u(0), . . . , u(j − 1), v), v = 1, 2, . . . , N , and ar-
range these N lower bounds by ascending rule, that is,

L(u(0), . . . , u(j − 1), vj(k)) ≤

L(u(0), . . . , u(j − 1), vj(k + 1)), k = 1, . . . , N − 1.

There are two cases for the lower bounds. The first case
is that L(u(0), . . . , u(j−1), vj(k)) ≤ J∗, where J∗ is the
optimal value. It means that some switching sequence
(u(0), . . . , u(j − 1), vj(k), ∗, . . . , ∗) may be better than
or equals to the optimal solution, where ∗ denotes some
subsystem. Hence, the tree should be branched to find a
possible better solution, that is, we choose u(j) = vj(k)
and set the current time as the next time point t = j+1.

The second case is that L(u(0), . . . , u(j − 1), vj(k)) >
J∗. Then, all the switching sequences (u(0), . . . , u(j −
1), vj(k), ∗, . . . , ∗) can be eliminated, where ∗ denotes
any one subsystem. Hence, the tree is not necessary to
branch further and can be pruned. Furthermore, it fol-
lows from the ascending rule that we have

L(u(0), . . . , u(j − 1), vj(l))

≥L(u(0), . . . , u(j − 1), vj(k)) > J∗, ∀l > k. (13)

Hence, we can eliminate all the switching sequences
(u(0), . . . , u(j − 1), vj(l), ∗, . . . , ∗), where ∗ denotes any
one subsystem. Then, we have finished the search of u(j)
at time j, and the current time goes back and becomes
t = j − 1. We choose u(j − 2) as another subsystem to
continue the search.
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However, the optimal value is not known in advance
during the tree search. For this, we replace the opti-
mal value with a current optimal value Jmin, which
is an upper bound of J∗. Then, the two cases above
are replaced by L(u(0), . . . , u(j − 1), vj(k)) ≤ Jmin and
L(u(0), . . . , u(j − 1), vj(k)) > Jmin, which can be de-
picted in Figure 1 and 2.

Fig. 1. Branch the tree
when the lower bound is
less than or equals to the
current optimal value.

Fig. 2. Prune the tree
when the lower bound is
greater than the current
optimal value.

A current optimal value Jmin can be obtained by com-
puting the cost functional value of a feasible switching se-
quence, since Jmin ≥ J∗. If t = T−1, (u(0), . . . , u(T−1))
is no more a current switching sequence. It becomes
a complete switching sequence. Then, the cost func-
tional value J(u(0), . . . , u(T − 1)) can be computed
and compared with the current optimal value Jmin. If
J(u(0), . . . , u(T − 1)) < Jmin, then the current optimal
value is updated as Jmin = J(u(0), . . . , u(T − 1)), and
the corresponding current solution is stored. Detail of
updating Jmin can also be depicted in Figure 3.

Fig. 3. Update the current optimal value when t = T − 1.

If all the subsystems at time 0 have been chosen as u(0),
then all the switching sequences have been searched or
branched. The current time goes back and becomes −1,
and the search is finished.

Thus, we summarize the method as Algorithm 2.

Note that the initial value of Jmin is +∞, the lower
bounds at the beginning are less than Jmin, until the
first switching sequence is obtained. Hence, every up-
dated values of Jmin correspond to at least one switching
sequence.

It follows by Algorithm 2 that all the feasible solutions
which are not computed are eliminated in Step 2(d). For

Algorithm 2 (Branch and bound method)

Step 1(Initialization) Initialize the parameters T , N ,
x0. Set Jmin = +∞ and the current time as t = 0.
Step 2 (Branch and bound search)
If t = −1, goes to Step 3. Else goes to Phase t.
Phase t:
(a) (Compute the lower bound and sort)
If t < T−1, compute L(u(0), . . . , u(t−1), i), i = 1 . . . , N
and arrange vt(1), . . ., vt(N) according to the ascending
rule. Set kt = 1 for Phase t.
(b) (Compute the cost functional value and update)
If t = T − 1, compute J(u(0), . . . , u(T − 1), i), i =
1 . . . , N . If J(u(0), . . . , u(T − 2), kT−1) ≤ Jmin, then set
Jmin to this value and store all the current optimal solu-
tions. Goes back to Phase t− 1 with current time t− 1.
(c) (Choose the value of u(t))
If kt ≤ N , then choose u(t) = vt(kt). Else goes back to
Phase t− 1 with current time t− 1.
(d) (Condition for further branching)
If L(u(0), . . . , u(t)) > Jmin, then break Loop t and goes
back to Phase t− 1 with current time t− 1. Else goes to
Phase t+ 1 with current time t+ 1.
Step 3 (Output and stop)
Output all the optimal switching sequences u and the
optimal cost functional value J∗ = Jmin, then stop.

any switching sequence u which is eliminated in Step
2(d) at current time t, we have

J(u) ≥ L(u(0), . . . , u(t)) > Jmin ≥ J∗.

Then, the switching sequence u which is eliminated in
Step 2(d) can not be the global optimal solution. Hence,
the global optimal solution u∗ can be achieved.

5 Illustrative Example

In this section, the proposed method was implemented
in Matlab 2012a. The computations were run on a note-
book with the windows system, having a CPU speed of
2.50GHz and equipped with 4G of RAM.
Example 1.

We consider the optimal switching problem withN = 10
subsystems, where the parameters Ai, i = 1, . . . , 10 are









1 0 1

0 0 0

1 0 1









,









0 1 0

1 0 1

0 1 0









,









1 0 0

0 1 0

0 0 1









,









0 0 1

0 1 0

1 0 0









,









1 1 1

0 0 0

0 0 0









,









1 0 0

1 0 0

1 0 0









,









0 0 0

0 0 0

1 1 1









,









0 0 1

0 0 1

0 0 1









,









1 0 0

1 1 0

1 1 1









,









1 1 1

0 1 1

0 0 1









.
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The other parameters are given by

x0 =









2

1

3









, Q(t) =









2 0 1

0 1 0.5

1 0.5 3









.

First, we set the terminal time as T = 5 such that the
branch and bound method can compare with the com-
plete enumeration method. For the complete enumera-
tion method, it is required to search 105 feasible solu-
tions and the running time is about 24.37 seconds. The
distribution of cost functional values for all feasible so-
lutions can be found in Table 1. Note that most of the
values are greater than 100, while the optimal cost func-
tional value is obtained as 64. There are twenty global
optimal solutions, which are listed as follow:

(2, 6, 5, 8, k), (2, 8, 5, 8, k), ∀k ∈ {1, . . . , 10}.

Next, we apply the branch and bound method to solve
this problem. We only search 600 feasible solutions and
the running time is about 1.30 seconds. The cost func-
tional values of these 600 feasible solutions are depicted
in Figure 4. The branch and bound method only search
the feasible solutions with the corresponding values a bit
larger than the current optimal value. Hence, most of
the insignificant switching sequences have been ignored
and the branch and bound method is very efficient. The
optimal value and corresponding optimal switching se-
quences are the same as above.

Table 1
The distribution of cost functional values for all switching
sequences in the first example, where the first row: range of
cost values, and the second row: number of solutions.

[64, 102] (102, 103] (103, 104] (104, 105] (105,+∞)

1674 40778 52793 4749 6
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Fig. 4. The cost functional values of 600 feasible solutions
and the current optimal values when the branch and bound
method is applied in the first example.

Example 2.

We consider the optimal switching problem with N = 6
subsystems, where the parametersAi(t), i = 1, . . . , 6 are









a(t) 1 b(t)

0 0 0

0 0 0









,









a(t) 1 0

0 0 b(t)

0 0 0









,









a(t) 0 0

0 1 0

0 0 b(t)









,









a(t) 0 0

0 0 0

0 1 b(t)









,









0 0 0

a(t) 1 b(t)

0 0 0









,









0 0 0

a(t) 1 0

0 0 b(t)









,

where a(t) = 1 + sin t and b(t) = 1 + cos t. The other
parameters are given by

x0 =









2

1

3









, Q(t) =









t 0 0

0 t 0

0 0 t









, T = 8.

Note that the number of feasible solutions is 68 ≈
1.68 ∗ 106 and is too expensive to apply the enu-
meration method. For this, we apply the branch and
bound method to solve this example. We only search
3672 feasible solutions to obtain the optimal solution
as u∗ = (5, 4, 3, 1, 1, 1, 5, 1) and the optimal value as
J∗ = 136.232245. Hence, most of the insignificant fea-
sible solutions have been ignored and the branch and
bound method is very efficient. The cost functional
values of these 3672 feasible solutions are depicted in
Figure 5. It can be seen that only the feasible solutions
with the corresponding values a bit larger than the
current optimal value are searched.
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200.05
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136.232247

136.232248

136.232249

136.23225

136.232251

136.232252

 

 

Fig. 5. The cost functional values of 3672 feasible solutions
and the current optimal values when the branch and bound
method is applied in the second example.

6 Conclusion

In this paper, we have considered the optimal switching
problem of switched systems in discrete time, where
the subsystems are linear and the cost functional is
quadratic. Based on the positive semi-definite property
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of the matrix, we established the concept of the lower
bound dynamic system. Then, for any given current
switching sequence, we can construct the lower bound
dynamic system which can be used to compute the lower
bound. The branch and bound method is proposed to
solve the optimal switching sequence problem. We have
implemented the proposed method and shown that it is
very efficient.
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